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Abstract

Wireless Sensor Networks consist of multiple energy-constrained sensing devices

called sensor nodes. Typically, the sensor nodes generate data that must reach a

single data sink across multiple hops. The data from neighboring nodes are usually

correlated and can be aggregated and compressed inside of the network. This process

is referred to as data aggregation and requires the development of data aggregation

functions.

Before data aggregation functions can be developed, uncompressed measurements

need to be collected. To gather such measurements, we propose a TDMA protocol

that assigns time slots very efficiently in networks in which the traffic pattern and

the topology change slowly.

Data aggregation requires significant coordination between the sensor nodes because

the packets to be aggregated must lie at the same node at the same time, thereby

affecting the routing and MAC layers. At the routing layer, we propose a protocol to

quickly obtain a routing tree for data aggregation in a network where sensor nodes

sleep for long periods of time. At the MAC layer, we provide a TDMA protocol in

which transmissions are arranged in order suitable for data aggregation. Our protocol

outperforms the existing protocols in terms of energy consumption, reliability, and

spatial reuse. For networks with unreliable links, we propose a protocol to decide

which packets to transmit and which packets to discard in order to balance the

energy consumption of the nodes while satisfying data fidelity constraints.
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The protocols proposed in this thesis control access to the wireless channel, decide

where to aggregate data, and handle packet losses. They use different kinds of data

aggregation functions, operate under various propagation environments, and achieve

important benefits in terms of energy and delay. Together, these protocols enhance

our understanding on TDMA and data aggregation for periodic data gathering.
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1 Introduction

1.1 MAC Protocols for Wireless Sensor Networks

Wireless Sensor Networks (WSNs) consist of devices called sensor nodes that use radio

communication. Each sensor node contains a sensing module, a radio transceiver, a

microcontroller, and a battery. The purpose of WSNs is to collect measurements

from multiple locations within a certain area. The measurements can be of multiple

types, including temperature, humidity, strain, displacement, acceleration, sound

and image. The monitored environments are also diverse [1].

This thesis is motivated by the WINES project [2], which researches the application

of WSNs to monitor bridges, tunnels and water supply systems. The focus is on

large, multihop networks with a single data sink. The sensor nodes collect high data

rate signals such as acceleration and sound. They share a single wireless channel

and their batteries need to last for over a year.

Most of the components of the sensor nodes are quickly becoming cheaper and better

due to technological improvements, but battery technology and energy harvesting

systems are not progressing as quickly. Therefore, energy-efficient operation is a key

design goal in many WSNs [3, 4, 5, 6]. The transceiver is typically the most energy

consuming component of the sensor nodes. It can operate in four modes: transmit,

receive, idle listen, and sleep. On current hardware, the first three modes consume

approximately 60 mW when the spacing between nodes is around 20 m. The sleep
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mode consumes approximately one thousand times less energy than the other three

modes [7]. If a node operates continuously in any of the first three modes, it depletes

typical batteries within a couple of weeks. Therefore, it needs to operate in sleep

mode as much as possible.

A network’s operational lifetime greatly depends on the medium access control

(MAC) layer. Protocols in this layer typically try to reduce the following causes of

inefficiency. First, idle listening, which means listening for packets when none are

sent. Second, overhearing, which means listening for packets that are addressed to

other nodes. Third, packet collisions, which occur when several nodes sharing the

same wireless channel interfere with each other. Fourth, backoff periods, which are

delays introduced before packet transmissions to avoid collisions.

A MAC protocol is said to be contention-based if it requires contention before

each transmission, and frame-based or TDMA-based if it divides time into periodic

TDMA frames that contain time slots that can be reserved in advance. Reservation

of time slots is typically executed during a certain period of the TDMA frames. A

correct reservation system prevents packet collisions and idle listening.

1.2 In-Network Data Aggregation

Typically, as the distance between two sensor nodes decreases, the cross-correlation

of their measurements increases. This cross-correlation enables a process referred

to as in-network data aggregation. It consists in having neighboring nodes transmit

their data to another neighboring node. This node aggregates and compresses the

data before relaying them, thereby reducing the data volume that travels to the data

sink.

Figure 1.1 illustrates data aggregation in a small network with a single data sink

and three data sources: A, B and C. Panel (a) shows the connectivity graph, and
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the two other panels show possible routing trees. In the connectivity graph, two

nodes are linked with an edge if they can communicate directly with each other.

Since there are no edges between every pair of nodes, the network is multihop.

sink

D E F

A B C

(a) Connectivity graph

sink

D E F

A B C

(b) SPT

sink

D E F

A B C
1 2

3

4

(c) MST

Figure 1.1: A simple network (a) and two routing trees (b, c).

The two routing trees in Figure 1.1 are rooted at the data sink. They indicate the

path followed by the information from A, B and C as it travels to the data sink. In

these trees, every node receives data from its children nodes and transmits packets

to its parent node. The tree in Figure 1.1b is a shortest path tree (SPT), which is

a tree with minimal number of hops from each node to the data sink. The tree in

Figure 1.1c is a minimum Steiner tree (MST), which is a tree that connects all the

data sources with the data sink with the minimum number of links.

The amount of in-network aggregation depends on the routing tree. An example

of tree that does not enable in-network data aggregation is the SPT in Figure 1.1b.

This tree does not enable aggregation because the earliest common ancestor of the

data sources is the data sink. An example of a tree that enables in-network data

aggregation is the MST in Figure 1.1c. In this tree, B is an aggregation point which

aggregates and compresses the packets from A, B and C.

Figure 1.1c shows a TDMA schedule for data aggregation that consists of four

time slots. In the first time slot, A transmits a packet to B. In the second time slot,

C transmits a packet to B. Then, a brief period is needed for B to aggregate the
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packets from A, C and itself into a single packet. Finally, in the third and fourth

time slots, the aggregated packet travels to the data sink through E.

An aggregation function is a function that combines a number of packets into a

single packet whose size is smaller than the sum of the sizes of the input packets. The

quality of an aggregation function is measured by the size reduction it provides. An

aggregation function is repeatable if its output can be aggregated again. An example

of a repeatable aggregation function is the maximum. The maximum of arbitrarily

many numbers is simply a number, and the maximum of this number and other

numbers can be computed. An example of an unrepeatable aggregation function

is the cross-correlation of two waveforms, which yields a number that cannot be

cross-correlated with other waveforms. Aggregation functions can also be classified

based on whether they tolerate duplicates [8]. Some aggregation functions exploit

temporal correlation [9]. Some domain-specific aggregation functions for acoustic

emission signals are presented in [10]. Other aggregation functions are constructed

in response to an SQL query, as if the sensor network were a data base [11, 12].

1.3 Phases of Event-Triggered Data Gathering

A network’s operation is said to be event-triggered if the sensor nodes hardly generate

any data until an unpredicted event occurs. For example, in a network monitoring

bridge vibrations [13], the sensor nodes gather acceleration measurements continu-

ously, but only report to the data sink the measurements indicating large vibrations.

This thesis considers event-triggered applications with and without data aggrega-

tion with the following properties. First, the sensor nodes and their environment

are mostly static. Second, the network must start reporting the events shortly after

they are detected. Third, the duration of the event is long enough to warrant the

overhead of constructing a routing tree and a TDMA transmission schedule. Fourth,
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while the network is reporting an event, it may need to adapt to minor topological

changes efficiently, but not necessarily quickly. Some examples of applications with

these properties are vibration and [13] and acoustic-emission [14, 15, 10] monitoring

in bridges and tunnels.

The WSN goes through the following phases:

a) Initialization phase

Every node keeps its transceiver on during this whole phase. In this phase The

first goal of this phase is to create a routing tree based on every node’s tier, which

is its minimum number of hops to the data sink. This goal is achieved through

a process that begins with a packet transmission from the data sink. Every node

that receives this packet sets the data sink as its parent node, sets its tier to 1, and

reports its parent node and tier to its neighbors. Then, every node without tier that

receives packets from nodes in Tier 1 records the identities of these nodes, selects one

of them as its parent node, sets its tier to 2, and reports its tier and parent node to

its neighbors. This process continues until every node has reported its information

to its neighbors and the routing tree has been constructed.

The second goal of the initialization phase is to provide initial time synchronization

to the sensor nodes. The synchronization information flows from the data sink to

every node using the Flooding Time Synchronization Protocol (FTSP) [16]. Every

node receives synchronization information from its parent node and relays it to its

children nodes. Time synchronization can be used to timestamp measurements or to

schedule active periods during the quiet phase.

b) Quiet phase

While no events occur, the network remains in a quiet phase in which no data

needs to be reported. Nevertheless, the sensor nodes need to listen periodically to

their neighbors in case their help is needed to relay packets towards the data sink. In
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addition, the sensor nodes need to resynchronize themselves using FTSP in order to

compensate for clock drifts. If a node does not receive synchronization information,

it keeps its transceiver on continuously in case it receives synchronization information

at another time, and it periodically transmits packets requesting its neighbors to

report its identities.

c) Initial routing phase

The detection of the event triggers the initial routing phase. The operation of

this phase depends on whether data aggregation is used. If data aggregation is not

used, this phase only requires that the sensor nodes with data to transmit request

their parents to listen. If data aggregation is used, this phase should construct a new

routing tree optimized for the set of data sources associated with the current event.

d) Initial scheduling phase

This phase obtains an initial TDMA transmission schedule for the data transmission

phase. If data aggregation is used and latency is important, the schedule must ensure

that the time slot assigned to transmit the aggregate of several packets comes at a

later position in the TDMA frame than the slots to receive those packets.

e) Data transmission phase

This phase is used to report the event using the routing tree and the schedule

computed in the two previous phases. This phase should be able to adapt to

topological and traffic changes. This phase should also sensibly decide which packets

to discard if it is necessary due to packet losses.

1.4 Research Objective

The research objective of this thesis is to enhance our understanding on the use of

TDMA and data aggregation for periodic data collection. We do so by designing and

evaluating new wireless communication protocols, which cover the network phases
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described above and the following data aggregation models:

1. Without data aggregation. The goal is to provide a new TDMA scheduling

protocol that obtains an initial schedule fast and reliably, and that adapts the

schedule efficiently during the data transmission phase.

2. With unrepeatable data aggregation. The goal is to decide the aggregation

points in a large network.

3. With repeatable aggregation. The goals are to obtain a routing tree quickly, to

obtain a TDMA schedule reliably, and to select which packets to discard.

In Chapter 2, we highlight the drawbacks of existing protocols, elaborate on the

research goals, and present the thesis structure.
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2 Limitations of Existing Protocols

for Periodic Data Gathering

This chapter motivates the study of data gathering in large WSNs without and with

data aggregation. We argue that many applications require the deployment of an

aggregation-less network before a network with aggregation can be deployed. We also

discuss the limitations of the related work. Based on these limitations, we describe

the thesis structure and goals.

2.1 Achieving Efficient, Large WSNs

Literature on WSN has been criticized [17] for assuming large networks and proposing

complex protocols, whereas most practical deployments are small and use simple

protocols. However, simple protocols are insufficient in applications with high data

rates. For example, Crossbow’s XMesh communication stack [18] suffers frequent

packet collisions in bridge vibration monitoring applications generating several kbps

[19]. For high data rates and periodic traffic, TDMA greatly improves the energy

efficiency.

Data aggregation greatly reduces the amount of data that travels to the data sink

and thus prolongs the battery lifetime of the nodes close to the data sink, which are

the first to deplete their batteries. Data aggregation requires that the measurements
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from neighboring nodes are correlated, which means that the sensor nodes are close to

each other. Increasing the node density increases the hardware and deployment cost,

but improves the reliability for the following reasons. First, more measurements can

be averaged. Second, malfunctioning nodes can more easily be detected by comparing

their measurements with those of their neighbors. Third, the measurements are more

likely to reach the data sink because the network is more likely to be connected.

Data aggregation functions are often application-specific and hard to develop

due to lack of application knowledge. For example, there is no publicly available

information to decide which features of an acoustic waveform indicate a fracture

within the cable of a suspension bridge. As another example, it is unknown how to

use vibration data to assess a bridge’s structural health, except, of course, if those

vibrations are exceptionally large.

Before data-aggregating functions can be developed, exhaustive, uncompressed

measurements must be collected in order to better understand the application.

Therefore, the steps needed to develop an efficient data-aggregating WSNs are the

following:

• Send exhaustive, uncompressed measurements to the data sink. The batteries

of the sensor nodes are quickly depleted with this collection step, but the

collected information is necessary for the next step.

• Analyze the exhaustive measurements to decide which events are relevant and

how they can be identified and characterized. Based on this information, the

sensor nodes can decide in the final system when they need to report their

measurements to the data sink.

• Develop aggregation functions to reduce the transmitted data volume to a

minimum. For example, most of the relevant information of the long acoustic
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waveform detected following a bridge fracture can be summarized into only

seven parameters [10].

• Adapt the communication protocols to the aggregation functions.

Efficient in-network data aggregation requires a strong interaction between the

layers of the OSI communication stack. Data aggregation strongly depends on the

aggregation functions, the node density, the node reliability, and the link reliability.

In this thesis, we contribute to development of data-aggregating WSNs in several

ways. First, we propose a protocol that improves the efficiency of the exhaustive,

uncompressed data gathering step, which is often necessary. Second, we develop

communication protocols for two different data aggregation functions, namely unre-

peatable and repeatable.

2.2 Contention-Based MAC Protocols for WSNs

Most contention-based protocols try to keep the sensor nodes’ transceivers in sleep

mode to save energy. These protocols respond to traffic changes quickly, but suffer

frequent packet collisions under high traffic loads. They make the sensor nodes sleep

periodically in order to avoid idle listening. The protocols where the sensor nodes do

not synchronize their sleep periods are referred to as random, and the protocols that

synchronize them are referred to as slotted [7].

The random protocols force the transmitters to precede their packets with pream-

bles longer than their recipients’ sleeping time in order to ensure packet reception

[20, 21, 22, 23]. Therefore, the transmitters consume a significant amount of energy

in transmitting preambles if the sleep period is long. B-MAC [23] is a popular

random protocol that sets the sensors’ sleep duration during the deployment and

decides whether the wireless channel is idle or busy by taking five channel samples.
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The slotted protocols [24, 21, 25] are characterized by synchronizing the sleeping

times of the sensor nodes, which reduces the preamble length. However, they suffer

intense contention and frequent packet collisions under high loads. DMAC [25] is a

slotted protocol in which the sleep periods of nodes in different tiers are staggered so

that the data can be transmitted quickly from the data sources to the data sink.

2.3 Frame-Based Protocols for WSNs

The frame-based protocols [26, 27, 28, 29, 30, 31] are also called TDMA protocols

because they divide time in TDMA frames. Each frame contains N Data Blocks

(DB) that are labeled {DB1, . . . , DBN}. A DB is the minimum number of time slots

that can be assigned to a node. In some protocols, a DB is simply one time slot used

for communication in a single direction. In other protocols it consists of two time

slots: the first time slot to transmit a DATA packet in a certain direction, and the

second time slot to transmit an ACK in the opposite direction.

The frame-based protocols require time synchronization. The synchronization over-

head is usually small relative to the total energy consumed in packet transmissions.

The typical clock drift is below 10 ppm, which usually requires one resynchronization

approximately every minute [5]. If the sensor nodes are engaged in periodic packet

transmissions more often than that, the sensor nodes can piggyback the synchroniza-

tion information in those transmissions. Furthermore, accurate time synchronization

is sometimes needed anyway to timestamp the measurements.

The TDMA scheduling problem is to obtain a TDMA schedule that indicates which

transmission and reception DBs are assigned to each sensor node. The transmission

DBs are used to transmit DATA packets, and reception DBs are used to receive

DATA packets. The schedule allows the sensor nodes to save energy by turning off

their transceivers in the DBs in which they are not scheduled to transmit or receive.
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2.3.1 Limitations of Existing Frame-Based Protocols

Scheduling Failure Probability The DB assigned to a node is said to be infeasible

if the node cannot communicate during that DB due to excessive interference. The

scheduling failure probability pf is the probability that a node is assigned an infeasible

slot. The existing protocols use interference models to decide whether the DB assigned

to a node is feasible.

The most common interference model is the k-hop interference model, which

neglects the interference generated more than k-hops away from a receiver. The

protocols that use this model with k = 2 suffer a significant failure probability pf ,

and the protocols that use this model with k > 2 achieve very little concurrency, as

shown in [27] and Chapter 3. The concurrency of a schedule is the average number

of nodes that are assigned the same DB.

An uncommon but realistic interference model is the physical interference model,

which uses the SINR to determine the success of a transmission [32, 33], and in

some cases consider Rayleigh fading [34]. However, it incurs high overhead because

it requires collecting link quality information about every link in the network and

transmitting this information to the data sink.

Energy Consumption Limitations The TDMA scheduling protocols can be classi-

fied as centralized or distributed. In the centralized protocols [35, 36, 37, 38], the

data sink receives topological information from the network, decides the complete

schedule, and transmits to each node the information it needs. In large networks, this

method is slow and strains the batteries of the nodes close to the data sink because

they act as relays. The current distributed scheduling protocols [39, 27, 31, 30]

require every sensor node to know its neighbors’ schedules in order to decide which

DBs are free. This requirement wastes energy in listening in case of schedule changes.
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Therefore, there is a need to develop a distributed TDMA protocol without this

requirement.

2.4 Tree-Based Data Aggregation

Tree-based data aggregation requires a routing tree and a timing scheme. The routing

tree decides the aggregation points and the path followed by the packets on their

way to the data sink. The timing scheme decides for how long to wait for a packet

or when to transmit it.

2.4.1 Routing for Tree-Based Data Aggregation

The optimal routing tree varies with the properties of the aggregation functions. An

aggregation function is perfect if it compresses any number of packets into a single

packet with the same size as the biggest input packet. An aggregation function is

costless if its execution does not incur any cost such as energy or time.

If the aggregation function is perfect and costless, the optimal tree is the unweighted

Minimum Steiner Tree (MST); otherwise, the optimal is the weighted MST [40, 38].

Obtaining either kind of MST is an NP-complete problem [41, 42] whose solution can

be approximated in polynomial time [43, 44, 45, 46]. The quality of the approximation

is particularly good if little compression is possible. This is natural because, if no

compression is possible, the optimal tree is the Shortest Path Tree (SPT), which can

be computed quickly and efficiently with the distributed Bellman Ford algorithm.

Let the tree construction time Tconstr be the interval between the time when an

event is detected until every node becomes aware of its parent node in the routing

tree. The construction time depends on the MAC protocol used. For example,

consider a sensor network in which an event is detected in tier K. If S-MAC [47]
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is used, which is a MAC protocol that makes the sensor nodes sleep synchronously

with period TCCA, the tree construction time Tconstr is at least 2KTCCA because the

tree construction instruction needs to travel from the data sources to the data sink,

and then the routing tree information has to travel from the data sink to every node.

Therefore, in order to construct the routing protocol quickly, we need a new

protocol that considers the interaction between the MAC and routing layers.

2.4.2 Timing for Tree-Based Data Aggregation

If the wireless links are reliable, low latency is needed, and a TDMA is used, TDMA

should arrange DB assignments in such an order that every node receives packets

from all its children before it is scheduled to transmit its own packet. This order

allows every sensor node to have the aggregate of its children’s packets ready to be

transmitted in its transmission slot in the current frame, but makes the modification

of the schedule more complex. Modifying the schedule becomes unnecessary if the

schedule has a very low failure probability. Therefore, a new TDMA schedule protocol

with a very low failure probability is needed.

If two packets are expected to be aggregated at a certain node, the first packet

to reach the node has to wait for the other packet. In unreliable networks, it is

unknown whether the second will arrive if at all, and thus the packet should not wait

longer than a certain timeout. The timeout should be short enough to provide low

latency, and long enough to avoid missing many aggregation opportunities.

The relationship between the timeouts of nodes in different tiers in the routing

tree is important. TAG [48] and cascading timeouts [49] are two protocols that set

the timeouts of nodes far away from the data sink before the timeouts of nodes

close to the data sink [48, 49]. These protocols are designed for contention-based

medium access and are unsuitable for schedule-based access. Furthermore, they
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force the nodes with the weakest link to make many packet retransmissions and

thus to consume a lot energy. Therefore, there is a need for timing schemes for

schedule-based access that balance the energy consumption of different sensor nodes.

2.5 Cluster-Based Data Aggregation

A cluster is a self-coordinated group of neighboring sensor nodes. One cluster

member acts as the group coordinator and is referred as cluster head. Since the

cluster members are close to each other, their data is typically correlated and

can be aggregated and compressed. Every sensor node transmits its data to its

cluster head, which aggregates the data from all the nodes in the cluster. Data is

only aggregated once, and thus cluster-based approaches do not require repeatabl

eaggregation functions.

Only a few clustering schemes segment the network into clusters upon detection

of the event [50]. Most protocols change the clusters periodically to distribute the

energy consumption evenly among the sensor nodes, but do not recompute the

clusters after each event [51, 52, 53, 54, 55]. As a result, the same clusters are used

for events with different locations and sizes. Fixed clusters are suboptimal because

the optimal aggregation point are event-dependent, but perform well for moderate

degrees of spatial correlation [44].

Choosing the optimal cluster size involves the following tradeoff. On the one hand,

big clusters are beneficial in that they are more likely to contain all the data sources

associated with an event, and thus can aggregate all the data before relaying it to

the data sink. On the other hand, big clusters are detrimental in that they require

transmission of uncompressed data across many hops within each cluster.

The optimal cluster size increases with the cluster’s distance to the data sink.

This is because the clusters far away from the data sink have to relay less data
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than the clusters near the data sink. However, the existing clustering schemes that

produce unequal cluster sizes are not scalable and do not consider multi-hop clusters.

Therefore, we need new clustering schemes with these properties.

2.6 Other Data Aggregation Approaches

The following data aggregation approaches are not considered in this thesis, but we

discuss them as follows for completeness.

First, multi-path approaches [56, 57, 58] are those that transmit duplicates of the

same information to the data sink across multiple paths. This redundancy allows the

data sink to receive all the information regardless of the loss of some duplicates. As

the duplicates travel towards the data sink, they can be aggregated and compressed

multiple times. For example, in Figure 1.1a, if nodes A, B, and C are data sources,

the operation would be as follows. Node D receives and compresses the data from

{A,B} and transmits the result to the data sink. Node E receives and compresses

the data from {A, B, C} and transmits the result to the data sink. Node F receives

and compresses the data from {B, C} and transmits the result. Therefore, the

sink receives three times the data from D. However, although compression occurred

at three nodes, the energy consumption of B is trebled unless B broadcasts its

data simultaneously to {D, E, F}. Therefore, multi-path approaches aggregate and

compress data but may not save energy.

Second, unstructured aggregation consists in aggregating data packets opportunis-

tically [59, 60]. No routing tree or schedule is constructed for data aggregation.

Therefore, lower overhead is incurred, but less packets are aggregated and the data

transmission phase is more inefficient. Every sensor node holds its packets for random

periods of time before relaying them, which increases probability that two packets

that can be aggregated stay at a node at the same time. Every sensor node also
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chooses its next hop in order to promote data aggregation. Among all its neighbors

lying fewer hops from the data sink than itself, it chooses the neighbor holding the

greatest number of packets.

Third, distributed source coding [61] is an alternative to data aggregation based

on the Slepian-Wolf theorem [62]. This information-theoretic result states that, if

two data-generating nodes know the cross-correlation between each other’s data,

they can independently compress their data as much as if they knew each other’s

information. If the two nodes encode their data in this way, their packets do not need

to go through the same nodes or wait for each other. Therefore, data compression

and data transmission become independent. This kind operation is very desirable,

but difficult to implement because the cross-correlation of different nodes is typically

unknown.

2.7 Thesis Structure and Goals

This thesis addresses data gathering with different levels of data aggregation. Its

chapters are organized from no aggregation to more aggregation: Chapter 3 ad-

dresses the non-aggregation case, Chapter 4 the unrepeatable aggregation case, and

Chapters 5 to 7 the repeatable aggregation case. This is order is followed in the

development of may monitoring applications, as discussed in Section 2.1.

Chapter 3 presents our first contribution, namely a TDMA scheduling protocol

called EATP. Despite being proposed and evaluated for the non-aggregation case, it

can be applied for various aggregation models if minor changes are made. EATP’s

goals are to obtain an initial schedule quickly and to modify the schedule during

the data transmission phase in an energy efficient way. EATP is more efficient that

the existing TDMA protocols because it spares the sensor nodes from the burden of

keeping track of their neighbors’ schedules.
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Chapter 4 considers the routing problem in large networks that perform unrepeat-

able aggregation. For this kind of aggregation, a cluster-based topology is appropriate.

We model and solve the problem of choosing the cluster size as a function of the

distance from the data sink.

Chapters 5, 6, and 7 deal with repeatable aggregation in tree-based structures.

Chapter 5 addresses the routing problem, Chapter 6 the scheduling problem, and

Chapter 7 the packet-loss problem. Chapter 5 proposes a protocol called FAT, which

is executed during the quiet phase and during the initial routing phase. It is designed

for a network where the nodes sleep for long intervals during the quiet phase. By

coordinating the sleep intervals of the nodes in different tiers, FAT constructs a

routing tree quickly. Chapter 6 discusses the extension of EATP to obtain schedules

for data aggregation. Chapter 7 studies a tree-based WSN that uses repeatable

aggregation. Each wireless link is assumed to have a constant success probability

ps that varies for different nodes. Therefore, different nodes need to make different

numbers of retransmissions and consume different amounts of energy to transmit

the same number of packets. The chapter proposes different schemes to balance

the energy consumption of different nodes while ensuring that sufficient information

reaches the sensor nodes.

2.8 Simulation Methodology

2.8.1 Language Choice

This thesis proposes several protocols and compares their performance with that

of the existing protocols. We develop custom simulators in order to compare the

performance of the different protocols. The simulator in Chapter 5 is written in

Matlab; the simulators in chapters 3, 4 and 6 are written in Python; and the simulator
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in Chapter 7 is written in C#.

The reason for using different programming languages is partly historic. I began

my doctoral research investigating what would become Chapter 5. For that work

I used Matlab because I knew it well, it is an high-level programming language,

and it provides interactivity and plotting capabilities. However, I found Matlab

insatisfactory for writing event-triggered simulators because its poor support for

object-oriented programming was poor; this support has improved since then. Fur-

thermore, Matlab has a flat namespace and requires writing many small functions.

Also, not all the Matlab scripts run under all the versions. In addition, Matlab is

expensive proprietary software.

This limitations of Matlab pushed me to find an alternative. I chose to use Python

[63] because it produces the most readable code I have seen, particularly for large

programs. It is open source, cross platform, and comes with an extensive library. For

writing an event-triggered simulator, I used the SimPy library [64], which yields very

simple code because it requires keeping very little state information. For plotting my

results, I used another library called Matplotlib [65], which is good for bidimensional

plots. However, I later found it better to produce plots directly in LaTeX using the

Pgfplots package [66].

Unfortunately, some of my Python simulations had to run for as long as a month

in order to obtain the required accuracy. To speed up the execution time, I decided

to use a faster language than Python in Chapter 7. The choices that I considered

were C++, C#, and Java. I ruled out C++ because of does not have automatic

memory management for preventing memory leaks. Between Java and C# I chose

the latter because it has more features [67] . Unfortunately, I later discovered that

C# has a poor command line debugger in Linux [68] so I had to use Windows.
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2.8.2 Review of Some Existing Network Simulators

We review as follows some of the existing network simulators for wireless sensor

networks. A popular simulator is ns-2 [69], which is written in C++ and provides

a simulation interface through OTcl, a scripting language barely used elsewhere.

Modelling in ns-2 has been criticized for being complex. Many protocols have been

implemented in ns-2, but those implementations may be buggy and their code is

continuously changing [70]. In order to address some of the defficiencies of ns-2, the

ns3 simulator was proposed [71], which uses C++ and Python. A disadvantage of

ns-3 is that fewer protocols have been implemented in it.

Omnet++ [72] is a good C++ framework for developing event-triggered simulators.

Castalia [73] is an add-on for Omnet++ that provides realistic wireless channel

models to be used in wireles sensor networks simulations. However, Castalia is not

popular and few protocols have been implemented in it.

Other simulators aim to execute the same code that is going to be deployed in the

sensor ndoes. TOSSIM [74] is a simulator for TinyOS [75], a very popular operating

system for wireless embedded sensor networks. Avrora is a simulator of sensor nodes

that run the AVR microcontroller [76]. SunSPOT [77] is a research effort providing a

Java runtime for sensor nodes and simulation environment for it. However, TinyOS

is written in the nesC programming language, and its is unclear whether such a

non-mainstream language will remain popular as the sensor nodes become more

powerful. Avora has the limitation of simulating very specific hardware that may

soon become obsolete. SunSPOT has an advantage in this respect because it uses

the Java programming language, which is powerful, popular and can run under many

platforms.
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2.8.3 Rationale for Developing a Custom Simulator

One reason why we chose to develop our own simulator was to simplify the develop-

ment of new models, which is particularly useful in chapters 4 and 7. The models in

these chapters are intentionally simple so as to provide fast algorithms and provide

insights about the key factors and their influence. The development simplicity is

also important in Chapter 3, where we intentionally discount the energy consumed

by some nodes in FlexiTP [27], a competing protocol, in order to show that even

without considering this energy consumption, our protocol performs best. Developing

this would have been harder in an existing simulator.

Another reason for using a custom simulator is to have full understanding of

every part of the simulator. In large and complex simulators as ns-2, it is harder

to understand which assumptions or parameters are used by different parts of the

simulator. It is also harder to identify which variables most affect the measurements.

Furthermore, bugs are continually found in ns-2 [69], so the results obtained with

this simulator may not be more reliable than those obtained with our own simulator.

The intelligibility of the simulator is also important in order to reduce the probabil-

ity of bugs in the program and in order to facilitate that other researchers replicate

our results. The languages we used, and Python especially, often result in code

that is easy to understand. In addition, there are free implementations of C# and

Python under multiple platforms. Our Python and C# simulators are available in

[78]. These simulators have far fewer lines of code and are easier to understand than

ns-2, at least for those without ns-2 knowledge.

One reason commonly argued to using existing simulators is that those simulators

are more reliable. However, even if these simulators are bug free, they may be used

in an inappropriate way.

Another reason for using an existing simulator is that some protocols have been
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already implemented in them. Reusing protocol implementation is compelling

because it avoids some work and provides increased confidence on the protocols

implementation. Furthermore, the existing implementation may provide essential

information not provided in the original paper. For example, the FlexiTP paper [27]

omits some MAC parameters because they are defaults in ns-2.

However, using existing protocol implementations on popular simulators has been

proved difficult or impossible in the past. For example, the FlexiTP paper [27]

compares FlexiTP with another existing protocol called Z-MAC [79]. The FlexiTP

authors used ns-2 because ns-2 is respected, and an ns-2 implementation of Z-MAC

already existed. However, the FlexiTP authors claim that the Z-MAC implementation

only worked for networks with fewer than 100 nodes, presumably because of a bug.

Hence, the existence of a ns-2 implementation of Z-MAC was of little use.

2.8.4 Validation Efforts

In order to validate our simulation results we do the following. First, in chapters 3

and 4 we try to use realistic, popular propagation models. Second, we use high level

programming languages to reduce the probability of bugs, and we make much of the

code available so that other researches can verify it. Third, we verify the correctness of

the implementation in small networks by debugging them step-by-step and verifying

that they function properly. Fourth, we check that the simulation results make

logical sense. Other forms of validation that we have not performed and that we

leave for future are the following: performing more realistic simulations; comparing

our simulations results with those obtained with other simulators; implementing the

protocols in actual sensor nodes and deploying them in real sites.
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3 MAC Scheduling Without Data

Aggregation

This chapter considers the problem of scheduling packet transmissions in a network

without data aggregation. We propose a TDMA protocol called Efficient Adaptation

TDMA Protocol (EATP), which is executed during the initial scheduling phase and

the data transmission phase. Its main advantage is that it consumes less energy in

slowly-changing networks than comparable protocols.

3.1 Problem formulation

In a multi-hop WSN with multiple data sources and a single data sink, a routing tree

rooted in the data sink has been established. A TDMA schedule must be obtained

during the initial scheduling phase so that it can be used during the data transmission

phase. During the data transmission phase, the network remains mostly stationary,

except for infrequent network changes such as node additions, node removals, and

link failures.

Every TDMA Frame (TF) contains N Data Blocks (DBs) that are labeled DB1,

. . . , DBN . Each DB consists of a DATA slot and an ACK slot. Every sensor node in

the routing tree generates one packet per TF, and each packet transmission occupies

one DATA slot. Therefore, the number of DBs to be assigned to a node is equal to
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its number of descendants plus one.

The problem is to design an initial scheduling phase that is fast and reliable, and

a data transmission phase that adapts to network changes in an energy-efficient way.

The initial scheduling phase must be fast because until it concludes that the data

sink cannot receive any data about the event. However, during the data transmission

phase, energy efficiency is more important than adaptation speed because the data

sink is already receiving some information about the event. The obtained schedule

should verify the following properties.

3.1.1 Properties of the Schedule

First, the schedule should have a low failure probability pf , defined as the probability

that the DB assigned to a sensor node is infeasible, which means that it contains

excessive interference. If a node’s slot is feasible, the node is said to tolerate the

other nodes that are assigned that DB. It is possible that a node tolerates a second

node but not the other way around.

Second, the schedule should have a high concurrency c, which is the average

number of nodes that are assigned the same DB. The concurrency c measures the

spectral efficiency, and is computed as the quotient between the total number of DB

allocations and the schedule length M . The schedule length M is defined as the

maximum integer that verifies that at least one node is assigned DBM . The number

N of DBs per TF may be slightly larger than the schedule length M in order to

facilitate the extension of the schedule.

Third, the obtained schedule should verify the precedence property for the aggregation-

less case. This property means that if a node is scheduled to receive a packet from

one of its children nodes in the routing tree in DBi and it is scheduled to forward

that packet in DBj, then j should be bigger than i. This property ensures a low
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Figure 3.1: An initial tree, an evolution of that tree, and schedules for each tree.

end-to-end upstream latency by enabling the packets from every sensor node to reach

the data sink within a single TDMA frame.

Fourth, the schedule should verify the low-buffering property, which means that,

for every node, b < B, where b is the maximum number of packets buffered by that

node and B is a network-wide parameter. This property assumes no packet losses.

If there are packet losses, this property does not prevent the sensor nodes’ buffers

from containing more than B packets, but reduces the probability of buffer overflows,

which are particularly frequent in large networks because they have to relay many

packets. The low-buffering property is enforced in [27].

3.1.2 Example of Schedule Adaptation to Network Changes

Figure 3.1 illustrates the adaptation of a schedule to network changes. It presents

Tree 1, Tree 2, and a schedule for each of these trees. Tree 1 is the routing tree of a

sensor network whose data sink is node A. Tree 2 is a new routing tree for the same

network after it suffers two changes: the removal of B and the addition of F .

The table in Figure 3.1c shows the schedule of Tree 1 and the schedule of Tree 2.

The network is too small to allow two nodes to transmit in the same DB. Each
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row of the table indicates the packet transmitted in one DB. The Tx, Rx and Src

columns of the table indicate the transmitter, the receiver and the source of the data

packet, respectively.

The schedule of Tree 1 is used as follows. At the start of each TF, every sensor

node has one packet in its buffer, namely the packet that it generated. In DB1,

node B transmits its packet to A and removes it from its buffer. In DB2, node C

transmits its packet to A and removes it from its buffer. The packet from D travels

to A through B in DB3 and DB4. The packet from E travels to A through C in DB5

and DB6. Therefore, no node needs to buffer more than b = 1 packets.

When the network changes occur and Tree 1 becomes Tree 2, some of the DB

assignments of Tree 1 are maintained, other DB assignments have to be canceled,

and new DB assignments are made. In other words, the schedule is modified as

opposed to being totally recomputed. In this small network, modifying the schedule

is as fast as obtaining a new schedule, but in large networks modifying the schedule

is faster.

After Tree 1 becomes Tree 2, the three DBs marked with an asterisk in Figure 3.1c

are maintained. However, three DBs become unused: B stops using DB1 and DB4

and D stops using DB3. In addition, four new DBs have to be assigned for the

transmission of the packets from D and F : one DB has to be assigned to D, another

DB to F , and two DBs to C.

The schedule of Tree 2 is used as follows. In DB1, D transmits its packet to C. In

DB2, C transmits its packet to A. In DB3, C transmits D’s packet to A. In DB4, F

transmits its packet to C. In DB5, E transmits its packet to C. In DB5, E transmits

its packet to C. In DB6, C transmits E’s packet to A. Finally, in DB7, C transmits

F ’s packet to A. Therefore, B is the node that needs to buffer the highest number

of packets, and this number is b = 2.
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3.2 Related Work

Contention-based MAC [20, 21, 22, 23, 24, 21, 25] is simple and flexible: when a

node needs to transmit a packet, it simply contends to transmit the packet until it

succeeds. There is no need to reserve time slots in advance or keep track of other

nodes’ transmission intentions. By contrast, the contention-based protocols are more

complex and slower because they incur a time slot reservation system. Therefore, if

the traffic is short compared to the time slot reservation process, contention-based

MAC outperforms schedule-based MAC in terms of energy and delay [80].

However, if traffic is long-running and periodic and the wireless links are static,

schedule-based MAC becomes the best approach. The energy and time spent in

reserving time slots are outweighed by the more efficient operation during the data

transmission phase. During the data transmission phase, the schedule-based protocols

are more energy efficient than the contention-based protocols because they suffer no

packet collisions, overhearing, or useless back off periods. Furthermore, schedule-

based protocols provide greater channel utilization because no time is wasted in

packet collisions or back off periods [81, 7].

Based on the discussion above, two things are clear. First, schedule-based MAC is

best for long-running periodic traffic in stable networks. Second, contention-based

MAC is best for networks where the traffic or the topology are “sufficiently dynamic”.

However, there remains the problem of quantifying “sufficiently dynamic”, i.e., the

problem of setting the limit between the networks for which schedule-based MAC is

best and the networks for which contention-based MAC is best. This limit can be

shifted by the introduction of new protocols, and this is what we do in this chapter:

we present a new schedule-based protocol that extends the scope of application of

schedule-based protocols to more dynamic networks.

Some protocols are hybrids between contention-based MAC and schedule-based
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MAC [79, 82, 83, 84]. These hybrid protocols switch from contention-based MAC to

schedule-based MAC when the traffic load grows above a certain threshold. In this

way, they seek to combine the benefits of the two channel access methods. However,

they are not not always completely successful at doing so. For example, ZMAC

[79], a hybrid protocol, has been shown [85] to be less efficient than FlexiTP, a pure

TDMA protocol, for periodic traffic.

Although there are many TDMA protocols for wireless sensor networks [39, 31, 30],

few of them [27, 37, 36] satisfy the precedence and low-buffering properties. Among

these protocols, only FlexiTP [27] is distributed. However, FlexiTP’s initial scheduling

phase is slow because it uses a token-passing mechanism incapable of assigning slots

to several nodes simultaneously. For example, in a network with 400 nodes it requires

three hours to execute and consumes 0.6 % of the sensors’ batteries [27].

FlexiTP’s authors claim that the speed of the initial scheduling phase is unimpor-

tant because it is executed only once [27]. We disagree that this speed is unimportant

for two reasons. First, the initial phase is executed multiple times in applications

where different nodes generate data at different times. Second, a fast initial scheduling

phase allows to test network quickly and thus reduces the deployment cost.

The existing TDMA protocols use the k-hop interference model, which can operate

for any positive integer k. Section 3.4 shows that different values of k obtain different

tradeoffs, but they never obtain low failure probability pf and a high concurrency c

simultaneously. This problem arises from the irregularity of wireless links [86].

TRAMA [30] is a TDMA protocol that divides time in random access slots and

scheduled access slots. A node uses the random access slots to advertise its existence

to its 2-hop neighbors and to discover its own 2-hops neighbors. The schedule-

based slots are used to exchange schedule information and to transmit data. The

algorithm to decide whether a node is active in a slot is relatively complex. TRAMA
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occasionally makes some nodes unnecessarily active; this is not a problem if traffic is

random because this cause of inefficiency is rare, but if traffic is periodic some nodes

may suffer this burden periodically. In addition, every node spends a significant

amount of energy in exchanging schedule information. Furthermore, TRAMA does

not build the schedule to obtain low delay or low buffering. In [31], the delay of

TRAMA is shown to be very large.

FLAMA [31] is a TDMA protocol in which scheduled slots are used exclusively

for data, whereas in TRAMA they are also used for schedule information. For

periodic traffic, FLAMA greatly outperforms TRAMA in terms of delay and energy.

However, FLAMA is still inefficient because each node has to either keep track of the

priorities of all its two-hop neighbors or perform idle listening at the beginning of

several slots to decide whether the highest-priority one-hop flow is an incoming flow.

Furthermore, neither TRAMA nor FLAMA verify the precedence or low-buffering

properties. FlexiTP [27] and EATP are designed to satisfy these properties, with the

difference that FlexiTP restricts the number of buffered packets to B = 1, whereas

EATP provides greater flexibility by making B a user parameter.

FlexiTP does not update all the schedule information that it should. When a node

stops using a DB, FlexiTP removes this slot from the node’s neighbors’ reception

schedules. However, FlexiTP fails to remove the slot from the CSL, which is the list

of slots used within 2 hops. Therefore, the sensor nodes claim slots with indices larger

than necessary, and the schedule length M increases gradually. TRAMA avoids

this problem by periodically updating the schedule information, but this consumes

energy.

To our knowledge, every existing distributed TDMA-scheduling protocol for sensor

networks requires that each node keeps track of its neighbors’ schedules. These

protocols force the sensor nodes to spend energy listening for schedule updates, which
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are packets containing schedule information. EATP is more energy efficient than

other protocols because it does not require listening for schedule updates.

In FLAMA and FlexiTP, when a node obtains an infeasible transmission DB

to communicate with its parent node, it incorrectly assumes that its parent is

unreachable and requests its neighbors’ identities to find a new parent. Since its old

parent is actually reachable, the node may choose the same parent again, especially

in sparse networks. If it selects the same parent and its schedule information has not

changed, the node selects the same infeasible DB as it had before. Therefore, the

node may never obtain a feasible slot because of the weakness of the protocol.

To summarize, the existing protocols suffer a high failure probability because

schedule information may be lost or because the interference model fails. Furthermore,

they spend energy in listening for schedule updates. In order to solve these two

problems, we propose EATP.

3.3 EATP

EATP is a distributed TDMA scheduling protocol for periodic data gathering in

wireless sensor networks that is designed to function with the limited computational

speed, energy and memory of the sensor nodes. EATP is the first TDMA protocol

for periodic data gathering in sensor networks that does not require the exchange of

schedule updates.

EATP consists of the phases described in Section 3.1. If obtaining an initial

schedule quickly is unnecessary, the initial scheduling phase can be skipped because

the data transmission phase provides its own scheduling mechanism. The internal

structure of these phases is shown in Figure 3.2. We describe the initial scheduling

phase and the data transmission phase in the next two subsections.
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. . . CF1 CF2 . . . CFM finalization period TF1 TF2 TF3 · · ·

W P1 R1 P2 R2 . . . PH RH U1 V1 U2 CP LRS DB1 · · · DBN

DATA ACK

initial
routing phase initial scheduling phase (optional) data transmission phase

first
stage second stage final stage

In CF2, the contenders contend for the
right to transmit in the DB2 of every TF.

Figure 3.2: Time diagram of EATP. After the initial routing phase, time is divided
in slots.

3.3.1 Initial Scheduling Phase

Figure 3.2 shows that the initial scheduling phase consists of M contention frames

(CFs) and a finalization period. The number M is equal to the schedule length, and

thus it is denoted by the same symbol. The CFs are labeled {CF1, CF2, . . . , CFM}.

In CFi, a distributed contention process decides which nodes are assigned DBi.

Every node that needs to obtain a DB contends in every DB until it has obtained all

the DBs it needs. The nodes that contend during a DB are referred to as contenders.

The contention process consists of three stages, and only the contenders that succeed

in the three stages are assigned DBi. The successful contenders notify their victory

to their respective parents, but not to other nodes because they do not need to know.

In order to reduce the length of the schedule, it is desirable that as many contenders

as possible succeed in obtaining a DB in every CF. However, all the nodes that

obtain the same DB must tolerate each other to make the DB assignment feasible.

These goals are achieved through the following three-stage contention process.



3. MAC Scheduling Without Data Aggregation 47

3.3.1.1 The First Stage of the CF

The first stage of the CF occurs within the W slot. Every contender backs off for

a random period within the W . The back-off period should be especially short for

nodes with a large b or close to the data sink. Such nodes are given priority to obtain

a DB because unless b < B they cannot assign DBs to their children.

Every contender performs clear channel assessment (CCA) the end of its back-off

period. If the channel is clear, the contender has succeeded in this stage, otherwise

it has failed. If the contender has succeeded, it transmits dummy data until the end

of the W slot. If it has failed, it withdraws from the contention until the next CF

and remains active during the rest of CF in case any of its children are contending.

Every non-contender senses the channel at the end of the W slot. If the channel

is idle, the non-contender sleeps until the next CF. Otherwise, the non-contender

listens during the rest of the CF in case any of its children are seeking to obtain a

DB.

At the end of this stage, it is unlikely that two contenders within transmission range

of each other remain in the contention. This is beneficial because such contenders

are unlikely to tolerate each other. However, the remaining contenders may not

tolerate each other because the interference level at their parent nodes is different

that at themselves. This problem is referred as the hidden terminal problem, and is

addressed in the second and third stages of the CF.

The first stage of the CF can be suppressed without any disruption to the properties

of the schedule. The second and third stages do not need to be preceded by the first

stage because they alone can decide a group of contenders that tolerate each other.

However, if at the start of the second phase the number of contenders is very high,

the number H of slot pairs must be set to a very large number. This causes very

long CFs, which in turn makes the initial scheduling phase of EATP slow and energy
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consuming. We performed some simulations that showed that by introducing the

first stage of the CF we can greatly reduce the duration of the second stage of the

CF. These simulation showed that the reduction in the duration of the second stage

is much greater than the duration of the first phase. Therefore, introducing the first

phase greatly increases the energy efficiency of EATP.

3.3.1.2 The Second Stage of the CF

The second stage of the CF consists of the slots {P1, R1, P2, R2, . . . , PH , RH}, where

typically H = 7 as will be discussed in Section 3.4.2.1. Every remaining contender

X chooses a random integer h between 1 and H. In slot Ph, X transmits a packet

to its parent node Y indicating its identity. If Y receives this packet, it replies in

slot Rh with a packet indicating its buffer occupation b and, if b < B, it transmits

dummy packets in the slots Rh+1, Rh+1+2, . . . , RH in order to provoke the failure of

the contenders that X is unlikely to tolerate.

Depending on whether X receives Y ’s packet in slot Rh and its contents, three

scenarios are possible. First, if X receives no reply in slot Ph, X has failed in the

second stage and contends again in the next CF. Second, if X receives a packet

from Y indicating b = B in slot Ph, node X has also failed in the second stage and

refrains from becoming a contender in the next few (in our simulations 4B) CFs

to give Y the time to reduce its b. Third, if X receives a packet from Y indicating

b < B, X has succeeded in the second stage and transmits dummy packets in the

slots Ph+1, Ph+2, . . . , PH in order to provoke the failure of contenders that it may be

unable to tolerate.

This phase is designed so that different contenders choose different values of h.

The contenders that choose a small h are very likely to succeed, and those with a

big h only succeed if they tolerate the nodes that succeeded earlier. However, some
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contenders that succeed with a small h may not tolerate the contenders that succeed

with a large h. These contenders should not obtain the current DB because it would

not be feasible for them. The third stage of the contention eliminates them from the

contention.

3.3.1.3 The Third Stage of the CF

The third stage of CFi consists of the slots U1, V1 and U2, as shown in Figure 3.2.

In slot U1, every remaining contender X transmits a packet indicating its identity

to its parent node Y . If Y receives this packet, it replies with an ACK packet in

slot V1. If X receives this ACK, X has succeeded in the last stage of the contention,

otherwise it has failed. If X has succeeded, it reports its victory to Y in slot U2 and

adds DBi to its transmission schedule.

With the above algorithm, node Y is likely to receive the packet from X in slot

U2 because there is at most as much interference as in slot U1 and in slot U1 the

reception was successful. The successful reception in slot U2 is desirable because Y

must add the corresponding DB to its reception schedule. In noisy environments,

Y may not receive the packet in slot U2. In this case, Y does not add the current

DB to its reception schedule and X does not receive acknowledgments during the

data transmission phase. This is not a problem because node X can obtain new DBs

during the data transmission phase.

The third stage is very likely to ensure that all the DB allocations are feasible.

This is because it was proved in the U1 slot that X’s parent receives X’s packets

correctly in the presence of the interference from the other nodes that are assigned

the same transmission slot as X, and because it was proved in the slot V1 that X can

receive the acknowledgments from its parent node in the presence of the interference

from the parents of all the nodes that are assigned the same transmission slot as X.



3. MAC Scheduling Without Data Aggregation 50

3.3.1.4 Finalization Period

The purpose of this period is to propagate a packet called finalization packet from

the data sink to every sensor node in the network. The finalization packet contains

information that all the nodes in the network should have, such as the start time of

the first Transmission Frame (TF), the period Tf between TFs and the number N

of DBs per TF. The number N should be at least as big as the number M of CFs

elapsed until the data sink created the finalization packet, but a larger N is preferable

to enhance the schedule’s extensibility. The data sink initiates the finalization period

by transmitting the finalization packet to its children.

Our performance evaluation in Section 3.4.2 does not simulate node failures and

uses static channels without external interference. Under this conditions, every node

obtains a time slot eventually. Our simulations also assume that the data sink knows

the routing tree, which means that, when the data sink has assigned as many DBs as

data sources are present in the routing tree, the data sink knows that all the nodes

have obtained all the DBs they need and thus the finalization phase should begin.

Therefore, in our performance evaluation, the data sink does not need any timeout

to begin the finalization period.

If there are node failures, the wireless channel is dynamic, or there is external

interference, the data sink sink needs a timeout indicating the maximum amount

of time to wait before starting the finalization period. When all the nodes have

obtained all their DBs or the timeout period elapses, the data sink initiates the

finalization period.

We have not developed an algorithm to decide the timeout period because this

timeout is unnecessary in our simulations. However, we now discuss the choice of the

timeout for more realistic settings. The timeout should increase with the number of

nodes in the routing tree because this number increases the number of DBs that have
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to be assigned. The timeout should also increase with the node density because if the

nodes are close to each other fewer contenders can share a DB. The timeout should

also increase as the node failure probability decreases because if failures are rare a

full schedule is likely to be found eventually. The timeout should also increase if the

data sink has high tolerate to scheduling delay or if the number of nodes providing

information about the event is critical. We suggest the use of simulations to choose

the timeout as a function of all the variables above.

In our simulations, we implement the finalization period by dividing it into M

time slots using the inverse of the schedule obtained in the scheduling phase. We

illustrate the concept of inverse of a schedule by describing the inverse of the schedule

in Figure 1.1c. Since in the original schedule node E transmits in the last time slot,

in the inverse schedule, which is used in the finalization period, node E receives the

finalization packet in the first time slot. The rest of the inverse schedule is as follows.

In the second time slot, node E transmits the finalization packet to node B. In the

third time slot, node B transmits the finalization packet to node C. In the fourth

time slot, node B transmits the finalization packet to node A. All these transmissions

succeed in our simulations because the original schedule is collision free. .

For more realistic settings, we suggest to implement the finalization period as

follows. Rather than dividing the finalization period into time slots, we use CSMA.

Every node transmits the finalization to its children, and it retransmits the packet

until it receives an acknowledgment from all its children. The propagation of the

finalization packet occurs from parent to child along the routing tree. In this way,

all the nodes receive the finalization packet.

Note that if the sensor nodes do not know the timeout that the data sink uses to

trigger the finalization phase, it is possible that they continue contending for CFs

during the finalization period, and thus that they obtain DBs with indices greater
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than N , which are invalid DBs. In order to handle this problem, the sensor nodes

keep their transceiver active continuously from the start of the initial scheduling

phase. If at any time they receive the finalization packet, they take it as a sign that

the finalization phase has begun. Then, the nodes give up any slots that they have

obtained that are invalid according to the value of N indicated in the finalization

packet. The nodes can attempt to gain additional DBs during the data transmission

phase.

3.3.2 The Data Transmission Phase

Figure 3.2 shows that the data transmission phase consists of TDMA Frames (TFs).

Each TF consists of a CSMA Period (CP), a Listening Request Slot (LRS) and M

Data Blocks (DBs). Every sensor node transmits its packets in its transmission DBs,

and keeps its receiver active during the CP, the LRS, its reception DBs. Each DB

consists of a DATA slot and an ACK slot. The packets transmitted in the ACK slot

include synchronization information. The nodes that do not receive ACK packets

have to request and receive synchronization information during the CP.

The CP is also used by orphans, which are nodes that need to select a new parent,

which is necessary after certain network changes. For example, in Figure 3.1, after

the network changes, nodes D and E become orphans. Every orphan contends during

the CP to transmit an information request packet to its neighbors. The neighbors

contend to reply during the CP with a packet containing their identities and their

hop distance to the data sink. Using this information, the orphan selects the node

with the shortest hop distance as its parent.

Network changes may cause a node to stop receiving packets from a child in a

certain DB. This may happen because the child died, has no more data to transmit,

or can no longer communicate during that DB. In any case, the parent simply
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removes the DB from its reception list.

3.3.2.1 DB-Acquisition Overview

Following network changes, some nodes need to obtain new DBs. Each of these

nodes is referred to as contender. A simplification of the DB acquisition process is

as follows.

The LRS is only long enough for the contenders to contend briefly and for one

successful contender to transmit a packet called a listening request packet (LRP).

The successful contender indicates in the LRP the DB that it tries to obtain, which

is referred to as its target DB. Next the successful contender transmits a packet in

its target DB called testing packet. If it receives an ACK in response, the contender

has obtained its target DB. Otherwise it selects another target DB and repeats the

process until successful.

Existing DB allocations are unprotected and may become unusable due to the

interference from new DB allocations. In other words, expulsions may occur. A

node is said to have suffered an expulsion if it has to find a new DB because a node

that recently started using that DB is causing excessive interference. We study the

influence of expulsions in Section 3.4.3.3.

Every contender chooses its target DB randomly among the DBs in which it

senses the channel idle. Due to the hidden terminal problem, its target DB may be

infeasible, in which case it simply chooses another DB and tries again in the next

TDMA frame. This algorithm works best if the traffic changes slowly, because then

the interference in the DBs of two consecutive TFs is very likely to be similar. The

rationale of this DB assignment process is to spare the sensor nodes from the burden

of keeping track of their neighbors’ schedules. A more detailed description of the

algorithms to assign and obtain DBs is as follows.
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3.3.2.2 Parent’s Algorithm

Here, parent refers to a node Y that receives a LRP from a child X during a LRS.

Node X transmits the LRP in order to report its target DB to Y . Node Y reacts to

the LRP by listening during the DATA slot of X’s target DB. If Y does not receive

any packet during this slot, it does not take any other action. On the other hand, if Y

receives a packet from X, it replies with an acknowledgment. This acknowledgment

indicates the number b of packets stored in Y ’s buffer. If this number b is smaller

than B, Y adds the current DB to its reception schedule.

Whether X adds the current DB to its transmission schedule depends on its

successful reception of Y ’s acknowledgment. Therefore, X might not add the current

DB to its transmission schedule, but this is not a problem because Y does not receive

packets in this DB and removes it from its transmission schedule.

3.3.2.3 Contender’s Algorithm

The algorithm executed by every contender X in order to obtain a DB is as follows.

Contender X selects a random integer w between 1 and Nw. At the end of each

TDMA frame it decrements this counter. When w reaches 1, the node selects its

target DB.

The first step that X takes to select its target DB, DBk, is to set a variable Nr

with a random integer between 0 and Ns, where Ns is 1 in our simulations. Then, X

sets k to the maximum of two integers. The first integer is 0 if the purpose of the

desired DB is to transmit an own packet, and i+ 1 if the purpose of the DB is to

relay another node’s packet that is received in DBi. The second index is the index of

the last DB where it tried to obtain a DB, unless that DB was transmitted a long

time ago.

Node continues X selecting its target DB by checking whether the channel is clear
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in the two time slots of DBk. Three cases may arise. First, if the channel is clear and

Ns is zero, the contender has obtained its target DB: DBk. Second if the channel is

clear and Ns is positive, the contender decrements Ns, increments k, and repeats the

channel check operation in the new k. Third, if the channel is busy, the contender

increments k and repeats the channel check operation in the new k.

Therefore, within one TF, namely the TF in which X’s w is 1, X selects its target

DB, DBk. At the end of the TF, as at the end of every other TF, X decrements w,

which reaches zero. During the LRS, X contends to transmit a LRP indicating k. If

X fails to gain access to the medium, it resets w to a random integer between 1 and

Nw and repeats the whole process.

After X manages to transmit a LRP, it transmits a testing packet to its parent

node Y during the data slot of its target DB. Then, X listens for an acknowledgment

during the ACK slot of its target DB. Next, three possible situations may arise.

First, if X does not receive an acknowledgment during its target DB , X has failed

to obtain its target DB. Then, X resets w to an integer between 1 and Nw and

repeats the whole process. Second, if X receives an acknowledgment that indicates

that Y ’s value of b is smaller than B, X has obtained its target DB, so it adds its

target DB to its transmission schedule. Third, if X receives an acknowledgment

that indicates that Y ’s value of b is B, X resets w to an integer between BNw and

(B + 1)Nw in order to give time Y to empty its buffer.

3.4 Performance Evaluation

In order to evaluate the performance of EATP, we use a custom simulator written

in the Python programming language. The simulator can be downloaded from [78]

with all its parameters. It uses FlexiTP [27] as a benchmark for EATP because it is

the only existing distributed and adaptive TDMA scheduling protocol for periodic
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data gathering in randomly deployed networks that ensures the precedence and

low-buffering properties. We implement two versions of FlexiTP: FlexiTP2 and

FlexiTP3. FlexiTP2 is the original version [27], and FlexiTP3 is a new version that

we propose that differs from FlexiTP2 in that it propagates schedule updates across

3 hops instead of across only 2.

Both EATP and FlexiTP consist of an initial scheduling phase followed by a data

transmission phase during which the initial schedule can be modified. The major

difference between the two protocols is that in EATP the sensor nodes do not require

knowledge of their neighbors’ schedules. Another difference is that during the initial

scheduling phase EATP only assigns the same DB to nodes that have been proved

to tolerate each other’s interference, which increases the probability of obtaining a

feasible schedule.

3.4.1 Simulation Scenario

The FlexiTP paper [27] does not detail the MAC parameters to transmit schedule

updates. In order to perform a fair comparison between FlexiTP and EATP, we

simulate the two protocols for slotted CSMA. The simulation parameters common

to all simulations in this chapter are shown in Table 3.1.

Time is divided in 24 ms time slots. At the beginning of each time slot, every

node wishing to transmit backs off for a short random period between 0 and 200µs.

At the end of this back off period, it performs a clear channel assessment and only

transmits a packet if the channel is clear. The process of checking the channel and

starting a packet transmission requires 50µ. We neglect the propagation time of

the radio waves. With these parameters, there is a small chance that two neighbors

within transmission range of each other transmit simultaneously. Similar parameters

are used in [27].
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parameter value

◦ duration of the W slot in EATP 10 ms
◦ duration of the slots {P1, R1, . . . , PH , RH , U1, V1, U2} in
EATP

24 ms

◦ duration of the slots to claim DBs and propagate schedule
information in FlexiTP

24 ms

◦ range of the random back off period during which a node
needs to sense the channel continuously clear before transmit-
ting a packet

0—200µs

◦ time required to perform a clear channel assessment and
start a packet transmission

50, µs

◦ power consumption in sleep mode 60µW
◦ power consumption in receive mode 63 mW
◦ power consumption in transmit mode 63 mW
◦ power consumption in idle power 63 mW
◦ attenuation exponent of the wireless channel 3.5
◦ standard deviation of the log-normal shadow fading 8 dB
◦ path loss at 100 m 80 dB
◦ noise figure of the receiver 4.8 dB
◦ minimal at the receiver SINR for a transmission to be suc-
cessful

13 dB

◦ transmission range t when there is no fading or interference 74 m

Table 3.1: Simulation parameters in EATP.

The transmit, receive and idle power are all equal to 63 mW, and the sleep power

is 60µW. Such values are typical over short distances with current hardware [7]. The

attenuation exponent of the channel is 3.5 and the path loss at 100 m is 80 dB. The

channel suffers log-normal shadow fading with a standard deviation of 8 dB. Since

different values of shadow-fading attenuation are applied to every link, there is no

such a thing as a transmission range. The noise figure of the receiver is 4.8 dB. Some

of these parameters are extracted from [87].

The success of a packet transmission is determined based on the joint interference

from all concurrent transmitters. A transmission is treated as successful if the SINR

at the receiver exceeds 13 dB. We define t as the maximum distance across which

two nodes can communicate if there is no fading and interference; the parameters
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parameter value

◦ number H of slot pairs per CF in EATP 7
◦ node density ρ 6–15
◦ maximum fraction of disconnected nodes in the network 10 %
◦ normalized network size x̄ 3–6
◦ number of nodes in the network 69–172
◦ number of simulation runs for each node density and network
size

100

Table 3.2: Simulation parameters in the initial scheduling phase.

presented above yield t = 48 m.

The monitored area is a square of side x̄t, where x̄ is referred to as the normalized

network side. The data sink is deployed in the middle of one the square sides, and L

nodes are deployed randomly within the square. The node density ρ is defined as

L(πt2)/(x̄t)2. It is the number of neighbors within transmission range per node when

there is no fading and interference. All nodes are data sources and are linked to the

data sink through the shortest path tree. We discard the deployments in which more

than 10 % of the nodes are unable to reach the data sink through one or multiple

hops, which is rare for ρ ≥ 7.

3.4.2 Performance of the Initial Scheduling Phase

In this section, the maximum normalized network side x̄ is 6 and the maximum node

density ρ is 15, which yield a maximum of 172 nodes. We do not choose values of ρ

smaller than 6 because then the network would be disconnected with high probability.

We do not choose values of ρ larger than 15 in order to keep the simulation time

low. Furthermore, a high node density is energy and bandwidth inefficient and can

typically be improved by reducing the transmit power. Every simulation setting,

which is given by a normalized network size x̄ and a node density ρ, is simulated 100

time. The parameters used in this section are shown in Table 3.1 and Table 3.2.
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3.4.2.1 Choice of H in EATP

An important parameter in EATP is H, which is the number of slot pairs in the

second stage of every CF, as shown in Figure 3.2. The choice of H has to consider the

following factors. Increasing H makes the CFs longer, but fewer CFs are necessary,

and thus the impact of H on the execution speed is uncertain. Increasing H reduces

the number of CFs because it increases the probability of contenders transmitting at

different times during the second stage of a CF. The following example illustrates

why an increase in this probability is beneficial.

Suppose that only two contenders, X and Z, reach the second stage of a CF, and

that X and Z do not tolerate each other. If X and Z choose the same h, they

transmit simultaneously, suffer each other’s interference, do not to receive a reply,

and fail in the CF. By contrast, if X chooses a smaller h than Z does, X suffers no

interference in its first transmission of the second phase and reaches the third stage.

When Z transmits its packet, it receives no reply due to the interference from X

or X’s parent. When X transmits in the third stage, it suffers no interference and

becomes a winner. Therefore, fewer CFs are needed than if X and Z choose different

h than if they choose the same h.

After H is sufficiently large, all the contenders are likely to choose different h.

Therefore, further increasing H barely reduces M , as shown in Figure 6.2. Increasing

H from H = 5 to H = 15 only reduces the schedule length M by 7 % independently

of the node density ρ. Since H = 7 obtains a fast execution speed (the CFs are short,

and few CFs are needed) and a high concurrency (H is small), we use it in the rest

of the simulations.

In order to justify why the same H is sufficient for all simulated densities, consider

Figure 3.4. For simplicity, we assume that there is a uniform transmission range rt,

which is the maximum distance within which two nodes can communicate with each
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Figure 3.4: Simplified model to justify that the number of hidden terminals does not
increase indefinitely with the node density ρ.

other or detect each other’s transmissions. We also assume that there is a uniform

interference range ri = 2rt, defined as the maximum distance within which a node

can interfere with other nodes.

In Figure 3.4, node X is contending for a DB to communicate with its parent Y .

Centered at Y , there is a ring with internal radius rt and external radius ri = 2rt.

Therefore, the nodes within the white area around Y can communicate with Y , and

the nodes within the shaded area can interfere with Y but not communicate with it.

Suppose that X reaches the second stage of a CF. The circle centered at X has

radius rt, and thus the other contenders that reach the second phase are outside this

circle. Among all these contenders, we refer to those that can interfere with Y as

incompatible contenders of X.
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The incompatible contenders of X are inside the circle of radius 2rt centered

at Y and outside the circle of radius rt centered at X. The maximum number of

incompatible contenders that fit into this area is limited by the minimum distance

between two contenders, which is rt after the first stage of the CF. Therefore, the

number of contenders does not grow with ρ, and thus H does not need to increase

with ρ either.

Figure 3.4 shows a distribution of incompatible contenders of X that contains

almost as many contenders as possible. The incompatible contenders are represented

by small squares and arranged in an hexagonal grid. In this grid, every node has six

neighbors at a distance of rt.

3.4.2.2 Performance Results

Figure 3.5 presents the results of the initial scheduling phase in matrix form. It

consists of three rows, each of which presents one performance metric. Each column

refers to a different node density ρ. In each graph, the x-axis represents the normalized

network side x̄.

The first row of Figure 3.5 shows that EATP greatly outperforms FlexiTPk in

terms of the failure probability pf . EATP achieves pf = 0 because a set of nodes

are only assigned the same DB if they have been proved empirically to tolerate each

other’s interference. By contrast, FlexiTP2 and FlexiTP3 suffer a positive pf because

they are subject to the problem of radio irregularity [86].

FlexiTP2 has a failure probability pf as high as 0.27 for large and sparse networks.

FlexiTP3 performs much better because it imposes a larger hop distance between

concurrent transmitters. As the node density ρ increases, the failure probability of

FlexiTPk decreases because the hop distance becomes more strongly correlated with

the physical distance and more conditions are examined before assigning the same
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DB to two nodes. As the normalized network side x̄ increases, the failure probability

pf increases because the nodes far from the border of the monitored area have more

neighbors and interferers than the nodes in the center of the monitored area.

The second row of Figure 3.5 shows that the concurrency c of the three protocols

increases with the normalized network side x̄. This is because in small networks

the sensor nodes are too close to each other to share the same DBs, and thus the

concurrency c is 1. As the node density ρ increases, the concurrency of FlexiTPk

decreases because more conditions are used to decide whether two nodes interfere

with each other. EATP enjoys much higher concurrency than FlexiTP3. The relative

performance of EATP and FlexiTP2 depends on ρ and x̄, but FlexiTP2 is not practical

due to excessive pf .

The third row of Figure 3.5 shows that EATP is much faster than FlexiTPk.

FlexiTPk uses a token-passing mechanism that only allows one node to gain a DB at

a time, and thus its execution time is roughly proportional to the number of nodes.

By contrast, EATP can assign several DBs at a time if the network is sufficiently

large. Therefore, the speed advantage of EATP increases with the two variables that

control the number of nodes, which are the network side x̄ and the node density ρ.

3.4.3 Performance of the Data Transmission Phase

In this section, 1000 simulation runs are averaged. The normalized network side x̄ is

3 and the maximum node density is ρ = 22, which yield a maximum of 63 nodes.

We use a smaller number of simulated nodes in this section than in Section 3.4.2

because our simulator [78] is slower in the data transmission phase than in the initial

scheduling phase. The maximum number of packets to be buffered per node is B = 5.

We choose B > 1 in order to test the functioning of the protocol, and we do not

choose a value of B larger than 5 in order to keep the upstream latency low. The
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parameter value

◦ node density ρ 7–22
◦ maximum fraction of disconnected nodes in the network 10 %
◦ normalized network size x̄ 3
◦ number of nodes in the network 20–64
◦ maximum number B of packets that a node can buffer 5
◦ number of simulation runs for each node density and network
size

1000

Table 3.3: Simulation parameters in the data transmission phase.

simulation parameters are shown in Table 3.1 and Table 3.3.

The goal of the data transmission phase is to adapt to infrequent network changes

in an energy-efficient way. In our simulations, each network is modified by four

change sets, each of which consists in removing two randomly selected nodes and

deploying two new nodes at random locations. Every change set is instantaneous,

and different change sets occur at different times. A change set is executed only after

the network has fully adjusted to the previous change set.

The number of DBs that have to be assigned after a change set depends on the

network size. For example, suppose that a node X with q children is h hops away

from the data sink. Also suppose that X’s children are data sources and childless,

and that they have other neighbors h hops away from the data sink besides X. Then,

if X is removed from the network, q(h+ 1) new DBs need to be allocated.

The energy consumption of the sensor nodes depends on the speed of change of

the network. In order to quantify it, we define the DB demand period Ta as the

quotient between the number of DBs required due to network changes over a certain

period of time, and the number of TDMA frames that elapsed over this period. The

DB demand period Ta is inversely related to the speed of change of the network.
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3.4.3.1 Concurrency

Figure 3.6 shows that, as the number of network cycles increases, the concurrency of

FlexiTPk is severely degraded, whereas that of EATP is preserved. This is because

the nodes in FlexiTP may have outdated information about their neighbors’ schedules,

whereas the nodes in EATP use no such information.

To explain FlexiTPk’s degradation, consider a node X that stops using DBi to

communicate with its parent Y . Since node Y stops receiving packets in DBi, it

removes DBi from its reception schedule. However, the rest of the neighbors of X

are not notified that DBi has become available. In particular, those neighbors do not

remove DBi from their CSL, which is the list of DBs being used by their neighbors.

Since FlexiTPk fails to update the CSLs, the indices of the DBs claimed by the

sensor nodes are unnecessarily large, which reduces the concurrency c over time.

In order to preserve FlexiTPk’s concurrency over time, we propose to modify

FlexiTPk as follows. Every sensor node propagates its schedule periodically to its

neighbors and removes from its CSL the DBs not confirmed to be in use. We do not

implement this modification of FlexiTPk because it increases the energy consumption.
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3.4.3.2 Eventual Assignment of a DB

The probability that a node obtains an infeasible DB in the transmission phase is

similar to the probability that it obtains such a DB in the initial scheduling phase,

which is shown in the first row of Figure 3.5. FlexiTPk, TRAMA [30] and other

TDMA protocols do not respond appropriately to infeasible slot allocations because

they do not make the sensor nodes keep track of the DBs that they have tried to

obtain. As a result, the nodes obtain the same DBs repeatedly, thereby increasing the

energy consumption and the delay. When computing the energy consumption and

the delay, the simulator intentionally ignores the FlexiTP nodes that are assigned

infeasible slots. Therefore, the energy advantage of EATP that we will show in

Section 3.4.3.4 still holds if FlexiTP is modified to avoid infeasible allocations, which

we propose to do as follows.

Suppose that a node has been assigned a DB but repeatedly fails to receive ACKs

from its parent in that DB. The node removes the DB from its transmission list and

waits for a random interval. Then, it randomly selects a new DB among the DBs

that it has not tried before, and claims that DB. The node only changes its parent

node if it cannot communicate with it during the CP. This algorithm differs from

the original FlexiTP algorithm in that it keeps track of past attempts and in that it

introduces randomness. Randomness prevents the deadlock that occurs when two

neighbors simultaneously and repeatedly claim the same slots.

3.4.3.3 Scheduling Delay Metrics

Scheduling delay refers to the slowness of the protocol in assigning DBs. We define

two metrics to characterize it: the acquisition delay la and the postponement ratio

rp. Since the scheduling delay and the energy consumption have to be considered

simultaneously, we discuss them together in Section 3.4.3.4.



3. MAC Scheduling Without Data Aggregation 67

The acquisition delay la is defined as the number of TDMA frames elapsed from

the time when a node needs a DB until the time when it obtains the DB. There are

two reasons why a high acquisition delay may be detrimental. First, it postpones the

time when the data sink receives the information, which may reduce its usefulness.

Second, it forces the nodes to store more packets in their buffers, which may cause

buffer overflows.

The postponement ratio rp is defined as the probability that a node’s need to

transmit a packet in the current TDMA is unmet for one of two reasons. First, the

node transmitted the packet but the packet was not received correctly. Second, the

node has not obtained yet a DB to transmit the packet. The postponement ratio

is useful because it captures two aspects that the acquisition delay does not: the

packet losses suffered in EATP due to collisions with testing packets, and the greater

number of expulsions (c.f.suffered by EATP .

3.4.3.4 Energy Consumption

FlexiTPk and EATP can operate at multiple points in the energy-delay space. In

FlexiTPk, the operation point depends on the duration Tu of the FTS, which is the

slot used to propagate schedule updates. Shortening Tu reduces idle listening and

thus the energy consumption, but increases the scheduling delay because more TDMA

frames are needed to propagate schedule updates. Similarly, in EATP, removing

the LRS from some of the TFs (see Figure 3.2) and disallowing the transmission

of testing packets in those TFs reduces the energy consumption, but increases the

adaptation latency.

In this section, we prove that EATP can simultaneously enjoy lower scheduling

delay and energy consumption than FlexiTPk. We set Tu to a value so small that

FlexiTPk’s acquisition delay la is 70 % higher than EATP’s. This value la is chosen
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Figure 3.7: Scheduling delay metrics in the data transmission phase.

so that FlexiTPk also has a higher postponement ratio rp. The higher performance

of EATP for the chosen la in terms of the two scheduling delay metrics is shown in

Figure 3.7. Note that our choice of a small la increases FlexiTPk’s scheduling delay,

but it reduces its energy consumption. Despite giving FlexiTPk this advantage, we

show in Figure 3.8 that EATP still consumes less energy.

Figure 3.7a shows that the acquisition delay la of EATP grows with the node

density ρ. This is because the node density ρ increases the number of contenders

and the level of interference, thereby intensifying the contention and decreasing the

probability that testing packets are received. By contrast, Figure 3.7b shows that the

postponement ratio rp decreases with ρ. This is because, as ρ increases, the number

of nodes in the network grows faster than the number of nodes affected by the change

sets. Figure 3.7 indicates that EATP performs better in terms of acquisition delay la

than in terms of postponement ratio rp. This is because EATP suffers expulsions

and packet losses due to testing packets (cf. Section 3.4.3.3).

Figure 3.8 displays the energy consumed in scheduling operations per node and

TDMA frame. This energy metric excludes the energy consumed in data transmis-

sions, which is the same for all the protocols. It can be seen that EATP consumes

around 20 % less energy than FlexiTP2 and less than 65 % less energy than FlexiTP3.
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Figure 3.8: Energy consumed per node and TDMA frame.

This is because the main cause of energy consumption in EATP is idle listening in

LRS, the main cause of energy consumption in FlexiTPk is idle listening in the FTS,

and the LRS is shorter than the FTS.

Figure 3.8a is obtained for a DB demand period of Ta = 36. It reveals an increase

of the energy consumption with the node density ρ. In the case of FlexiTPk, this

is because Tu needs to increase with ρ in order to be able to propagate schedule

updates to an increased number of neighbors. In the case of EATP, this is because a

greater ρ increases the interference level and the probability that a testing packet

is not received. FlexiTP2 consumes much less energy than FlexiTP3 because it can

achieve the scheduling delay of Figure 3.7 with shorter Tu than FlexiTP3 can.

Figure 3.8b is obtained for a node density of ρ = 24. It reveals that the energy

consumption of FlexiTPk is independent of the DB demand period Ta. This is because

obtaining DBs does not increase the time that the nodes keep their transceivers

active. Rather, it only changes the nodes’ trasnceiver status, from idle to either

transmit or receive. Since we have assumed that these three modes consume equal

power, obtaining DBs does not increase the energy consumption.

Figure 3.8b shows that the energy consumption of EATP decreases as Ta increases.

This is because a higher Ta reduces the speed of change of the network and the
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number of DBs that have to be obtained. Obtaining DBs consumes energy for the

following reasons. First, the contenders have to listen in multiple DBs in order to

select their target DBs. Second, testing packets need to be transmitted and listened

to. Third, packets lost due to collisions with testing packets need to be retransmitted.

3.5 Conclusions

We have proposed a TDMA protocol for uncompressed data gathering called EATP.

EATP has a much lower failure probability pf than other protocols because it only

assigns the same DB to a set of nodes if they have been proved empirically to tolerate

each other’s interference. By contrast, the existing protocols rely on unreliable

interference models such as neglecting the interference originated more than 2 hops

away.

During the initial scheduling phase, EATP is faster than FlexiTPk. EATP’s speed

advantage grows with the network size because EATP can perform simultaneous DB

assignments only if there are nodes sufficiently far from each other. EATP’s speed

advantage also increases with the node density ρ because it selects the owners of a

certain DB during a CF and the size of a CF is independent of ρ.

During the data transmission phase, EATP is not very fast, taking as many as

15 TFs to assign a DB. However, if this delay is tolerable and the network does

not change very fast, EATP can save more than 20 % of energy. This result was

obtained when giving FlexiTPk several advantages. First, allowing FlexiTPk to suffer

a longer scheduling delay than EATP. Second, not considering FlexiTPk’s energy

consumption in keeping its CSL update, which causes a decrease of the spectral

use. Third, ignoring the effect of infeasible DB allocations on FlexiTPk’s energy

consumption.

These properties make EATP suitable for event-triggered, periodic data gathering
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in slowly-changing wireless sensor networks. Note that the merit of a fast initial

scheduling phase does not contradict the assumption of a high tolerance to scheduling

delay during the data transmission phase. During the initial scheduling phase, speed

is important because the data sink is receiving no information about the event

yet. During the data transmission phase, scheduling delay can be tolerated because

sufficient information of the event is already being reported.
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4 Network Segmentation for

Unrepeatable Data Aggregation

This chapter is the first to address the data aggregation case. It considers networks

in which the data aggregation functions are unrepeatable, which means that each

packet is only aggregated once. Unrepeatable data aggregation functions are easier to

develop but less efficient than repeatable aggregation functions, which are considered

in later chapters. We assume a cluster-based topology because it is suitable for

unrepeatable aggregation, and propose an algorithm to divide the network into

clusters. The proposed cluster segmentation is such that the cluster size increases

with the distance to the data sink.

4.1 Introduction

Consider a large, cluster-based network used to report randomly-located events. The

clusters are constant over time and are used for multiple events. Each event has

an associated event area. Every sensor node within the event area becomes a data

source, which means that it generates data about the event.

Every sensor node belongs to exactly one cluster, and each cluster contains one

cluster head. The data sources associated with the same event may belong to different

clusters. Every data source transmits its data to its cluster head. Every sensor node
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has a fixed transmission range, and it may have to communicate with its cluster

head across multiple hops.

The packet transmissions from every data source to its cluster head constitute

the internal traffic of the cluster. The internal traffic is not aggregated in any way.

When a cluster head receives all the information of the data sources of its cluster, it

aggregates and compresses this information together.

After compressing the information from its cluster, the cluster head transmits the

result to the data sink. These packet transmissions need to traverse other clusters.

To those clusters, the packets from other clusters that they have to relay are referred

to as external traffic. The external traffic is relayed by the normal sensor nodes, not

only by the cluster heads, and it may need to travel multiple hops to reach the data

sink.

The problem of dividing the network into clusters of unequal sizes has to consider

the following tradeoff related to cluster sizes. On the one hand, reducing the cluster

size reduces the internal traffic because the uncompressed packets from the data

sources travel across fewer hops to the cluster head, where they are aggregated.

On the other hand, reducing the cluster size increases the external traffic because

more clusters generate information about each event, and the packets from different

clusters are not aggregated.

The optimal cluster size varies with the distance between the cluster and the data

sink. In particular, the clusters close to the data sink should be smaller than the

clusters far way from the data sink. This is because clusters far away from the data

sink need to relay little external traffic and thus have more energy than clusters close

to the data sink. The extra energy of the clusters far away from the data sink is

best employed in increasing their size, which reduces the external traffic that clusters

close to the data sink have to relay.
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In this chapter, we formulate and solve the problem of dividing the network into

clusters so as to minimize the maximum energy consumption in the network. We

only consider the energy consumed in packet transmissions. We neglect the energy

of compressing data, idle listening, and packet collisions. We divide the network

into concentric, non-overlapping rings. Each ring is divided in sectors, and each

ring sector is a cluster. In other words, we use location to decide the clusters. This

kind of segmentation assumes large, multi-hop clusters with densely deployed sensor

nodes. The clustering problem is to select the number of rings, the size of each ring,

and the size of each sector.

4.2 Related Work

Most clustering protocols [51, 52, 53, 54, 55] assume that the cluster heads com-

municate directly with the data sink. In large networks, this is inefficient [88] or

impossible because some nodes may have very poor links to the data sink. SCT

[55] segments the network in rings and sectors, like we do. However, the SCT paper

focuses on clusters that are small enough for single-hop communication. Furthermore,

every ring in SCT has the same thickness, and thus the sensor nodes close to the

data sink consume their batteries sooner than the rest of the sensor nodes.

UCS [89] and EEUC [90] are two protocols to obtain clusters of unequal size.

Similar to our algorithm, they increase the cluster size with the distance to the data

sink. However, they both assume that every sensor communicates directly with

its cluster head. This constraint is particularly harmful in large networks. This is

demonstrated through our simulation results in Section 4.7, which show that clusters

consisting of more than four hops are desirable. Additionally, UCS’s clustering

algorithm is not scalable because it considers many parameters. For this reason, its

performance is evaluated mostly in two-ring networks, with only very brief mention
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to a three-ring network. By contrast, in our simulation section we consider networks

with up to 35 rings.

EEUC is more scalable than UCS because its clustering mechanism is based on

contention between neighbors. However, it assumes that each node can estimate

its distance to the data sink by the measuring the strength of the signals from the

data sink, which is unrealistic in irregular propagation environments. Furthermore,

EEUC assumes that every cluster head transmits its compressed packets across one

hop to the next cluster head.

4.3 Assumed Network Topology

The network is large and contains only one data sink. The monitored area is limited

by two concentric circles of radii ra and rb centered at the data sink, and is divided

in NL non-overlapping rings centered at the data sink, as depicted in Figure 4.1.

The rings are numbered from 1 to NL. The internal radius of Ring i is ri, and its

thickness is hi = ri+1 − ri. The sum of the thicknesses of every ring must be equal,

to rb − ra, which can be expressed as
∑NL

i=1 hi = rb − ra.

Ring k is divided into

qK = d2πrk/hke (4.1)

equal clusters. We approximate these clusters by squares of side hi, which is reasonable

if ra � hi.

Within each cluster, the cluster head is the node lying the closest to the desired

position, which is the middle of the closest edge of the cluster lying the closest to

the sink. In this chapter we assume that the cluster head lies exactly in its desired

position.

Under realistic propagation conditions, our assumed distribution in clusters based
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Figure 4.1: Segmentation of the network in layers and clusters. The sink is at the
center and the clusters are approximately squares.

on node position is reasonable because typically the minimum transmission range in

the network is at least 25 % of the maximum transmission range [81]. The assumption

that clusters are square is particularly good if ra is large, which is the case if the

data sink has a very sensitive receiver. The assumption of the cluster head location

is good if clusters contain many hops. The assumption about the topology are only

realistic in case that the monitoring area is more or less circular. They are unrealistic

if the deployment is essentially linear, for example sparse deployment in bridges or

tunnels.

The node density is ρ and the number of nodes in the network is Aρ, where A is

the area of the network and is given by

A = π
(
r2
b − r2

a

)
(4.2)

Every node has transmission range rtx. The nodes within ra + rtx from the data

sink can reach it directly. This assumption is reasonable because the sink may have

a more sensitive receiver or an antenna with a higher gain. We define the normalized

network size as

β =
rb − ra
rtx

. (4.3)
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The event area is a square of side s, two of whose sides are approximately parallel

to two radii centered at the sink. The center of the events are randomly located

within an area

Af = π
(
(rb − s)2 − r2

a

)
. (4.4)

Specifically, the minimum distance of a corner of the event area to the data sink may

vary between ra to rb − s. The normalized event size is defined by

γ =
s

rtx
(4.5)

Therefore, if an event occurs at a random location, it is detected on average by

nk =
qk (hk + s)2

Af

(4.6)

clusters in Ring k, where qk is given by (4.1).

In this chapter, we use the hop count approximation, which we define as follows: if

two nodes lie a distance d away from each other, the number of hops between is

ζ ≈ ωd/rtx, (4.7)

where ω is a constant that depends on the node density ρ. Constant ω is 1 in

extremely dense networks and increases as the node density decreases.

4.4 Cost Analysis

We assume that each data source generates one uncompressed packet per event.

Therefore, if a cluster is fully contained within the event area, the number of

uncompressed packets that the cluster head aggregates is h2
kρ, where k is the cluster
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location. Then, the cluster generates one compressed packet that it transmits to the

data sink across multiple hops. Obviously, the problem would be very similar if each

data source generated a certain number of uncompressed packets and the cluster

head generated an unequal number of compressed packets.

We assume that the transmission of every uncompressed packet has equal cost,

which is denoted by Er. Similarly, the transmission of every compressed packet has

also equal cost, which is denoted by Ec. The packet size of the compressed packet is

independent of the number of uncompressed packets whose information it combines.

The parameter that controls the amount of compression is

σ =
Er

Ec

, (4.8)

For a node in Ring k, the expected energy consumed in transmitting internal

traffic is denoted by Ei
k, and that consumed in transmitting external traffic by Ei

k.

The total energy consumed by a node in Ring k is

Et
k = Ei

k + Ei
k. (4.9)

The external to total ratio is defined by

ε =
Ei

k

Et
k

. (4.10)

4.4.1 Internal Traffic

If the clusters are approximated by squares, the expected distance from a random

location in a cluster in Ring k to its cluster head is

h−2
k

∫ hk

0

∫ hk

0

√
(x− hk/2)2 + y2 dx dy ≈ 0.76hk. (4.11)
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Therefore, using (4.7), the expected number of hops of the internal traffic is ζ =

0.76ωhi/rt. The probability that a node is contained within the event area is s2/A.

The number of reporting nodes grows with the number of nodes in the cluster mk,

but this load is also divided among the mk nodes. Therefore, the expected internal

cost per event for a node in Ring k is

Ei
k =

0.76ωs2

A
Erhk. (4.12)

4.4.2 External Traffic

Ring k has to relay all the compressed packets that are generated from Ring k + 1

to Ring NL. The total number of external packets that traverse Ring k per event is∑NL
j=k+1 nj, where nj is given by (4.6). Each packet from those rings has to travel

across ωhk/rt hops in Ring k. There are 2πrkhkρ nodes in Ring k, and we assume

that their load is uniformly distributed among them. Therefore, the expected external

cost per event for a node in Ring k is

Ei
k = Ec

(
ω
hk
rt

) ∑NL
j=k+1 nj

2πrkhkρ
. (4.13)

4.5 Optimization Problem

Considering all factors, the expected energy consumption of a node in Ring k when

an event occurs is

Et
k =

Ecω

2πrtrkρ

NL∑
j=k+1

2πrj (hj + s)2

hjAf

+
0.76ωs2

A
Erhk. (4.14)

The optimal layer-size distribution can be obtained by solving the following
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optimization problem:

minimize
{hi}

NL
i=1

max
k=1,...,NL

{
Et

k

}

subject to
NL∑
i=1

hi = rb − ra

hk � rt

. (4.15)

The constraint hk � rt is needed so that the hop count approximation of (4.7)

become reasonable.

4.6 Approximation Algorithm

The optimization problem (4.15) has NL continuous variables and is non-convex, so

it is difficult to solve [91]. Figure 4.2 presents a heuristic algorithm to approximate

the solution. The algorithm starts with all the layers of equal size. In each iteration,

it extends by ∆ the size of the most energy consuming ring and shrinks by ∆ the

size of the leastp energy consuming ring by that same amount. The parameter ∆

does not need to be very small because in a real deployment precise geographic

information is unavailable.

The above heuristic approximates the optimal distribution of sizes given NL. In

order to select NL, we use the following process. We start with a small value of NL,

and obtain {hi} and the maximum energy consumption with our heuristic. Then, we

increase NL and obtain the new maximum energy consumption. If the new maximum

energy consumption is smaller than the old one, we repeat the process. The process

ends when the new maximum energy consumption is bigger than the old one. The

final NL is the current NL minus one.
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Data: Number of layers NL; topological parameters: ra, rb; step size ∆; ω;
threshold γ

Result: {hi}NL
i=1

1 foreach k ∈ {1, . . . , NL} do
2 compute Et

k using Equation 4.14;
3 newval = max(Et

1, . . . , E
t
NL

);

4 repeat
5 oldval = newval;
6 q = index k that maximizes Et

k;
7 hq = hq −∆;
8 q = index k that minimizes Et

k;
9 hq = hq + ∆;

10 foreach k ∈ {1, . . . , NL} do
11 compute Et

k using Equation 4.14;
12 newval = max(Et

1, . . . , E
t
NL

);

13 until newval - oldval < γ;

Figure 4.2: Algorithm to compute the thickness hi of every ring.

4.7 Performance Evaluation

We perform our performance evaluation by using the equations in this chapter, not

by using a simulator that simulates actual packet transmissions. Our simulation

parameters are shown in Table 4.1. We discuss the choice of these parameters as

follows.

We set the internal radius ra to 4rtx. We do not set ra to smaller values because

it would make the approximation that the clusters in Ring 1 are squares very poor.

We do not take larger values of ra because would make the assumption that the data

sink can communicate with nodes in Ring 1 unreasonable.

We set the network size β to values between 10 and 160. We set values larger

than 10 because we are interested in large networks with multiple rings. We do not

consider values larger than 160 because a network with 160 nodes is already very

large and contains and because if the number of rings in the network.

The node density ρ is the average number of neighbors per node. We set ρ to

10 because this value is sufficiently large to yield a connected network with high
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parameter value

internal radius ra of the monitored area 4ra
node density ρ (average number of neighbors per node) 10
network size β 10 – 160
normalized event size γ 1 – 30 (4 default)
compression coefficient σ 4 – 40 (15 default)
increment ∆ in the algorithm of Figure 4.2 0.05rtx

Table 4.1: Simulation parameters for the cluster segmentation algorithm.

probability.

We set the normalized event size γ to values between 1 and 30. We do not set

values of γ smaller than 1 because then the probability of the event being contained

within a cluster would be very high. This would remove any motivation for large

clusters, and thus clusters would become very small. In turn, this would cause the

hop count approximation (defined in Eq. 4.7 to become very poor. We do not choose

values of γ larger than 30 because this would lead to a small number of rings, which

would make the approximation that the clusters in Ring 1 are square-shaped very

poor.

We set the compression coefficient σ to a value between 4 and 40 for the following

reasons. The value of σ has to be bigger than 1 because otherwise there is no

compression. The σ larger than 40 because if σ is very large, the external traffic

becomes negligible, the cluster size becomes so small that the hop count approximation

(defined in Eq. 4.7) becomes very poor.

We set the increment ∆ in the algorithm of Figure 4.2 to 0.05rtx. A much larger

∆ would not allow to demonstrate the advantage of unequal clusters sizes. A much

smaller ∆ would be unrealistic because it would imply very high granularity in the

number of nodes per cluster, whereas in practice the granularity of this number is

limited because the number of nodes per cluster must be an integer.

Figure 4.3 evaluates the algorithm performance as a function as a function of three
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Figure 4.3: Influence of the network size β, the event size γ and the compression
factor σ in our system.

parameters: the network size β, the normalized event size γ, and the compression

factor σ. The figure is structured as a 3× 3 matrix of panels. In each matrix column,

two of the three are constant, and the other parameter varies. The values of the

constant parameters are shown at the top of the column, and the varying parameter

is shown in the X axis at the bottom of the column.

Each matrix column consists of three panels, one in each row.

The first row of Figure 4.3 shows the average normalized ring thickness, defined by

mean(hk/rtx), of our chosen cluster size distribution. This thickness is approximately

the maximum number of hops from a node to its cluster head, and it varies between
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2 and 4 for my simulated parameters according to Figure 4.3.

The second row of Figure 4.3 shows a metric called variety improvement, denoted

by ν. We define it as the relative lifetime improvement of our unequal cluster-size

heuristic compared to the lifetime obtained with an uniform cluster size. The desired

ν is desired to be large because one of the objectives of this chapter is to show the

usefulness of using different cluster sizes according to the distance to the data sink.

Figure 4.3 shows that lifetime increases of up to 12 % when compared to the uniform

distribution.

The third row of Figure 4.3 show the external to internal ratio, ε, defined in (4.10),

for the most energy consuming ring. This metric is the quotient between the energy

consumed in the external traffic and the total traffic. This metric is shown for the

network before and after applying our algorithm.

Figure 4.3 shows that the value of ε is a good predictor of the energy gain ν. In

particular, when ε is small, ν is high. This is because if ε is low, the most energy

consuming ring consumes most of its energy in internal traffic, which can be reduced

by reducing the ring’s thickness. By contrast, if ε is high, the most energy consuming

layer consumes most of its energy in external traffic, which can hardly be reduced by

an unequal cluster size distribution.

The first column of Figure 4.3 shows the influence of the network size β. As the

network grows, the number of external packets grows, further straining the nodes

close to the gateway. To reduce the number of external packets, the average layer

width, mean(hk), increases, but not as much to avoid an increase in the external to

total traffic ratio ε, and thus the gain ν decreases.

The second column of Figure (4.3) analyzes the effect of changing the event size

γ. As the event area grows, the clusters grow in order to prevent the growth of the

number of clusters that detect each event. The increase in the cluster size increases
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the internal traffic and reduces ε, which allows a higher gain ν.

The third column of Figure (4.3) analyzes the effect of the compression factor σ.

As compressibility increases, reducing the number of clusters that detect each event

becomes less important than reducing the distance from the sensor nodes to their

cluster heads. As a result, the average ring thickness decreases, but not as to prevent

the decrease in ε, and thus the variety improvement ν grows.

4.8 Conclusions

We have formulated the problem of dividing the network in fixed clusters to report

randomly located events. A piece of information can be compressed only once,

namely in a cluster head. This kind of data aggregation is unrepeatable, which is

the first level of aggregation of this thesis. Our algorithm is unique in that it obtains

multi-hop clusters of unequal sizes.

Our algorithm extends the network lifetime by up to a 12 % when compared to

the existing algorithms. This gain is small, but comes at very little cost because the

clusters are changed infrequently. The gain of our algorithm is the highest when

the most energy consuming nodes consume at least 30 % of their energy in their

internal traffic. This is because such a fraction of internal traffic allows the network

lifetime to be increased by reducing the clusters near the data sink. As a result, the

advantage of a heterogeneous cluster size distribution grows as the network size in

hops decreases, as the event size increases, and as the compression factor increases.

The energy gains in real networks may not be as high as reported here because

some of its assumptions are inaccurate. For example, the closest node from a cluster’s

desired cluster head position may be far from that position, or it may be impossible

to modify a cluster’s size by very small amount. However, the algorithm is useful

because it can quickly give an upper bound on how much gain can be achieved by
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choosing clusters of different sizes. The proposed algorithm has been evaluated in

very large networks, larger than 160 hops in radius.
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5 Fast Construction of Routing

Trees for Repeatable Aggregation

This chapter begins the use of second level of data aggregation in this thesis: repeat-

able aggregation over routing trees. This model is also used in the next two chapters.

The network phases presented in Section 1.3 are initialization, quiet phase, initial

routing phase, initial scheduling phase, and data transmission phase. This chapter is

concerned with the quiet phase and the initial routing phase. Its goal is to construct

a routing tree for repeatable aggregation quickly.

5.1 Introduction

Consider a network operating in the quiet phase. Most of the time, the sensor nodes

keep their transceivers turned off in order to save energy. However, they need to use

their transceivers to obtain synchronization information and to listen for potential

packets. Suddenly, some sensor nodes detect and event and become data sources

that need to start reporting their measurements quickly, either to avoid a buffer

overflow or because the data sink needs the information quickly. The first step to

report the event is to construct the routing tree.

The time to construct the tree depends on the relative timing of the sensor nodes’

sleep intervals. The existing protocols fail to consider this and their tree construction
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time is long and dominated by the sensor nodes’ sleep intervals. This chapter

proposes the Fast Aggregation Tree (FAT) protocol, which is a cross-layer protocol

that reduces the tree construction time.

Among the network phases from Section 1.3, the initial scheduling phase is skipped

in this chapter for two reasons. First, the initial scheduling phase is addressed in

Chapter 6. Second, it incurs excessive overhead for the short-lived events for which

FAT is designed.

5.2 System Model

5.2.1 Data Generation and Compression Model

Events occur at random locations with average period Tevent. Each event is detected by

a different set of ns data sources. Every data source generates n uncompressed packets,

each one about a period of time called the reporting interval. Each uncompressed

packet requires a time T1 to be transmitted. Multiple packets from different data

sources can be aggregated if they refer to the same reporting interval. Aggregation is

repeatable, which means that the compressed packets can be aggregated again with

other packets. The time to transmit a packet containing information from n data

sources is

Tn = T1(1 + (1− α)(n− 1)), (5.1)

where α is a compression coefficient between 0 and 1. If α = 0, data is aggregated

without size reduction. If α = 1, any number of packets from the same reporting

interval are compressed into a single packet with the same size as an uncompressed

packet from a single node.
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5.2.2 Delay Constraint

Every event must have been reported to the data sink no later than a time Dmax

after it occurs. Within this time, the routing tree must be constructed and the data

must be transmitted across this tree. We denote the time to construct the tree by

Tconstr, and the time to transmit the data over the tree by Ttrav. Therefore, the delay

constraint that we impose is

Tconstr + Ttrav < Dmax. (5.2)

Every sensor node keeps its transceiver in sleep mode most of the time, mostly

turning it on to listen to its neighbors with period TCCA. The tree construction

time is started by the data sources. The data sources cannot communicate with

their neighbors until their neighbors become active, which may be a time TCCA

later. In turn, these neighbors have to wait until their own neighbors become active.

Therefore, in large networks that use a long sleep period TCCA, the tree construction

time Tconstr depends on the number of sleep periods encountered during the tree

construction.

5.2.3 Total Power Consumption

In addition to performing channel check-operations with period TCCA, every sensor

node also turns on its transceiver with period Tmaint for maintenance operations,

which consist in exchanging synchronization information and verifying the links with

its neighbors. We denote the energy consumed in channel-check operations by ECCA,

and the energy consumed in maintenance operations by Emaint.

The sensor nodes consume energy in checking for packets from their neighbors,

performing maintenance operations, constructing the routing tree, and transmitting
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data over the tree. Therefore, the average total power consumption per node is

Ptot =
ECCA

TCCA

+
Emaint

Tmaint

+
Econstr + Etrav

Tevent

, (5.3)

where Econstr is average energy consumed per node during the tree construction, and

Etrav is the average energy consumed per node during the data transmission phase.

We assume that maintenance operations are rare and their contribution to Ptot is

small. The channel-check period TCCA is high, and thus it is an important factor in

the time to construct the tree Tconstr. The events are very rare (e.g. Tevent is longer

than an hour) and short (Ttrav is in the order of seconds).

5.2.4 Problem Formulation

The problem is to design the quiet phase and the initial routing phase of the network

so as to minimize the average total power consumption, given by (5.3), while satisfying

the delay constraint, given by (5.2). For efficient operation, the nodes must use

a long TCCA, but this increases the Tconstr and thus the total delay. Therefore, to

provide a delay lower than Dmax, both Tconstr and Ttrav must be reduced. The tree

construction time Tconstr can be reduced by arranging the sleep periods of different

nodes in a clever way. The time to transmit data across the tree Ttrav can be reduced

by using a routing tree that aggregates data intensively close to the data sources. In

short, the problem is to obtain an efficient routing tree for data aggregation quickly.

5.2.5 Related Work

Energy efficient operation during the quiet phase requires the nodes to sleep for

long periods. Pure TDMA is unsuitable for the quiet phase because there are no

data packets to transmit. Some random access protocols such as B-MAC [23] are
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simple and support long sleep periods, but consume much energy in transmitting long

preambles. The slotted MAC protocols [24, 21, 25] are probably the best solution

for the quiet phase. They consume very little energy when no events occur and they

do not need long preambles. Two such protocols are S-MAC [24] and T-MAC [21],

which make the sensor nodes sleep synchronously.

Another slotted MAC protocol is DMAC [25]. It groups the nodes in tiers according

to their hop distance to the data sink. The nodes i hops away from the data sink

constitute Tier i and check the channel state synchronously with period TCCA. The

nodes in Tier i− 1 check the channel state slightly later than the nodes in Tier i.

This schedule enables the packets from a data source to reach the data sink in little

more than TCCA. The timing diagram of DMAC is very similar to that of FAT, our

proposed protocol. However, the two protocols have different functions. DMAC is a

MAC protocol that does not enable data aggregation, whereas FAT is a cross-layer

MAC and routing protocol for data aggregation.

Most of the existing protocols to construct trees for data aggregation are centralized

or do not consider the influence of the sleep period in the tree construction time

[43, 44, 45, 46]. The tree that minimizes the energy consumption is the Steiner Tree.

Since obtaining it is NP hard [42], the existing protocols obtain approximations.

Oceanus [38] is one of several centralized tree construction heuristics that obtain a

good approximation of the optimal tree.

The centralized tree construction heuristics operate in three steps. First, the

data sources report themselves to the data sink. Second, the data sink computes

the routing tree. Third, the data sink informs the sensor nodes of the new routing

tree. Therefore, there are two data flows in opposite direction. The centralized tree

construction heuristics do not specify the MAC protocol they use to transmit these

two data flows. We make the following analysis of their time to transmit their data
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flows. Suppose K is the number of tiers in the network. If these heuristics operate

on top of S-MAC [24] T-MAC [21] , which have globally synchronous sleep intervals,

each of the two flows lasts for a time KTCCA. Therefore, the total routing process

lasts for at least 2KTCCA. If these heuristics operate on top of DMAC, the duration

of the first data flow is approximately TCCA, which is very short, and the duration

of the second data flow is almost KTCCA. Therefore, the total is approximately

(K + 1)TCCA. By contrast, FAT constructs the tree in approximately TCCA.

DB-MAC [59] and DAA+RW [60] are two aggregation protocols that do not

require any initial routing phase, and thus Tconstr = 0. In DB-MAC, every node

overhears its neighbors transmission to determine how many packets they hold.

When choosing its next hop, it chooses its neighbor with the greatest number of

packets in order to promote data aggregation. In DAA+RW, several nodes contend

to relay a packet, and nodes with more packets enjoy better chances of winning

the contention. In both DB-MAC and DAA+RW, the nodes hold their packets

for random periods to increase the probability of data aggregation. This technique

is insufficient to guarantee aggregation and introduces delays and overhearing in

each packet transmission. Therefore, if the data sources generate a sufficiently high

number of packets, DB-MAC and DAA+RW suffer high Ttrav and Etrav. Another

protocol, ToD [92], combines DAA+RW with a fixed aggregation structure. ToD

outperforms DAA+RW in big networks as it guarantees aggregation after a number

of hops, but it is not efficient for big data volumes in those few hops because it

aggregates data opportunistically.

5.3 The Fast Aggregation Tree (FAT)

We propose the FAT protocol to construct an aggregation tree after each event. FAT

is a distributed, cross-layer protocol to obtain a routing tree for data aggregation.
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The operation of the network starts with the initialization phase. In this phase, the

sensor nodes obtain their initial time synchronization and obtain their tier, which is

their minimum number of hops to the data sink.

5.3.1 Quiet Phase

The next network phase is the quiet phase, which is depicted in Figure 5.1 and

continues until an event occurs. The sensor nodes’ transceivers are in sleep mode

most of the time, and they are turned on with period TCCA to perform a clear

channel assessment (CCA). All the sensor nodes in the same tier perform the

CCA simultaneously, and the nodes in different tiers perform it at different times.

Specifically, the schedule of Tier i is Ttier in advance with respect to schedule of

Tier i− 1. Here, Ttier is an amount of time sufficient to transmit approximately a

dozen packets.

5.3.2 Initial Routing Phase

When an event occurs, some sensor nodes become data sources and initiate the tree

construction as follows. Every data source chooses its parent node, and this parent

node chooses its own parent node, and this process is continued until the full tree is

constructed. If a node X is in Tier i, it chooses its parent node among its neighbors

in Tier i−1 within its transmission range, which are referred as X’s potential parents.

We now describe the timing of the process in more detail.

5.3.2.1 Listening for Parent Requests

Let X be a sensor node from Tier i. If X senses the channel idle during its scheduled

CCA time, it sleeps until its next scheduled CCA time. However, if it senses the

channel busy, it keeps its transceiver active for a period Ttier. During this period,
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Figure 5.1: Staggered clear channel assessment (CCA) times of nodes in different
tiers.
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X may receive packets from its neighbors from Tier i+ 1. These packets are called

parent requests. If X receives a parent request from a certain node Z, X adds Z

to its list of children in the routing tree. In addition, X contends immediately to

transmit a packet to Z. This packet is called parent confirmation, and it serves to

confirm X’s acceptance of Z as a child node. Node X only contends to transmit this

packet once. If X fails the first time, it removes Z from its children list and does

not contend again to transmit a parent confirmation unless it receives a new parent

confirmation.

5.3.2.2 Obtaining a Parent Node

Let X be a sensor node from Tier i that is a data source or has obtained a child

node. Therefore, X needs to find a parent node, and it does so as follows. It waits

until the scheduled CCA time of Tier i− 1, and at this time it transmits a very short

dummy packet in order to make the channel busy. With this packet, X requests its

neighbors in Tier i− 1 to keep their transceivers active for a period of duration Ttier.

After transmitting the dummy packet, X contends to transmit a parent request.

In order to do so, it chooses a backoff period and it senses the channel until the

end of this period. If X senses the channel idle during this period, it transmits a

parent request to the node that it wishes to have as a parent. This node is referred

to as X’s preferred parent. Node X randomly chooses its preferred parent among its

neighbors in Tier i− 1. After transmitting the parent request, X listens for a parent

confirmation from its preferred parent. Node X only listens for a short time for

this packet because the back off period to transmit a parent confirmation is smaller

than the back off period to transmit a parent confirmation. The back off periods are

shown in Table 5.1. If X receives the parent confirmation, X has obtained a parent.

Node X fails its first attempt to obtain a parent if either it does not manage to
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transmit a parent request or it transmits a parent request but receives no confirmation.

Either way, node X keeps trying to transmit parent requests until it receives a

confirmation or the period of duration Ttier reserved for parent acquisitions of nodes

in Tier i has expired. After each failed attempt to obtain a parent, node X modifies

the lower and upper boundaries that the random back off period can take. Specifically,

it multiplies each of these two boundaries by two in order to obtain a exponential

back off.

Until X obtains a parent confirmation, it keeps its transceiver on. This way, it can

overhear some packets addressed to other nodes. In particular, it is interested in the

parent confirmations addressed other nodes. Based on these parent confirmations,

X becomes aware of some of the children of its potential parents. Node X uses this

information to choose its preferred parent. When X manages to get access to the

medium, it selects its preferred parent among its potential parents with the greatest

number of children. This choice promotes data aggregation.

5.3.3 Examples of Network Operation

Suppose that in the network in Figure 5.1, nodes A, B and C detect an event and

become data sources. The data sources wait until the CCA time of nodes in Tier 1,

which may be as late as TCCA after the event occurrence. At the CCA time of Tier 1,

the data sources transmit a dummy packet. As a result, nodes D, E and F from

Tier 1 sense the channel busy, and interpret this as a request to remain active for

a period of duration Ttier. During this period, they listen for parent requests from

nodes in Tier 2.

During the period where nodes D, E and F remain active, nodes A, B and C

contend to transmit parent requests. Suppose that A is the first node to transmit a

parent request to its preferred parent. Node A randomly chooses its preferred parent
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among its potential parents, which are D and E. Suppose that A chooses E as its

preferred parent. Node A transmits a parent request to E. If E receives this request,

it adds A to its child list. Next, E replies with a parent confirmation to A. If A

receives this confirmation, A has obtained a parent.

Suppose that nodes B and C overhear the parent confirmation from E to A. Nodes

B and C continue to contend to transmit a parent request. Suppose that C is the

next node to transmit a parent request. Before transmitting its request, C selects its

preferred parent. Node C can choose its preferred parent among E and F according

to Figure 5.1. However, in this case it does not choose randomly between E and F .

From the parent request it overheard, C knows that E has a child, whereas C is not

aware of F having any child. Therefore, C transmits its parent request to E. When

C receives the confirmation from E, C has obtained a parent. Next, B transmits its

parent request to E because it knows that E has two children.

At the end of the period of duration Ttier, node E has obtained three children.

Now E is responsible for relaying other nodes’ packets, and thus it needs to find a

new parent node. Therefore, it contends to transmit a parent request to the data

sink. It transmit such requests until it receives a parent confirmation.

5.4 Discussion of Properties of FAT

5.4.1 FAT’s Tree Construction Time Tconstr

The worst case for the tree construction time Tconstr occurs when the data sources

lie in Tier K, and when the event is detected just after the beginning of the CCA

period of the nodes in Tier K − 1. In this case, the data sources have to wait for a

time as long as Ttier until their potential parents (which lie in Tier K − 1) become

available again. Then, during the period of duration Ttier starting in the CCA period
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of Tier K − 1, the data sources obtain a parent. Next, during the period of duration

Ttier starting in the CCA period of Tier K − 2, the nodes in Tier K − 2 obtain a

parent. This process continues until the full tree has been constructed. All in all,

the tree construction time is

Tconstr = TCCA + (K − 1)Ttier. (5.4)

Recall that the fastest protocol discussed in Section 5.2.5, is Tconstr = KTCCA.

Therefore, if TCCA is much larger than Ttier, FAT is much faster than the fastest

existing protocols. This tree construction speed is FAT’s main advantage.

5.4.2 Suboptimality of the Obtained Tree

In the example in Section 5.3.3, nodes A, B and C obtain E as their parent node,

and E’s parent is the data sink. Therefore, the constructed tree has four edges.

Since no tree can connect the data sources to the data sink with fewer edges, the

constructed tree is a Minimum Steiner Tree (MST), which is the optimal solution.

Although in the example in Section 5.3.3 FAT obtains an optimal tree, this is not

always the case. In particular, if all the parent requests and parent confirmations

are received correctly, FAT only obtains an optimal tree in Figure 5.1 if the recipient

of the first transmitted parent request is E. This is because in order to obtain the

MST, {A,B,C} have to select E as a parent node.

5.5 Choice of the offset Ttier between tiers

The network-wide parameter Ttier is important. If Ttier is too short, some nodes

cannot find a parent because they do not have time to transmit a parent request.

If Ttier is too long, the tree construction time Tconstr increases according to (5.4).
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Therefore, a balance must be found when choosing Ttier.

In the particular case in which TCCA is much larger than Ttier, Ttier has little

influence on the tree construction time Tconstr unless K is very large.

Parameter Ttier has to grow with the node density. This is because as the node

density increases, more nodes contend to transmit parent requests and more collisions

occur.

5.6 Extensions for Enhanced Reliability

We discuss as follows two potential extensions to FAT that we do not implement in

our simulations.

5.6.1 Improved Selection of Preferred Parent

There is a problem in the original preferred parent selection algorithm. In order

to illustrate this problem, consider a node X seeking to obtain a parent. Suppose

that X has recorded nodes Y and Z as its neighbors in the next tier, which means

that Y and Z are the potential parents of X. Suppose that node Y has failed but

node Z has not. Also suppose that X does not have any neighbors in the same

tier contending for a parent. If node X chooses node Y as its preferred parent, it

will repeatedly transmit parent requests without receiving an answer and will never

obtain a parent. This is a poor choice of the preferred parent because if X had

chosen Z as a parent, it would have obtained a parent node.

The improvement of the preferred parent selection algorithm that we propose is as

follows. If a node repeatedly transmits parent requests to a node and fails to receive

parent confirmations, it changes its preferred parent. The number of failed attempts

that trigger a change in the preferred parent should be determined based on the
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node failure probability and the packet collision probability, which depends on the

node density and the average numbers that detect an event.

This improvement raises a minor problem that we illustrate through the following

example. Suppose that a node X transmits a parent request to a node Z. Node Z

replies with a parent confirmation, but X does not receive it. Node X transmits

another parent request to another node Y , and in this case X receives a parent

confirmation. This situation is problematic because Z considers X as its child but

X does not consider Z as its parent. However, this problem can be solved easily

during the data transmission phase. After Z spends a certain amount of time without

receiving DATA packets from X, it removes X from its child list.

5.6.2 Emergency Construction of the Tree

If any node X seeking to obtain a parent does not succeed within the period of

duration Ttier, the tree construction of FAT is said to have failed. This failure may

occur for one of three reasons. First, X could not find a parent because the period

Ttier was too short. Second, X could not find a parent because the improvement

of Section 5.6.1 was not implemented and X chose a faulty node as its preferred

parent. Third, none of the potential parents of X are functional, possibly because

the division of nodes in tiers is outdated due to an excessively long maintenance

period Tmaint.

We suggest, but do not implement, an extension to FAT, which consists of providing

an emergency construction method. This method is slower and more energy consuming

than the normal construction method, which is the one described until now. Thus,

the emergency construction is only meant as a backup. We describe the emergency

construction as follows.
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5.6.2.1 The Emergency Slot

The extension does not affect the quiet phase, only the tree construction phase. One

of the changes affects the period labeled “CCA and obtain children” in Figure 5.1,

which will be referred to as contention period. In the original version, the contention

period consists of two slots. The first slot is referred to as activation slot, and is

used for transmitting dummy packets whose purpose is to make the channel busy.

The second slot is referred to as exchange slot, and is used for transmitting parent

requests and parent confirmations. The nodes remain active during the exchange

slot only if the channel was busy during the exchange slot. In the modified version,

the contention period contains a third slot in addition to the two slots of the original

version. This third slot is referred to as emergency slot and is as short as the

activation period.

5.6.2.2 The Emergency Signal

Every node that hears the channel busy during the activation period remains active

during both the exchange and emergency slots. The emergency slot is used in the

same way as the activation slot, i.e., dummy packets are transmitted with the goal

of making the channel busy. However, a busy channel has a different meaning in

the activation slot than it has in the emergency slot. In the emergency slot, a busy

channel is considered as an emergency signal. The emergency signal indicates that

the normal construction has failed and that the emergency construction should begin.

Any node receiving the emergency signal should propagate the emergency signal to

its neighbors and remain active until the tree construction has concluded.
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5.6.2.3 Generation and Propagation of the Emergency Signal

Le X be a node contending for a parent. Suppose that at the end of the exchange

slot X has not obtained a parent. Then, X transmits a dummy packet during

the emergency slot in order to make the channel busy. Over the next period of

duration KTCCA−Ttier, node X transmits dummy packets during the activation, and

emergency slots of the contention periods of every tier. Since there are K − 1 such

periods, X transmits 2(K − 1) dummy packets in total since the event occurrence.

When X concludes the transmission of all these dummy packets, it remains active.

If a node Y senses the channel busy during an emergency slot, it propagates the

emergency signal by transmitting 2(K − 1) dummy packets in the same way as X

did. Then, Y starts listening. The transmission of dummy packets propagates the

emergency signal across the network. If the network is connected, it reaches the

data sink eventually. The time until the emergency signal reaches the data sink will

usually be smaller than KTCCA, but it may be as long as LTCCA, where L is the

number of nodes in the network.

5.6.2.4 The Tree Construction

When the emergency signal reaches the data sink, the data sink waits for some time

in order to give more time to other nodes that may not have received that signal yet.

Such nodes are unprepared for the tree construction because they keep the schedule

of the quiet phase and thus spend most of the time in sleep mode. The waiting

time of the data sink would have to be as high as LTCCA in order to guarantee that

all nodes have received the emergency signal. However, such a long waiting time

would be cause excessive delay and energy consumption. Therefore, we recommend

a waiting time such as KTCCA. A the end of the waiting time, the data sink is ready

to initiate the construction of the routing tree. This construction is implemented
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through the protocol of the initialization phase, which was described in Section 1.3.

5.7 Simulation Results

FAT’s advantage is a low Tconstr, which allows use of a large channel check period

TCCA and still verify (5.2). A large TCCA is beneficial because it reduces the energy

consumption according to (5.3).

One disadvantage of FAT is that the routing tree it obtains is not as efficient as

that of other centralized heuristics such as Oceanus [38]. This means that the tree

traversal time Ttrav of FAT is higher than that of the centralized heuristics. However,

Section 5.7.1 shows that this difference is small.

FAT performs best when every sensor node is in the appropriate tier, as discussed

in Section 5.6.2. However, keeping each node in the appropriate tier requires periodic

maintenance operations if the channel changes over time. Section 5.7.2 studies FAT’s

tolerance to outdated topological information.

5.7.1 Tree Traversal Time Ttrav

The tree traversal time Ttrav is a measure of the ability of the routing tree to transmit

data. Here, we compare the tree obtained by FAT with the trees obtained with the

following algorithms:

• Shortest Path Tree (SPT). It is Dijkstra’s algorithm using the hop distance

as the cost metric. It is unaware of the set of sources and does not try to

maximize data aggregation.

• Dijkstra1. It is a modification of SPT designed to promote aggregation. When

choosing the node to add to the tree among different choices, it considers

the following criteria in this order. First, it prefers nodes with a smaller hop
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distance to the data sink. Second, it prefers data sources over other nodes.

Third, it prefers nodes some of whose descendants are data sources.

• Centralized1. This algorithm has several steps. First, it identifies the node

X lying the closest to the event. Second, it constructs a tree rooted at X

using the Dijkstra1 algorithm. Third, it removes all the nodes that are neither

sources nor in the path from a source to node X. Fourth, it links X with the

sink through the shortest path.

Centralized1 is a modification of Oceanus [38]. In Oceanus, the node X is chosen

randomly, whereas in Centralized1 X is chosen as the closest node to the event. The

event center is unknown in practice, and thus Oceanus is more practical. However,

the purpose of this section is to evaluate the quality of the routing tree, and in this

matter Centralized1 is better than Oceanus.

We develop a custom simulator in Matlab with the parameters in Table 5.1. The

power consumption parameters are taken from the Chipcon CC2420 transceiver [93].

The simulator takes the average of 400 different networks. Each networks consists

of L = 50 nodes randomly deployed over an x× y rectangle, where x = y = 200m.

Every sensor node has a transmission range rt = 60 m and an interference range of

150 m. The node density ρ is defined by ρ = Lπr2
t /x/y, and thus is 14 in this case.

The sink is at one corner of the rectangle. The event to be reported occurs in the

diagonally opposite corner and the ns = 12 nodes closest to the event location detect

the event in some way and thus become data sources. Each source node generates

n = 10 packets. The transmission of an uncompressed packet is T1 = 8 ms.

During the data transmission phase, the sensor nodes use CSMA. Every time that

a node receives a packet, it replies with an ACK. Every sensor node waits from all its

children’s packets before aggregating the result and relaying it to its parent node. If

a node does not receive any packet for a duration of 4T1, it requests a retransmission
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parameter value

◦ number of nodes L 50
◦ width x of the monitored area 200 m
◦ height y of the monitored area 150 m
◦ transmission range rt 60 m
◦ interference range 150 m
◦ node density ρ = Lπr2

t /x/y 14
◦ number ns of nodes that detect the event 12
◦ number n of packets generated per node 10
◦ interval TCCA between CCA operations during the quiet
phase

120 s

◦ time Ttier during which the sensor nodes in a tier can contend
for a parent during the tree construction

300 ms

◦ time to perform a CCA and start a packet transmission 10µs
◦ range of the random back off period during which a node
needs to sense the channel continuously clear before transmit-
ting a parent request

100—200µs

◦ range of the random back off period during which a node
needs to sense the channel continuously clear before transmit-
ting a parent confirmation

0—100µs

◦ maximum of the random back off period during which a node
needs to sense the channel continuously before transmitting a
data packet

0.05 T1

◦ transmission time a dummy packet in order to make the
channel busy during the CCA period of the next tier

1 ms

◦ transmission time of a parent request 1 ms
◦ transmission time of a parent confirmation 1 ms
◦ transmission time T1 of an uncompressed packet 8 ms
◦ transmission time of the acknowledgment of a data packet 1 ms T1

◦ range of the random back off period during which a node
needs to sense the channel continuously clear before transmit-
ting a parent request

100—200µs

◦ range of the random back off period during which a node
needs to sense the channel continuously clear before transmit-
ting a parent confirmation

0—100µs

◦ time without hearing any packet in the data transmission
phase after which a node requests a packet retransmission
from its children nodes

6 T1

◦ sleep power 60]µW
◦ receive power 63 mW
◦ transmit power 57 mW

Table 5.1: Simulation parameters for the cluster segmentation algorithm.
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from the next packet that it expects.

Figure 5.2 shows the reduction in tree traversal time Ttrav of FAT and Centralized1

with respect to SPT. The curve for Dijkstra1 is not shown because it is very similar

to that of FAT. The X axis shows the aggregation coefficient α.

A low α represents a low degree of compression. For α = 0, the optimal tree is the

SPT. The best possible performance is to achieve a 0 % reduction, and FAT achieves

exactly that. By contrast, Centralized1 performs very poorly for α = 0. According

to Figure 5.2, Centralized1 performs a 24 % worse than SPT. This is because the

performance of Centralized1 greatly depends on the aggregation coefficient α.

A high α represents a high degree of data compression. Figure 5.2 shows that

for α = 1, FAT is 8 % better than SPT, and Centralized1 is 14 % better than SPT.

Therefore, FAT aggregates significantly more packets than SPT does. The advantage

of Centralized1 over FAT is not very large, and is often compensated by FAT’s

shorter tree construction time Tconstr.

FAT is less efficient than Centralized1 for α = 1 for two reasons. First, because

FAT constrains a node’s possible parents to its neighbors in the next tier. Second,

because the node does not make an optimal choice among its possible parents. The

first reason outweighs the second reason. The proof of this is that Dijkstra1 barely

outperforms FAT, and that FAT would perform as good as Dijkstra if the nodes

made the best possible parent choice within the tiered architecture.

FAT’s advantage over SPT in terms of Ttrav for large α at very little cost. SPT

does not require a tree construction phase because the tree is fixed, but it requires

a notification phase with an overhead slightly smaller than that of FAT. When an

event occurs, the new data sources need to request their ancestors to leave the quiet

phase and enter the data transmission phase. The best way to propagate this request

is using DMAC, which requires little more overhead than FAT.
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Figure 5.2: Reduction in Ttrav relative to SPT.

Figure 5.3 compares DMAC, SPT, FAT and Centralized1 for α = 1 as a function

of the number of source nodes ns. DMAC is the only protocol in the figure that does

not perform data aggregation. If the number of sources ns and the number of packets

n are small, DMAC performs well, but as either of those number grows, the benefit

of data aggregation increases. Figure 5.3 also shows that the difference between the

three aggregation protocols is small and barely increases with the number of sources

ns.
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Figure 5.3: Tree traversal time Ttrav as a function of the number of sources ns.

5.7.2 Resilience to Node Failures

Consider a network in which every node fails with probability pf . Node failures may

make the network disconnected, or they may require to change the tiers of some
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nodes. If the tiers are not updated, some nodes may not be able to find a parent

node. Therefore, in order to maximize the probability that FAT connects a node

with the data sink, the tree structure must be kept up to date.

However, keeping the tiered structure updated requires periodic maintenance

operations that consume energy. Therefore, it is desirable to update the tiered

structure as little as possible. In this section, we examine the tolerance of FAT to

outdated tier information.

We define the source isolation probability pI as the probability that a sensor

node cannot find a path to the data sink. The following example illustrates the

computation of pI in a simple topology. If every node has n potential parents, the

sources are h hops away from the sink, and the link failure probability is pf , then pI

is 1− (1− pnf )h in FAT. Therefore, FAT becomes more robust as the number of hops

decreases and the node density increases.

5.7.2.1 Simulation setting

In order to evaluate the source isolation probability pI in response to node failures

in random deployments, we use simulations. In our simulations, all the nodes fail

simultaneously. Our simulations compare three different techniques to construct the

routing tree: SPT, FAT and optimal. The first technique, SPT, consists of using a

fixed tree that is constructed before the link failures occur. The second technique,

FAT, uses the improved parent selection algorithm from Section 5.6.1 but not the

emergency construction from Section 5.6.2. The neighbor and tier information of

FAT nodes is not updated after the link failures occur because we wish to study the

tolerance of FAT to outdated information. The third technique, optimal, updates the

neighbor information after the event occurs. Therefore, if after the link failures there

remain sufficient functional links to make the network connected, optimal achieves
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zero source isolation probability pI .

The simulated area is a rectangle of width d and height 4rt. The sink and the

event center are located at the middle of left and right borders of the rectangle. The

data sources are the five closest nodes to the event center. Therefore, the distance

from the sink to the data sources is approximately d. We simulate 3200 random

deployments. We discard any deployment with over 20 % of disconnected nodes,

which is rare for ρ ≥ 7. After neighbor information has been collected, the node

failures are simulated. The probability that a node is considered as failed is pf = 0.05.

After the node failures, the tree construction techniques are executed and the fraction

of nodes that do not get connected (possibly across multiple hops) to the data sink

is recorded in pI .

The simulation parameters are the same as in Section 5.7.1, with the difference

that here we set Ttier = 3s. Such a long Ttier makes it very likely that every sensor

node obtains a parent node if any of its neighbors in the next tier is available. We

use a long Ttier because our main purpose here is to assess the resilience of the tiered

topology from Figure 5.1 to outdated topology information, not the speed of the

improved parent selection algorithm from Section 5.6.1.

5.7.2.2 Simulation results

Figure 5.4 shows the source isolation probability pI for different values of the node

density ρ and the distance d from the event to the data sink. SPT is very vulnerable

to link failures because a node cannot communicate with the data sink if any of its

ancestors fails. FAT is more resilient to link failures than SPT because the tree is

generated after an event. The process is successful as long as every node that needs a

parent can communicate at least with one neighbor lying one hop closer to the data

sink than itself. Finally, optimal refers to the execution of a full network discovery
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Figure 5.4: Source isolation probability pI as a function of the normalized event
distance to the data sink, d/rt.

process and Dijkstra’s algorithm.

Figure 5.4 shows that increasing the event distance d has a very detrimental effect

on the source isolation probability pI . This is because the event distance increases

the number of points where the tree construction may fail. Figure 5.4 also shows the

reduction of pI with the node density ρ. This reduction is noticeable from ρ = 7 to

ρ = 14, but insignificant from ρ = 14 to ρ = 28.

5.8 Conclusions

In this chapter we have proposed the FAT protocol, whose purpose is to construct a

routing tree for repeatable aggregation quickly. FAT is executed during the quiet

phase of the network and during the initial routing phase. It organizes the sensor

nodes in tiers. The channel check instants of nodes of different tiers are staggered.

FAT’s main advantage is that its tree construction time Tconstr is approximately

equal to the channel check period TCCA. Such a fast tree construction enables the

network to operate with a high TCCA and still satisfy the delay constraint (5.2) with

a high check period TCCA. A high check period TCCA yields important energy savings

if the events are rare and short.
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The routing tree constructed by FAT aggregates less data than the trees obtained

by other heuristics. However, FAT is only outperformed slightly, particularly if the

aggregation factor α is small. The heuristic Centralized1 outperforms FAT for α = 1,

but it performs very poorly for small values of α. By contrast, FAT performs well

for all α.

Our simulations show that FAT is relatively vulnerable to outdated tier information.

For example, if the node failure probability is 5 % and the data sources are four hops

away from the data sink, the probability pI that a data source cannot find a path

to the data sink is as high as 15 %. The situation improves slightly with the node

density and degrades severely with the number of hops. Therefore, tier-maintenance

operations are essential in FAT. This makes FAT inappropriate in rapidly changing

networks.
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6 MAC Scheduling for Repeatable

Aggregation

The previous chapter proposed a protocol to construct a routing tree for repeatable

aggregation. Once the routing tree has been obtained, a TDMA transmission schedule

is needed to transmit the data efficiently. EATP, the protocol that we presented in

Chapter 3, can sometimes be used for this task. In this Chapter, we discuss how to

extend EATP to one specific data aggregation situation. We call this extension Data

Aggregation TDMA Protocol (DATP).

DATP can be executed right after FAT (Chapter 5.8) because the two protocols

are designed for two consecutive steps. Although for optimal performance the two

steps should be combined, few protocols attempt that [94]. Therefore, we evaluate

each step separately and in this chapter we do not simulate FAT. Note that the

execution time of DATP is generally much larger than that of FAT.

6.1 Problem Formulation

Consider a network where a routing tree has been constructed. Aggregation is

repeatable and operates according to (5.1) with α = 1, which implies the highest

degree of compression. Every packet transmission occupies one DB, independently

of the number of data sources whose information is contained in this packet.
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The maximum and the histogram are two practical aggregation functions that

verify α = 1 [8]. This is because the maximum of any number of measurements is

simply a number, and the histogram of any number of measurements can be stored

in as many numbers as bins are used in the histogram. Therefore, the information

that needs to be transmitted to the data sink is independent of the network size.1

Suppose that every node in the routing tree is a data source and generates one

packet per TF. There are no packet losses due to random factors, only due to the

interference from other concurrent transmitters. Then, every sensor node in the tree

must be allocated one DB per TF.

The problem is to quickly obtain a TDMA schedule that assigns one DB to every

sensor node. The schedule should have a low failure probability pf , i.e. it should be

unlikely to allocate DBs with excessive interference. Furthermore, the schedule should

verify the precedence property for data aggregation, which states that if a sensor

node is assigned DBi and its parent is assigned DBj, then i must be smaller than j.

This precedence property differs from the one described in the non-aggregation case

in Section 3.1, which assumed that every sensor node was assigned as many DBs as

children it had plus one.

6.1.1 Motivation of the Precedence Property

The precedence property reduces the upstream data transmission latency because

it allows the data from all the nodes to reach the data sink within a single TDMA

frame. To illustrate this property, compare the schedule of Figure 6.1a, which verifies

the precedence property, and the schedule from Figure 6.1b, which does not verify

this property. With the first schedule, in the first DB, C transmits a packet to B. In

1In our third paper (cf. page 15), we evaluate DATP under other compression models. We omit
these models to provide more unity to the thesis. The main result of the paper is that, if less
aggregation is feasible, DATP still outperforms the BF protocol (cf. Section 6.2), but only
slightly.
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Figure 6.1: Schedule a verifies the precedence property for data aggregation, but
schedule b does not.

the second DB, D transmits its packet to B. Then, B aggregates the packets from

C, D and B together. Finally in the third DB, B transmit the aggregated packet

to A. Therefore, all the packets reach the data sink within one TDMA frame. By

contrast, the second schedule requires two TDMA frames to transmit the data from

node D to the data sink. This is because, although node B has been assigned the

second DB, it cannot use it in the first TDMA frame because it has not received the

data from D yet.

6.2 Related Work

The distributed TDMA protocols that use the k-hop interference model [39, 27, 31, 30]

do not verify the precedence property for data aggregation. Recall that the precedence

property for data aggregation (which we consider in this chapter) is different from the

precedence from for convergecast (which we considered in Chapter 3). The FlexiTP

protocol [27], which we used as a benchmark in Chapter 3, verifies the latter property,

but not the former property, which is the one that we need. Therefore, we cannot

use FlexiTP for comparison in this chapter. Also note that, to our knowledge, there

are no adaptive scheduling algorithms that verify the precedence property for data

aggregation. Therefore, our focus here is in the initial scheduling phase: its execution
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time, the length of the schedule M , and the probability of assigning collision-free

time slots.

The problem of obtaining the shortest possible schedule that verifies the precedence

property for data aggregation under the 1-hop interference model is NP hard [85].

The algorithm in [85] computes a suboptimal schedule with schedule length M equal

to (∆ − 1)R, where ∆ is the maximum number of neighbors per node and R is

the network diameter, defined as the maximum hop distance the data sink. The

algorithm in [85] obtains a schedule whose length M is 23R+ ∆− 18, which is much

smaller but still large. However, the main problem of these two algorithms is that

their interference model, the 1-hop interference model, is very unrealistic. In addition,

these algorithms do not provide time slots for transmitting acknowledgment packets.

When using the k-hop interference model with k ≥ 2, the problem of obtaining

the shortest possible schedule is also NP-hard [36, 95]. The algorithms in [35, 36]

address this problem. Since the two algorithms are very similar, we treat both as

the same algorithm and refer to it as BFk. BFk obtains an approximation of the

optimal schedule in polynomial time. It assigns DBs by traversing the routing tree

in Breadth-First order (hence the BF part of the name). It was proposed for the

k-hop interference model with k = 2 (hence the subscript k in the name).

BFk is slow because it is centralized. It starts its execution after an event is

detected and consists of four phases. First, every sensor node discovers its neighbors

if it has not kept track of them during the quiet phase in order to save energy. Second,

every sensor node transmits to the data sink a list indicating its neighbors. Third,

the data sink uses these lists to compute the schedule. Fourth, the data sink informs

every sensor node of its DBs.

The EMAC protocol [96] is distributed and verifies the precedence property, but

neglects interference generated more than 2 hops away in the routing tree. This
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interference model is very unrealistic because it may assign the same time slot to

two nodes within transmission range of each other.

6.3 DATP

Data Aggregation TDMA Protocol (DATP) is an extension of EATP (cf. Chapter 3)

that is obtained by applying two changes to EATP. First, during the initial scheduling

phase, in order to satisfy the precedence property for data aggregation, a node only

contends to obtain a DB when all its children have obtained a DB or a certain

interval has elapsed. Second, the ability to assign DBs during the data transmission

phase is suppressed due to the difficulty in modifying an existing schedule while

ensuring the precedence property for data aggregation.

To illustrate the difficulty of maintaining the precedence property, suppose that in

Figure 6.1 node C cannot communicate with B in DB1 and needs to be assigned a

new DB. Then, it is not possible to assign a new DB to C without assigning a new

DB to B because the DB assigned to B needs to have a bigger index than the DB

assigned to C due to the precedence property.

Due to the suppression of adaptivity during the data transmission phase, no

network changes can be handled during the data transmission phase. Additionally,

no new nodes can be assigned to nodes that were unduly scheduled during the

initial scheduling phase. Therefore, obtaining a collision free schedule is much more

important here than it was in Chapter 3, because here the only way to obtain a new

schedule is to execute the initial scheduling phase again.
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parameter value

◦ number H of slot pairs per CF in EATP 4
◦ node density ρ 9.6–24
◦ maximum fraction of disconnected nodes in the network 10 %
◦ normalized network size x̄ 3–8
◦ number of nodes in the network 28–484
◦ number of simulation runs for each node density and network
size

100

Table 6.1: Simulation parameters in DATP.

6.4 Performance Evaluation

We use the same simulator as in Chapter 3. Most of the simulation parameters are

the same as in Table 3.1. The new parameters are presented in Table 6.1. The

maximum simulated normalized network side x̄ is 8, which corresponds to a network

of more than 8 hops and thus is considerably large. We set the maximum simulated

node density ρ to 24, which results in a maximum number of simulated nodes of 484.

We can afford to simulate a much larger number of nodes here than in Section 3.4.2

because the simulator is much faster here because far fewer DBs have to be assigned.

The simulation results in this chapter are the average of 100 simulation runs.

6.4.1 Parameter Choice in DATP

Figure 6.2 shows the influence of H on the schedule length M . DATP needs a lower

H than EATP (cf. Figure 3.3) because in DATP the number of contenders is smaller

due to the precedence property for data aggregation. In the rest of our simulations,

we use H = 4.
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Figure 6.2: Length M of the computed schedule as a function of H and ρ. The y-axis
shows (M −M0)/M0, where M0 is the value of M obtained for H = 12.

6.4.2 Estimation of BFk’s Execution Time

The implementation details of the first, second, and fourth phases of BFk are omitted

in [35, 36], whose focus is the third phase. Designing an efficient implementation

of the first phase is nontrivial because the back-off periods before every packet

transmission must be chosen carefully. Making our own design would affect the

validity of our conclusions because our design may be suboptimal. Instead, we derive

an optimistic estimate of the execution time of the first phase and assume that this

phase provides perfect information to the following phases. This section contains our

derivation of the execution time of the first phase and describes our implementation

of the second and fourth phases. We assume that the third phase is infinitely fast.

Here, but not in our simulations, we assume the existence of a constant transmission

range rt, which is equal to t, and a constant interference range ri, which is equal

to 2rt. BFk’s first phase requires that every sensor node announces itself to all its

one-hop neighbors by transmitting a packet that we call identification packet. For

efficiency’s sake, we assume that each node only transmits one identification packet.

In order for this packet to be received successfully by all its neighbors, there must be

no concurrent transmitters within their interference range. Therefore, the minimum

distance between concurrent transmitters is rt + ri = 3rt.
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The maximum density of concurrent transmitters is achieved when the transmitters

are deployed over a hexagonal grid as the one in Figure 3.4, with the difference

that now the distance between transmitters is 3rt. This new grid has a transmitter

density of one transmitter over a hexagon with side 1.5rt, which occupies an area

5.84r2
t and contains 5.84ρ nodes. Since only one of these nodes can transmit at a

time, the neighbor discovery phase lasts at least 5.84ρ time slots. This estimate is

optimistic because in practice there are collisions and unused intervals during the

first phase. In our simulations, the time slots used in both BFk’s neighbor discovery

phase and DATP last for 20 ms.

BFk’s second phase serves to transmit neighbor information, and BFk’s fourth

phase serves to transmit schedule information. The neighbor information consists

of lists of node IDs, each of which occupies 16 bits. The schedule information

contains time slot indices, each of which also occupies 16 bits. The packet size

is 448 bits. Therefore, if every node has g neighbors, a node with d descendants

in the routing tree has to transmit d16(g + 1)(d + 1)/448e packets with neighbor

information in the second phase. In addition, in the fourth phase, this node has

to receive d16 · 2(d+ 1)/448e packets with schedule information if the compression

coefficient γ is infinity.

The second and fourth phases are divided into pairs of time slots that are used to

transmit neighbor and schedule information. The first slot in each slot pair has a

duration of 30 ms, and is used to contend briefly and transmit a 448-bit data packet.

This data packet can be used to transmit neighbor or schedule information. The

second slot in each pair has a duration of 15 ms and is used to contend briefly and to

transmit an acknowledgment packet in response to the preceding packet.

Every node X seeking to transmit a packet to a node Y keeps track of the number

nf of consecutive times that it failed to receive an acknowledgment in response to a
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packet. During the first slot of a slot pair, X contends with probability 2−z, where

z is the minimum of nf and a network-wide constant that we denote by nm. We

performed simulations to obtain the nf that minimizes the duration of the initial

scheduling phase; the optimum was nf = 4. Contending consists in backing off for

a random time and transmitting a packet if at the end of the back-off period the

channel is idle. If Y receives X’s packet, it backs off for random period, and only

replies with an acknowledgment if at the end of the back-off period the channel is

idle.

6.4.3 The Three Performance Metrics

Figure 6.3 is a matrix of graphs where each matrix row shows one of the three

performance metrics, and each matrix column refers to a different node density ρ.

The first row of Figure 6.3 shows that the failure probability pf of BFk increases

with the normalized network side x̄. This is because in small networks most nodes

are near the border of the monitored area and thus are surrounded by few neighbors

and few interferers. The first row of Figure 6.3 also shows that the failure probability

pf decreases with the node density ρ. This is because, as ρ increases, the number

of hops between nodes becomes more correlated with their physical distance and

because the number of conditions used by BFk to determine whether two concurrent

transmissions interfere with each other increases.

The first row of Figure 6.3 also highlights the high failure probability pf suffered

by BF2 and BF3, particularly in networks that are large and sparse. For ρ = 9.6 and

x̄ = 8, pf is 0.35 in BF2, which is clearly intolerable. BF3 performs much better,

obtaining pf = 0.06 for the same parameters. However, even pf = 0.06 may be

too high, particularly in networks with many hops. For example, if a node lies

10 hops away from the data sink, its packets reach the data sink with probability



6. MAC Scheduling for Repeatable Aggregation 121

4 6 8

0

0.1

0.2

0.3

fa
il

u
re

p
ro

b
ab

il
it

y
p
f

4 6 8

0

0.1

0.2

0.3

4 6 8

0

0.1

0.2

0.3 BF2

BF3

DATP

4 6 8

1

1.5

2

co
n

cu
rr

en
cy

c

4 6 8

1

1.5

2

4 6 8

1

1.5

2 BF2

BF3

DATP

4 6 8

0

100

200

300

normalized netw. size

ex
ec

u
ti

on
ti

m
e

in
s

4 6 8

0

100

200

300

normalized netw. size

4 6 8

0

100

200

300

normalized netw. size

BFk

DATP

(a) ρ = 9.6 (b) ρ = 16.8 (c) ρ = 24.0

Figure 6.3: Scalability with both the normalized network side x̄ and the node density
ρ.



6. MAC Scheduling for Repeatable Aggregation 122

(1 − pf)10 = 0.53. By contrast, DATP achieves pf = 0 because it only assigns

the same DBs to nodes that have been proved empirically to tolerate each other’s

interference.

The second row of Figure 6.3 shows that DATP achieves as much concurrency as

BF2 and much more than BF3. In small networks, the highest possible concurrency is

1 because no two nodes are far enough from each other to share a time slot. In larger

networks, higher concurrency is possible and BF3 obtains a much lower concurrency

than BF2 does because it imposes a larger distance between concurrent transmitters.

The third row of Figure 6.3 shows that DATP is much faster than BFk, particularly

for a large node density ρ and a large network side x̄. This is because DATP is

distributed and BFk is centralized. The execution time of BFk depends on the data

volume to be transmitted in the second phase. This data volume increases with ρ

and x̄, but is independent of k. Therefore, the execution time is also independent of

k.

6.5 Conclusion

This chapter proposes and evaluates DATP, which is an extension of EATP (cf.

Chapter 3) for a network using repeatable data aggregation over a routing tree. The

schedule obtained by DATP achieves low upstream latency because it verifies the

precedence property for data aggregation.

DATP obtains zero failure probability pf in static networks because only nodes

that are empirically proved to tolerate each other’s interference are assigned the

same DB. The failure probability of BF2 is intolerably high and that BF2 is still

significant. In terms of concurrency, DATP greatly outperforms BF3 and performs

similarly to BF2. Furthermore, DATP is much faster than BFk because it operates

distributedly.
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7 Algorithms for Repeatable

Aggregation in Networks with

Unreliable Links

In order to perform repeatable data aggregation in a network with reliable wireless

links, our proposed network operation consists of obtaining the routing tree with FAT

(cf. Chapter 5), obtaining a schedule using DATP (cf. Chapter 6), and executing

the data transmission phase. During the data transmission phase, every node knows

exactly when it will receive each packet because a schedule is used and links are

reliable.

This chapter considers the use of a TDMA schedule in a network in which the

wireless links are unreliable, and a tree has been obtained with FAT and a schedule

has been obtained with EATP (cf. Chapter 3). DATP is unsuitable because the

precedence property barely reduces the latency when the links are unreliable. In our

considered scenario, the sensor nodes do not know when they will receive a packet if

at all, and thus they need to decide for how long to wait for each packet. If they wait

for a long time, they are very likely to receive all the packets and thus to be able

to aggregate them, but the data sink receives the packets very late. This chapter

proposes several timing and packet discard policies for data aggregation.



7. Algorithms for Repeatable Aggregation in Networks with Unreliable Links 124

7.1 System Model

7.1.1 Link Model

Every wireless link has a different transmission success probability ps that remains

constant over time. Figure 7.1 shows two simple networks whose links are character-

ized by ps. An example of an application of this model is a WSN monitoring the

vibrations of the lining of a tunnel. The sensor nodes are stationary, but their links

are blocked intermittently by the vehicles traversing the tunnel. The success of any

given transmission is unpredictable because it depends on the position of the vehicles

much more than on the modulation scheme or transmit power. If the vehicular

traffic is ergodic, the success probability is constant over time. Furthermore, if the

vehicular traffic is fast, the success probability of two consecutive transmissions is

uncorrelated.

7.1.2 Data Generation and Aggregation Model

We assume that time is divided in reporting intervals, which are labeled R1, R2 and

so on. Every sensor node in the routing tree is a data source that generates one

packet per reporting interval. The interval between the start of two consecutive

reporting intervals is Tr. We use the same aggregation model as in Chapter 6: any

number of packets from the same reporting interval can be compressed into a single

DATA packet, and every DATA packet only provides information about only one

reporting interval.

7.1.3 Data Requirements: the Node Count

Every packet contains the information from a certain number of nodes. This number

is referred as the node count of the packet. Similarly, the number of nodes whose
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Figure 7.1: Two sample networks. The number next to the links represents the link
success probability ps.

information about reporting interval Ri reaches the data sink is referred as the node

count of Ri and is denoted by ci. It is computed as the sum of the node counts of all

the packets that the data sink receives about Ri, unless some packets are repeated

or a sensor node contributes information about Ri in two different packets.

We impose the node count requirement, which states that the probability that any

ci is smaller than a certain threshold γ should be smaller than a certain probability

p0:

p(ci < γ) < p0 (7.1)

When selecting γ and p0, it has to be considered that increasing γ or reducing

p0 increases the amount of data received at the data sink, but increases the energy

consumption.

The node count requirement is designed for networks in which the measurements

from the sensor nodes are unreliable, and in which the information from many sensor

nodes is needed to provide reliability. The node count requirement assumes that the

measurements from all the nodes have equal value, and thus is inappropriate if some

sensor nodes sense much stronger measurements than other nodes.
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7.2 Problem Formulation

We assume that the transmit power Pt is much larger than the receive power Pr,

which is typical if the sensor nodes are far away from each other. This assumption

makes it easier to balance the energy consumption of different sensor nodes because

the energy consumption of a node becomes independent of its number of children.

The problem is to find a scheme to decide which packets to transmit and when

to do it, and which packets to discard and when to do it. The scheme must satisfy

the node count requirement and minimize the maximum energy consumption in the

network.

7.3 Existing Solutions

The multi-path aggregation approaches [56, 57, 58] transmit duplicates of the same

information across multiple paths. Therefore, they are very robust to unreliable

links, but consume excessive energy.

TAG [48] and Cascading Timeouts [49] use contention-based MAC and allocate a

certain interval for the transmissions and retransmissions of packets about a reporting

interval Ri. They assign transmission intervals to nodes based on their hop distance

to the data sink. The intervals associated with different reporting intervals are non-

overlapping. These protocols suffer frequent collisions because they use contention

access. They also use bandwidth inefficiently because of their stringent restrictions

on when each packet can be retransmitted. Furthermore, they fail to balance the

energy consumption of different nodes because the nodes with the weakest links have

to make many retransmissions.

In networks with unreliable links, TDMA protocols such as FlexiTP [27] and EATP

(Chapter 6) avoid many packet collisions, but cannot prevent packet losses due to
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quickly changing links. With these protocols, it is slow and inefficient to claim new

DBs every time that a packet is lost and a retransmission is needed. Therefore, the

sensor nodes should claim in advance the DBs they expect to need for retransmissions

based on the quality of their links with their parents.

A simple strategy to select the number of DBs that are assigned to a node is to

select as many DBs as it needs for all its packet transmissions and retransmissions.

In this strategy, if a node generates q packets every Tr and its link with its parent

has success probability ps, the node is assigned at least q/ps DBs every Tr. However,

the nodes with poor links consume a lot of energy. Furthermore, energy is wasted in

transmitting more data than necessary if the number of data sources is bigger than

γ.

The sensor-selection approach consists in selecting γ data sources, which it calls

selected data sources. The selected data sources transmit their data from every

reporting interval to the data sink. The rest of the data sources do not need to

transmit any data to the data sink, thereby saving energy.

Numerous sensor-selection protocols [97, 98, 99, 97, 100, 101] assume that each

node provides information about a certain area, and aim to select the smallest

number of data sources that cover all the areas of interest. This model assumes that

the nodes provide reliable measurements, whereas our node-count requirement is

designed to solve the problem of noisy or faulty measurements.

Most of the sensor-selection protocols neglect the energy consumed by the relays

of the selected nodes. An exception is DPA [99], but DPA does not consider the link

success probability ps, and thus selects nodes with low ps as often as nodes with high

ps. Therefore, the nodes with low ps consume a lot of energy because they have to

make many retransmissions.

MC-MIP [101] selects multiple sets of disjoint data sources. Each of these sets
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Figure 7.2: Each node generates one packet with period Tr and is allocated one
transmission attempt every Tf . Here, Γ = Tf/Tr = 2/3.

provides information about the event at different times. MC-MIP multiplies the

network lifetime by the number of disjoint sets when compared to the approach of

making every node transmit data about every reporting interval. However, when

different nodes have different ps, the nodes with weak links suffer a high consumption.

7.4 ODF Approach

We propose the One-DB-per-Frame (ODF) approach, which consists in using TDMA

and assigning one DB per node and per frame regardless of the link success probability

ps. The number of DBs assigned per unit time depends on the TDMA frame period

Tf , which is different from the duration Tr of the reporting intervals. These two

parameters are shown Figure 7.2, and we define the normalized frame period Γ as

their ratio: Γ = Tf/Tr. In order to save energy, Tf should be large, and thus the

largest Γ that ensures the satisfaction of the node count requirement should be used.

Every node listens in the DBs where it is scheduled to receive, which are as

many as its number of children. It transmits in the DBs where it is scheduled

to transmit, which is exactly one. It sleeps in any other DB. Since every node

transmits the same number of times per frame, it consumes the same amount of

energy under the assumption Pt � Pr. This is the way in which ODF balances the

energy consumption.
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Every sensor node has a packet buffer where it keeps the packets that it has to

transmit. Each packet contains information about a certain reporting interval and

has a certain node count. If a node with a packet from reporting interval Ri receives

a packet about Ri, the node aggregates the two packets. The node count of the

resulting packet is the sum of the node counts of the input packets. Every sensor

node’s packet buffer is finite. A node’s packet buffer is very likely to overflow if the

node’s link success probability ps is smaller than the normalized frame period Γ. If

the buffer overflows, the choice of packets to be discarded is important.

A small packet buffer is beneficial in two ways. First, if the oldest packets are

discarded when the buffer is full, the newest packets are transmitted earlier and

the latency is reduced. Second, it balances the energy consumption among different

nodes because it prevents the buffers growing to a very long size. Such growth would

cause the buffers’ owners to transmit packets long after other nodes have finished

reporting the event, and thus consume more energy than those nodes.

With ODF, most packets from nodes with a high ps reach the data sink, whereas

most packets from nodes with a low ps end up being discarded due to packet overflows.

Therefore, nodes with high ps contribute more towards the node count than nodes

with low ps. This is desirable because, if all nodes contributed equally towards the

node count requirement, the nodes with the weakest links would consume more

energy than the rest.

The difference of ODF with the sensor selection protocols can be seen by considering

the operation during a period of over a dozen reporting intervals. In ODF, within

this period, the data sink is very likely to obtain information from every node at least

once. By contrast, with sensor-selection approach, the data sink does not receive

any data from the unselected data sources.

In the next two subsections, we present two protocols based on the ODF approach:
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U-ODFP and P-ODFP. They differ in the packets that the nodes select to transmit

and discard. They also differ in the way they choose the normalized frame period Γ.

7.4.1 U-ODFP

U-ODFP stands for Unplanned, One-DB-per-Frame Protocol. The protocol is said

to be unplanned because it does not decide in advance the nodes that provide

information about each reporting interval. U-ODFP is executed during the data

transmission phase, after a routing tree has been obtained and each node has been

assigned exactly one DB.

7.4.1.1 Discard and Select Policies

We distinguish two versions of U-ODFP. The first version is called buffer-constrained

because it discards packets when the buffer is going to overflow. The second version

is called time-constrained because it discards packets from reporting intervals older

than a certain threshold. In both versions, the packet that a node selects to discard

is the packet from the oldest reporting interval, and the packet that a node selects

to transmit is the packet from the most recent reporting interval.

7.4.1.2 Selection of the Normalized Frame Period Γ

Increasing the normalized frame period Γ reduces the number of TDMA frames.

Therefore, it reduces the energy consumed in listening for packets from their children.

Furthermore, a protocol that can operate at a high Γ can increase the number of

DBs per TDMA frame and accommodate more transmissions. However, Γ should be

sufficiently small to provide sufficient transmission opportunities to satisfy the node

count requirement. Therefore, it is desirable to choose the largest Γ that satisfies

the node count requirement.
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U-ODFP selects Γ iteratively as follows. Initially, the data sink commands the

sensor nodes to use a certain Γ. If the information that it receives is insufficient to

satisfy the node count requirement, the data sink commands all the nodes in the

network to use a lower Γ. If, on the other hand, the data sink receives much more

information than it needs, it commands the sensor nodes to use a higher Γ in order

to save energy.

7.4.1.3 Limitations

U-ODFP does not aggregate as much data as possible. For example, a node X may

transmit a packet about reporting interval Ri and later receive a packet about Ri.

This is suboptimal because if X had waited for longer, it could have aggregated two

packets and saved a transmission. Furthermore, U-ODFP suffers wasted transmissions,

which are successful packet transmissions that provide no benefit to the data sink

because the packet is discarded at a later time before it reaches the data sink.

7.4.2 P-ODFP

P-ODFP stands for Planned One-DB-per-Frame Protocol. The protocol is said to

be planned because the data sink decides in advance which data sources provide

information about which reporting intervals. This plan aims to reduce the number

of wasted transmissions. The plan is represented through W lists referred to as

source lists and denoted by S1, S2, . . . , and SW . List Si contains the nodes whose

information about reporting interval Ri should reach the data sink. A sensor node

X discards any packet about reporting interval Ri if X /∈ Si.

The sensor lists are periodical with period W , which means that Si is equal to

Si+W . This implies that the data sources of reporting intervals Ri and Ri+W are the

same. Therefore, it is sufficient to specify W lists to provide sufficient information
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about the contributors of every reporting interval.

The protocol is designed to be used at specific normalized frame period: Γ∗ =

W/Q =, where Q is a global parameter that in our simulations takes the value of

10. This means that in every Q TDMA frames the network provides information

about W reporting intervals. This is illustrated in Figure 7.3. For the data sink, the

problem is, given the link success probabilities and Q, to find the largest possible set

of source lists {S1, S2, . . . , SW} that verifies the properties indicated in the following

section.

7.4.3 Properties of the Source Lists

The source lists should verify the following properties. First, every source list should

contain at least γ elements in order to satisfy the node count requirement. Second,

a node i should not appear in more than qi of the lists S1, . . . , SW . Here, qi is the

largest integer smaller than pisQ, and pis is the probability that Node i’s transmissions

to its parent succeeds. This property reduces the probability of unplanned packet

discards by ensuring that the nodes do not plan to transmit more packets than their

links can support. Third, if a node is an element of Sj, so should all its ancestors,

except the data sink. This property ensures that the packets generated by a node

are relayed to the data sink. Figure 7.3 shows possible source lists for the network in

Figure 7.1a.

7.4.4 Computation of the Source Lists

Figure 7.4 presents our algorithm to obtain the source lists {Si}. It also lists the

inputs of the algorithm. The algorithm is executed at the data sink and requires

knowledge of the network. Each iteration of the loop starting in Line 1 fills one

of the Si lists with exactly γ elements. The loop concludes when it cannot fill any
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S1 = {2, 3, 4} S2 = {2, 3} S3 = {2, 3} S4 = {2, 5}a)

R1 R2 R3 R4

b)

W = 4 reporting frames

Q = 5 TDMA frames

Figure 7.3: Operation of Network 1 of Figure 7.2 with P-ODFP at the optimal
normalized frame period: Γ∗ = W/Q = 4/5 = 0.8.a) Reporting intervals
and source lists. b) TDMA frames.

more lists. In each iteration of the loop starting in Line 3, different lists that are

candidates to become Si are added to a list U . In Line 17, one of these lists is

selected and assigned to Si.

Each list represents a tree rooted at the data sink that is a subset of the routing

tree and whose elements are the nodes in the list. The selected candidate is the

list that represents the tree with the greatest depth, where the definition of depth

depends on the kind of tree. For a tree with at least one node with multiple children,

the depth is the minimum hop-distance to the data sink of the node with multiple

children that lies the closest to the data sink. The depth of the tree is zero if the

data sink has multiple children in this tree. For a tree without nodes with multiple

children, the depth is the number of elements in the tree.

In order to illustrate why deep trees are preferable to shallow trees, consider the

network in Figure 7.1b. Suppose Q = 1 and γ = 2, which yields q2 = q3 = q4 = q5 = 1.

If S1 is assigned the tree represented by {2, 4}, which has depth 0, it becomes

impossible to find sufficient nodes for S2 and thus the value of W is only 1. By

contrast, if S1 is assigned the list {2, 3}, which has depth 2, we can set S2 = {4, 5},

and thus we obtain W = 2, which is the highest possible value for this network. This

example is also interesting because, when selecting S1 = {2, 3} and S2 = {4, 5}, the

network in Figure 7.1b operates at a normalized frame period Γ = W/Q = 2/1 = 2.
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Data: 1) A positive integer γ indicating the minimum number of data sources per
reporting interval. 2) The number Q of TDMA frames within which the
reporting needs to take place. 3) A list L with the indices of the nodes. 3)
The children of every node. 4) The ancestors of every node. 5) The q of
every node (for node i, qi = dpisQe).

Result: The S1, . . . , SW , where each list verifies the properties in Section 7.4.3 and
W is desired to be large.

1 foreach W ∈ {1, 2, . . .} do
2 U = new empty list of lists of integers;
3 foreach i ∈ L do
4 V = new list of integers containing i and its ancestors (in this order);
5 if qj = 0 for any j ∈ V then
6 continue in Line 3;
7 Z = new stack containing the indices of the children of i;
8 while Z not empty and length(V ) ≤ γ do
9 y = pop(Z);

10 if qy > 0 then
11 append y at the end of V ;
12 push(Z, x) for x ∈ children of y;

13 if cardinality(V ) ≥ km then
14 append V at the end of U ;

15 if U is empty then
16 continue in line 19;
17 SW = list in U whose first element is more hops away from the sink;
18 decrement qj for each j ∈ SW ;

19 Z = new stack containing the children of the data sink;
20 while Z not empty do
21 x = pop(Z);
22 push(Z, y) for y ∈ children of x;
23 while qx > 0 and ∃Sj such that x /∈ Sj do
24 add x to Sj with smallest cardinality that verifies x /∈ Sj and

parent(x) ∈ Sj ;
25 decrement qx;

Figure 7.4: Algorithm to obtain the source lists in P-ODFP. The operations
defined on a stack S are push(S, x) (add x to the top of S) and
pop(S) (remove and return element at the top).
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Therefore, the normalized frame period Γ can be larger than one.

After adding a node i to one of the Sj lists, the algorithm decrements the nodes’

capacity qi in Line 18. This is to ensure that each node is not assigned to transmit

more packets than its link success probability supports.

The part of the algorithm starting at Line 20 is optional. Its purpose is to increase

the node count of some of the reporting intervals over γ. This is not necessary with

our problem formulation, but may be valued in some applications. In this part of

the algorithm, the spare capacity q of the sensor nodes is allocated to the sensing

intervals with the smallest node count without increasing W .

7.5 Performance Evaluation

The simulations in this sections are obtained with a custom simulator written in C#

that can be found in [78]. Section 7.5.1 evaluates the ODF protocols in a very simple

network. Section 7.5.2 evaluates the ODF protocols in many random networks and

compares their energy efficiency with that of a simple protocol.

7.5.1 Simulation in Simple Network

In this section we simulate a simple network, namely that of Figure 7.1a. The

simulation parameters are contained in Table 7.1 and are described as follows.

The network is simulated 500 times, each time for 2000 TDMA frames. The sensor

nodes have buffers with capacity of 30 packets. These numbers are chosen so that

during the simulated TDMA frames, the buffers of the sensor nodes have had a

chance to overflow, a stationary status in the buffers has been achieved, and the

effects of the start of the packet transmissions have been reduced significantly.

The minimum node count γ has to be at least 1, and it cannot be larger than the
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parameter value

◦ number of times that the network is simulated 500
◦ number of TDMA frames simulated per iteration 2000
◦ buffer capacity of the sensor nodes 30
◦ minimum number γ of nodes whose information must reach
the data sink in every reporting interval

3

◦ number Q of TDMA frames within which the algorithm in
Figure 7.4 manages to transmit information about W reporting
intervals

10

Table 7.1: Parameters for simulation of small network in Section 7.5.1.

number of sensor nodes in the network excluding the data sink, which is four. In

our simulations, we set γ = 3. In the computation of P-ODFP’s source lists, we use

Q = 10. This value of Q is sufficiently large so as not to give a much shorter Γ that

can be achieved for larger Q, and is sufficiently small so as keep the execution time

of the algorithm small. not to make The simulated protocols are P-ODFP and the

two versions of U-ODFP. The time-constrained version of U-ODFP discards a packet

about reporting interval Ri if the current reporting interval is Rj and j > 15 + i.

Figure 7.5 evaluates the three protocols as a function of the normalized frame Γ.

The y-axis shows the probability that the node count is smaller than γ, which is

desired to be small. Recall that from an energy perspective a large Γ is preferable, but

it cannot be too large because (7.1) must be satisfied. Therefore, each protocol should

operate at the highest Γ that satisfies (7.1). From Figure 7.5 it can be derived that,

if p0 = 0.15, buffer-constrained U-ODFP should operate at Γ = 0.3, time-constrained

U-ODFP should operate at Γ = 0.25, and P-ODFP should operate at Γ = 0.46.

Therefore, P-ODFP is the most energy efficient of the simulated protocols.

U-ODFP can be easily modified by changing its policies for selecting which packets

to transmit and which packets to discard. For example, preference can be given

to packets with high node count. Some of these policies sometimes significantly

outperform the others, but their performance greatly depends on the specific network.
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Figure 7.5: Probability that the node count of a reporting interval, denoted by c, is
smaller than γ = 2 in the network of Figure 7.1b.

We performed experiments in a variety of simple networks. The packet discard policy

that performed the best in most of these networks was to discard the oldest packet,

which is the buffer-constrained policy of U-ODFP. In the next section, we use this

discard policy in U-ODFP.

7.5.2 Benchmark: FS

As seen in Section 7.3, many of the existing protocols are not appropriate for our

problem formulation. For example, the sensor selection algorithms take different

inputs. In order to have a benchmark to evaluate the performance of our protocols,

we propose a simple protocol called Full Schedule (FS). FS is meant to represent the

trivial solution to the problem we have formulated.

FS uses a TDMA schedule for data aggregation. FS does not report a fraction

p0 of the packets because it is unnecessary according to (7.1). The nodes decide in

advance which reporting intervals they will ignore. If a node’s link success probability

with its parent is pis, the node is assigned dNp/p
i
se DBs per TDMA frame, where

Np is a global parameter that is set to 8 in the simulations. This number of DBs

allows every sensor node to transmit Np packets per TDMA frame. The TDMA
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frame period in FS is

Tf = NpTr(1− p0). (7.2)

FS allows sufficient DBs for every sensor node to transmit all its packets, which

avoids wasting energy in transmitting packets that end up being discarded. However,

the data sink receives data about a fraction 1− p0 of the reporting intervals from

all the data sources, whereas according to (7.1) the data from only γ sources is

sufficient. The ODF protocols save energy by transmitting data from fewer nodes

while satisfying (7.1).

7.5.3 Simulation Parameters

The simulation parameters are presented in Table 7.2 and Table 7.3 and we discuss

them as follows. All the results are the average of 100 random deployments. The

simulated area is a square with side 3t, where t is the transmission range of the

sensor nodes. The node density ρ is the average number of neighbors per node. We

set ρ = 9, which yields a total of 25 nodes. We choose a node density ρ larger than 6

because a smaller value is likely to lead to a disconnected network. The values of

the network size and ρ are chosen to give a network that is sufficiently large to study

the performance in large networks, and small enough to keep a short execution time

of the simulator. In another set of simulations, we set the node density to values

between 8 and 24 in order to explore the effect of high node densities. For the highest

node density, the number of nodes is 69 nodes.

A random deployment is discarded if more than 10 % of the nodes have no neighbors

within their transmission range.

The link success probabilities ps of different nodes are independent random variables

uniformly distributed between 0.5 and 1. We set values of ps larger than 0.5 because

if ps is smaller than 0.5 the use of the link consumes too much energy and bandwidth.
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parameter value

◦ default node density ρ 9
◦ range of values of the node density ρ 8–24
◦ transmission range (in this chapter, it exists and is shared
by all nodes)

40 m

◦ range of values of the link success probability ps (values
taken from a uniform distribution with this range)

0.5–1

◦ length of each side of the monitored area (the monitored
area is a square)

120 m

◦ fraction of disconnected nodes that, if exceeded, leads to
discarding a deployment of sensor nodes and generating a new
deployment

0.1

◦ default number L of nodes in the network 25
◦ range of values of the number L of nodes 22–69
◦ number of different networks simulated 100
◦ number of simulation periods per network 5
◦ duration of all data slots 20 ms
◦ duration of all ACK slots 4 ms
◦ power consumption in sleep mode 60µW
◦ power consumption in receive mode 63 mW
◦ power consumption in idle mode 63 mW
◦ default value of the power consumption in transmit mode 630 mW
◦ range of values of the power consumption in transmit power 63–2508 mW

Table 7.2: Some of the parameters used in the simulation of random networks.
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parameter value

◦ number Np of packets from every node that FS transmits
per frame

8

◦ number of TDMA frames per simulation period in FS 1600
◦ number of TDMA frames per simulation period in ODF 5000
◦ default value of the maximum number of slots per TDMA
frame in FS

200

◦ default value of the maximum number of slots per TDMA
frame in ODF

25

◦ range of values of the maximum number of slots per TDMA
frame in FS

184–552

◦ range of values of the maximum number of slots per TDMA
frame in ODF

23–69

◦ maximum fraction p0 of the reporting intervals that can be
insufficiently reported to the data sink (c.f. Eq. 7.1)

0.15

◦ default value of the fraction ψ of nodes whose information
must reach the data sink (c.f. 7.3)

0.4

◦ range of values of ψ 0.13–0.83
◦ number of packets that a node can store before having to
discard packets

30

◦ number Q of TDMA frames within which the algorithm in
Figure 7.4 manages to transmit information about W reporting
intervals

20

◦ initial value of the normalized frame period Γ 0.1
◦ factor by which the normalized frame period Γ is multiplied
in each iteration of U-ODFP

1.05

Table 7.3: Other parameters used in the simulation of random networks.
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Each wireless links is characterized completely by ps, which means that there are no

other causes of packet losses. We use a default transmit power that is 10 times larger

than the receive power. Such a large quotient occurs when the distance between

transmitter and receiver is much larger than 100 m. In a set of simulations, we change

the value of Pt/Pr between 1 and 63. We do not set a value smaller than 1 because

the transmit power and the receive power are typically of the same order, although

values of Pt/Pr as small as 0.7 might still be sensible [7]. We do not set values of

Pt/Pr larger than 63 because that would require very distant nodes which would

separate us even further from the properties of most real wireless sensor networks.

transmit power between

Every sensor node has a buffer with a capacity of 50 packets. Smaller buffers yield

a higher risk that the nodes do not have any data to transmit in their allocated slot.

Larger buffers would increase the upstream latency and require the simulation of

more TDMA frames in order to reach a stationary status.

Each network is simulated in 5 simulation periods. We simulate multiple short

simulation periods instead of a single long simulation period in order to reduce the

effect of the starting point of the simulation. In each simulation period, 5000 TDMA

frames are simulated in the case of our two protocols, and 1600 TDMA frames in

the case of FS. The reason for this difference is that TDMA frames are longer in FS

than they are in the ODF protocols, which only assign one DB per TDMA frame.

This does not affect the validity of this section because all the energy consumption is

normalized by the number of reporting intervals. After each simulation period, a new

routing tree is constructed. In the construction of the new tree, each node sets its

neighbor in the next tier (closer to the data sink) with the lowest energy consumption

as its parent node. By periodically changing the tree, the energy consumption of the

sensor nodes is more evenly distributed. If these periodic changes are not made, the
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advantage of ODF over FS in terms of having a lower maximum energy consumption

is even larger.

The normalized frame period Γ in U-ODFP is chosen as follows. The initial value

of Γ is 0.1. Then, the protocol is executed and the data sink computes p(ci < γ). If

this probability is smaller than p0, the data sink multiplies Γ by 1.05 and the network

is simulated again. This process is repeated until p(ci < γ) exceeds p0. When this

happens, the data sink sets Γ to the last value of γ that satisfied (7.1). In P-ODFP,

Γ is set to Γ∗ = W/Q, which our simulations proved to verify (7.1). The parameters

of the fidelity requirement in (7.1) are p0 and γ. We define ψ by

γ = ψL, (7.3)

where L is the number of nodes in the network. Our default parameters are p0 = 0.15

and ψ = 0.4. In a set of simulations, we explore the influence of ψ by variating

its value between 0.13 and 0.83. We do not choose values of ψ smaller than 0.13

because then the number of sources would be very small and these sources would be

concentrated near the data sink, which would not allow us to see the operation of the

protocol in large networks. We do not choose values of ψ larger than 0.83 because

then the best policy would be to simply transmit packets from every sensor node.

7.5.4 Simulation Results

Figure 7.6 presents in a matrix the reduction in the energy consumption of the

ODF protocols with respect to FS. The first row Figure 7.6 shows the reduction

in the mean energy consumption, and the second row shows the reduction of the

maximum energy consumption. The maximum is more important than the mean

because typically the lifetime xoof the network is determined by the most energy

consuming nodes in the network. Each column of the matrix studies the influence of
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Figure 7.6: Improvement of the ODF protocols over FS.

a different parameter.

The first column of Figure 7.6 analyzes the variation of the energy gain with

the fraction of required data sources ψ. For big values of ψ, FS outperforms

the ODF protocols because it aggregates many packets, discards no packets, and

transmits little unnecessary information. However, for small ψ, FS wastes energy by

obtaining unnecessarily high node counts. In this case, P-ODFP’s maximum energy

consumption is a 27 % lower than FS’s.

The second column of Figure 7.6 shows that energy gain over FS grows with the

node density ρ, which can be explained as follows. All the data that reaches the data

sink goes through the children of the data sink. In sparse networks, these children

are few, and thus the probability that all those children have poor links is high. In

order to satisfy (7.1), the whole network needs to operate at a low frame period Γ,
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which consumes a lot of energy. By contrast, in dense networks, the data sink has a

large number of children, and thus it is more likely that at least some of them have

good links. If these nodes and their descendants have sufficient information to satisfy

(7.1), the whole network can operate at a high Γ and thus the energy consumption is

low.

The third column of Figure 7.6 shows that the energy gain grows with Q =

10 log(Pt/Pr). A value of Q of 0 indicates that Pt = Pr, and a large Q indicates

Pt � Pr. It can be seen that P-ODFP only outperform FS if Pt > 10Pr, and that

U-ODFP needs even a greater Q to outperform FS. This dependence on Q is natural

because the ODF protocols are designed to balance the energy consumption by

balancing the transmission energy, but they neglect the reception energy because

they assume Pt � Pr.

7.6 Conclusions

In a network with unreliable links, the ODF protocols select which packets to discard

and which packets to transmit in order to balance the energy consumption of the

sensor nodes while providing sufficient information to the data sink. They prolong

the network operational lifetime by up to 26 % when compared to FS, which is

essentially a TDMA protocol that decides to transmit the packets from every sensor

node. The exact gain depends on several parameters, and for some sets of parameters

the gain becomes a loss. The gain of the ODF is the biggest if the minimum node

count γ is small, the node density is high, and the transmit power is much larger

than the receive power. The gain of the two ODF protocols over FS is bigger for

the maximum energy consumption than for the mean energy consumption, which

indicates that the ODF approach is successful at balancing the energy consumption.
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8 Conclusions and Discussion

8.1 Conclusions

This thesis proposes protocols for periodic data gathering in wireless sensor networks

using TDMA and data aggregation. TDMA is efficient for periodic transmissions,

and data aggregation can reduce the amount of data to be transmitted if neighboring

sensor nodes generate correlated information.

Chapters are organized according to the level of data aggregation that they

assume, from no aggregation to intense data aggregation. Chapter 3 assumes no

data aggregation, Chapter 4 assumes unrepeatable aggregation, and chapters 5 to

7 assume repeatable aggregation. This order is typically used when developing

monitoring solutions iteratively. Initially, exhaustive measurements are collected to

discover the properties of the monitored signals and their significance. Then, the

system is refined by developing increasingly stronger compression functions.

Chapter 3 presents a TDMA protocol called EATP that is designed and evaluated

for networks without data aggregation, but can be adapted for data aggregation over

different topologies. For example, it can be used in a clustered topology such as

the one in Chapter 4, or in tree-based topologies as discussed in Chapter 6. EATP

provides two scheduling methods: one for the initial scheduling phase, and another

one for the data transmission phase. During the initial scheduling phase, EATP is

faster and likelier to obtain a feasible schedule than FlexiTP is. During the data
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transmission phase, EATP is more energy efficient than FlexiTP.

We show that EATP outperforms FlexiTP simultaneously in terms of energy

consumption and scheduling delay. It is necessary to compare these variables at

the same time because it is possible to save energy at the price of increasing the

delay. EATP occasionally needs up to 15 TDMA frames to assign a DB and requires

that the schedule does not change very quickly. The main contribution of EATP is

to show a way in which the sensor nodes can obtain transmission slots efficiently

and distributedly without knowledge of their neighbors’ schedule. EATP is the first

protocol to operate in this way to the best of our knowledge.

Chapter 4 considers the first level of data aggregation of this thesis: unrepeatable

aggregation. It assumes a network divided in clusters where data aggregation occurs

in the cluster heads and only once. It formulates the problem of dividing large

networks in clusters of sizes whose sizes vary with their distances to the data sink.

It proposes a scalable algorithm to approximate the solution to this problem. The

algorithm yields up to a 12 % network lifetime improvement over other the solution

in which all the clusters have equal size. We also identify the circumstances where

this improvement is the highest.

Chapters 5, 6 and 7 study the different phases of aggregating data over routing

trees. First, Chapter 5 constructs the routing tree quickly. Second, Chapter 6 obtains

a transmission schedule quickly. Third, Chapter 7 decides which packets to discard

when following the TDMA schedule in a network with unreliable links.

Chapter 5 proposes the FAT protocol, which is executed during the quiet phase and

the initial routing phase. FAT is faster and less energy-consuming than comparable

protocols if the network changes slowly, consists of many hops, and has to report

infrequent and short events. The disadvantage of FAT is that it obtains a more

inefficient tree than some centralized protocols, particularly if the data aggregation
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function is very strong.

Chapter 6 proposes DATP, a modification of EATP for networks with stringent

delay constraints and high compression capability. These networks require a special

ordering of the DBs that makes modification of the schedule difficult and thus we

suppress the modification ability. Therefore, obtaining low failure probability in

the initial schedule quickly becomes paramount. We show DATP outperforms a

centralized protocol in terms of failure probability, concurrency, and execution time.

Chapter 7 proposes U-ODFP and P-ODFP, which are two protocols for handling

packet losses in unreliable networks that use TDMA. Their goal is to select which

packets to transmit, which packets to discard, and the timing of these actions. They

differ from the existing protocols in that they consider different links have different

but constant success probability. Our protocols obtain up to a 26 % lifetime increase

when compared to a naive solution.

8.2 Main Contributions

Our main contributions are the following:

• We propose EATP, the first TDMA scheduling protocol for WSNs in which the

sensor nodes take scheduling decisions distributedly without knowledge of the

obtained schedule. We show that this approach yields up to a 25 % reduction in

the energy consumption when compared with a protocol operating at a higher

latency. We also identify the circumstances when EATP is suitable, namely

networks with infrequent schedule changes that can tolerate a low scheduling

speed. Such networks are common in WSNs for periodic data gathering.

• We formulate the optimal cluster-size distribution problem and propose an

algorithm to approximate its solution. Our formulation is the first to assume
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multi-hop clusters of unequal sizes. Multihop clusters are useful to aggregate

the data from many sensor nodes if the events are detected in large area.

Unequal cluster sizes distribute the energy cost uniformly, and thus extend the

network operational lifetime. Our approximation algorithm scales well with

the network size, thereby allowing to quickly determine an upper bound on

the benefit that be achieved by using clusters of unequal sizes. The highest

benefit of unequal clusters is shown to be obtained when the nodes dedicate

over 30 % of their energy in their internal traffic.

• We show through FAT the importance of jointly designing the quiet phase and

the initial routing phase in order to minimize the energy consumption. FAT

obtains the routing tree quickly by grouping the nodes in tiers and arranging

their channel-check times. The fast tree construction enables the nodes to

increase the interval between their clear channel assessment operations, thereby

saving much energy. FAT constrains a node’s potential parents to its set of

neighbors lying one hop closer to the data sink. Our simulations show that this

constraint hardly reduces the aggregation ability of the tree. We also highlight

the importance of keeping the tiered structure updated in large networks.

• We propose DATP, an energy efficient protocol for low-latency repeatable

aggregation over routing trees. DATP outperforms the existing protocols in

terms of failure probability, concurrency and execution time. Like EATP, it

enjoys low failure probability because it tests empirically the compatibility of

concurrent transmitters.

• We propose U-ODFP and P-ODFP, two protocols that show a way to balance

the energy consumption of different nodes in unreliable networks. They achieve

it by assigning the same number of DBs to every node, which means that the
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nodes with stronger nodes contribute more information than the nodes with

weaker links. We show the importance of the choice of packets to transmit

and to discard. In U-ODFP the nodes make this choice just before they need

it, whereas in P-ODFP the nodes follow a plan that they receive from the

data sink in advance. As a result, P-ODFP is more efficient in stationary

networks than U-ODFP. U-ODFP extends the network lifetime by up to a

19 % when compared to the naive solution, and P-ODFP extends it by up to

27 %. However, U-ODFP is faster and distributed, and thus more suitable if

the link success probabilities change frequently over time.

Theses contributions enhance our understanding on protocol design for periodic

data gathering and collection. Our approach is cross-layer and systematically covers

different aggregation models. It achieves important benefits in terms of delay, energy,

concurrency, and satisfaction of data requirements.

8.3 Discussion and Limitations

One reason why we have confidence in our simulation results is that the simulator

that we developed and used in Chapters 3 and 6 [78] is fairly realistic because it uses

the signal to noise plus interference ratio to determine the success of a transmission.

Furthermore, it assumes exponential attenuation and log-normal shadow fading. This

realism is necessary in order to estimate the failure probability accurately.

We also trust our results because, having built it ourselves, we know exactly the

assumptions they make. Because the simulator is written in a high level programming

language and only considers the most relevant factors, the simulator code is short

and easy to understand, which reduces the probability of bugs.

In order to validate our results, we have executed the simulators step by step in

small networks and made sure it operated as required. Then, we gradually increased



8. Conclusions and Discussion 150

the network size. We have also made sure the results make sense and that the main

factors are modelled.

Our simulators take great care not to benefit our protocol when compared to the

existing protocols. For example, where a part of the implementation of an existing

protocol was missing in Chapter 3 or Chapter 6, we either considered an optimistic

bound of its performance or benefited the existing protocol in other way. Futhermore,

because the existing protocols and our proposed protocols share same code, if there

are any failures in our model they are likely to affect all the protocols in the same

way, so no advantage is given.

Some other factors that can be considered in the future for more detailed simulation

include faulty nodes, asymmetric links, nodes with transceivers with different prop-

erties, synchronization errors, hacker attacks, or fast changing-networks (although

our protocols are not designed for them). Our simulations operate at a packet level

as opposed to at a more detailed bit level. Although not clear to us, perhaps some

insights might be derived from a more detailed bit-level simulator.

The clustering algorithm in Chapter 4 can be executed for extremely large networks

because its model is simple. However, this simplicity suggests that the energy gains

presented in the chapter are optimistic. Therefore, they should be regarded as an

upper bound of the gains that can be obtained.

Chapter 5 showed FAT’s intolerance to outdated tier information, which implies

that this information must be updated periodically. The cost of these updates needs

to be quantified in order to determine the suitability of FAT in slowly-changing

networks.

Chapter 7 is designed for the case where transmit power is much larger than the

receive power. This assumption holds if the spacing between nodes is large, but not

if the sensor nodes are close to each other. The speed and the adaptation cost of the
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ODF protocols it is not evaluated.

8.4 Future Work

This thesis makes several assumptions about the data aggregation functions and

the data requirements at the data sink. These assumptions are reasonable but need

to be justified with examples of real applications. Currently, there is little detailed

information of real applications, particularly applications with high data rate that

use data aggregation [17]. Many more real applications need to be implemented and

described. Some obstacles are the cost of large numbers of sensors, access to the

target environment, and the long development and debugging time.

More real deployments are needed because they provide information such as which

measurements are relevant, their meaning, and how much they can be compressed.

The first step to gain this knowledge is to collect exhaustive measurements, for

example using EATP (cf. Ch. 3). Then the aggregation functions need to be gradually

refined. Due to the cost of this process, it is important to select applications with

important economical value.

The importance of deploying real networks does not imply the unimportance of

more theoretical studies. Theoretical studies are important because they identify

the tradeoffs with different assumptions and because many applications have flexible

performance requirements. For example, a latency requirement may be loosened if

doing so saves much energy. Similarly, if it is proved that aggregation functions with

a certain property yield great energy savings, functions with that property may be

developed and used even if they discard some information.

The protocols in this thesis can be further validated with more detailed simula-

tions. Possible elements to be incorporated include heterogeneous, faulty, or poorly

synchronized nodes. Other interesting aspect is the robustness to hacker attacks.
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Finally, implementation on actual hardware may raise new research problems.

The nodes in EATP (cf. Ch. 3) back off for a random time before transmitting

their testing packets. The backoff algorithm can be improved to assign DBs faster and

at a lower energy cost. In this improved algorithm, a node can consider the number

of testing packets it transmitted, the number of testing packets it overheard, and its

estimated number of neighbors. A node can obtain this estimate by overhearing its

neighbors’ transmissions during the TF.

When modeling the clustering problem (cf. Ch. 4), we made several approximations.

The accuracy of these approximations can be quantified with simulations as a function

of the node density and the inaccuracy of the location information. Additionally,

it is desirable to propose algorithms to change the cluster heads periodically in

order to balance the energy consumption. It is also interesting to propose new

unequal clustering algorithms that can operate in more irregular areas and that do

not require location information. Such algorithms should not assume that every node

can communicate directly with data sink as UCS [89] and EEUC [90] do.

The work on FAT (cf. Ch. 5) can be extended by developing efficient ways to

maintain the tiered structure. The analysis of the cost of this operation can be used

to determine the maximum level of channel variability under which FAT outperforms

other protocols. A related problem is to propose a model of channel variability that

is useful for many WSNs.

The scheduling algorithm for data aggregation (cf. Ch. 6) can be extended by

providing a way to adapt the schedule during the data transmission phase. This can

be facilitated by reserving some DBs in the schedule computed during the initial

scheduling phase. Increasing the number of reserved slots improves the adaptivity of

the schedule but worsens its spectral efficiency. This tradeoff can be explored.

Chapters 6 and 7 assume that every number of packets from the same reporting
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interval can be compressed into one packet with equal size to that of the input

packets. It is interesting to study the case where the output has a different and must

be split into multiple packets. If any of these packets is lost, the rest of the packets

may become useless or unsuitable for aggregation.

The work in Chapter 7 can be extended in several ways. First, the selection of

the constants used in the node count requirement can be investigated. Second, the

influence of the buffer size in the ODF protocols can be studied. Third, the latency

of different packet select and discard policies can be compared. Fourth, a scheme

to balance the energy consumption when the receive and the transmit power are

similar. This scheme would probably change the routing tree periodically and assign

different number of DBs to different nodes.
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