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Symmetric and A-Symmetric Slepian-Wolf Codes
with Systematic and Non-Systematic Linear Codes

Nicolas Gehrig, Student Member, IEEE, and Pier Luigi Dragotti, Member, IEEE

Abstract— We propose a constructive approach for distributed
source coding of correlated binary sources using linear channel
codes that can achieve any point of the Slepian-Wolf achievable
rate region. Our approach is very intuitive and can be used
with systematic and non-systematic linear codes. Moreover, the
proposed coding strategy can easily be extended to the case of
more than two sources.

Index Terms— Distributed source coding, Slepian-Wolf theo-
rem, symmetric encoding, linear channel codes.

I. INTRODUCTION

THE Slepian-Wolf theorem [1] states that separate encod-
ing of the outputs of two correlated sources can be as

efficient as joint encoding, assuming that the two compressed
signals can be jointly decoded. The achievable rate region for
such a system is given by: RX ≥ H(X|Y ), RY ≥ H(Y |X)
and RX + RY ≥ H(X,Y ).

Although this theoretical result has been known for about
three decades, it is only recently that practical coding ap-
proaches have been proposed. In [2], a first coding technique
using channel coding principles was introduced. Practical
designs mainly based on Turbo and LDPC codes have since
been presented in several other papers (see [3], [4], [5] for
example). Most of these approaches focus on the asymmetric
scenario, where one of the two sources is transmitted perfectly
to the receiver.

For practical applications, it might be necessary to have
more flexibility in the repartition of the bit-rates between
the encoders. In [6], Pradhan and Ramchandran proposed
a technique based on their original work (DISCUS [2]) in
order to achieve any point of the Slepian-Wolf achievable rate
region. Their method creates two sub-codes of a single channel
code by splitting the original generator matrix in two. Each
encoder uses then one of these sub-codes to encode its data.

In this letter, we propose a constructive approach that allows
for a flexible repartition of the transmission rates between
the encoders. Our technique uses a single linear channel code
that can be non-systematic. The performance of our approach
depends only on the quality of the channel code used. Actually,
the two correlated sources can be seen respectively as the
input and the output of a certain channel used to model their
correlation. We refer to this virtual channel as the correlation
channel of the two sources. If we can find a code that achieve
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the capacity of this correlation channel, then our distributed
source coding approach can reach the Slepian-Wolf bound and
is therefore optimal.

Notice that similar approaches have recently been proposed
in [7], [8] and [9]. Although our own approach is relatively
similar in spirit to the one in [7], our scheme can also be
used with non-systematic codes, whereas their technique can
only be used with systematic codes. Note that good capacity
achieving LDPC codes are usually non-systematic. In [8]
and [9], iterative decoding procedures are proposed in order
to decode the two correlated blocks simultaneously. Their
main strategy is to apply the standard sum-product algorithm
(message-passing decoding [10]) on an extended factor graph,
corresponding to two standard LDPC decoders connected
through correlation nodes modeling the joint distribution be-
tween the sources. In Section III, we show that our approach
does not require the use of such extended graphs since our
methods only needs to decode one single block (the difference
pattern). A standard iterative decoding scheme similar to the
one proposed in [5] can therefore be used in our case. Our
approach can thus be seen as an intuitive extension of the
asymmetric approach proposed in [5] in order to achieve the
entire Slepian-Wolf achievable rate region.

II. A SIMPLE EXAMPLE WITH THE HAMMING (7, 4) CODE

We consider the Hamming (7, 4) code C whose parity check
matrix is given by:

H =

⎛
⎝ 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎠ . (1)

We know that a codeword x belongs to the Hamming code C
if and only if its syndrome is equal to zero:

sx = HxT = 0 ⇐⇒ x ∈ C. (2)

The minimum distance between any two of the 16 codewords
of the Hamming code is three. This code is therefore able to
correct up to one bit error per codeword. Assume ei is the
error pattern corresponding to an error at bit position i (ei has
six 0s and one 1 at position i). We define y = x ⊕ ei where
⊕ corresponds to the binary addition. This codeword y does
clearly not belong to C since its distance from x is equal to
one. Its syndrome is given by:

sy = HyT = H(x ⊕ ei)T = HxT ⊕ HeT
i = HeT

i . (3)

We can therefore see that the syndrome of an erroneous
codeword does not depend on the original codeword but only
on the error pattern. This means that if we change the ith bit
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of all the codewords of C, this produces 16 new codewords, all
having syndrome HeT

i . This new set of codewords is called
coset number i and has the same properties as C (coset 0),
that is, the minimum distance between any two codewords is
still three. All the 27 possible 7-bit blocks are thus distributed
in 8 distinct cosets. Notice that this Hamming (7, 4) code has
a particular structure such that the syndrome of an erroneous
codeword gives the binary representation of the error position,
or similarly, the coset number.

Consider now two discrete memoryless uniformly dis-
tributed 7-bit binary random variables x and y, correlated such
that their Hamming distance is at most one (dH(x, y) ≤ 1).
Assume that x and y belong to cosets i and j respectively.
The difference between x and y is given by the error pattern
ek = x ⊕ y (x and y differs at position k). We know that the
syndromes of x and y are given by sx = HxT = HeT

i and
sy = HyT = HeT

j respectively. We can see that:

sk = HeT
k = H(x ⊕ y)T = HxT ⊕ HyT = sx ⊕ sy. (4)

This result shows that knowing only the syndromes of x and
y, we can retrieve the syndrome of their difference pattern and
therefore, the bit position where they differ.

Our coding technique can now be presented as follows:
Assume the following block representations for x, y and H:

x = [xa xb] y = [ya yb] H = [Ha Hb] (5)

where the first and the second blocks are of length 4 and 3
respectively. The syndromes of x and y are computed at their
respective encoders as: sx = HxT = HaxT

a ⊕ Hbx
T
b and

sy = HyT = HayT
a ⊕Hby

T
b . Encoder 1 transmits sx together

with a subset of xa. Encoder 2 transmits sy together with the
subset of ya which is complementary to the one chosen by the
first encoder. For example, as presented in Fig. 1, the encoder
1 could send: [x1 x2 sT

x ] and encoder 2: [y3 y4 sT
y ].

Encoder 1
Encoder 2

x1 x2 x3 x4

xa sx

y1 y2 y3 y4

ya sy

Fig. 1. Example of distributed source coding of two correlated 7-bit blocks.
Only the gray squares are transmitted.

At the decoder, the syndrome of the difference pattern
between x and y is obtained by computing the sum of the two
syndromes sx⊕sy. Using the corresponding error pattern, the
missing bits of xa and ya can easily be retrieved. Finally,
xb and yb are obtained as: xT

b = H−1
b (sx ⊕ HaxT

a ) and
yT

b = H−1
b (sy ⊕ HayT

a ).
Since x and y are uniformly distributed, we have: H(x) =

H(y) = 7 bits. We know that y can take 8 different equiprob-
able values for a specific x. Hence, H(y|x) = H(x|y) = 3
bits. The joint entropy of x and y is therefore equal to
H(x, y) = H(x) + H(y|x) = 10 bits. Our coding scheme
uses 6 bits to send the two syndromes and a total of 4 bits
to send the two complementary subsets of xa and ya and is
therefore optimal.

III. CONSTRUCTIVE APPROACH

USING ANY LINEAR CHANNEL CODE

Assume we have an (n, k) binary linear code C with parity
check matrix H in its reduced form such that: H = [H1 H2],
where H1 and H2 are of size (n−k×k) and (n−k×n−k)
respectively. Assume without loss of generality that H2 is non
singular. Notice that if the code is systematic, we know that
the generator matrix G is of the form: G = [Ik P], where P
is of size (k×n−k). The parity check matrix H has to satisfy:
GHT = 0 and can therefore be given by: H = [−PT In−k].
H2 is thus simply the identity matrix in that case.

Assume C is able to correct up to M errors per n-bit code
block. We know that the following relation must hold:

2n−k ≥
M∑

j=0

(
n

j

)
(sphere packing bound). (6)

This code C generates 2n−k cosets each containing 2k code-
words of length n. We know that x belongs to the coset i,
such that sx = HxT = HeT

i (ei is the coset leader of coset
number i, i.e., the codeword with minimum weight).

Let xi be a binary block of length n represented as: xi =
[ai bi qi], where ai, bi and qi are of length k1, k2 and n−k
respectively (k1 and k2 are chosen such that their sum is equal
to k). The syndrome of xi is defined as: si = H1[ai bi]T ⊕
H2q

T
i .

Consider now two n-bit blocks x1 and x2, correlated such
that their Hamming distance dH(x1, x2) is at most m (Assume
that M ≥ m). Our distributed coding strategy consists in
sending only [a1 sT

1 ] and [b2 sT
2 ] from the encoders 1 and

2 respectively. The transmission bit-rates are therefore given
by: R1 = n− k2 bits and R2 = n− k1 bits, corresponding to
a total of 2n − k bits.

At the receiver, we let ed correspond to the “difference
pattern” between x1 and x2 as: ed = x1 ⊕ x2. We know that
the syndrome of ed is given by sd = HeT

d = H(xT
1 ⊕ xT

2 ) =
s1⊕s2. We can now retrieve the error pattern ed corresponding
to this syndrome sd using one of the following techniques:
If the code is not too large, a simple lookup table storing
the corresponding pattern error for each possible syndrome
can be used. For larger code, an iterative method has to be
used. Using an iterative decoding scheme such as the one
proposed in [5], we can recover ed as the closest codeword
to the all zero sequence satisfying the syndrome sd. Notice
that this iterative decoding approach is particularly suited for
LDPC codes which are amongst the best block codes known
for memoryless channels [10].

Knowing the difference pattern ed, the missing bits of the
k first bits of x1 and x2 are easily obtained as: [a2 b1] =
[a1 b2] ⊕ ek

d , where ek
d corresponds to the k first bits of ed.

We know that the syndrome of x1 corresponds to: s1 =
H1[a1 b1]T ⊕ H2q

T
1 . Let z1 be defined as: z1 = s1 ⊕

H1[a1 b1]T . We can now retrieve q1 by computing: qT
1 =

H−1
2 z1. Notice that H−1

2 can be obtained using Gaussian
elimination and that, if C is systematic, we can choose H
such that H2 = I and q1 = zT

1 . The inversion of H2 is
actually done only once (off-line) and does not introduce extra
complexity to the decoding phase. This inversion is the one
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syndromes (n-k bits)

X1
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X3

XL

k first bits

Fig. 2. Our encoding strategy for L correlated binary sources. Each encoder
sends the syndrome and a subset of the first k bits of their input block.

that is usually done in order to compute the generator matrix
from a parity check matrix.

Knowing q1, we have now completely recovered x1 and we
can easily obtain x2 as x2 = x1 ⊕ ed. We can summarize our
coding approach as follows:

Proposition 1: Assume X and Y are two binary sequences
of length n, correlated such that their Hamming distance is
at most m. Consider an (n, k) linear channel code C that can
correct up to M ≥ m errors per n-bit block. The following
distributed coding strategy uses a total of 2n−k bits to encode
the two sequences and is sufficient to allow for a perfect
reconstruction of them at the decoder:

• Send the syndromes of X and Y from their respective
encoders.

• Send only complementary subsets of their first k bits.
In terms of performance, we can say that the ability of

our distributed source coding technique to work close to the
Slepian-Wolf bound only depends on the quality of the channel
code used. More specifically, if X and Y are uniformly
distributed and p(Y |X) is the transition probability, then the
closer the channel code C gets to the capacity of the binary
channel p(Y |X), the closer our system gets to the Slepian-
Wolf bound. The design of capacity achieving channel codes,
however, is beyond the scope of this paper.

Since our decoding strategy can use an iterative decoding
approach similar to the one proposed in [5], similar perfor-
mances in terms of decoding error probability are expected
if the same linear code is used by both systems. Our work
can thus be seen as an intuitive extension of the work in [5]
in order to cover the full Slepian-Wolf achievable rate region
without any performance loss.

We have run some simulations and we have obtained numer-
ical evidence that our approach presents similar performances
than the one proposed in [5].

IV. GENERALIZATION TO MORE THAN TWO SOURCES

The approach of the previous section can be extended to
any number of correlated sources (see Fig. 2), as indicated in
the following proposition:

Proposition 2: Assume x1, . . . , xL are L binary sequences
of length n correlated such that the Hamming distance
between two consecutive sequences is at most m (i.e.,
dH(xi, xi+1) ≤ m for i = 1, . . . , L − 1). Consider an (n, k)
linear channel code C that can correct up to M ≥ m errors per
n-bit block. The following distributed coding strategy uses a
total of n + (L − 1)(n − k) bits to encode the L sequences
and is sufficient to allow for a perfect reconstruction of all of
them at the decoder:

• From each encoder, send the syndrome si of the corre-
sponding block xi.

• Send only complementary subsets of their first k bits such
that each bit position is sent from only one encoder.

At the decoder, the L − 1 difference patterns can be
recovered from the L syndromes, allowing then to complete
the first k bits of each sequence. The decoding method used
here is similar to the one presented in the previous section.
The difference pattern of each pair of consecutive blocks is
retrieved by running the standard iterative decoding method
with the sum of the two syndromes. Knowing all the difference
patterns and having received complementary subsets of the
first k bits, the first k bits of each block can then be recovered.
Finally, each original block xi := [ai qi] (i = 1, . . . , L) is
completed by recovering its last n − k bits as:

qT
i = H−1

2 (si ⊕ H1a
T
i ). (7)

It is possible to show that this coding strategy is optimal
for some particular cases.
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