
Distributed Sampling and Compression of Scenes with Finite

Rate of Innovation in Camera Sensor Networks∗

Nicolas Gehrig and Pier Luigi Dragotti
Communications and Signal Processing Group, EEE Department

Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
+44 (0)20 759-46192 | {nicolas.gehrig, p.dragotti}@imperial.ac.uk

Abstract

We study the problem of distributed sampling and compression in sensor networks

when the sensors are digital cameras that acquire a 3-D visual scene of interest from

different viewing positions. We assume that sensors cannot communicate among

themselves, but can process their acquired data and transmit it to a common central

receiver. The main task of the receiver is then to reconstruct the best possible estima-

tion of the original scene and the natural issue, in this context, is to understand the
interplay in the reconstruction between sampling and distributed compression.

In this paper, we show that if the observed scene belongs to the class of signals that

can be represented with a finite number of parameters, we can determine the minimum

number of sensors that allows perfect reconstruction of the scene. Then, we present

a practical distributed coding approach that leads to a rate-distortion behaviour at

the decoder that is independent of the number of sensors, when this number increases
beyond the critical sampling. In other words, we show that the distortion at the decoder

does not depend on the number of sensors used, but only on the total number of bits

that can be transmitted from the sensors to the receiver.

1 Introduction

Sensor networks have been attracting a significant interest in recent years. Ad-

vances in wireless communication technologies and hardware have enabled the design

of these cheap low-power miniature devices that make up sensor networks. The truly

distributed (or decentralized) nature of sensor networks is radically changing the

way in which we sense, process and transport signals of interest. In the common

“many-to-one” scenario, sensors are spatially deployed to monitor some physical phe-
nomenon of interest, and transmit independently their measurements to a central

receiver. The main task of the receiver is then to reproduce the best possible estima-

tion of the observed phenomenon, according to some distortion measure. Sampling

in space and distributed coding are clearly two critical issues in sensor networks. For

example, deploying to few sensors would lead to a highly aliased reconstruction of the
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phenomenon, while a too large number of sensors would use all the communication
resources by transmitting highly correlated measurements to the receiver. This last

issue can actually be addressed by means of distributed source coding techniques [1].

The correlated measurements can then be encoded independently at each sensor with

a compression performance similar to what would be achieved by using a joint en-

coder.

Despite this powerful coding approach, several authors have presented pessimistic
results regarding the scalability of sensor networks [2, 3]. Their main argument comes

from the fact that, if the total amount of data that can be received by the central

decoder is limited, then the throughput at each sensor scales as Θ( 1
N

) with the number

of sensors N . The global performance of the network then goes to zero as N → ∞.

More optimistic results were recently proposed in [4, 5], where it was shown that, for

a given distortion, an upper-bound (independent of N) on the total information rate
can be given. Recent works have also shown that if the observed phenomenon can be

represented with a finite number of degrees of freedom, then it is possible to efficiently

trade-off the density of sensors with the sensing resolution at each sensor [6, 7].

In this paper, we consider camera sensor networks, where each sensor is equipped

with a digital camera and is placed at a certain viewing position around a scene

of interest. In this context, the physical phenomenon that has to be transmitted

to the receiver is the visual information coming from the scene (or its plenoptic
function [8]), and the samples are the different sampled 2-D views acquired by the

sensors. The issues of sampling and communication are particularly interesting in this

scenario. Several sampling theorems have been proposed to address the question of

determining the critical sampling of a visual scene under different model assumptions,

such as bandlimited scenes [9] or scenes with finite rate of innovation [10]. Starting

from this critical sampling, our main objective is to show how we can arbitrarily
increase the number of sensors, while maintaining a constant global rate-distortion

behaviour for the reconstruction of the scene at the receiver. This “bit-conservation

principle” is achieved by means of our distributed compression scheme for multi-view

images proposed in [11, 12].

2 Camera Sensor Network Set-up

We consider the camera sensor network set-up proposed in Figure 1, where N

pinhole cameras are placed on a line and observe a common scene in the direction

perpendicular to the cameras’ line. The distance α between any two consecutive

cameras is known, all the cameras have the same focal length f and the distance from

the cameras to any object of the scene is at least Zmin. The observed scene is made

of L Lambertian planar polygons that can be tilted and placed at different depths.
Each of these polygons has a certain polynomial intensity (the intensity along the x

and y axes varies as a polynomial of maximum degree Q). The perspective projection

observed at each camera is therefore given by a 2-D piecewise polynomial function.

The difference between the N views is that the pieces are shifted differently according
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to their depths (pieces can be linearly contracted or dilated if they correspond to a
tilted object, as shown in Figure 2).

Figure 1. Our camera sensor network configuration.

Since the cameras are placed on an horizontal line, only the horizontal parallax has

an effect on the correlation between the N different views. We can therefore reduce

the sampling and compression problems to the 1-D case without loss of generality.
Throughout the paper, we will thus focus our attention on one particular horizontal

scanline for the different views. Figure 2 shows an example of two correlated 1-D

views with three pieces of constant intensities.

View 1 View 2

t1,1 t1,2

t1,3 t1,4 t1,5 t1,6 t2,1 t2,2

t2,3 t2,4

t2,5 t2,6

∆ 1

t2,1

Figure 2. Two correlated views of the same scene observed from two different view-
ing positions. Each discontinuity is shifted according to the epipolar geometry. The
set of disparities is given by {∆i}2L

i=1, where∆i = t1,i − t2,i.

The N cameras then communicate to a central station through a multi-access
channel with fixed capacity C. The natural questions we want to address are the

following: a) Is there a sampling result that guarantees that perfect reconstruction of

the visual scene is possible from a finite number of blurred and sampled projections?

b) Since the observed projections have to be transmitted through a channel with fixed

capacity, is the number of cameras going to influence the reconstruction fidelity at

the decoder?
We show in the next sections that an exact sampling theorem for this scenario exists
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and, most important, we show that there exists a practical distributed coding strategy
that allows for a reconstruction of the scene with a distortion that is independent of

the number of sensors and depends only on the total number of bits that can be

transmitted through the channel.

The rest of the paper is organised as follows: Section 3 describes our distributed

sampling strategies for the scene model with finite rate of innovation that we use.

In Section 4, we describe our distributed compression approach and we highlight our
“bit-conservation principle” in the context of a rate-distortion analysis. Simulation

results are proposed in Section 5 and we conclude in Section 6.

3 Distributed Sampling

The signals observed at the sensors are piecewise polynomial signals and can be

classified as signals with Finite Rate of Innovation (FRI). Recently, new sampling

methods for these classes of non-bandlimited signals have been proposed [13, 14].
They allow for a perfect reconstruction using only a finite number of samples. The

sampling can be done using sinc or Gaussian kernels, or any function that can repro-

duce polynomials. In other terms, each sensor observes a blurred and sampled version

of the original piecewise polynomial projection, and is able to reconstruct exactly the

original parameters of the view (exact discontinuity locations and polynomial coef-

ficients). Extension of this sampling approach for 2-D signals with FRI has been
proposed recently [15, 16].

Since each sensor is able to retrieve precisely its original perspective projection,

we can show that a finite number of sensors is sufficient to reconstruct exactly the

original scene using back-projection techniques. The goal of these techniques is to

find all the disparity correspondences between the different views. Once this disparity

matching problem is solved, the exact depth of any object can be retrieved and the
original scene can be reconstructed exactly. We consider here two scene scenarios

leading to two different sampling techniques:

A: We first consider the case where the L planar objects are separated and visible

from all the N cameras without occlusion, and keep the same “left to right” ordering

(the kth piece on the ith view corresponds to the kth piece on the jth view, for any

k ∈ {1; L} and i, j ∈ {1; N}). With this hypothesis, only two of the N views are

necessary in order to reconstruct the original scene (the correspondence problem

between the two views is straightforward in this case).

B: We then consider the case where the L objects are separated and visible from

all the N cameras without occlusion, but where the “left to right” ordering is not
guaranteed anymore. In order to solve the disparity matching problem at the decoder,

we need to have at least L+1 views of the scene. We can then back-project the L+1

left extremities of the pieces and retrieve the L real locations of these extremities [10].

The same procedure is then repeated with the L + 1 right extremities. Notice that
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this approach only relies on the discontinuity locations and not on the intensity of the
pieces. This general sampling result is therefore sufficient in any case (even if all the

pieces have the same intensity), but is not always necessary (two views are in theory

sufficient if all the pieces have different intensities).

For these two scenarios, the minimum number of cameras corresponds to the critical

sampling1. In the next section, we will show how each sensor can quantize its param-

eters and use distributed compression to maintain a constant global rate-distortion

behaviour at the receiver, independent on the number of sensors involved.

4 Distributed Compression and Bit Conservation

The distributed compression algorithm applied at each sensor can be summarized

as follows: First, the original projection is reconstructed from the observed sampled

version using an FRI reconstruction method. The original view parameters retrieved

are then quantized according to some target distortion value for the reconstructed

view. Finally, each quantized parameter is S-W encoded according to the known

correlation structure between the different views.
In this section, we first describe the rate-distortion behaviour of our view model

when the view parameters are encoded independently. Then, we introduce precisely

the correlation between the different views. Finally, we present our distributed com-

pression approach and show that it guarantees a bit-conservation principle.

4.1 R-D for each projection

A 1-D view is modelled by a piecewise polynomial function defined on [0; T ] with

L independent pieces of maximum degree Q, bounded in amplitude in [0, A], and 2L

discontinuities. Assume that such a function is quantized using Rt and Rp bits to

represent each discontinuity and polynomial piece respectively (the parameters are

quantized using a uniform scalar quantizer). It is possible to show that the distortion

(MSE) of its reconstruction can be bounded with the following expression [17]:

D(Rp, Rt) ≤ A2LT ((Q + 1)2 2−
2

Q+1
Rp + 2−Rt) (1)

For a total number of bits R = L(2Rt + Rp), the optimal bit allocation is given by:
Rp = Q+1

Q+5
R
L

+G and Rt = 2
Q+5

R
L
−G, where G = 2Q+1

Q+5
(log(Q+1)+2). This allocation

leads to the following optimal rate-distortion behaviour:

D(R) ≤ A2LT ((Q + 1)2 2−
2

Q+1
G + 2−G)

︸ ︷︷ ︸

c0

2
−2

L(Q+5)
R (2)

1In the presence of occlusions, it is also possible to derive an exact sampling result, assuming that each
object of the scene can be occluded in at most a certain given number of views. However, for the sake of
simplicity, we do not address the case of occlusions in this paper.
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4.2 The correlation model

Assume f1(t) and f2(t) are two piecewise polynomial views obtained from two

different cameras that are at a distance α apart. The two signals are defined for

t ∈ [0; T ] and are bounded in amplitude in [0; A]. If there is no occlusion, the

two views are exactly represented by L polynomials of maximum degree Q, and

2L discontinuities (the signals are equal to zero between the pieces). The shift of

a discontinuity from one view to the other (its disparity) is given by the epipolar
geometry and can be defined as: ∆i = αf

zi
, where zi is the depth of the ith discontinuity

(the depth of the object at its extremity). The range of possible disparities for a scene

is therefore given by: ∆ ∈ [0; αf
Zmin

] (see Figures 1 and 2).

We assume Lambertian surfaces for all the planar objects that make up the scene

(i.e., the intensity of any point on the surface remains the same when observed from

different viewing positions). A polynomial piece corresponding to a tilted planar
object can be linearly contracted or dilated in the different views. However, its

representation using Legendre polynomials is the same for any view, because of the

support normalization on [−1; 1] that we use with this basis.

The correlation between the two views is therefore such that, knowing all the

parameters of the first view, the only missing information needed to reconstruct

perfectly the parameters of the second view is given by the set of disparities {∆i}2L
i=1.

In the next section, we will show how this correlation structure can be used to perform
distributed compression of the different views.

4.3 Distributed compression

Each sensor has to quantize and transmit its parameters to the central receiver.

In the case where there is no occlusion, this information corresponds exactly to 2L

discontinuity locations and L polynomials. Let Rti and Rpi
be the number of bits used

to quantize respectively each discontinuity and each polynomial of the ith view. The

total number of bits used to encode this view is therefore given by Ri = L(2Rti +Rpi
)

and is associated to a distortion Di.

Assume just for one instant that the N views that have to be transmitted to

the receiver are independent. In this case, for an average distortion Di over all the

reconstructed views at the receiver, the total amount of data to be transmitted would

be of the order of NRi = NL(2Rti + Rpi
).

We can now show how the correlation model can be exploited to perform distributed

compression for the two scene scenarios (A and B) introduced in Section 3:

A: In this scenario, we know that only two views are necessary to retrieve the

original scene parameters. Our correlation model is such that each discontinuity is
shifted from one view to the other by a certain value ∆i ∈ [0; αf

Zmin
]. Assume that

a total of R1 bits is used to encode the first signal such that each polynomial piece

and each discontinuity is using Rp1 and Rt1 bits respectively (R1 = L(Rp1 + 2Rt1)).

Now, in order to reconstruct the second view at the decoder with a similar distortion,
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only RtSW
= Rt1 −Rs = �log2(

αf
Zmin

)� bits are necessary to encode each discontinuity
of the second view [11] (Rs corresponds thus to the number of most significant bits

of each discontinuity location that does not need to be transmitted from the second

view). Since the polynomials are similar for the two views, they do not need to be re-

transmitted from the second sensor. The total bit-rate necessary to transmit the two

views is therefore given by Rtot = L(Rp1 +2Rt1 +2RtSW
). Now, if we want to transmit

some information from more than two encoders, we know that, as long as the two
extreme sensors transmit at least RtSW

bits from their discontinuities information, the

rest of the Rtot − 2RtSW
bits can be obtained from any subset of the N encoders [12].

In other words, the information available at each sensor can be divided in two subsets.

The last RtSW
bits of each discontinuity location (2LRtSW

bits in total) corresponds

to the local innovation of the view according to the correlation structure between the

two most distant sensors. This information has to be transmitted from the two most
distant sensors. The remaining L(Rpi

+ 2Rs) bits is the information that is common

to all sensors and can be obtained from any subset of the N cameras. The number

of sensors used for the transmission has therefore no influence on the reconstruction

fidelity at the decoder (the reconstruction fidelity is defined as the mean squared error

over all the N reconstructed views). Using an optimal bit allocation and transmitting

the information using N sensors, the distortion of any reconstructed view given the

total bit budget Rtot can be shown to behave as:

D(Rtot) ≤ c02
−2(2Rs+3G)

Q+9

︸ ︷︷ ︸

c1

2
−2

L(Q+9)
Rtot (3)

Notice that an independent encoding of the N views would lead to the following

behaviour:

D(Rtot) ≤ c02
−2

NL(Q+5)
Rtot (4)

We can observe that the difference in the decaying factor between the distributed and

the independent coding approaches becomes larger as N , L, or Q increases. If there

is only two views to transmit and Q = 0, the decaying factors compare as −2
9L

vs. −2
10L

for the distributed and independent approaches respectively.

B: The distributed compression strategy in this case consists in sending the discon-

tinuities from L + 1 views and each polynomial piece from only one encoder. The

total bit-rate necessary is therefore given by: Rtot = L((L + 1)2Rt + Rp). If we

now want to transmit information from more than this minimum number of sensors
Nmin = L+1, we can do it in a very flexible manner: For each new sensor introduced

in the system, we can ask it to take the responsibility of transmitting some partial

information about the polynomial pieces (therefore reducing the communication task

of some other sensors) or to replace one of its two neighbours to transmit some sub-

set of the most significant bits of its discontinuity locations. The distortion of any

reconstructed view given the total bit budget Rtot can be shown to behave as:

D(Rtot) ≤ c02
−2(2L+1)G

Q+9

︸ ︷︷ ︸

c2

2
−2(Q+5)

L(Q+9)(4L+Q+5)
Rtot (5)
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Again, the distortion at the receiver only depends on the total number of bits trans-
mitted Rtot and not on the number of sensors used.

5 Simulation Results

We propose a simple simulation where five cameras are observing a synthetic scene

made up of three tilted polygons with linear intensities. The cameras are placed on

a horizontal line and observe blurred and undersampled views (32× 32 pixels) of the

original scene, as illustrated in Figure 3. For each view, knowing that the original

scene belongs to a certain class of signals with finite rate of innovation, the sampling
results presented in Section 3 can be used to retrieve the 33 original parameters of

the view (twelve vertices having two parameters each, and three 2-D linear functions

having three parameters each). Using these retrieved parameters, high resolution

version of the different views can be reconstructed at each encoder (see Figure 4).

Figure 3. Observation at the sensors. Each sensor observes a blurred and under-
sampled version of the perspective projection of the scene.

Figure 4. High resolution version of the 5 views reconstructed at the encoders from
the samples shown in Figure 3 using an FRI method.

The original views are represented with the following precision: 22 bits for each

vertex (view of 2048 × 2048 pixels) and 9 bits for each polynomial coefficient. One

view is therefore exactly represented using 12×22+9×9 = 345 bits. The parameters

α, f and Zmin are such that RtSW
= 10 bits (the disparities between the first and the

fifth views can be larger than a quarter of the image width). As we have shown in
Section 4.3, a total rate of Rtot = 345 + 12 × 10 = 465 bits is therefore sufficient to

reconstruct all the high resolution views at the receiver.

If the bit budget Rtot is smaller than 465, coarser quantization of the parameters

has to be done prior to applying distributed compression. Table 1 highlights our
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bit-conservation principle for specific bit budgets Rtot. In particular, it shows that
our approach suffers no rate loss when we increase the number of sensors used for

transmission.

Table 1. An exact bit-conservation principle.
R1 R2 R3 R4 R5 Rtot PSNR

(bits) (bits) (bits) (bits) (bits) (bits) (dB)

345 - - - 120 465 ∞
276 - - - 108 384 38.8
128 - 128 - 128 384 38.8
108 84 - 84 108 384 38.8
84 72 72 72 84 384 38.8

171 - - - 60 231 22.8
48 48 39 48 48 231 22.8

6 Conclusion

We have addressed the problem of distributed sampling and compression in cam-

era sensor networks for scenes with finite rate of innovation. In particular, we have
shown that using a piecewise polynomial model for the scene, the critical sampling

(i.e., the minimum number of sensors needed) can be precisely derived. Then, we

have also shown that when using more sensors, our distributed compression approach

can be used to maintain a constant global rate usage (independent on the number of

sensors N), for any given reconstruction distortion. This result provides us with an

exact bit-conservation principle when the number of sensors increases. Our ongoing
research focuses on the extension of those results to more complex scene and correla-

tion models, and on its application to real images obtained from dense multi-camera

arrays.
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