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Multi-hop wireless sensor networks often use a TDMA sched-
ule to collect data periodically from multiple locations within a
large area. If the measurements from neighboring sensors are
cross-correlated, they can be aggregated and compressed as they
travel to the data sink. In order for data aggregation to occur
quickly, the TDMA schedule must arrange time slot assignments
in a certain order. The existing scheduling protocols cannot
quickly obtain a schedule with this order, high concurrency,
and no collisions. We propose a distributed TDMA scheduling
protocol for data aggregation called DATP. In DATP, the sensor
nodes transmit dummy packets in order to determine whether
they can tolerate the interference from the other nodes that are
assigned the same time slot. In this way, time slot allocations
are empirically verified to be collision-free. In contrast, the exist-
ing protocols obtain schedules with collisions because they use
unrealistic interference models such as neglecting interference
generated more than two hops away. Furthermore, our simula-
tions reveal that DATP achieves similar concurrency and lower
execution time than comparable protocols. These simulations
are executed for different network sizes, node densities, and data
compression models. In addition, we show that, in networks
with fluctuating links, DATP’s main advantage is its execution
speed.

1 Introduction

Wireless Sensor Networks (WSNs) are used to monitor a variety
of natural and man-made environments [1]. They consist of
devices called sensor nodes that communicate with each other
through radio links. The sensor nodes collect measurements
from their environment and transmit them to a special node
called data sink, possibly across multiple hops.

The reliability of the network can be improved by deploying
dense networks in which neighboring nodes generate correlated
data. Such data can be compressed locally before being relayed
to the data sink, which is a process referred to as in-network
data aggregation [2]. This process reduces the amount of wireless
communication and thus the energy consumption [3].

A network is said to be event-triggered if no data needs to
be transmitted to the data sink until a relevant, unpredicted
event occurs. This paper considers the problem of quickly and
reliably obtaining a TDMA schedule for data aggregation in
event-triggered applications. TDMA avoids packet collisions

and overhearing, but introduces a scheduling overhead that we
seek to minimize.

Many distributed TDMA protocols [4, 5, 6] are unsuitable for
event-triggered data aggregation because they do not arrange
transmissions so as to minimize the latency towards the data sink.
Other protocols [7, 8] provide low latency but are centralized
and scale poorly with the network size. Furthermore, all the
existing protocols use interference models that can fail due to the
unpredictability of wireless channels [9]. As a result, the existing
protocols may assign time slots with excessive interference.

This paper proposes the Data Aggregation TDMA Protocol
(DATP) in order to overcome the limitations of the existing
protocols. In DATP, the sensor nodes contend for time slots
without knowing their neighbors’ schedules. A node only obtains
a time slot if it has proved empirically its tolerance to the
interference from all the current users of that time slot. This
approach incurs little overhead and makes no assumptions about
a node’s interference range.

Our simulations reveal that DATP obtains a low-latency
schedule with a high degree of concurrency. The schedule is
very likely to be collision free because every time slot allocation
is tested before being confirmed. DATP is scalable and fast
because it operates distributedly and spares the sensor nodes
from the burden of discovering the identity and schedule of
their neighbors. Furthermore, DATP can operate in a network
with fluctuating links, in which case its main advantage is its
execution speed.

The rest of the paper is organized as follows. Section 2
presents our system model and formulates our scheduling prob-
lem. Section 3 describes the limitations of existing protocols.
Section 4 presents the basic version of DATP. Section 5 proves
theoretically that DATP always obtains a collision-free schedule
in reliable networks. Section 6 extends DATP to make it suitable
for unreliable networks. Section 7 presents simulation results for
both reliable and unreliable networks. Finally, Section 8 draws
some conclusions.

2 System model and problem formulation

2.1 Overview of the network phases

We consider a multi-hop network with a single a data sink. The
network spends most of the time in a quiet phase. When an
event occurs, a TDMA scheduling phase is executed, followed
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by a data transmission phase. After all the data related to the
event is transmitted, the network switches back to the quiet
phase and remains there until the next event.

2.2 Quiet phase

We assume that the duration of the quiet phase is in the order
of hours or days. During this time, nodes may be added or
removed, and the propagation environment may change. The
goals of the quiet phase are to consume little power, maintain a
routing tree and time synchronization, and be ready to respond
to events quickly.

An efficient time synchronization method is to propagate
synchronization information from the data sink to every sensor
node using a routing tree rooted in the data sink. Every node
receives synchronization information from its parent node and
relays that information to its children nodes [10, 4]. If a node
repeatedly fails to receive synchronization information from its
parent node, it finds a new parent node. However, in order to
save energy, a node does not keep track of its other neighbors.

2.3 Number of time slots assigned to each node

We assume that, during the data transmission phase, time
is divided into reporting intervals with duration equal to the
interval between the start of consecutive TDMA frames. Every
sensor node generates exactly one packet about every reporting
interval. Packets about different reporting intervals cannot be
aggregated, but packets from different nodes about the same
reporting interval can be aggregated and compressed before
being relayed. The number of time slots that have to be assigned
to a node depends on its number of descendants, the time slot
duration, and the amount of data compression.

The amount of data compression is specified by a compression
model. The compression models in [11, 12] are expressed in
terms of bits rather than packets, and thus require at least
two parameters: the packet size and a compression coefficient.
In order to have a model with a single parameter, we use the
following compression model. Every node X has to transmit

nX =

⌈
1 + dX
1 + γ

⌉
(1)

packets per reporting interval, and thus also per TDMA frame.
Here, dX is the number of descendants of X in the tree, and
γ is a compression coefficient that takes values between zero,
which indicates no compression, and infinity, which indicates
that any number of packets from the same reporting interval
can be compressed into a single packet.

The maximum and the histogram are examples of practical
aggregation functions that verify γ → ∞ [13]. The maximum
verifies γ → ∞ because the maximum of any number of mea-
surements is simply a number. The histogram verifies γ →∞
because the histogram of any number of measurements can be
stored with a fixed number of bits. Therefore, the information
that needs to be transmitted to the data sink when using these
functions is independent of the network size.

Sometimes the compression coefficient γ is lower than ∞,
for example if location information is required. A method to
provide coarse location information is to divide the monitored
area into different regions and deliver summaries from each of
these regions to the data sink. Measurements from the same
region are aggregated, but not from different regions. Therefore,
the amount of information that the data sink needs to receive
grows with the number of regions, and thus with the network
size.
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Figure 1: A routing tree and a schedule for data aggregation
verifying the precedence requirement.

2.4 Precedence property

During the data transmission phase, we define latency as the
time elapsed from the instant when the data are generated until
the instant when they reach the data sink. The latency can
be roughly expressed as a number nf of TDMA frames. This
number depends on the relationship between the indices of the
time slots assigned to a node and its children.

In order to minimize the latency, we impose the precedence
property, which we define as follows: the indices of the time
slots assigned to a node should be bigger than the indices of the
time slots assigned to its children nodes. This property ensures
nf = 1 because it allows every node to have all the data it needs
before its transmission time slot.

Figure 1 shows a schedule verifying the precedence property
for a routing tree rooted at node A. The schedule is obtained
for a compression coefficient of γ = 3, which means that only
B needs more than one time slot because only B has more
than 3 descendants. According to this schedule, nodes E and G
transmit in the first time slot. Node F transmits in the second
time slot of the same frame. Node D transmits in the the third
time slot of the same frame because it has already received
packets from its children E and F . This process continues and
at the end of the TDMA frame the data sink has received all
the packets, and thus nf = 1.

An example of a schedule that does not satisfy the precedence
property is the schedule of Figure 1 modified by assigning slot 5
instead of slot 1 to E. With this schedule, node D is unable to
transmit in the first TDMA frame because it has not received
the packet from its child E yet, and thus nf = 2.

2.5 Problem formulation

This paper addresses the problem of designing a protocol to
obtain a TDMA schedule during the scheduling phase. The
protocol should be fast in large and dense networks, and obtain a
schedule with the following properties. First, every node should
be allocated the number of slots indicated by (1). Second, the
schedule should verify the precedence property in order to obtain
a low latency. Third, the schedule should enjoy a low failure
probability pf , defined as the probability that a transmission
during the data transmission fails due to excessive interference.
Fourth, the schedule should enjoy a high concurrency, defined
as the quotient between the number of transmissions per TDMA
frame and the number of time slots.

3 Related work

For short events, the quality of the routing tree is unimportant
because it is hardly used. As the event duration grows, the
quality of the routing tree becomes more important. Therefore,
for long events, a new, event-specific routing tree should be
constructed after each event. This tree construction approach
is followed by the algorithms in [14, 15, 2]. However, these
algorithms are slow because they are centralized and ignore
their interaction with the MAC layer [11].

The FAT protocol [11] is a cross-layer protocol that handles
the MAC layer during the quiet phase and performs the tree
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Figure 2: Timing diagram of the quiet phase, DATP and the data transmission phase.

construction after the occurrence of every event. By arranging
the active periods of the sensor nodes according to the expected
data pattern, FAT responds quickly to events. FAT is not di-
rectly applicable to our problem formulation because it requires
keeping this information updated during the quiet phase, which
consumes significant energy in time-varying networks. However,
FAT can be adapted to our problem formulation by making
every node claim the same parent as it had during the quiet
phase.

During the data transmission phase, contention-based proto-
cols are an alternative to schedule-based protocols [16, 17, 3].
Contention based protocols incur no scheduling overhead, but
require contention before every packet transmission, and suffer
frequent packet losses under high traffic loads [3, 18, 19]. There-
fore, contention-based protocols are suitable for unpredictable
traffic, whereas schedule-based protocols are suitable for long-
running, periodic traffic. Hybrid protocols with features from
the two types of protocols have been developed [20, 21, 22].
However, they protocols often perform significantly worse than
schedule-based protocols for periodic traffic [4]. A key goal of
our paper is to provide a schedule-based protocol with lower
overhead than the existing schedule-based protocols.

A schedule-based protocol is said to be adaptive if it can
modify the schedule during the data transmission phase. This
ability enables nodes that were assigned time slots with excessive
interference during the scheduling phase to replace their time
slots during the data transmission phase. However, the existing
adaptive schedule-based protocols [23, 4, 6, 5, 24] do not preserve
the precedence property, and doing so is is difficult. To illustrate
this difficulty, suppose that in Figure 1 E must be assigned a
new time slot because it suffers excessive interference from G in
time slot 1. Node E cannot be assigned a new time slot without
changing the time slot of D because the index of the time slot
assigned to E must be smaller than that assigned to D, which
is 3. A solution to this problem is to change the algorithm used
to obtain the initial schedule so that some unused time slots are
left between those of a node and its children, but this solution
deteriorates the concurrency of the schedule.

Due to the difficulty of developing an adaptive scheduling
protocol that preserves the precedence property, we focus our
attention in obtaining a correct schedule in the scheduling phase,
i.e. a schedule with a low failure probability pf . Obtaining low
pf and high concurrency c simultaneously requires a realistic
interference model such as the physical interference model. This
model uses the SINR to determine the success of a transmission,
and is used in [25, 26]. An enhancement of this model that
considers Rayleigh fading is used by the scheduling algorithm
in [27]. However, the physical interference model incurs signifi-
cant overhead in collecting link quality information about every
wireless link and transmitting this information to the data sink.

A much more common interference model is the k-hop inter-

ference model, which consists in neglecting interference sources
more than k hops away from a receiver. Obtaining the shortest
possible schedule with this model is an NP-complete problem
[8], so approximations are used instead.

The distributed TDMA protocols that use the k-hop interfer-
ence model [23, 4, 6, 5] do not verify the precedence property.
The EMAC protocol [28] is distributed and verifies the prece-
dence property. However, instead of using the k-hop interference
model, it neglects interferers more than 2 hops away in the rout-
ing tree. This interference model is very unrealistic because it
may ignore the interference from a node within transmission
range.

The algorithms in [7, 8] are very similar and we refer to
both of them as BFk because they traverse the routing tree in
Breadth-First (BF) order and use the k-hop interference model.
These protocols are centralized and assign time slots as they
traverse the tree. We simulate BFk and DATP in Section 7.

BF starts its execution after an event is detected and consists
of four phases. First, the sensor nodes discover their neighbors,
which is necessary because they do not keep track of them
during the quiet phase. Second, the sensor nodes transmit their
neighbor lists to the data sink. Third, the data sink uses these
lists to compute the schedule. Fourth, the data sink informs the
sensor nodes of their time slots.

BF incurs significant overhead because it is centralized and
the nodes close to the data sink have to relay a large data
volume. The data volume transmitted in the second phase is
larger than that transmitted in the fourth phase, at least when
the compression coefficient γ is large.

In conclusion, the existing scheduling algorithms for data
aggregation do not obtain schedules with high concurrency and
low failure probability in a scalable and efficient way. We solve
these problems by proposing the Data Aggregation TDMA
Protocol (DATP).

4 DATP

DATP is a protocol to obtain a TDMA schedule for data aggre-
gation. It is fast and scalable because it operates distributedly
and spares the sensor nodes from the burden of tracking their
neighbors’ schedules. In order to obtain a certain time slot,
the sensor nodes transmit dummy packets at the same time
as the current users of that time slot. If they receive an ACK
in response, they have empirically proved their tolerance to
the interference of those users. This test-based approach to
scheduling is more reliable than that of the existing protocols,
which uses an interference model.
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4.1 Execution context

The timing diagram in Figure 2 shows the three phases of the
network: a quiet phase in which time synchronization and a
routing tree are maintained; an event-triggered scheduling phase
in which DATP is executed; and a data transmission phase in
which the event is reported.

The data transmission phase consists of transmission frames
(TFs) labeled {TF1, TF2, . . . }. There are as many TFs as
necessary to report the event to the data sink. Each TF consists
of a CSMA period and M data blocks (DBs). The CSMA
period is used for unpredicted packet transmissions. The DBs
are labeled {DB1, . . . , DBM} and are used for periodic packet
transmissions. Each DB consists of a DATA slot that is used
for a packet transmission, and an ACK slot that is used for the
corresponding acknowledgment.

4.2 Phases of DATP

Figure 2 shows that DATP divides the scheduling phase into M
contention frames (CFs), labeled {CF1, CF2, . . . , CFM}, and
a finalization period. Each CF decides the set of nodes that
transmit in a certain of DB. There are as many CFs as necessary
until all the nodes obtain the DBs they need. Therefore, the
number M of CFs is equal to the number of DBs per TF in the
data transmission phase, which is unknown in advance.

4.3 Contention during a CF

The nodes that attempt to obtain DBi in CFi are referred to as
the contenders of DBi, and successful contenders are referred to
as winners. Every sensor node becomes a contender after all its
children have obtained all the DBs they need. By waiting for
its children, the nodes ensure the satisfaction of the precedence
property.

In order to obtain a schedule with high concurrency c, a
large number of contenders should become winners in every CF.
Furthermore, in order to obtain a low failure probability pf ,
the winners should be mutually compatible. A node X is said
to be compatible with another node Z if two conditions hold.
First, X’s parent receives X’s packet successfully when X and Z
transmit simultaneously. Second, X receives its parent’s packet
when X’s parent and Z’s parent transmit simultaneously. Note
that X being compatible with Z does not imply the inverse.

The contention process during a CF consists of three stages.
If a contender fails at any of these stages, it withdraws from
the contention immediately and contends again in the next CF.
The contenders that succeed in the three stages become winners
and report their success to their parents, but not to any other
nodes.

4.3.1 First stage of a CF

The first stage of the contention of a CF occurs during the W
slot. Every contender backs off for a random period within
this slot and then performs a clear channel assessment (CCA).
If the wireless channel is clear, the contender has succeeded
in this stage and transmits dummy data until the end of the
W slot in order to thwart nearby contenders that might be
incompatible with itself. If, on the other hand, the channel is
busy, the contender has failed in this stage, withdraws from the
contention until the next CF, and remains active during the rest
of CF in case any of its children are contending to obtain a DB.

The nodes that are not contending for a DB in the current
CF check the channel status at the end of the W slot. If the
channel is busy, they listen during the rest of the CF in case
their children are seeking to obtain a DB, otherwise they sleep
until the next CF.

The purpose of this stage is to reduce the number of con-
tenders. In particular, at the end of this stage, the probability
that two contenders within transmission range of each other re-
main in the contention is very small. Even if no such contenders
remain, the remaining contenders may be mutually incompati-
ble because they measured the interference at the transmitters
rather than at the receivers. This problem is called the hidden
terminal problem and is addressed in the second and third stages
of the CF.

4.3.2 Second stage of a CF

The second stage of the contention of a CF is divided into the
slots {P1, R1, P2, R2, . . . , PH , RH}. Every remaining contender
X chooses a random integer h between 1 and H. To maximize
the concurrency of the schedule, the number H of slot pairs
should be so large that every contender chooses a different h.

In slot Ph, X transmits a packet indicating its identity to its
parent node Y . If Y receives this packet, it replies with an ac-
knowledgment in slot Rh and transmits dummy packets in slots
{Rh+1, Rh+1+2, . . . , RH} in order to interfere with contenders
that might be incompatible with X. If X does not receive Y ’s
acknowledgment in slot Rh, X has failed in the second stage
of the contention. Otherwise, X has succeeded and transmits
dummy packets in the slots {Ph+1, Ph+1+2, . . . , PH} in order to
provoke the failure of contenders that may be incompatible with
itself.

Our simulations in Section 7.1.3 show that H = 4 provides
a good tradeoff between schedule concurrency and scheduling
speed. A higher H would be needed if the first stage of the CF
were suppressed. The purpose of the first stage is to reduce the
overhead in this way.

A contender that chooses a small h is very likely to succeed
in the second stage, whereas a contender that chooses a big h
is unlikely to succeed in the second stage. A contender that
chooses a large h only succeeds if it is compatible with the nodes
that succeeded earlier. However, the success of a node with large
h may create intolerable interference for some of the nodes that
succeeded earlier. Such nodes withdraw from the contention
during the third stage.

4.3.3 Third stage of a CF

The third stage of the contention of a CF consists of slots
{U1, V1, U2}, as shown in Figure 2. In slot U1, every remaining
contender X transmits a packet indicating its identity to its
parent node Y . If Y receives this packet, it replies with an ACK
packet in slot V1. If X does not receives this ACK, X has failed
in the last stage of the contention. Otherwise, X has succeeded
and reports its victory to Y in slot U2.

4.4 Finalization period

The finalization period begins when the data sink has received
victory declarations from all its children nodes. The purpose of
the finalization period is to distribute a packet called finalization
packet from the data sink to every node in the network. This
packet is created by the data sink, and it contains two parameters
that are decided by the data sink: the start of the finalization
period and the TDMA frame period. The data sink transmits
the finalization packet to its children nodes, and each of them
relays this packet to its own children. Every node transmits the
finalization packet using CSMA, and it retransmits the packet
until it receives an ACK. In this way, the finalization packet is
propagated from parent to child along the routing tree.
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5 Failure probability in reliable networks

This section proves some results about DATP under the following
assumptions: wireless links are constant, there is no external
inference, and there are no node failures. These assumptions
are abandoned in Sections 6 and 7. We use the definition
of compatibility from Section 4.3. We define a collision-free
schedule as a schedule where the transmitters in every DB are
mutually compatible.

Lemma 1. If DATP finds a schedule, it is collision free

Proof. DATP only schedules simultaneously the winners of the
same CF, and thus we have to prove that the winners of every
CF are mutually compatible. Observe that the winners were
able to communicate with their parents in slots U1 and V2.
Since these transmissions succeeded concurrently under the
interference from unsuccessful contenders, the winners can also
communicate successfully without the unsuccessful contenders’
interference, and thus are mutually compatible.

Theorem 2. If L ≥ 2 and a collision-free schedule exists, DATP
always obtains a collision-free schedule.

Proof. Because winners are mutually compatible, victory dec-
larations in slot U2 are always received correctly, and no node
waits unnecessarily for its children nodes. Since we also have
L ≥ 2, there is a nonzero probability that exactly one contender
X will transmit a REQ packet in slot P1. When this happens,
X receives an ACK because there are no other interferers and
a schedule exists. Then, X transmits dummy packets in slots
P2 to PL, and reaches the third stage. If in slot P2 a contender
Y transmits a packet, Y only reaches the third stage if it is
compatible with X and other contenders in slot P2. It is possible
that Y is compatible with X but not the other way around. In
this case, although both X and Y reach the third stage, only
Y has a chance of becoming a winner. Therefore, at least one
node still has a chance of becoming a winner. Repeating this
argument in every Pi slot for i ∈ {3, . . . L}, we obtain that at
least one node becomes a winner under our assumption that X
is the only node to transmit in P1. Therefore, the probability
of there being some winners in every CF is strictly positive.
Since there are as many CFs as necessary, a schedule is found
eventually, and according to the previous lemma, it is collision
free.

Note that the existing TDMA protocols do not verify the
above properties under the same assumptions because they rely
on interference models that can fail.

6 Extensions for unreliable networks

6.1 Extension for networks with fluctuating links

We say that a wireless link is fluctuating if its attenuation
varies quickly around a certain average. If link fluctuations
are sufficiently large, no schedule can guarantee zero failure
probability pf , even if no time slots are shared. However, the
schedule-based protocols are still useful because they enjoy lower
pf than the contention-based protocols.

In a network with fluctuating links, DATP obtains few win-
ners in every CF. This is because winning in a CF requires five
successful consecutive transmissions and the success probability
of each transmission decreases with the intensity of the fluc-
tuations. A small number of winners leads to a schedule with
poor concurrency. In order to improve the concurrency of the
schedule in networks with fluctuating links, we extend DATP
as follows.

Every time slot in Figure 2 is replaced by a superslot consist-
ing of A time slots, where A is a small network-wide parameter.
Every node that in the original version of DATP had to transmit
one packet in one slot, in the modified version transmits one
packet in each slot of the associated superslot. A packet recep-
tion during a superslot is considered successful if the packet
was received correctly in at least S slots of the superslot, where
S is a small network-wide parameter that verifies S ≤ A. We
investigate the choice of A and S in Section 7.3.

6.2 Extension for handling node failures

A failed node may cause its parent node to wait indefinitely. In
order to avoid this problem, a node only waits for a maximum
time for its children nodes. The maximum waiting time should
be a function of the node failure probability and the number of
descendants. We do not implement this extension because we
do not simulate node failures.

7 Performance evaluation

We write a packet-level simulator in Python whose code is avail-
able in [29]. The simulator implements DATP and BFk for
different values k, where k indicates the minimum hop distance
imposed by BFk between a receiver and all its interferers. The
simulator compares DATP and BFk in terms of three metrics.
The first metric is the concurrency c of the computed schedule,
which is average number of transmissions per time slot; it is
equal to one if every node is assigned a different DB and all
the DBs are used. The second metric is the transmission fail-
ure probability pf , which indicates the fraction of unsuccessful
packet transmissions in the data transmission phase when us-
ing the schedule computed in the scheduling phase. The third
metric is the execution time of the scheduling phase.

7.1 Simulator details

7.1.1 Communication and channel model

Every node’s transmission power is 10−6 W and the noise figure
of every receiver is 7 dB. A packet transmission is successful if
the SINR at the receiver exceeds 20 dB. The computation of
the SINR considers the interference from all the nodes in the
network.

The wireless channel has an attenuation exponent of 3.5 and a
path loss at 100 m of 80 dB. The wireless links suffer log-normal
shadow fading with a standard deviation of 8 dB. We define t as
the maximum distance across which two nodes can communicate
if there is no fading and interference; the parameters presented
above yield t = 48 m.

Section 7.2 simulates constant links, whereas Section 7.3
simulates fluctuating links. Link fluctuations are simulated by
multiplying the attenuation of every link, including interference
links, by a different random number in each time slot. The
random number is taken from a log-normal distribution with
standard deviation σf .

7.1.2 Topology

All the sensor nodes are data sources and are deployed randomly
within a square with side x̄t, where x̄ is referred to as the
normalized network size. The data sink is in the middle of the
left border of the square. Although we also simulated networks
where the data sink lies in the middle of the square, we omit
the corresponding results because they resemble those obtained
in smaller networks with the data sink in the middle of the left
side of the square.
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Figure 3: Length M of the computed schedule as a function of
H and ρ. The y-axis shows (M −M0)/M0, where M0

is the value of M obtained for H = 12.

We define the node density ρ as N(πt2)/A, where N is the
number of nodes and A is the area of the square. The node
density represents the average number of nodes per neighbor
if there were no shadow fading. Our default parameters are
x̄ = 8 and ρ = 24, which yield a total of N = 484 nodes. The
routing tree is computed with Dijkstra’s algorithm using the
hop distance as the cost metric. We discard every random
deployment where over 10 % of the nodes cannot reach the
gateway directly or through multiple hops, which is rare for
ρ ≥ 7. All the results are the average of 80 simulation runs.

7.1.3 Choice of H in DATP

The number H of slot pairs in the second stage of a CF is an
important parameter whose meaning is shown Figure 2. This
parameter has a complex influence on the execution speed. On
one hand, increasing H prolongs the CFs, which contributes to
deteriorating the execution speed. On the other hand, increasing
H reduces the number M of CFs, which contributes to improving
the execution speed.

In order illustrate why M decreases with H, suppose that
only two mutually incompatible contenders, which we denote by
X and Z, reach the second stage of a CF. If X and Z choose the
same h, they transmit simultaneously in Ph, suffer each other’s
interference, and fail to receive a reply. As a result, none of them
becomes a winner. In contrast, if X chooses a smaller h than
Z does, X suffers no interference in its first transmission of the
second phase and reaches the third stage. When Z transmits
its packet, it receives no reply due to the interference from
X or X’s parent, and withdraws from the contention. When
X transmits in the third stage, it suffers no interference and
becomes a winner. Therefore, the number of winners is highest
when X and Z choose different h. Consequently, as we wanted
to show, M decreases with H.

However, the decrease of M with H is bounded. After M is
sufficiently large, all the contenders are likely to choose different
h, so further increasing H barely reduces M . This can be seen in
Figure 3, which shows that increasing H from H = 4 to H = 12
only reduces the schedule length by 5.5 % independently of the
node density ρ. Since H = 4 obtains good execution speed (H
and M are small) and concurrency (M is small), we use it in
the rest of the simulations.

We illustrate the independence of M with H with an example
based on Figure 4. For simplicity, we assume a constant trans-
mission range rt, defined as the maximum distance within which
two nodes can communicate with each other or detect each
other’s transmissions. We also assume a constant interference
range ri = 2rt, defined as the maximum distance over which a
transmitter’s interference is significant.

In Figure 4, node X is contending for a DB to communicate

YX

Figure 4: Simplified model to justify that the number of hidden
terminals does not increase indefinitely with the node
density ρ.

with its parent Y . Node Y is the center of a ring with internal
radius rt and external radius ri = 2rt. Therefore, the nodes
within the white area around Y can communicate with Y , and
the nodes within the shaded area can interfere with Y , but not
communicate with Y . Node X is the center of a circle with
radius rt.

Suppose that X reaches the second stage. We say that a node
is an incompatible contender of X if it reaches the second stage
and generates significant interference upon Y . The incompatible
contenders of X are inside the circle of radius 2rt centered at
Y and outside the circle of radius rt centered at X. Since this
area is finite and the minimum distance between any two incom-
patible contenders is rt, the maximum number of incompatible
contenders is bounded. Therefore, H does not need to increase
with ρ.

An example of a distribution of incompatible contenders of X
that contains almost as many contenders as possible is shown
in Figure 4. Contenders are represented by small squares and
arranged in an hexagonal grid. Every contender has six neigh-
boring contenders at a distance rt.

7.1.4 Estimation of BF’s execution time

The implementation details of the first, second, and fourth
phases of BF are omitted in [7, 8], whose focus is the third
phase. Designing an efficient implementation of the first phase
is nontrivial because the back-off periods that precede every
packet transmission must be chosen carefully. Making our own
design would affect the validity of our conclusions because our
design may be suboptimal. Instead, we derive an optimistic
estimate of the execution time of the first phase and assume
that this phase provides perfect information to the following
phases. This section contains our derivation of the execution
time of the first phase and describes our implementation of the
second and fourth phases. We assume that the third phase is
infinitely fast.

Here, but not in our simulations, we assume the existence
of a constant transmission range rt, which is equal to t, and
a constant interference range ri, which is equal to 2rt. BF’s
first phase requires that every sensor node announces itself
to all its one-hop neighbors by transmitting a packet that we
call identification packet. For efficiency’s sake, we assume that
each node only transmits one identification packet and that
this packet is received by all its neighbors. In order for all
the receivers to receive this packet, no transmissions should
occur within their interference range. Therefore, the minimum
distance between concurrent transmitters is rt + ri = 3rt.

The maximum density of concurrent transmitters is achieved
when the transmitters are deployed over an hexagonal grid as
the one in Figure 4, with the difference that now the distance
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between transmitters is 3rt. This grid divides the plane in
non-overlapping hexagons with side 1.5rt and a transmitter
in the center of the hexagon. Every hexagon has an area of
5.84r2t and contains 5.84ρ nodes. Since only one in every 5.84ρ
nodes transmits an identification packet at a time, the neighbor
discovery phase lasts at least 5.84ρ time slots. This estimate is
optimistic because in practice there are collisions and unused
intervals during the first phase. In our simulations, the time
slots used in both BF’s neighbor discovery phase and DATP
last for 20 ms.

BF’s second phase serves to transmit neighbor information,
and BF’s fourth phase serves to transmit schedule information.
The neighbor information consists of lists of node IDs, each of
which occupies 16 bits. The schedule information contains time
slot indices, each of which also occupies 16 bits. The packet
size is 448 bits. Therefore, if every node has g neighbors, a
node with d descendants in the routing tree has to transmit
d16(g+ 1)(d+ 1)/448e packets with neighbor information in the
second phase. In addition, in the fourth phase, this node has to
receive d16 · 2(d+ 1)/448e packets with schedule information if
the compression coefficient γ is infinity.

The second and fourth phases are divided into pairs of time
slots that are used to transmit neighbor and schedule informa-
tion. The first slot in each slot pair has a duration of 30 ms, and
is used to contend briefly and transmit a 448-bit data packet.
This data packet can be used to transmit neighbor or sched-
ule information. The second slot in each pair has a duration
of 15 ms and is used to contend briefly and to transmit an
acknowledgment packet in response to the preceding packet.

Every node X seeking to transmit a packet to a node Y keeps
track of the number nf of consecutive times that it failed to
receive an acknowledgment in response to a packet. During
the first slot of a slot pair, X contends with probability 2−z,
where z is the minimum of nf and a network-wide constant that
we denote by nm. The contention process consists in backing
off for a random time and transmitting a packet if at the end
of the back-off period the channel is idle. If Y receives X’s
packet, it backs off for random period, and only replies with an
acknowledgment if at the end of the back-off period the channel
is idle.

The value of the constant nm that minimizes the execution
time of BFk decreases as the standard deviation σf of the channel
fluctuations increases, which can be explained as follows. For
low σf , the most likely cause for not receiving acknowledgments
repeatedly is the interference from hidden terminals, which can
be reduced by increasing nm. In contrast, for a high σf , most
unsuccessful transmissions are caused by link fluctuations, and
thus reducing nm increases the number of transmission attempts
and the number of successes. Our simulations reveal that the
optimal values of nm are the following: 4 for σf = 0 dB; 3 for
σf = 0.5 dB; and 2 for σf = 1 dB. We use these optimal values
in our simulations.

7.2 Evaluation in networks with stable links

Figure 5 is obtained for a compression coefficient γ = 104 and
is the result of averaging 100 simulations. The figure consists
of a matrix of graphs. Each matrix row shows one of the
three performance metrics, and each matrix column refers to a
different node density ρ.

The first row of Figure 5 shows that the failure probability
pf of BF pf increases with the normalized network size x̄. This
is because in small networks most nodes are near the border
of the monitored area and thus are surrounded by few neigh-
bors and few interferers. The first row of Figure 5 also shows
that the failure probability pf decreases with the node density
ρ. One reason for this is that, as ρ increases, the number of

hops between nodes becomes more correlated with the physical
distance between them. Another reason is that, as ρ increases,
the number of conditions used by BF to determine whether
two concurrent transmissions interfere with each other increases,
which reduces the number of concurrent transmissions and the
failure probability pf .

The first row of Figure 5 also highlights the high failure
probability pf suffered by BF2 and BF3, particularly in networks
that are large and sparse. For ρ = 9.6 and x̄ = 8, pf is 0.35 in
BF2, which is clearly intolerable. BF3 performs much better,
obtaining pf = 0.06 for the same parameters. However, even
pf = 0.06 may be too high, particularly in networks with many
hops. For example, if a node lies 10 hops away from the data
sink, its packets reach the data sink with a probability as small
as (1 − pf )10 = 0.53. In contrast, DATP achieves pf = 0
because it only assigns the same DBs to nodes that have been
proved mutually compatible empirically. However, DATP cannot
guarantee pf = 0 for fluctuating links, as discussed in Section 7.3.

The second row of Figure 5 shows that DATP achieves as
much concurrency as BF2 and much more than BF3. In small
networks, the highest possible concurrency is 1 because no two
nodes are far enough from each other to share a time slot; in
larger networks, higher concurrency is possible. BF3 obtains a
much lower concurrency than BF2 does because it imposes a
larger distance between concurrent transmitters.

The third row of Figure 5 shows that DATP is much faster
than BFk, particularly for a large node density ρ and a large
network size x̄. This is because DATP is distributed and BFk

is centralized. The execution time of BFk depends on the data
volume to be transmitted in the second phase. This data volume
increases with ρ and x̄, but is independent of k. Therefore, the
execution time is also independent of k.

Figure 6 studies the influence of the compression coefficient
γ on the three performance metrics. Figure 6 is organized as
a matrix where each row presents one performance metric and
each column is obtained for a different γ. The compression
coefficient γ is defined in (1) and controls the number of time
slots that have to be allocated to the nodes. For very high γ,
every node has to be assigned exactly one time slot per TDMA
frame. For low γ, the number of time slots assigned to a node
depends on its number of descendants.

The first row of Figure 6 shows that reducing the compression
coefficient γ reduces the failure probability pf . This is because,
for small γ, concurrency is low, as shown in the second row of
Figure 6, and thus interference is low too. Concurrency is low
because most of the time slots have to be assigned to the nodes
close to the data sink, which are too close to each other to share
a time slot.

The third row of Figure 6 shows that DATP’s speed advantage
over BFk increases with γ. The execution time of BFk barely
decreases as γ increases despite the fact that a higher γ reduces
the number of packets to be transmitted in the fourth phase.
This is because, for low γ, most of these packets have to travel
a short distance and BFk’s execution time is dominated by its
second phase, whose duration is independent of γ. In contrast,
the execution time of DATP greatly decreases with γ because γ
reduces the number of time slot allocations and thus the number
of CFs. Furthermore, increasing γ increases the concurrency
and thus the number of winners per CF.

7.3 Evaluation in a network with fluctuating links

Figure 7 studies the influence of the link fluctuations on the three
performance metrics. The figure is organized as a matrix where
each row presents one performance metric and each column
is obtained for a different value of the standard deviation σf
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Figure 5: Scalability with both the normalized network size x̄ and the node density ρ.
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Figure 7: Influence of link fluctuations, characterized by the standard deviation σf .

of the link fluctuation in dBs. This set of simulations used a
compression coefficient γ of 10000.

For σf > 0, no schedule can guarantee zero failure probability
pf . The schedule with the lowest possible pf is BF∞ because
BF∞ assigns different time slots to different nodes and thus
no packets are lost due to interference from other concurrent
transmitters.

We simulate different versions of DATP, namely DATP1,3,
DATP1,2 and DATP2,3. In the notation DATPS,A, the first
subscript is the number S of successful receptions that are
required in a superslot in order to consider a reception successful,
and the second subscript represents the number of slots per
superslot.

DATPS,A requires a success ratio of S/A in a superslot. As
this ratio increases, fewer contenders succeed in a CF, fewer
nodes are assigned the same transmission slot, and the concur-
rency c of the schedule decreases. A low concurrency c reduces
the spectral efficiency, but reduces the amount of interference
and the failure probability pf .

Figure 7 shows the tradeoffs suffered by the three DATP
versions. DATP2,3 has the highest S/A ratio, and thus the
lowest failure probability pf and the lowest concurrency c. It
also has the longest execution time because it uses the greatest
number of CFs and these CFs are at least as long as those of the
other two versions. DATP1,3 has the lowest S/A ratio, and thus
the highest failure probability pf and the highest concurrency
c. DATP1,2 is faster than DATP1,3 because its superslots are
shorter.

The best protocol in a network with fluctuating links depends
on the relative importance of the three performance metrics. If
the execution speed is paramount and the network is large and
dense, the best protocol is DATP1,2. DATP1,2 also enjoys higher
concurrency than BF3, but suffers a higher failure probability pf
than BF3. If minimizing the failure probability pf is much more
important than maximizing the concurrency and the execution
speed, the best protocol is BF∞.

8 Conclusions and future work

Periodic low-latency data aggregation requires a TDMA trans-
mission schedule verifying the precedence property. The existing
protocols to obtain such a schedule are centralized, obtain low
concurrency, or suffer a high failure probability pf . They consist
of assigning the earliest unused time slot within k hops to every
node.

DATP, our proposed TDMA scheduling protocol, follows a
different approach. It builds the transmission schedule distribut-
edly and incrementally through a contention-based process. The
contenders transmit dummy packets in order to determine empir-
ically whether they tolerate the interference of other concurrent
transmitters.

DATP offers the greatest advantages in large, dense networks
with a high compression coefficient γ and stable wireless links.
In this case, the failure probability of DATP is zero whereas
that of BF2 and BF3 is significant. Furthermore, DATP is faster
and achieves more concurrency.

If the compression coefficient γ decreases, the concurrency of
the three protocols decreases because transmissions are concen-
trated in a small area. As a result, BF2 and BF3 suffer lower
failure probability pf , whereas DATP retains pf = 0. DATP
also enjoys a faster operation than BFk, but the performance
gap is reduced.

If the wireless links fluctuate, it is impossible to obtain pf = 0.
DATP has a pf that is lower than that of BF2 and slightly
higher than that of BF3. Link fluctuations slow down DATP
because every set of concurrent transmissions must be tested
multiple times. However, DATP1,2 is faster and achieves more
concurrency than BF3.

In conclusion, under a variety of circumstances, some versions
of DATP are faster and achieve more concurrency than BFk.
In addition, if links are stable, DATP guarantees zero failure
probability pf whereas BF2 and BF3 suffer high pf . These
results prove the usefulness of DATP’s test-based scheduling
approach.
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As future work, DATP can be implemented in real hardware.
The impact of synchronization errors can be assessed in order
to decide suitable synchronization parameters. The choice of
the maximum time that a node waits for its children to obtain
a DB can be studied. The time and energy required to execute
the data aggregation functions must be considered. The impact
of nodes with unequal transceivers can be determined. The
fluctuations of the wireless links can be measured to model
them more accurately.
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