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In wireless sensor networks, measurements from neighboring
sensor nodes are typically cross-correlated and can be aggregated
and compressed locally. This process, referred to as in-network
data aggregation, saves a lot of energy by reducing the amount
of data that needs to be transferred to the data sink. We
consider the problem of using a TDMA schedule in order to
perform data aggregation in a network in which the wireless
links are unreliable and heterogeneous. In order to balance the
energy consumption of different sensor nodes, the nodes with
the weakest links should discard more packets than nodes with
the strongest links. The existing packet discarding policies are
unsuitable for data aggregation because they fail to consider
the dependencies between different packets. We propose three
packet discarding policies and show that they are appropriate
for different kinds of networks. For large networks, among the
policies that we propose, the best policy is discard the oldest
packet, and to transmit the oldest packet that has not been
discarded.

1 Introduction

A wireless sensor network (WSN) consists of a collection of small
battery-powered devices called sensor nodes and a special node
called data sink. The sensor nodes contain a sensing module that
they use to collect information about their environment. The
data sink needs to receive all the relevant information collected
by the sensor nodes. Since most of the sensor nodes cannot
communicate directly with the data sink, their information has
to be relayed across multiple hops on its way to the data sink.
The sensor nodes communicate with each other by using their
wireless transceivers, which dominate their energy consumption
[1].

Each sensor node measures and provides information about a
certain area, which is called coverage area. From the point of
view of minimizing the deployment cost, the number of nodes
must be minimized, which means that there should be little
overlap between coverage areas of neighboring sensor nodes.
However, from the point of view of maximizing reliability of
the network, the overlap between coverage areas of neighboring
nodes should be big in order to detect faulty nodes and to reduce
the noise through averaging.

A dense deployment increases the reliability, but also the
amount of data to be transmitted to the data sink. This amount

can be reduced inside of the network through a process called in-
network data aggregation [2]. We assume that a routing tree [3]
and a TDMA schedule [4] are used to organize the aggregation
process. We illustrate these concepts based on the network
depicted in Figure 1 as follows. Every sensor node is assumed to
generate one packet per TDMA frame, and every TDMA frame
consists of four timeslots. In the first timeslot, C transmits its
packet to B. Then, B aggregates its packet and that of C and
transmits the result in timeslot 2. In the third timeslot, node D
transmits its packet to A. Then, A aggregates the data from C,
B, D and itself into one packet. Finally, A transmits the result
to the sink node in timeslot 4.

If there are packet losses, the aggregation process becomes
more complicated because acknowledgments are necessary and
some packets depend on other packets. For example, in Figure 1,
the packet from B depends on the packet from C. If B does not
receive packet a packet from C in timeslot 1, what should B do
in timeslot 2? On one hand, if B transmits a packet without
C’s data, B’s data reaches the data sink early. However, if B
receives C’s data later, no data aggregation is performed and
thus energy is wasted. On the other hand, if B waits for C’s
packet, data aggregation is more likely, but B may have to wait
for a long time, which increases the latency of the system. In
fact, C may die, in which case B would have to wait indefinitely
for C. To avoid this problem, B must decide the maximum
waiting time for C’s packets.

In addition to increasing the delay, packet losses cause unbal-
anced energy consumption for different sensor nodes because
the nodes with weak links have to make more retransmissions
and thus consume more energy than other nodes with strong
links. In order to balance the energy consumption, the sensor
nodes with weak links should transmit fewer packets than the
nodes with strong links, or equivalently, discard more packets.

S A

B C1

2

D

3

4

Figure 1: A TDMA schedule for data aggregation in a routing
tree rooted at the data sink S.
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The packets to transmit and discard are selected according to
algorithms called transmit and discard policies.

The existing packet discard policies for data aggregation
[5, 6, 7] are designed for contention-based MAC and fail to
balance the energy consumption among the sensor nodes. In
this paper, we propose several energy-balancing packet-discard
policies for data aggregation when using a TDMA schedule. We
show that the best packet-discard policy depends on the network
topology.

This paper is organized as follows. Section 2 presents some
related work. Section 3 presents our system model, and Sec-
tion 4 describes our packet-discard policies. Finally, Section 6
concludes the paper.

2 Related work

Data aggregation is said to be structured if the routing tree
and the transmission schedule are defined before the data trans-
mission phase starts. The routing tree can be obtained quickly
with FAT [3], and the TDMA transmission schedule can be
obtained quickly with RandSched [4]. Although RandSched is
not designed for networks with packet losses, it can be modi-
fied to be used in such networks by assigning the appropriate
number of timeslots for retransmissions. RandSched requires
an accurate prediction of this number, whereas TBSP [8] can
assign new timeslots as needed. None of them balances the
energy consumption of the sensor nodes.

Most packet discarding policies are designed for wired net-
works and cannot tolerate the latency and delay jitter of wireless
networks [9]. CAPEL [9], which is designed for wireless networks,
seeks to discard early any packet likely to be discarded later.
However, not being designed for data aggregation, CAPEL fails
to consider that some packets are more valuable than others
because they contain the information from more nodes. It also
fails to consider that if a packet is aggregated with a packet
that was going to be transmitted anyway, its information can
travel to the data sink without any increased cost.

TAG [6] and cascading timeouts [7] are two timing schemes
for data aggregation. They force a node to discard packets
older than a certain threshold that depends on the node’s hop
distance to the data sink. They assume a contention-based MAC,
whereas we assume a schedule-based MAC. Their constraints on
packet transmission times cause poor utilization of the channel.
Furthermore, they cause uneven energy consumption among the
sensor nodes.

NUM-INP [10] formulates a distributed network utility maxi-
mization problem related to data aggregation, namely the selec-
tion of each node’s transmission time and compression degree
in order to maximize the utility subject to power constraints. It
balances the energy consumption across the sensor nodes, but
only under the assumption of very flexible compression func-
tions. For example, it assumes that flows with different data
rates can be aggregated and compressed, which is often difficult
to implement for some applications in practice. Additionally, it
does not consider packet losses.

DPA [11] is a sensor-selection protocol. Under the assumption
that some packets are necessary, it restricts the data generation
tasks to a small number of sensor nodes. DPA suffers unbalanced
energy consumption in networks with unreliable links because
it forces the sensor nodes with weak links to consume a lot of
energy.

We assume that there is no temporal correlation, which is the
correlation between the measurements in consecutive reporting
intervals. TiNA [12] exploits this correlation to reduce the data
volume transmitted to the data sink.

3 System Model

3.1 Wireless Link Model

Every wireless link is assumed to have a constant transmission
success probability, which we denote by ps. Different nodes
have different values of ps. An example of a network where
this probabilistic assumption is suitable is a network monitoring
the vibrations of a tunnel. The sensor nodes are deployed over
the lining of a tunnel. Fast vehicles traverse the tunnel and
interrupt the link connectivity among some of the sensor nodes.
If the traffic is ergodic and fast, it is reasonable to assume that
the success of different transmission attempts are uncorrelated
and that their success probability remains constant. Figure 2
shows three routing trees in which each link is annotated with
the transmission success probability ps.

We assume that DATA transmissions may fail, but not ACKs.
This can be justified by the fact that ACKs are short and thus
protecting them with strong error correction codes incurs little
overhead.

3.2 Data Generation and Aggregation Model

Time is divided into reporting intervals, denoted by {R1, R2, . . .}.
Every node generates one packet about every reporting interval.
Every packet contains information about only one reporting
interval, but this information may result from combining data
from multiple nodes. Any number of packets associated with
the same reporting interval can be aggregated and compressed
into a single packet. This aggregation model entails a very
high degree of compression. Many useful aggregation functions
satisfy this model, including the maximum, the mean, and the
histogram [13].

3.3 Timeslot Assignments

In order to balance energy consumption among the sensor nodes,
every node is assigned exactly one timeslot per TDMA frame.
A sensor node can use its timeslot to transmit new packets or
retransmit old packets. The nodes with the highest ps succeed in
most of their packet transmissions and thus manage to transmit
information about almost every reporting interval. The nodes
with very small ps manage to transmit very few packets and
use most of their timeslots for packet retransmissions. However,
since every node transmits the same number of times, namely
once per TDMA frame, every node consumes the same amount
of energy if the transmission power consumption is much higher
than the reception energy consumption. This assumption is
reasonable if the distance between sensor nodes is very large [1].

3.4 Node Count and Rate Selection

We define the node count of a packet as the number of sensor
nodes whose information is contained in the packet through data
aggregation. Similarly, we define the node count of a reporting
interval Rj as the number of sensor nodes whose information
about Rj reaches the data sink. We denote this node count by
cj , which clearly depends on the success probability ps of the
links and the TDMA frame period Tf . If Tf is reduced, every
sensor node is assigned more timeslots and can perform more
packet retransmissions, thereby increasing cj . We define the
normalized frame period Γ as Tf/Tr, where Tr is the duration
of every reporting interval. These variables are illustrated in
Figure 3. If every node has a link success probability ps larger
than Γ and its buffer is sufficiently large, no packets are discarded
and the node count of every reporting interval cj is one.
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Figure 2: Three simple routing trees rooted at S. Each wireless link is marked with its transmission success probability ps.
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Figure 3: Every sensor node generates one packet with period
Tr and is allocated one transmission attempt every
Tf . Here, Γ = Tf/Tr = 2/3.

3.5 Utility Function

The utility derived by the data sink increases with cj because a
high cj indicates that the information received by the data sink
is the product of combining the data from many sensor nodes,
and thus is very reliable. We define the utility U by

U =
1

N

N∑
i=1

ci, (1)

where N is the number of simulated reporting intervals. If
we reduce the normalized frame period Γ, every sensor node
is assigned more transmission slots and thus discards fewer
packets. However, the number of transmissions and the energy
consumption also increase. We define the utility efficiency of
the schedule by

η =
U

N
. (2)

4 Packet discarding policies

Every sensor node transmits in its transmission timeslot and
listens in its children’s slots. Right before its slot, it decides
which packet to transmit by executing an algorithm called
selection policy. Every time that a node’s buffer becomes full, it
decides which packet to discard by executing an algorithm called
discarding policy. Note that the packet buffer should be small
not because of memory scarcity, but in order to prevent the
growth of the latency and to balance the energy consumption
of the sensor nodes. If the buffer are large, the nodes with low
ps have many packets in their buffers. Therefore, they transmit
packets for longer than their neighbors do.

We propose three packet selection/discarding policies. Policy 1
selects the oldest packet and discards the oldest packet. Policy 2

identifies the packets with the highest node count and transmits
the oldest packet among these packets; and it discards the oldest
packet. Policy 3 identifies the packets with the highest node
count and transmits the oldest packet among these packets;
and it identifies all the packets with the lowest node count and
discards the oldest packet among these packets.

5 Simulation Evaluation

In order to evaluate the three policies, we use a custom C#
simulator that is available in [14]. Each network is simulated 100
times, each time for 2000 TDMA frames and multiple values of
the normalized frame period Γ between 0.1 and 0.5. The packet
buffers of the sensor nodes have a capacity of 30 packets.p

5.1 Results in Three Simple Networks

First, we simulate the three networks depicted in Figure 2. The
results are presented in Figure 4, which displays the utility
efficiency η of the three networks as a function of the normalized
frame period Γ. For small values of the normalized frame period
Γ, every sensor node is assigned many timeslots to report each
reporting interval, no packets are discarded, and the node count
of every reporting interval is equal to the number of nodes in
the network. However, energy usage is unbalanced because no
packets are discarded, and most timeslots are unused, resulting
in a low utility efficiency η. As a result, the sensor nodes waste
energy by listening to their children when their children have
nothing to transmit.

Figure 4 shows that as the normalized frame period Γ increases,
the utility efficiency η increases, but only until Γ reaches a certain
threshold, after which η decreases. This is because increasing
Γ reduces the number of unnecessary timeslot assignments,
and thus each assigned timeslot makes a greater contribution
towards the utility U . However, if Γ becomes too large, η
decreases because the sensor nodes discard many packets in an
uncoordinated way, thereby achieving poor data aggregation.

Figure 4b shows that the selection/discarding policy greatly
affects the utility efficiency η. In the network of Figure 2b, node
E generates one packet with a node count of 7 in every reporting
interval. Whether this packet reaches the data sink depends on
the normalized frame period Γ. If Γ < 0.3, the packet buffer
is large, and many TDMA frames are simulated, then every
packet reaches the data sink. This is because if Γ is smaller
than the minimum ps in the network, every node has sufficient
timeslots to transmit all its packets. Figure 4b also shows that
0.3 is the value of Γ that maximizes η. For Γ > 0.3, Policy 3
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Figure 4: Utility efficiency η of the three networks.

greatly outperforms the other policies because it makes node B
transmit the packet with the largest node count, which greatly
contributes towards the utility U because its node count may
be as high as 8. In contrast, Policy 1 makes B transmit the
oldest packet, which may hardly contribute towards the utility
U because its node count may be as small as one.

However, Policy 3 is not always the best, as shown in Figure 4c.
This is because transmitting the packet with the largest node
count may cause a recent packet to be transmitted, which reduces
the period of time during which that packet can be aggregated
with other packets. For example, in Figure 2c, suppose that
A contains a packet with node count 3 associated with the
reporting interval 1 and a packet with node count 4 associated
with the reporting interval 2. According to Policy 1, A should
transmit the packet associated with the reporting interval 1,
which means that when the time comes to transmit the packet
associated with the reporting interval 2, this packet’s node count
may have increased to 6 because A may have received two more
packets associated with the reporting interval 2. In contrast,
according to Policy 3, A should transmit the packet associated
with reporting interval 2 first, which means that if A receives
more packets associated with the reporting interval 2 later, those
packets will not have been aggregated as much as with Policy 1.

Figure 4c also shows that the utility efficiency η as a function
of Γ can have multiple local maxima. In Figure 4c, the local
maxima lie at Γ = 0.4 and Γ = 0.8. The maximum at Γ = 0.4
is associated with the branch of node A in Figure 2c, and the
maximum at Γ = 0.8 is associated with the branch of node I
in Figure 2c. Therefore, the optimal normalized frame period
Γ and the optimal policy may be different for different parts
of the routing tree. Choosing different values of Γ for different
branches of the tree has the disadvantages of unbalancing the
energy consumption and making data aggregation more complex.
Choosing different policies for different branches is possible, but
maybe complex.

Figure 4 shows that, for the optimal Γ, which we denote
by Γ?, the three policies achieve similar utility efficiency η.
However, choosing Γ? may incur some overhead, for example
if Γ is obtained by testing different values of Γ with actual
transmissions. Therefore, we may not operate always operate
at Γ? and the policies should ideally be insensitive to changes
in Γ. Figure 4 shows that the relative sensitivity of the three
policies greatly changes between networks, which complicates
the policy choice.

5.2 Scalalability with the Network Size

In order to study the scalability with the network size, we per-
form the following set of simulations. We simulate a monitored
area with the shape of a square with side x̄t, where x̄ is a
parameter that we call normalized network side, and t is the
transmission range, which we assume to be identical for all the

sensor nodes. The data sink is located in the middle of one of the
sides of the monitored area. For each x̄ we simulate 50 random
networks. The sensor nodes are deployed randomly within the
monitored area with uniform distribution. The number of nodes
is selected so that the average number of neighbors per node is
15.

The routing tree is obtained using Dijktra’s algorithm using
the hop distance as the cost metric. Other algorithms can be
found in [2]. Each network is simulated for 30 different values
of Γ, and we set Γ? to the value of Γ that yields the highest
utility efficiency η. Figure 5 shows the utility U and the utility
efficiency η as a function of the normalized network side x̄ for
the obtained Γ?. According the figure, Policy 1 performs the
best on average, particularly for large networks. A reason for
this may be that in our simulated networks the average number
of children per node in the routing tree is small.

6 Conclusions and Future Work

We have considered a data-aggregating network in which the
wireless links are unreliable and the transmission energy is much
larger than the reception energy. The existing data-aggregation
protocols cause the sensor nodes with weak links to consume a lot
of energy in retransmissions. Therefore, the energy consumption
of different sensor nodes becomes unbalanced.

In order to balance the energy consumption of the network,
we propose three packet discarding policies that make the sensor
nodes with the weakest links discard more packets than the
nodes with the strongest links. The choice of the packets to be
discarded and packets to be transmitted is important because
some packets contain information from multiple nodes.

We have shown that the utility derived by the data sink greatly
depends on the TDMA frame period, the routing tree, and the
quality of the wireless links. No single packet discarding policy
performs the best for all routing trees, and the performance
differences between the policies can be significant. Therefore,
we have to select the most appropriate policy according to the
characteristics of the given network. This observation reveals
the need for further research on the subject.

We have also simulated many random networks where the
routing tree is obtained with Dijktra’s algorithm. Our results
show that the first policy outperforms the other two. This
policy simply transmits and discards the oldest packets. In our
future work, we will propose other policies and evaluate their
sensitivity to the normalized frame period Γ and the algorithm
used to construct the routing tree.
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