
A Test-Based Scheduling Protocol (TBSP) for
Periodic Data Gathering in Wireless Sensor

Networks

Mario Orne Dı́az-Anadón and Kin K. Leung

Electrical Engineering Department
Imperial College, London SW7 2BT, United Kingdom

{orne.diaz06, kin.leung}@imperial.ac.uk

Abstract. We propose TBSP, a TDMA protocol for gathering informa-
tion periodically from multiple data sources to a central location across
multiple hops. TBSP incurs a lower overhead than the existing protocols
because it only requires the sensor nodes to keep track of their own
schedule, whereas in the existing protocols each node needs to know the
schedule of its neighbors. In order to gain a transmission slot, the sensor
nodes transmit in different slots until they find one with sufficiently low
interference. TBSP provides mechanisms to reduce the probability that
the sensor nodes steal each other’s slots or thwart each other’s efforts.
Our simulation study reveals that TBSP provides great energy savings
if the network changes slowly and the sensor nodes can wait a dozen
TDMA frames before obtaining a transmission slot. TBSP also provides
the advantage of being more likely to keep the sensor network connected
in sparse networks.

Keywords: adaptive; wireless sensor networks; TDMA;

1 Introduction

Wireless Sensor Networks (WSNs) are used to collect signals such as temperature,
acceleration or video from multiple locations within a certain geographic area.
They can be deployed faster and at lower cost than their wired counterparts,
which has led them to find applications in a range of environments, including
water pipes, forests and battlefields [1]. A WSN consists of a large number of
sensor nodes, which are devices equipped with a battery, a sensing module, a
microcontroller and a radio transceiver. Usually, the sensor nodes have little
energy and computational power.

We propose a Test-Based Scheduling Protocol (TBSP) that obtains and
maintains a TDMA schedule for periodically transmitting packets from a set of
sensor nodes referred to as data sources to a special node referred to as data
sink across multiple hops. TBSP is designed for applications in which the set
of data sources, their data rate, or the properties of the wireless links change
infrequently. The main goal of TBSP is to adapt the transmission schedule to
those infrequent changes in an energy-efficient way. The focus of TBSP is the



adaptation of the schedule rather than its initial construction because the initial
scheduling overhead is negligible in long-running monitoring applications.

TBSP is scalable because it is distributed and its buffering requirements do not
grow with the network size. Our simulation studies reveal that TBSP consumes
less energy than the existing protocols in networks that change relatively slowly.
In addition, TBSP is more likely to obtain a collision-free schedule than the
existing protocols because the existing protocols assign a given transmission slot
to a set of nodes if the hop distance between them exceeds a certain number,
whereas TBSP only assigns them the same slot if it has been proved empirically
that they tolerate each other’s interference.

The rest of the paper is organized as follows. Section 2 reviews some re-
lated work, Section 3 describes our protocol, Section 4 presents our simulation
methodology and results, and Section 5 concludes the paper.

2 Related work

MAC protocols for wireless sensor networks can be classified as contention-based
or TDMA-based [4]. The contention-based protocols respond quickly to traffic
demand variations but waste bandwidth and energy due to back-off periods,
packet collisions, idle listening and overhearing. The TDMA-based protocols
avoid these problems during the data transmission phase but incur in scheduling
and synchronization overhead. Overall, if the data are transmitted frequently
and periodically, which is the case as in the applications that we are considering,
the TDMA-based protocols outperform the contention-based protocols. Some
hybrid protocols seeking to combine the benefits of contention and TDMA have
been proposed [4], but for stationary networks they are less efficient than TDMA
[5]. Therefore, we focus our attention in TDMA protocols, and more specifically
in distributed TDMA protocols since centralized protocols such as [3] incur
significant maintenance overhead in large networks.

Let us make some general definitions about distributed TDMA protocols.
Since we are interested in periodic data-gathering in multihop networks, we
assume that a routing tree rooted at the data sink has been established. In this
tree, each node receives packets from its child nodes and relays these packets
to its parent node. Time is divided in TDMA frames, and each TDMA frame
consists of a number of transmission slots. The schedule is relatively periodic in
the sense that, if a node is allocated a certain transmission slot, it is allocated
that transmission slot in several consecutive TDMA frames. Let X be a sensor
node and let Y be its parent node. We say that a transmission slot allocated
to X is unfeasible if the joint interference from other nodes during that slot
is so large that Y cannot receive packets from X or X cannot receive ACKs
from Y . Feasible slots may become unfeasible, forcing their owners to seek new
transmission slots. If a node’s slot becomes unfeasible because of the interference
of some nodes that recently started using that slot, we say that the node has
been expelled from its slot or that the node has suffered an expulsion.



TRAMA [8] is a distributed TDMA scheduling protocol that adapts the
schedule to traffic changes very quickly but also consumes much energy. FLAMA
[7] greatly reduces the energy consumption by taking advantage of the fact
that the adaptivity requirements in many monitoring applications are modest.
However, the nodes in FLAMA incur significant overhead in either keeping track
of the priorities of all their two-hop neighbors or listening in slots in which they
do not receive packets. In addition, FLAMA does not minimize the buffering
requirements or the traversal time, which we define as the maximum number
of TDMA frames needed by a packet from the data sources to reach the data
sink. FlexiTP [5] solves these problems by considering latency and memory
requirements in its slot-selection algorithm. In Section 4, we present simulation
results comparing the performance of FlexiTP with that of our protocol.

To our knowledge, every existing distributed TDMA protocol for periodic data
gathering in WSNs uses a certain interference model, which is a model to decide
when a node’s interference is negligible. The most common interference model
is to neglect the interference originated more than k = 2 hops away, which is a
model referred to as the k-hop interference model. Unlike the existing algorithms,
TBSP does not use an interference model. We say that TBSP is a test-based
protocol because a node is allocated a given slot only if that slot has been proved
feasible in an empirical test that consists in transmitting a dummy packet in that
slot and checking whether the reception of this packet is acknowledged with an
ACK packet.

The existing protocols obtain fewer feasible slots than TBSP does because
their interference models may fail whereas TBSP bases its scheduling decisions in
empirical tests. When the existing protocols assign an unfeasible slot to a certain
node X, X incorrectly assumes that its parent node is unreachable, which makes
X disconnected from the network if X does not have other neighbors. TBSP is
less likely to suffer this connectivity problem because, up to a maximum number
of times, if X cannot communicate with its parent node during a slot, X tries to
change its slot, not its parent. Another disadvantage of the existing protocols
is that they require that every node listens to its neighbors in case it receives
messages from them indicating changes in their schedules. In contrast, TBSP
does not incur this idle-listening overhead because all scheduling decisions are
taken distributedly and without knowledge of other nodes’ schedules.

3 TBSP

The purpose of the Test-Based Scheduling Protocol (TBSP) is to obtain and
maintain a TDMA transmission schedule to transfer the data from the data
sources to the data sink periodically. The minimum unit that can be scheduled
to a node per TDMA frame is a Data Subframe (DS), which consists of two data
transmission slots. Since each DS should be used during at least 20 consecutive
TDMA frames, TBSP is only suitable for relatively static networks. Although we
assume infrequent network changes, we regard those changes as very important,
and the goal of TBSP is to adapt the schedule to them in an energy-efficient way.



. . . TF1 TF2 TF3 · · ·

CP LRS DS1 · · · DSM CIS1
. . . CISQ

DATA1 ACK1 DATA2 ACK2

Initialization data transmission phase

testing allowed testing forbidden

Fig. 1. Timing diagram of TBSP.

Every node seeking to obtain a DS is referred to as a contender, and the DS
that it seeks to obtain is referred to as its target DS. A simplified description of
the mechanism whereby a contender gains a DS is as follows. First, the contender
listens during a TDMA frame in order to identify DSs with low interference.
Then, the contender selects one of those DSs as its target DS. The target DS may
be unfeasible due to the hidden terminal problem, and the contender determines
whether that is the case by testing its target DS. The test consists in transmitting
a packet referred to as Testing Packet during its target DS and checking whether
it receives an ACK in response. The contender repeats the whole process with
different target DSs until the test is positive, in which case it has gained its target
DS and starts using it.

3.1 Timing diagram

Figure 1 shows that TBSP consists of an initialization phase followed by a data
transmission phase. The goals of the initialization phase are to obtain a routing
tree and to synchronize the sensor nodes for the first time. These two goals are
achieved by executing the distributed Bellman-Ford algorithm and the FTSP
protocol [6], respectively. The data transmission phase extends during the rest
of the network lifetime and consists of TDMA Frames (TFs), each of which is
composed of a CSMA Period (CP), a Listening Request Slot (LRS), M Data
Subframes (DSs) and Q Collision-Indication Slots (CISs). Every node keeps its
transceiver active during the CP, the LRS, any DS during which it is scheduled
to transmit or receive, and the CISs. We explain each of these slots as follows.

The CP is a CSMA period with two purposes. First, it is used to request and
receive neighbor information by nodes that need to change their parent node
in the routing tree. Second, it is used to request and receive synchronization
information by nodes that are not engaged in periodic data transmissions. Other



nodes do not use this synchronization method because the ACKs that they receive
from their parents as a response to their periodic packet transmissions already
contain synchronization information.

The Listening Request Slot (LRS) is a CSMA period used to transmit at most
one Listening Request Packet (LRP), which is a packet whereby the contenders
request their parents to listen during their target DSs.

The DSs are the Data Subframes that the sensor nodes use for their periodic
packet. A DS is the minimum time unit that can be assigned to a node. It consists
of two DATA slots with their respective ACK slots. We refer to these slots as
DATA1, ACK1, DATA2 and ACK2. The ACK packets include synchronization
information. During the DATA1 slot the contenders can transmit Testing Packets,
but not during the DATA2 slot. If a node X receives a packet during the DATA2

slot but not during the DATA1 slot, the first packet was probably lost because
another node, which we call Y , generated a collision by transmitting a Testing
Packet. In this case, we say that Y is the originator of a contender-induced
collision and X is its victim. If Y receives an ACK during ACK1, Y seizes its
target DS, thereby expelling X, which is undesirable.

The Collision-Indication Slots (CISs) are Q very short slots that are used
to reduce the number of expelled nodes by propagating a collision indication,
which is an indication that a contender-induced collision has occurred. We say
that a node receives a collision indication if it senses the channel busy during
any of the CISs. Collision indications are propagated as follows. In CIS1, the
victim transmits a dummy packet in order to make the channel busy. When the
victim’s one-hop neighbors sense the collision indication, they propagate it to
their own one-hop neighbors during CIS2. This process is repeated until CISQ so
that the collision indication reaches all the nodes within Q hops of the victim.
Hopefully, the originator of the collision also receives the indication, in which
case it refrains from seizing its target slot in order to prevent an expulsion. This
collision-indication mechanism is inappropriate in noisy environments because
noise might be interpreted as a collision indication. In such noisy environments,
we recommend not using the CISs at all (i.e. setting Q = 0), which according
to our simulation results provides degraded but sufficient results. As an added
benefit, the suppression of the CISs simplifies the protocol.

3.2 Algorithm to gain a DS

Every contender uses a DS-selection algorithm to select its target DS. Then, each
contender uses a wait-selection algorithm to decide the number of TDMA frames it
waits before testing its target slot. This wait aims to address the hidden terminal
problem by reducing the probability that two contenders’ attempt to gain the
same slot simultaneously, which would reduce the probability of obtaining a DS
for both nodes. After the wait, the contender contends to transmit a Listening
Request Packet in every TF until it succeeds. When it succeeds, the contender
transmits a Testing Packet during the DATA1 slot of its target DS. If it receives
an ACK, it has obtained its target DS. Otherwise, the contender repeats the



whole process until it obtains a DS. We detail the DS-selection algorithm and
the backoff algorithm as follows.

The DS-selection algorithm Each contender selects its target DS among the
DSs that verify the following properties. First, the signal level detected during
that DS by the contender must be low. Second, the contender should not have
tested that DS yet. Third, if the contender seeks the DS in order to relay a
packet from a child node, the number of the target DS must exceed the number
of the DS in which it is scheduled to receive packets from its child. This third
property is discussed in [5] and ensures small traversal time. We refer to the DS
with the smallest number that verifies the previous properties as DSmin. If the
contender has made fewer than a certain number of attempts (in our simulations
this number is four), the contender selects DSmin as its target DS. Otherwise,
the contender selects the first DS that verifies the above properties and whose
number exceeds the number of DSmin by a small random integer.

The wait-selection algorithm Every contender X keeps track of the number
nc of consecutive TFs without collision indications. Node X also selects a wait
parameter nb as a random integer between 0 and Nb − 1 (in our simulations,
Nb = 8). In each TF, the algorithm executed by X depends on the value of
nc − nb:

– If nc − nb is negative, X does not contend during the LRS of the current TF.
If X senses a collision indication, there is probably a contender nearby. In
order to avoid ruining the efforts of that contender, X resets nb as a random
integer between Nb and 2Nb − 1.

– If nc−nb is non-negative, X contends to transmit a Listening Request Packet
(LRP) in the LRS using CSMA. The backoff period to transmit the LPR is
a random quantity that is shorter for contenders closer to the data sink or
with full buffers. After X transmits the LRP, it transmits its Testing Packet
in the DATA1 slot of its target DS. If X receives an ACK from its parent
Y during slot ACK1, X has obtained its target DS, unless the ACK packet
from Y indicates that Y ’s buffer is full, in which case X resets its backoff
parameter nb as a random integer between 3Nb and 4Nb − 1. If, on the other
hand, X receives no response from Y , X sets nc = 0 and nb with a random
integer between 0 and Nb − 1, and reruns the DS-selection algorithm.

4 Performance evaluation

In order to evaluate the performance of TBSP, we develop a simulator using the
Python programming language. The code of our simulator and all our simulation
parameters are available in [2]. We compare our protocol with FlexiTP [5] because
FlexiTP is the only existing distributed and adaptive TDMA protocol for periodic
data gathering that shares our goal of minimizing the buffering requirements
and the traversal time. The major difference between TBSP and FlexiTP is that



FlexiTP uses the traditional 2-hop interference model whereas TBSP follows our
test-based approach of not keeping track of other nodes’ schedules and assigning
a given DS to a set of nodes if they have been proved empirically to be able to
tolerate each other’s interference.

4.1 Simulation scenario

The transmit and receive power are 63 mW, which are common in current
hardware. The noise figure of the receiver is 4.8 dB. The wireless channel has
attenuation exponent of 3.5, path loss at 100 m of 80 dB, and standard deviation
of the log-normal fading of σf = 8 dB. A transmission succeeds if the SINR at
the receiver exceeds 20 dB. Although there is no common transmission range for
all the network, we define t as a node’s hypothetical transmission range if there
were no fading and interference; in our case, t is 48 m.

The sensor nodes are randomly deployed within a square of side 3t and the
data sink lies in the middle of one of the sides of the square. We define the node
density ρ as N(πt2)/A, where N is the number of nodes and A is the area of
the square. Therefore, ρ is the average number of one-hop neighbors per node.
We discard any deployments where more than 10 % cannot reach the data sink,
which is rare for ρ ≥ 7. All the nodes are data sources and the routing tree is the
shortest path tree. Our results are computed as the average of 700 simulation
runs.

In order to evaluate the adaptivity of the two protocols, we simulate a network
that changes periodically at discrete points in time. We refer to each interval
during which no changes occur as a network cycle. At the beginning of each
network cycle, we remove a number S = 3 of nodes from the network and add an
identical number of new nodes at random locations within the monitored area.
These removals and additions force some sensor nodes to seek new parents and
transmission slots. We compare the way in which FlexiTP and TBSP enable
those nodes to obtain new slots as follows.

4.2 Total energy consumption Et

We now define three energy metrics, all of which exclude the energy consumed
in data transmissions, time synchronization and parent node selection because
these components are the same for TBSP and FlexiTP. First, we define the fixed
energy consumption Ef as the energy consumed per TDMA frame and per node
when no contenders are present in the network. Second, we define the variable
energy consumption Ev as the sum of extra energy consumed by all the nodes
each time that a transmission slot is acquired. Third and most importantly, Et

is the total energy consumed per node and per TDMA frame and is given by

Et = Ef +
Evfs
N

, (1)

where N is the total number of nodes in the network and fs is the average number
of slots that have to be gained in the network per TDMA frame.



We also define nn as the number of contenders forced to seek a slot by a
topology change, and ne as the number of contenders forced to seek a slot by an
expulsion. We define the adaptation latency as l = nw/nn, where nw is the total
number of TDMA frames waited by all the contenders before obtaining a slot.
In other words, the adaptation latency is the average number of TDMA frames
to required to gain a slot multiplied by 1 + ε, where ε = ne/nn is the expected
number of expelled nodes each time that a node obtains a slot. We make this
definition of adaptation latency in order to consider the negative influence of
expulsions.

In FlexiTP, Et is equal to Ev and proportional to Tf , which is the duration
of the FTS. The FTS is a CSMA slot used by the FlexiTP nodes to notify their
2-hop neighbors of the slots that they are going to use. The adaptation latency l
decreases linearly with Tf until a certain point. We refer to the l, Tf and Et at
this point as l0, T 0

f and E0
t respectively. In our simulations, we use set Tf = T 0

f

because it allows us to compute the energy consumption for any adaptation
latency l1 with the expression Et = E0

t l0/l1.

In order to compare the energy consumption of FlexiTP with that of TBSP in
a fair way, we have to consider the adaptation latency l simultaneously. Figure 2
presents the adaption latency as a function of the node density. FlexiTP’s latency
is much smaller than that of TBSP for the simulated parameters, and we take
this into account when we compare Et for the two protocols. Figure 2 shows
that the use of CISs (which are the slots shown in Figure 1) in TBSP reduces
the latency, but only for high node densities. For high node densities the CISs
reduce the latency because they reduce the number ne of expulsions. However,
for low densities the CISs do not reduce the latency because ne is already very
small without using any CISs.

10 15 20
0

5

10

15

node density ρ

a
d
a
p
ta

ti
o
n

la
te

n
cy

l
in

fr
a
m

es

TBSP Q = 0

TBSP Q = 2

FlexiTP

Fig. 2. Adaptation latency l. Note that although the latency of FlexiTP is up to 15
times smaller than that of TBSP, FlexiTP consumes at least 47 times more energy than
TBSP does according to Table 1.



Table 1. Comparison of energy metrics. The last column shows Ḡ, which is the number
of times that TBSP outperforms FlexiTP in terms of Et when we set the same maximum
adaptation latency for the two protocols.

Simulation parameters Energy metrics in mJ

Protocol ρ Ef Ev Et G Ḡ

FlexiTP 7 18.425 0.0 18.43
14 31.017 0.0 31.02
21 38.916 0.0 38.92

TBSP with Q = 0 7 0.031 65.9 0.36 51.2 6.2
14 0.031 193.1 0.51 60.8 5.0
21 0.031 335.6 0.59 66.0 4.5

TBSP with Q = 2 7 0.094 59.4 0.39 47.3 6.2
14 0.094 157.0 0.49 63.3 6.4
21 0.094 276.0 0.55 70.8 5.8

Table 1 compares FlexiTP and TBSP in terms of Ef , Ev and Et for different
node densities. Let us first examine Ef and Ev for the two protocols independently.
The two protocols suffer an increase in the energy consumption with the node
density. In the case of FlexiTP, this is because a larger T 0

f is needed for a node
to communicate its list of transmission slots to its increased number of neighbors.
In the case of TBSP, this is because more DSs are used for periodic transmissions
around each contender, which increases the number of failed attempts to gain a
DS and the number of expulsions. The node density is also important because it
determines the usefulness of the CIS mechanism. The CISs are only beneficial
for high node densities, since for low node densities the slight reduction of the
number of expelled nodes does not warrant the overhead it incurs.

Now let us examine in Table 1 the value of the total energy consumption Et.
This is the most important energy metric that we consider since it considers both
Ef and Ev using (1). Equation (1) shows that the speed of change of the wireless
links, which is controlled by fs, greatly affects Et. Table 1 uses fs = 1/20, which
implies that the network varies relatively slowly. For this value, the quotient
between Et for FlexiTP and TBSP, which we define as G, ranges between 47.3
and 70.8. However, in order to provide a fair comparison, we have to compare the
two protocols for the same adaptation latency. We provide this fair comparison
by defining Ḡ. We define Ḡ as the number of times that TBSP outperforms
FlexiTP when FlexiTP uses the shortest FTS that achieves the same adaptation
latency as TBSP does. Table 1 shows that TBSP is approximately 6 times more
energy efficient than FlexiTP, but the results would vary for other values of fs. If
we reduce fs, the advantage of TBSP over FlexiTP grows, and if we increase fs
over 1/3, FlexiTP becomes more efficient than TBSP. However, in environments
with a large fs, both TBSP and FlexiTP are outperformed by contention-based
MAC protocols and TRAMA [8].



4.3 Probability that a node is assigned an unfeasible slot

Figure 3 shows the probability pu that a node is assigned an unfeasible slot. For
FlexiTP, this probability decreases with the node density because a greater node
density increases the number of conditions that are required for a pair of nodes to
be assigned the same transmission slot. Figure 3 presents two versions of FlexiTP.
The first one is the original version, which neglects the interference from a node
if it lies at least k = 2 hops away, and the second one is a modified version
that uses k = 3. The modified version consumes twice as much energy as the
original version because it requires that each node reports its schedule to a greater
number of neighbors. Although this modified version of FlexiTP reduces pu, the
obtained pu is non-negligible. In FlexiTP, when a node obtains an unfeasible slot,
it unduly concludes that its parent node is unreachable since according to its
schedule information there is no interference in that slot. Therefore, the node
seeks a new parent, but in sparse networks, the node may not have any other
neighbor, in which case the node cannot reach the data sink. In contrast, TBSP
guarantees pu = 0 because it only assigns a slot to a node if the node’s ability to
communicate during that slot has been proved with a Testing Packet.

10 15 20
0

5 · 10−3

1 · 10−2

1.5 · 10−2

2 · 10−2

node density ρ

p
u

FlexiTP with k = 2

FlexiTP with k = 3

TBSP

Fig. 3. Probability pu that a node is allocated an unfeasible slot.

4.4 Other properties of the computed schedule

Our DS-selection algorithm seeks to obtain a schedule with the following proper-
ties. First, the schedule is short, which means that many nodes share each DS. A
short schedule requires a smaller number M of DSs per TF (shown in Figure 1),
thereby decreasing the frame rate and increasing the throughput. Second, the
schedule enjoys a small traversal time (i.e. the packets from the data sources
reach the data sink within a small number of TDMA frames). Third, the schedule
imposes buffering requirements that do not grow with the network size. FlexiTP
also seeks a schedule with these properties. Our simulation results show that
TBSP performs similarly in these three aspects but we do not show these results
due to space limitations.



5 Conclusions

The energy consumption of different scheduling protocols varies widely with the
maximum tolerable value of the adaptation latency, which is approximately the
average number of TDMA frames until a node obtains a transmission slot. If the
network changes slowly and an adaptation latency of 15 frames is tolerable, for
our simulation parameters, TBSP consumes six times less energy than FlexiTP.
TBSP is also likely to outperform the other existing distributed TDMA protocols
because it spares the sensor nodes from the burden of keeping track of their
neighbors’ schedules. Additionally, since TBSP does not use an interference
model, the sensor nodes are less likely to incorrectly assume that their parent
nodes are unreachable, and thus they are also less likely to become disconnected.

References

1. Arampatzis, T., Lygeros, J., Manesis, S.: A survey of applications of wireless sensors
and wireless sensor networks. In: Proc. IEEE Mediterranean Conf. Control and
Automation. pp. 719–724 (2005)

2. Dı́az-Anadón, M.O.: Randsched implementation.
http://github.com/ornediaz/wsnpy.git (2009)

3. Gandham, S., Ying, Z., Qingfeng, H.: Distributed minimal time convergecast schedul-
ing in wireless sensor networks. In: Proc. IEEE Int’l Conf. Distributed Computing
Systems. pp. 50–50 (2006)

4. Langendoen, K.G.: Medium access control in wireless sensor networks. In: Wu, H.,
Pan, Y. (eds.) Medium Access Control in Wireless Networks, Volume II: Practice
and Standards, pp. 535–560. Nova Science Publishers, Hauppage, New York (May
2008)

5. Lee, W.L., Datta, A., Cardell-Oliver, R.: FlexiTP: A flexible-schedule-based TDMA
protocol for fault-tolerant and energy-efficient wireless sensor networks. IEEE Trans.
Parallel Distrib. Syst. 19(6), 851–864 (Jun 2008)

6. Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: Robust multi-hop time synchronization
in wireless sensor networks. In: Proc. Int’l Conf. Wireless Networks (ICWN) (Jun
2004)

7. Rajendran, V., Garćıa-Luna-Aceves, J., Obraczka, K.: Energy-efficient, application-
aware medium access for sensor networks. In: Proc. IEEE Int’l Conf. Mobile Ad-Hoc
and Sensor Systems Conf. (MASS). pp. 630–637 (Nov 2005)

8. Rajendran, V., Obraczka, K., Garćıa-Luna-Aceves, J.: Energy-efficient, collision-free
medium access control for wireless sensor networks. Springer J. Wireless Networks
12(1), 63–78 (Feb 2006)


