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Abstract—One of the problems with blind system identification
in subbands is that the subband systems can only be identified
correctly up to an arbitrary scale factor. This scale factor
ambiguity is the same across all channels but can differ between
the subbands and therefore, limits the usability of such estimates.
In this contribution, a method that uses multiple filterbanks
is proposed that utilizes overlapping passband regions between
these filterbanks to find scalar correction factors that make the
scale factor ambiguity uniform across all subbands. Simulation
results are provided, showing that the proposed method accu-
rately identifies and corrects for these scale factors at the cost of
an increased computational burden.

I. INTRODUCTION

Blind system identification (BSI) is of interest in several
fields of engineering including communications, exploration
seismology and speech and audio processing [1]. Within the
area of speech and audio processing BSI is an important com-
ponent for speech dereverberation [1]–[3]. The BSI problem
can be stated as follows: consider a signal s(n) which is
produced in a multipath environment such as a reverberant
room and transmitted to an array of M sensors at a distance
from the source. The observed signal at the mth sensor is then
given by

xm(n) = hTms(n) + νm(n), (1)

where hm = [hm,0 hm,1 . . . hm,L−1]
T is the L-tap impulse

response between the source and the mth sensor, s(n) =
[s(n) s(n− 1) . . . s(n−L+ 1)]T is the input signal vector,
νm(n) is additive measurement noise and [·]T denotes matrix
transpose. The problem of BSI is to find the impulse responses
h = [hT1 hT2 . . . hTM ]T using only the observations xm(n).
Most existing BSI methods find the channel responses up to
an arbitrary scale factor; the estimates, ĥ, are given by

ĥ = αh. (2)

The accuracy of the estimates is degraded by observation noise
and long impulse responses, commonly occurring in acoustic
signal processing. Long impulse responses also result in large
computational complexity and lower estimation performance
due to increased occurrence of common or near-common
zeros [4].

One way to improve the identification performance is to
use a subband framework; this has shown benefits in terms
of computational complexity and performance improvement
in applications such as acoustic echo cancellation [5]. A study
of a subband BSI system was presented in [2], highlighting the
benefit of the shorter channels to be estimated compared with
the full-band case. However, BSI in subbands has received
much less attention than the non-blind case (for example,
acoustic echo cancellation) and one reason for this is the scale
factor ambiguity across the different subbands which limits the
use of such approaches [2].

A method to correct the scale factor ambiguity in oversam-
pled subband systems was proposed in [6], where the authors
find the scale correction factors using a full-band cross-relation
error operating on the observations signals together with the
full-band impulse responses that are reconstructed from the
subband estimates. Although it provides very accurate results
if the subband channel estimates are accurate, it degrades
rapidly as the level of estimation error increases.

In this paper, we propose an alternative method to cor-
rect this scale factor ambiguity. This method uses multiple
filterbanks such that an overlapping passband region (OPR)
between subbands and subband systems is created; this fa-
cilitates the calculation of scale correction factors. Since the
proposed method operates solely on the estimated subband
channels it is much less sensitive to estimation errors compared
to that in [6]. The remainder of this paper is organized as
follows. In Section II, the problem of scale correction factor
estimation is formulated. The scale factor ambiguity correction
(SFAC) method is then developed in Section III and simulation
results evaluating its performance are presented in Section IV.
Finally, conclusions from this work are drawn in Section V.

II. PROBLEM FORMULATION

Consider a filterbank with K subbands decimated by a
factor of N . Assuming that the identifiability conditions are
satisfied1, each subband estimate ĥk (where k is the subband

1It is still an open question whether identifiability conditions can be met
in subbands, since for non-critically decimated filterbank, the systems are not
fully-excited.



index) will be determined up to a complex scale factor αk
such that

ĥk = αkhk, k = 0, 1, . . . ,K − 1. (3)

It is evident from (3) that for a particular k the scale factor
will be the same across the M channels but for any particular
channel will be different across the K subbands. If the
subband estimates are used to equalize the observed signal,
the scaling discrepancy will propagate to the reconstructed
full-band signal. Alternatively, if a full-band impulse response
is reconstructed from the subband estimates, the reconstructed
impulse response will be incorrect. The correction of this inter-
band scale factor ambiguity does not require identification of
the exact scale factors; it is sufficient to process the subband
estimates such that the scale factors are the same across all K
subbands. Consequently, we here define the (SFAC) in terms
of a correction terms βk that can take on any values which
result in

β0α0 = β1α1 = . . . = βK−1αK−1.

The objective of SFAC is to find the coefficients βk for k ∈
{0, 1, . . . ,K − 1}. Note that the scale factors can be real or
complex, depending on the choice of filterbank structure.

III. SCALE FACTOR AMBIGUITY CORRECTION METHOD

In this section, we present a novel SFAC method. Firstly,
the principle of the proposed method is described. Secondly,
the algorithm to find the SFAC coefficients is provided.

Here the generalized discrete Fourier transform (GDFT)
filterbank with K subbands decimated by a factor of N is
employed. The advantages of the GDFT filterbank include
straightforward implementation of fractional oversampling
(N ≤ K) and computationally efficient implementations [5].
Within the framework of the GDFT filterbank, the coefficients
of the kth analysis filter, uk = [uk,0, uk,1 . . . uk,,Lpr−1]

T ,
are calculated from a single Lpr-tap prototype filter, qi, with
bandwidth 2π

K according to

uk,i = qiej
2π
K (k+k0)(i+i0), i = 0, 1, . . . , Lpr − 1, (4)

where the frequency and time offset terms were set to i0 = 0
and k0 = 1/2 as in [7]. A corresponding set of synthesis filters,
vk,i satisfying near perfect reconstruction is obtained from the
time-reversed, conjugated version of the analysis filters [5],
vk,i = u∗k,Lpr−i−1. The oversampled subband structure allows
aliasing between adjacent subbands to be suppressed to a
very low level (around −90 dB in our implementation); this
eliminates the need for cross-band filters and the full-band
transfer function, Hm(z), can be related to a set of subband
filters Hm,k(z), k = 0, 1, . . . ,K/2 − 1 with only one filter
per subband [7].

A. Principle

The proposed SFAC algorithm works with multiple over-
lapping filterbank systems. The incentive for using multiple
filterbanks is to create an OPR between subband filters. It
is argued that cross-relation based BSI algorithms (e.g. [2]),
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Fig. 1. Multiple filterbanks showing the OPRs.

applied at different subbands, will yield estimated filters with
almost identical frequency responses up to a scale factor in
the OPRs. The goal of our method is therefore to resolve
these gain factors by comparing multiple estimates at the same
frequency due to BSI in overlapping subband filters. It should
be stressed that the proposed method involves BSI proce-
dure in multiple filterbanks, and hence impose a significant
computational burden increase. The frequency response of the
analysis filters and the OPRs are depicted in Fig. 1. Note, that
only frequency bins for which the subband frequency response
is approximately 0 dB are considered. We suggest to find
the SFAC coefficient by minimizing the Euclidian distance
between the frequency responses of the system in overlapping
subbands from different filterbanks in the OPR.

It is important to note that the solution of estimating the
subband systems is blind to the analysis filters since the roots
of the latter filters constitute common zeros for all channels.
The main objective of the current paper is the derivation
of the SFAC algorithm. As in [7], we therefore replace the
estimated filters in the subband domain by the LS equivalent
subband filters obtained from the true full-band channels. To
keep the exposition as realistic as possible, estimation errors
are emulated by additive noise. A comprehensive method
consisting of both estimation procedure and SFAC is a subject
for future research.

The SFAC coefficients are calculated in the full-band do-
main, namely after upsampling the subband channels and
filtering by the synthesis filters (but before subbands sum-
mation). The analysis and synthesis filters, due to their in-
herent ripple, insert small gain differences in the identified
subband systems. These spurious gain differences should be
compensated before calculating the SFAC coefficients2. Using
the above considerations the kth subband at the pth filterbank
system is given by:

u
(p)
k,i = qi ej

2π
K (k+ 1

2+p/P )i; p = 0, . . . , P − 1. (5)

It can be easily verified that these analysis filters have OPRs.
Let U

(p)
k = [U

(p)
k (ω0), . . . , U

(p)
k (ωLDFT−1)]

T denote the dis-
crete Fourier transform (DFT) of the impulse response of the

2Since the LS equivalent subband filters are based on the full-band system,
they are all in-phase, rendering phase compensation unnecessary.



analysis filters u(p)k,i . Note that the DFT length LDFT should
be larger than (or equal to) the length of the resulting filters
after upsampling and convolution. The same discussion also
applies to the synthesis filters. The transfer functions of the
synthesis filters V(p)

k are defined in a similar fashion. All DFT
operations in the sequel should be read as LDFT points DFTs.

B. Algorithm

The algorithm consists of three steps. In Step 1, P different
filterbanks are created. In Step 2, we estimate the subband
systems and compute their DFTs in the full-band domain using
the analysis and synthesis filters. In addition, we eliminate the
influence of the analysis and synthesis filters. In Step 3 the
SFAC coefficient between adjacent subbands can be estimated
using a weighted least square estimation (WLSE) approach.
Here the weighting is used to specify the OPR in which the
least square error is minimized.

Denote the estimated (or alternatively, the LS equivalent [7])
subband systems as ĥr,m, where r = k · P + p. The full-
band representation of these estimates is denoted by h̃r,m with
the respective transfer function H̃r,m, m = 1, . . . ,M . Denote
also the transfer function of the ripple compensated filters as
H̃c,r,m. Finally, a concatenation of all channel estimates is
given by H̃r = [H̃T

r,1, H̃
T
r,2, · · · , H̃T

r,M ]T . H̃c,r is defined
in a similar fashion. In total we need to find K/2 SFAC
coefficients. The (r + 1)th SFAC coefficient is given by

β′r+1 = WLSE
(
wr, H̃r, H̃c,r+1

)
= argmin

β

∥∥∥wr ·
(
H̃r − β H̃c,r+1

)∥∥∥2 , (6)

where here H̃r,m is after gain factor elimination by β′r
(calculated in the previous step) and wr is the weight vector of
length M ×LDFT with ones in the OPRs and zeros elsewhere.
We define the OPR of the mth channel as the 2B + 1 bins
wide region, where B = bLDFT/(6KP )c. The symmetry axis
is the intersection point of adjacent subband filters, satisfying

ηr,m = round
{
LDFT

2K
+

(
r +

1

2

)
LDFT

KP
+ (m− 1)LDFT

}
.

(7)
To obtain larger overlap regions we can also use filterbanks
with a decimation factor closer to the critical decimation
factor. In this work, a decimation factor of half the critical
decimation factor was used. It should be noted that the SFAC
coefficient between the last and the first filters is not calculated
here. However, when the correct SFAC coefficients have
been identified this gain should be equal to 1. The proposed
algorithm for estimating the SFAC coefficients is summarized
in Algorithm 1. After estimating the SFAC coefficients, we can
either equalize the reverberant signal in the subband domain,
or extract the full-band filter for full-band equalization [6].

IV. PERFORMANCE EVALUATION

We now provide simulation results to demonstrate the
performance of the proposed algorithm, comparing it to the
method in [6] and to the case of no scale factor correction.

Step 1: Compute analysis and synthesis filters.
for k = 0, 1, . . . ,K/2− 1 do

for p = 0, 1, . . . , P − 1 do

u
(p)
k,i = qi ej

2π
K (k+ 1

2+p/P )i

v
(p)
k,i =

(
u
(p)
k,Lpr−i−1

)∗
U

(p)
k = DFT

(
u
(p)
k,i

)
and V

(p)
k = DFT

(
v
(p)
k,i

)
end

end

Step 2: Estimate subband systems and compute
frequency response in the full-band domain.
For h,U,V,H and Hc use: {◦}r , {◦}(mod(r,P ))

br/(K/2)c .
begin

for k = 0, 1, . . . ,K/2− 1 do
for p = 0, 1, . . . , P − 1 do

- Define r = k · P + p

- Estimate subband systems ĥr,m and
represent in the full-band domain:
for m = 1, 2, . . . ,M do

h̃r,m =
(
(ur)↓N ∗ ĥr,m

)
↑N
∗ vr

- Compute the frequency response

H̃r,m = DFT
(
h̃r,m

)
- Ripple compensation:

H̃c,r,m = H̃r,m�Ur�Ur+1�Vr�Vr+1

where �,� denote element-wise
multiplication and division, respectively.

end
H̃r = [H̃T

r,1, H̃
T
r,2, · · · , H̃T

r,M ]T

H̃c,r = [H̃T
c,r,1, H̃

T
c,r,2, · · · , H̃T

c,r,M ]T

end
end

end

Step 3: Sequentially estimate the SFAC coefficients in
the full-band domain.
- Set β′0 = 1.
begin

for r = 0, 1, . . . , P (K/2− 1)− 1 do
- Compute SFAC coefficient for the estimated
subband system r + 1:

β′r+1 = WLSE
(
wr, H̃r, H̃c,r+1

)
- wr is a vector with ones in the OPR of the M
channels and zeros elsewhere.
- Correct the gain in adjacent subband:

H̃r+1 = β′r+1H̃r+1

end
end
- The SFAC coefficients are given by: βk = β′Pk for
k = 0, 1, . . . ,K/2− 1.

Algorithm 1: Summary of the proposed SFAC algorithm.



The filterbank used for the following experiments comprises
of K = 8 subbands with a decimation factor N = 4.
An Lpr = 64-tap prototype filter was designed using the
iterative least squares method [5], giving an estimated aliasing
suppression of 92 dB. The source signal was white Gaussian
noise with a system of M = 2 randomly generated channel
responses of length L = 1024 whose tap values were drawn
from a zero-mean Gaussian distribution and are multiplied by
an exponentially decaying function. We then used the full-band
channel responses and the method in [7] to find the equivalent
subband filters; these were used as the subband channel
estimates, ĥk. Scale coefficients αk were generated randomly
for each subband and white Gaussian noise was added to
each subband to simulate different levels of estimation error.
We used two different metrics in our evaluation. First, the
normalized projection misalignment (NPM) was employed to
measure the misalignment between two impulse responses
(disregarding the full-band scale factor) and is defined as [8]

NPM = 20 log10

(
1

‖h‖

∥∥∥∥∥h− hT ĥ

ĥT ĥ
ĥ

∥∥∥∥∥
)
dB. (8)

The NPM is applied to the full-band impulse responses which
are reconstructed from the subband estimates using the ap-
proach in [7]. Second, we used the normalized sample variance
of the corrected scale factors, defined as

ξ =

1
K/2

∑K/2−1
k=0 (αkβk − µ)2

||Aβ||2
, (9)

where A = diag{α0 α1 . . . αK/2−1} is a diagonal matrix
with the true scale factors, β = [β0 . . . βK/2−1]

T are the
correction coefficients and µ = 1

K/2

∑K/2−1
k=0 αkβk. If the

parameters βk correct the scale ambiguity such that the scale
factor is uniform over all subbands, then ξ = 0. The results in
terms of normalized variance for the proposed algorithm and
for that of [6] are shown in Fig. 2(a). Figure 2(b) shows the
results for the two algorithms in terms of NPM; this figure
also includes the cases of no scale factor correction and the
case of exact scale factor correction. The need for scale factor
correction is confirmed, which shows that the reconstructed
full-band impulse response does not match the actual system,
even when the subband estimates are otherwise accurate.
Furthermore, it can be seen that the proposed algorithm and
that of [6] achieve the scale factor correction but the method
in [6] rapidly deteriorates with increased misalignment. On the
contrary, the proposed method is accurate in correcting for the
scale factor ambiguity for a wide range of subband channel
misalignment values, where its performance is close to that of
the ideal scale factor correction.

V. CONCLUSION

We have presented a method for scale factor ambiguity
correction in subband BSI. The method uses multiple filter-
banks to create OPRs between different subband estimates
and uses them to calculate a set of scale factor correction
terms. Simulation results using a GDFT filterbank showed
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Fig. 2. Metrics to evaluate the SFAC algorithm as a function of the
misalignment.

that the proposed method accurately corrects the scale factor
differences between subbands for a wide range of subband
channel estimation errors, with a performance close to the
optimal case of ideal scale factor correction terms. The im-
posed computational burden is P times larger due to the use
of multiple filterbanks.
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