
Randomized Scheduling Algorithm
for Data Aggregation in Wireless Sensor Networks

Mario O. Dı́az and Kin K. Leung
Electrical & Electronic Engineering Department, Imperial College, London, UK

{orne.diaz06, kin.leung}@imperial.ac.uk

Abstract—We consider a wireless sensor network in which a
routing tree has been established to transmit the information
from a set of source nodes to a data sink. The existing algorithms
to schedule the transmission slots in a way that allows the
data to be compressed as it moves towards the data sink are
centralized or rely on interference models that fail occasionally.
We propose a distributed TDMA scheduling protocol specifically
designed for data aggregation called RandSched. RandSched
tests whether the transmissions of different sets of nodes succeed
simultaneously and only assigns the same slot to them if they have
been proved to tolerate each other’s interference. By constructing
and testing the schedule incrementally, RandSched is more likely
to obtain a collision-free schedule than existing algorithms, which
is particularly important in large networks. This is confirmed by
our simulations, which also reveal a low scheduling overhead and
a reduced transmission latency.

Index Terms—distributed TDMA scheduling, data aggregation,
testing transmissions, sensor networks

I. INTRODUCTION

Wireless Sensor Networks (WSNs) can greatly expand our
ability to monitor many kinds of environments by gathering
information that was previously too expensive to obtain. One
of the many application domains of WSNs is the monitoring
of civil-engineering infrastructures, which is an application
domain called structural health monitoring. This work is part
of the WINES project [1], which investigates the use of WSNs
to monitor bridges, tunnels and water supply systems. In this
context, one of the most challenging applications of WSNs
is to transmit the acoustic emission signals and the vibration
measurements detected in bridges. This application requires
data rates of several kHz, much higher data rates than existing
bridge deployments [2]. When the bridge vibrations become
sufficiently big, the civil engineers need to receive periodically
a large amount of acceleration measurements gathered by the
sensor nodes, but when those vibrations fade, the WSN switches
back to a quiet state wherein no data needs to be reported.
This kind of operation is called event-triggered.

The event-triggered transmission of large amounts of data
poses two main challenges. First, in order to prevent the
overflow of the small buffers of the sensor nodes, the sensor
nodes have to start forwarding their data to their next hop
soon after the event is detected. Second, the intensive use of

This work is funded by UK EPSRC Research Grant EP/D076838/1,
entitled: “Smart Infrastructure: Wireless Sensor Network System for Condition
Assessment and Monitoring of Infrastructure”.

the radio transceivers strains the batteries of the sensor nodes,
which typically consist of two AA batteries that need to last
for a couple of years. This source of energy consumption can
be greatly reduced by compressing the data from neighboring
sensors within the network, which is a process referred to as
in-network data aggregation [3]. In network data aggregation
requires temporal coordination between the nodes, which can
be provided by a TDMA schedule. Although TDMA incurs in
overhead during the initial scheduling period, if the traffic is
stable during a sufficiently long time, the initial overhead is
outweighed by the reduction in idle listening, overhearing and
the number of packet collisions during the data transmission
period.

The existing TDMA scheduling algorithms for data aggrega-
tion are inadequate for the considered application for two main
reasons. Firstly, they are likely to obtain infeasible schedules,
which we define as schedules that generate collisions. This
is because they use models to determine whether two nodes
can be assigned the same transmission slot without suffering
a collision, and such models are bound to fail occasionally
because the interference range is unpredictable [4]. We quantify
the extent of this problem in our simulation results. Secondly,
the existing protocols take a long time and energy to setup the
transmission schedule because they are centralized and they
require updating the topological information periodically. As a
result their overhead scales poorly with the network size. In
order to overcome the feasibility and scalability limitations
of the existing scheduling algorithms for data aggregation,
we propose a distributed and randomized scheduling protocol
called RandSched.

The central contribution of RandSched is a novel scheduling
mechanism that tests different combinations of concurrent
transmissions through a lightweight contention process. By
not assuming any interference model and only scheduling
concurrently sets of transmitters that are proved to be mutu-
ally compatible, RandSched obtains a collision-free schedule
despite any irregularities in the interference range. In addition,
RandSched’s scheduling overhead scales better than that of
comparable protocols because it is distributed. These properties
enable RandSched to extend the scope of application of TDMA
and data aggregation to the large networks envisioned in
structural health monitoring applications.

This paper is organized as follows. Section II describes the
general operation of the WSN in our considered application



A B C

D

E F
1 2 3 4

1

Fig. 1. Example of schedule verifying the precedence requirement. Node F
is the data sink and thus the root of the routing tree. Each node is connected
to its parent in the tree. The interference relationships are not represented but
are fully considered in this work. The slot number assigned to each node is
written on top of the arrow that connects it to its parent. The number of slots
of the schedule is M = 4.

and the properties that it imposes on the TDMA schedule.
Section III reviews the related work. Section IV presents the
RandSched protocol. Section V proves some results about the
feasibility of the schedule computed schedule under certain
assumptions. Section VI describes our simulator and sections
VII through VIII present and discuss our simulation results.
Finally, Section IX concludes the paper.

II. SYSTEM MODEL

We consider a WSN in which all the relevant information
is forwarded to a special node referred to as the data sink,
possibly across multiple hops. The data sink is typically a
gateway connected to the Internet that relays the information
it receives to an external server. After the sensor nodes are
deployed, the WSN goes through different phases, starting with
the initialization phase, in which every sensor node discovers
the hop distance towards the sink of itself and its neighbors.
Then, the network enters the quiet phase and stays in that
phase as long as there is no data to transmit. During the quiet
phase the sensors keep their transceivers off most of the time,
but they turn them on periodically to resynchronize themselves
with their neighbors, update their neighbor lists, and listen for
potential transmissions.

When the sensor nodes decide to report their measurements
to the data sink or the data sink commands them to do so, the
setup phase is executed. The setup phase serves to prepare for
the data transmission phase and it has two goals. The first goal
is to obtain a routing tree. The routing tree is a tree whose
nodes are the sensor nodes and whose root is the data sink.
Each sensor node in the routing tree will receive packets from
its child nodes and transmit packets to its parent node in the
routing tree. The routing tree should be adapted to the specific
set of data sources in order to compress the data intensively
within the network. The FAT protocol [5] can obtain a routing
tree quickly and distributedly. The second goal of the setup
phase is to obtain a TDMA schedule. The TDMA schedule
indicates the transmission and reception slots of every node
in the routing tree. Let M be the total number of different
slots used by the schedule. Every node should have exactly
one transmission slot and one reception slot for each of its
children in the routing tree. Within each frame, every node
should transmit to its parent after it has received the data from
all its children, as illustrated in Figure 1. We refer to this
requirement as the precedence requirement.

The setup phase is followed by the transmission phase, which
is the only phase in which actual data is transmitted. This

phase consists of as many TDMA Frames (TFs) as necessary
until all relevant information from the current data stream has
been transmitted to the data sink. The transmission phase is
typically identical for all the protocols and is represented in
Figure 2. Each TF starts with a CSMA period that the nodes
can use to request time synchronization signals from their
parents or for other purposes. The rest of the TF consists of
M Transmission Blocks (TBs), and each TB consists of two
slots. The first slot in a TB is to transmit data and the second
one is to receive the corresponding ACK. In each TDMA
frame, every node receives a packet from each of its children
in the routing tree, aggregates their data with its own data to
create one compressed packet, and transmits that packet to
its parent. Several compression techniques for performing this
kind of compression for acoustic emission signals in bridges
are presented in [6]. The precedence requirement ensures that
the information from every node travels all the way to the data
sink within a single TDMA frame, resulting in low latency
and minimal buffering requirements.

III. RELATED WORK

In-network data aggregation is a popular research topic
[3]. In most of the protocols proposed to implement data
aggregation, such as TAG [7], the sensor nodes have to contend
with their neighbors each time that they have to transmit a
packet. Such contention-based MAC protocols are suitable if
the traffic pattern is unpredictable or the wireless links change
relatively fast. However, this is not usually the case in the WSNs
used to monitor civil-engineering infrastructures. Typically, the
sensor nodes have to transmit periodic data flows subject to
latency constraints. In addition, the wireless links between the
sensor nodes change slowly. Under these circumstances, using
a TDMA transmission schedule is more energy and bandwidth
efficient than using contention-based MAC protocol because
the initial scheduling overhead of the TDMA protocols is
outweighed by the avoidance of idle listening, overhearing and
collisions during the data transmission phase.

TDMA requires time synchronization [8], which is necessary
anyway in order to sample the data at the appropriate times.
Accurate time synchronization is particularly important in
applications using very high sampling rates, such as acoustic
emission monitoring [6]. Time synchronization is also used
by the FAT protocol [5] to avoid idle listening. When a node
is engaged in frequent communication with its parent in the
data aggregation tree, the node can receive synchronization
information piggybacked in the acknowledgments from its
parent at very little additional cost.

Obtaining a schedule with the shortest possible length M
is an NP-complete problem [9], so any practical algorithm
seeks an approximation of the optimal schedule. Most existing
TDMA scheduling algorithms use the k-hop interference model,
which considers a transmission successful if the minimum
hop distance between the receiver and any interferer exceeds
k. This model occasionally fails, causing the protocols that
rely upon it to obtain an infeasible schedule. This problem is
introduced in [10] and quantified in our simulation results. A



. . . CF1 CF2 . . . CFM CSMA period TF1 TF2 TF3 · · ·

W P1 R1 P2 R2 . . . PL RL U1 V1 U2 CSMA period TB1 TB2 . . . TBM

DATA ACK

Initialization
It includes the
construction of
routing tree and

time synchronization
Testing phase

It consists of contention frames (CFs). Finalization

RandSched

Data transmission phase
It consists of transmission frames (TFs)

First stage Second stage Final stage

In CF2, the contenders contend for the TB2 of every TF

Fig. 2. Time slots used by the RandSched protocol to obtain a TDMA transmission schedule. The testing phase consists of contention frames (CFs), and it
concludes when all the nodes have gained a transmission slot in the schedule. Each CF consists of a contention window W and 2L+ 3 slots. The Pi slots are
used by the contenders and the Ri slots by the servers.

group of protocols, called adaptive scheduling protocols, solve
this problem by rescheduling the unduly scheduled nodes during
the transmission phase. FlexiTP [10] is one such protocol.
However, FlexiTP does not satisfy the precedence requirement.
To the best of our knowledge, no adaptive scheduling protocols
with that property have been published and it would be difficult
to design one such protocol.

Algorithms [11] and [9] verify the precedence requirement.
We refer to both of them as BF2 because they are very similar,
they assign slots by traversing the routing tree in Breadth-First
order, and they use the 2-hop interference model. Similarly,
we refer to their direct extension using the 3-hop interference
model as BF3. Our simulation results in Section VIII-B show
that BF2 is likely to obtain an infeasible schedule and that
BF3 performs better in this respect. Both BF2 and BF3 scale
poorly with the network size because they are centralized,
which means that the sink needs to receive updates on each
node’s neighbors and to inform every node of its receiving and
transmitting slots. The EMAC protocol [12] is distributed and
incurs in very little overhead. However, EMAC’s interference
model is extremely poor because it only considers the hop
distance in the routing tree as opposed to the hop distance
in the connectivity graph. To sum up, the existing scheduling
algorithms for data aggregation are not simultaneously scalable
and robust to the interference-irregularity problem.

IV. THE RANDSCHED PROTOCOL

To overcome the limitations of the existing protocols, we
propose a distributed scheduling protocol for data aggregation
that satisfies the precedence requirement. We call our protocol
RandSched. In contrast to existing protocols, RandSched does
not use a model to determine whether the transmissions of
two nodes will succeed simultaneously. RandSched’s novel
approach consists of performing tests to determine whether a
set of nodes can be scheduled concurrently without collisions.
RandSched only schedules a set of transmitters concurrently
if one of the tests confirms that each node in the set can

tolerate the joint interference from all the other nodes in the
set. RandSched consists of a testing phase and a finalization
phase, as depicted in Figure 2.

The testing phase consists of Contention Frames (CFs). There
are as many CFs as necessary until every node in the routing
tree has obtained one Transmission Block (TB) that it can use
in every frame of the data transmission phase to communicate
with its parent. In each CF, some nodes contend to obtain
one TB from their respective parents. Those nodes are called
contenders, and those of them that succeed in their attempts
to gain a TB are referred to as winners of the current CF.
The winners of CFi are assigned TBi. In order to satisfy the
precedence requirement, a node only contends for a TB when
all its children have gained a slot. An exception to this rule
occurs when a node detects that one of its child nodes has
not obtained a slot or contended for one for a certain period,
in which case the node ignores the child because the child is
probably dead.

When every child node of the data sink has obtained a slot or
a certain sufficiently long period has elapsed, the testing phase
concludes. Then, the data sink starts the finalization phase by
creating a packet called finalization packet, which is a packet
containing information about the aggregation process such as
the start time of the first TDMA frame and the frame period.
The purpose of the finalization packet is to propagate the
finalization packet to every node in the network. To propagate
the finalization packet, every node forwards the packet to each
one of its children using CSMA. In order to ensure the correct
reception of the finalization packet, every node retransmits
this packet up to a certain maximum number of times until it
receives an ACK from each one of its child nodes.

A. Contention process during a Contention Frame (CF)

We explain now the mechanism whereby the sensor nodes
can gain a TB during one of the CFs of the testing phase. In
each CF, any node some of whose children have not gained
a TB is called a server, and any node that has not won a TB



but all of whose children have already won a TB is called a
contender. During a CF, every server listens for REQ packets
from its child nodes in the routing tree and every contender
contends for a TB by transmitting REQ packets to its parent.
The contenders use the REQ packets to test whether they
can communicate with their respective parents despite the
interference from other contenders. Figure 2 shows the structure
of a CF. The contention process during a CF is distributed and
consists of three different stages that every contender needs to
pass in order to become a winner. The contention process aims
to maximize the number of winners per CF in order to reduce
the length of the schedule M . Next, we detail the algorithms
executed by contenders and servers during a CF.

1) Algorithm executed by each contender during a CF:
At the beginning of the CF, each contender chooses a random
time within the W slot and checks the channel at that time. If
the contender senses the channel busy, it withdraws from the
contention in the current CF. Otherwise, the contender succeeds
in the first stage of the contention and starts transmitting
rubbish from that moment until the end of W in order to
try to prevent other contenders incompatible with itself from
becoming winners of the current CF.

At the end of the contention window W , each remaining
contender chooses a random integer r between 1 and M and
sleeps until slot Pr. In slot Pr, the contender sends a REQ
packet to its parent, and if it fails to receive an ACK in slot
Rr it withdraws from the contention in the current CF. On
the other hand, if it receives an ACK, the contender succeeds
in the second stage of the contention and we call it a finalist.
Each finalist transmits rubbish in slots Pr+1, . . . , PM without
listening for replies. This is to increase the probability that
other contenders incompatible with itself will fail to gain a TB
in the current CF.

In the third stage of the contention every finalist transmits a
REQ packet in slot U1, and if it fails to receive an ACK in slot
V1, it withdraws from the contention. Otherwise, the contender
succeeds in the third and last stage of the contention and has
become a winner of TB. Each winner declares its victory to
its parent by transmitting a final REQ packet in slot U2. Then,
the winner listens continuously until it receives a finalization
packet. Before receiving the finalization packet, the winner
may receive a packet asking the winner the number of the TB
that it obtained, in which case the winner replies with that
information.

2) Algorithm executed by each server during a CF: The
server listens in all the Pi slots, and if it receives a packet
from a child X in slot Pj , it transmits an ACK in slot Rj and
rubbish in slots Rj+1, Rj+2, . . . , RL in order to try to prevent
the success of the contenders incompatible with X . In slot U1,
if the server receives a REQ packet from X , it replies with an
ACK in slot V1. Finally, if it receives another REQ from X in
slot U2, the server records X as the winner of the TB that is
disputed in the current CF.

When all the child nodes of the contender have obtained a
TB, the server becomes a contender. However, if one of its
child nodes, which we call X , has not obtained a slot for a

long time, it may have been because X’s declaration of victory
in one of the U2 slots was lost. To account for this situation,
the server transmits a packet in any of the Pi slots asking X
to reply with a packet indicating the number of the TB that
it obtained. The contender may repeat this step several times,
and if it does not receive any response, the contender removes
X from its children list.

V. ANALYSIS OF THE FEASIBILITY COMPUTED SCHEDULE

Although it is common that the wireless links between the
sensor nodes change slowly over time and that the amount
of external interference is relatively small, at some points in
time these conditions may not be true. When these conditions
do not hold, we say that temporal anomalies have occurred.
If these anomalies are sufficiently frequent, they can disrupt
any scheduling protocol, and this applies also to RandSched.
However, RandSched is designed to handle several of these
anomalies. For example, RandSched is able to recover from
losses in the U2 slot, which is very important in order to avoid
a deadlock. RandSched also avoids other deadlocks by using
timers and setting a maximum number of repetitions in several
occasions.

In this section we assume that the wireless links do not
change over time and that there is no external interference.
These assumptions are not strictly true in practice and Rand-
Sched does not require them in order to be useful, but, if they
hold, RandSched verifies the important property of being able
to guarantee a collision-free schedule. This property justifies
why in our simulations RandSched always obtains a collision-
free schedule. The existing protocols do not verify this property
because the models that they use to determine which nodes
can be scheduled concurrently fail occasionally. Because of
this, in our simulations BF2 and BF3 obtain schedules that
suffer packet collisions despite the fact that BF2 and BF3 are
simulated under the same conditions as RandSched. The proof
about the collision-free nature of RandSched is interesting
because it helps understand the way RandSched works and the
rationale of its design.

We now introduce some definitions. We say that a set of
nodes form a feasible set if two conditions hold. First, if
they transmit simultaneously and there are no other simul-
taneous transmissions, their parents receive their respective
transmissions successfully. Second, if their parents transmit
simultaneously and there are no other simultaneous transmitters,
the concerned children receive their respective transmissions
successfully. We define a collision-free schedule as a schedule
that only schedules simultaneously feasible sets of nodes. In
our following proof, we also assume that RandSched does
not use timers or a maximum number of repetitions, since
this mechanisms are only designed to cope with external
interference and node failures.

Lemma 1: If RandSched finds a schedule, it is collision-free
Proof: RandSched only schedules simultaneously the

winners of the same CF, and thus we have to prove that the
winners of every CF form a feasible set. Let us see that this is
the case. In each CF, every finalist transmits a REQ packet to its



parent in slot U1. Some of the finalists may not receive an ACK
in slot V1, thereby failing to become winners. However, we
know that those that become winners were able to communicate
with their parents and receive their respective replies despite
the interference of the unsuccessful finalists. Therefore, the
winners will also be able to communicate with their parents in
slot U2 because there is less interference then. In other words,
when a node considers itself a winner, its parent will be aware
of that, ensuring that the schedule is consistent. In addition,
the transmitters were proved to be a feasible set in slots U1

and V1.
Theorem 2: If L ≥ 2 and a feasible schedule exists,

RandSched always obtains a collision-free schedule.
Proof: We have to prove that the algorithm does not

reach a deadlock. We saw that every node is aware of the
victories of its children, which means that no server never
waits unnecessarily for its children and there is at least one
contender in every CF. Since we also have L ≥ 2, there is a
nonzero probability that exactly one contender X will transmit
a REQ packet in slot P1. When this happens, X receives an
ACK because there are no other interferers and a schedule
exists, and thus X could become a finalist. In slots P2 to
PL, X transmits rubbish, and other contenders may transmit
their first REQ. If in slot P2 a contender Y transmits a REQ,
Y only becomes a finalist if tolerated the interference of X
and other contenders in slot P2. If Y becomes a finalist, X
may not be able to tolerate Y , in which case X would not
become a winner in the current CF, but at least one node, Y ,
would become a winner if there were no more contenders.
Repeating this argument in every Pi slot for i ∈ {3, . . . L}, we
obtain that there will be at least one finalist that can tolerate
the interference of all the other finalists, and thus there will
be at least a winner in the CF under our initial assumptions.
Therefore, the probability of there being some winners in every
CF is strictly positive. This property, together with the fact
that there are as many CFs as necessary, means that a schedule
will be found eventually, and due to the previous lemma, it
will be feasible.

VI. SIMULATOR DESCRIPTION

We wrote a packet-level simulator in Python whose code is
available in [13]. The simulator decides that a node receives a
packet correctly if the SINR at its transceiver exceeds 20 dB.
The noise figure of the transceivers is 5. The wireless channel is
static, with attenuation exponent α = 3.5, path loss at 100 m of
80 dB, and log-normal shadow fading with standard deviation
$σf =8$ dB. Although there is no common transmission range
for all the network, we define t as a node’s hypothetical
transmission range if there were no fading and interference; in
our case, t is 48 m.

The sensor nodes are deployed randomly within an 8t× 3t
rectangle, and the sink is in the middle of the left border
of that rectangle. We define A as the area of the rectangle,
and the node density ρ as N(πt2)/A, where N is the number
of nodes. We say that a random node deployment yields a
connected network if at least 90 % of the nodes can reach the

gateway directly or through multiple hops. In our simulations,
we discard any deployment that yields an unconnected network,
which is rarely necessary for ρ ≥ 7. We set all the nodes as
data sources and use the shortest path tree as the routing tree.

VII. PROPERTIES OF THE SCHEDULING PROCESS

An important performance metric of RandSched is the
duration of the testing phase. Since according to Figure 2
this duration is M × L, we now examine L and M and how
they scales with the network size and the node density

A. Choosing the optimal L

In order to reduce the duration of the scheduling operation,
we should choose the smallest value of L that makes the
protocol work properly. In particular, we need a value of L
that yields a sufficiently small M . To see how a larger L reduces
M , consider the operation of RandSched in the case where
two neighboring contenders contend to obtain a slot during the
same CF. Also assume that either each contender’s transmission
to its parent cannot succeed if the other contender transmits
simultaneously, or the ACKs of their respective parents collide
if they are transmitted simultaneously. Now let us compare
two alternative scenarios. The first scenario is that during the
second stage of the contention the two contenders transmit
their first packet in different slots, and the second scenario is
that they transmit in the same slot. In the first scenario, one of
the contenders may obtain a slot in the current CF, whereas in
the second scenario no contender will succeed in the current
CF. Therefore, if we increase L we increase the probability of
the first scenario and thus we reduce M .

We average 500 simulation runs to evaluate the influence
of L on M and present the results in Figure 3. The figure
reveals that a value of L as small as 4 is sufficient to achieve
a sufficiently small M across all node densities. In particular,
L = 4 yields a schedule less than 6 % longer than the schedule
obtained for L = 12. Choosing L = 4 implies that each
CF in the testing frame consists of twelve slots, which may
represent a significant overhead for small networks. However,
we are mostly interested in how our protocol scales with the
network size. We know that larger networks do not require
bigger values of L because the purpose of a large L is to
resolve the collisions within a local area. In addition, Figure
3 shows that the value of L required to obtain a small M
does not depend on the node density either. Since the overhead
of RandSched is dominated by the factor M × L and L is
constant, the scalability of RandSched is determined by the
growth of M with the network size, which we study next. In
the rest of our simulations we set L = 12.

B. Growth of M with the network size and the node density

We evaluate the dependence of M with the network size
with another set of simulations. We set ρ = 7 and consider
a monitored area with the shape of a square with side s. We
perform simulations for values of s of up to 12t. For the
biggest simulated area, the number of nodes in the network is
N = 321. Figure 4 presents the average of 100 simulations



4 6 8 10 12

0

2

4

6

number L of contention pairs

re
la

tiv
e

in
cr

ea
se

in
M

in
%

ρ̄ = 7
ρ̄ = 18
ρ̄ = 29

Fig. 3. Influence of the number L of pairs of contention slots per CF on the
size M of the computed schedule. The schedule size M decreases with L.
The graph compares the value of M for different values of L with the value
of M for the largest tested value of L.

100 200 300

0.6

0.7

0.8

0.9

number of node in the network N

M
/N

Fig. 4. The length M of the schedule computed by RandSched grows more
slowly than the number of nodes in the network N .

and shows that M , and thus RandSched’s overhead, grows
less than linearly with N . This is because in large networks
childless nodes are approximately uniformly distributed in the
network and the number of winners per contention frame is
approximately proportional to the monitored area, particularly
in the first few CFs. Therefore, as the network size grows,
more nodes can be assigned the same TB.

Figure 5, which results from averaging 3000 simulation runs,
shows that RandSched obtains requires a small number M of
scheduling operations independently of the node density ρ.

C. Scheduling overhead of the three protocols

The total overhead of RandSched includes the overhead
of both the testing and the finalization phase. However, the
finalization phase is much shorter than the one of the testing
phase. In fact, it is possible to use during the finalization
phase the inverse of the schedule computed during the testing
phase, with the difference that instead of using full CFs it is
sufficient to transmit a short packet. Therefore, the overhead of
RandSched is given by the overhead of the testing phase, that
we have shown to grow at a lower rate than N . In contrast,
since BF2 and BF3 are centralized, they require that the data
sink informs every node of its transmission and reception slots.
As a result, the nodes near the sink have to relay an amount of
traffic proportional to N , and thus the execution time of BF2
and BF3 grows at least linearly with the number of nodes in

7 14 28
0

0.5

1

node density ρ

M
/N

BF2
BF3

RandSched

Fig. 5. RandSched outperforms BF2 and BF3 in terms of latency for different
node densities ρ. Here, M is the schedule length and N is the number of
nodes in the network. The latency increases with M .

the network N . Therefore, the execution time of RandSched
grows with the network size at a lower rate than BF2 and BF3
do.

In all the considered scheduling protocols, the sensor nodes
are listening during most part of the scheduling process without
receiving anything. This idle listening is the major source
of energy consumption of the three protocols, which is very
directly connected to the their execution time. Therefore, the
energy consumed by RandSched also scales better with the
network size than that of BF2 and BF3.

VIII. QUALITY OF THE COMPUTED SCHEDULE

A. Upstream latency

We define upstream latency as the maximum interval required
by any packet to travel from any source node to the data sink.
In order to reduce the upstream latency we have to reduce M ,
which is shown in Figure 5 as a function of the node density.
According to this figure, RandSched enjoys a smaller latency
than BF2 and BF3 do for all the simulated node densities.
This can be explained by the fact that the BF algorithms tend
to assign the last slots in the schedule to the nodes close to
the sink independently of their number of children, whereas
RandSched tends to assign the first slots to childless nodes
regardless of their depth in the tree. Figure 5 also shows that
BF2 slightly outperforms BF3 in terms of M . This is because
it imposes fewer conditions on a set of transmitters to be
considered feasible.

B. Feasibility of the computed schedule

We define Pu as the probability that a node in the routing tree
is unable to reach the data sink due to an infeasible schedule.
We estimate Pu by averaging the results of 3000 simulation
runs and present the results in Table I. Considering the number
of simulations and that the number N of simulated nodes
varies between 53 and 214 for different values of the node
density ρ, our simulations cannot estimate Pu when Pu is
smaller than 10−3, but such small values of Pu are acceptable
in many applications. Therefore, using only our simulations
results it would be incorrect for Table I to show Pu = 0 for
RandSched, since the best we can claim based on simulations
only is Pu < 10−3. The reason why we write Pu = 0 and not
Pu < 10−3 is that based on the previous section we know that
under our simulation settings, which are the same for the three
protocols, RandSched always schedules all the nodes correctly.



protocol

ρ BF2 BF3 RandSched

7 0.0796 ≈ 10−3 0 (theoretical)
14 0.0321 < 10−3 0 (theoretical)
28 0.0098 < 10−3 0 (theoretical)

TABLE I
PROBABILITY Pu THAT A NODE CANNOT REACH ITS PARENT DUE TO AN
ERROR IN THE COMPUTED SCHEDULE. THIS PROBABILITY IS SHOWN FOR

DIFFERENT PROTOCOLS AND VALUES OF THE NODE DENSITY ρ.

This can obviously not be guaranteed if the channel properties
vary during the scheduling process.

Table I shows that BF2 suffers high Pu, particularly for
sparse deployments, whereas BF3 performs significantly better.
We see that Pu decreases with the node density ρ. This is
because as ρ grows, the number of hops between two nodes
becomes more strongly correlated with the distance between
them, and that distance is an important factor in the attenuation
between them. Although for small networks BF3 may obtain a
value of Pu sufficiently small, this may not be the case for very
large networks, since in large networks some packets carry the
information from many nodes. RandSched is unique in that it
combines a low Pu with a distributed operation.

IX. CONCLUSION AND FUTURE WORK

In many WSNs used in structural health monitoring, the
wireless links change slowly with time and external interference
occurs sporadically. In such WSNs, TDMA protocols offer
important advantages over contention-based protocols. However,
in this paper we have shown that the existing TDMA scheduling
algorithms for data aggregation do not simultaneously obtain
a collision-free schedule with high probability and incur in an
overhead that scales adequately with the number of nodes in
the network. Obtaining a collision-free schedule is particularly
important for data aggregation since some packets contain
the information from many nodes and losing those packets
would lose a great amount information. The existing scheduling
algorithms are unlikely to obtain to a collision-free schedule
because they use models to determine which nodes can be
assigned the same slot and those models are bound to fail.

We have proposed a TDMA scheduling protocol for data ag-
gregation called RandSched. RandSched builds the transmission
schedule distributedly and incrementally. In each scheduling
step, RandSched performs a test to check whether the set of
nodes to which it plans to assign the same slot can tolerate the
interference from the other nodes in the set and whether the
ACKs are also successfully received. In this way, RandSched
is very likely to obtain a collision-free schedule.

Our simulations show that RandSched obtains shorter sched-
ules and thus shorter latencies than the existing algorithms.
RandSched’s overhead is relatively small since twelve slots
are sufficient to determine a set of concurrent transmitters
independently of the node density and the network size. In
addition, each node does not need to incur the overhead of
monitoring its neighbors and reporting any changes to the to

the data sink, possibly across multiple hops. More importantly,
RandSched’s overhead grows more slowly than that of existing
protocols. This property and the better feasibility guarantees
make RandSched more scalable than the existing protocols.

In our future work, we will explore other applications of
our contention mechanism. Furthermore, we will modify our
protocol so that once the data aggregation schedule is computed
it can be modified on demand with as few changes as possible.

REFERENCES

[1] WINES Consortium, “Wired and Wireless Intelligent Networked Sys-
tems (WINES) – Smart Infrastructure Project,” [Online]. Available:
www.winesinfrastructure.org, 2008.

[2] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. D. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” in Proc. ACM/IEEE Conf. Information Processing in
Sensor Networks (IPSN), 2007, pp. 254–263.

[3] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless
Commun. Mag., vol. 14, no. 2, pp. 70–87, 2007.

[4] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of
radio irregularity on wireless sensor networks,” in Proc. ACM Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys), Boston, MA,
USA, Jun. 2004, pp. 125–138.

[5] M. O. Dı́az and K. K. Leung, “Efficient data aggregation and transport
in wireless sensor networks,” Wiley J. Wireless Comm. and Mobile
Computing, 2009.

[6] C. U. Grosse, S. D. Glaser, and M. Krüger, “Condition monitoring of
concrete structures using wireless sensor networks and MEMS,” in Proc.
Society for Photo-optical Instrumentation Engineers (SPIE), vol. 6174,
2006, pp. 407–418.

[7] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
AGgregation service for ad-hoc sensor networks,” in Proc. ACM SIGOPS
Symp. Operating System Design and Implementation (OSDI). Boston,
MA, USA: ACM Press, Dec. 2002, pp. 131–146.

[8] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Elsevier J. Computer Networks, vol. 52, no. 12, pp. 2292 – 2330, 2008.

[9] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: a cross-layer
platform for real-time embedded wireless networks,” Springer J. Real-
Time Systems, vol. 37, no. 3, pp. 183–231, Dec. 2007.

[10] W. L. Lee, A. Datta, and R. Cardell-Oliver, “FlexiTP: A flexible-schedule-
based TDMA protocol for fault-tolerant and energy-efficient wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 6, pp.
851–864, Jun. 2008.

[11] V. Annamalai and S. K. S. Gupta, “On tree-based convergecasting in
wireless sensor networks,” in Proc. IEEE Wireless Comm. and Networking
Conf. (WCNC), S. Gupta, Ed., vol. 3, 2003, pp. 1942–1947.

[12] X. Liang, W. Li, and T. A. Gulliver, “An energy-efficient MAC protocol
exploiting the tree structure in wireless sensor networks,” in Proc. IEEE
Military Comm. Conf. , W. Li, Ed., 2007, pp. 1–7.

[13] M. O. Dı́az, “Randsched implementation,”
http://github.com/ornediaz/wsnpy.git, 2009.


