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Abstract—A complex-valued least-squares (CLS) framework is
proposed in order to enhance the accuracy of the smart discrete
Fourier transform (SDFT) algorithms for power system frequency
estimation in the presence of noise and harmonic pollution. It is
first established that the underlying time-series relationship among
the consecutive DFT fundamental components employed by the
original SDFT algorithms does not hold when noises or unexpected
higher order harmonics are present, resulting in suboptimal es-
timation performances. To eliminate these adverse effects on the
frequency estimation, the degree of the relationship breakdown is
next quantified via a model mismatch error vector. The CLS tech-
nique is then employed to minimize the mean-square model devia-
tion when the SDFT voltagemodelling is suboptimal. The proposed
CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more
accurate than the original ones in heavily noisy and harmonic-dis-
torted environments, typical scenarios in online frequency estima-
tion. The benefits of the SDFT framework are verified by simula-
tions for various power system conditions, as well as for real-world
measurements.

Index Terms—Complex-valued least squares (CLS), discrete
Fourier transform (DFT), frequency estimation.

I. INTRODUCTION

S YSTEM frequency is a key parameter in the control of gen-
eration-load imbalance in power grids; it can be used, for

instance, to determine the harmonic contents of currents drawn
by nonlinear loads. Accurate frequency estimation is essential,
since maintaining the nominal frequency value is a prerequisite
for the stability of the grid and normal operation of electrical
devices. Considering the power system voltage waveform as a
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pure sinusoid, the time between two zero crossings is an indi-
cation of system frequency [3]. However, in reality, the mea-
sured voltages are only available in a noisy or distorted form,
and a variety of architectures and algorithms has been devel-
oped to cater for these scenarios. These include phase-locked
loops (PLLs) [4], [5]; notch filters [6]; least-squares (LS) tech-
niques and their variants [3], [7], [8]; adaptive filtering [9]–[11];
Kalman filtering [12], [13]; Taylor series [14], [15]; and itera-
tive approaches [16]–[18].
The discrete Fourier transform (DFT)-based frequency esti-

mation algorithms have been used in many aspects of power
system analysis. However, the well-known coherent sampling
properties of the DFT guarantee accurate frequency estimation
only when the sampling frequency is an integer multiple of the
power frequency of interest. In practice, coherent sampling is
not guaranteed due to either the finite duration of data seg-
ments or random frequency fluctuations, yielding leakage and
picket fence effects. To mitigate these effects and to improve
the resolution of DFT in electric power systems, window func-
tions are utilized to reduce the leakage effects, while the errors
caused by picket fence effects are reduced by interpolation al-
gorithms [19]–[26]. However, the interpolation schemes usually
require a large number of samples (1024 samples or more) for
the DFT operation, and this computational burden limits their
usefulness in practical applications. Apart from the improved
windowing functions and interpolation schemes, various algo-
rithms have also been proposed to improve the DFT perfor-
mance in the context of asynchronous sampling. The methods
in [27] and [28] present correction algorithms based on the in-
stantaneous phase-angle errors, while the method in [29] ad-
justs the sampling frequency in order to create synchronous
sampling conditions. Digital filters were also used to attenuate
the oscillations within the phase-angle involution of the DFT
components that were used [30], [31]. The work in [32] intro-
duces a recursive relationship between two consecutive funda-
mental components of the DFT in order to extract the instanta-
neous phasor and system frequency; however, the implicit syn-
chronous sampling assumption results in a suboptimal perfor-
mance when the system frequency deviates from its nominal
value. To solve this problem, accurate recursive relationships
among consecutive DFT fundamental components have been
proposed, leading to simple but precise formulas to calculate
the system frequency in the presence of higher order harmonics
and frequency deviations. The performance advantages of such
smart DFT (SDFT) algorithms over the conventional recursive
DFT and Prony methods have been addressed in [1] and [2].
In this paper, a complex-valued least squares (CLS) frame-

work is proposed to enhance the accuracy of smart discrete
Fourier transform (SDFT) algorithms [1], [2] for power system
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frequency measurements in the presence of noise and unex-
pected harmonic pollution. It is first illustrated that the fun-
damental time-series relationship among the consecutive DFT
fundamental components employed by the original SDFT algo-
rithms does not hold in the presence of noises or higher order
harmonics. For rigor, we first analyze the degree of this relation-
ship breakdownwithin a sliding window of SDFT. The complex
least squares (CLS) is then used in conjunction with SDFT to
minimize the degree of model mismatch and provide enhanced
frequency estimation in noisy and harmonic-distorted environ-
ments. The benefits of the proposed CLS-SDFT algorithms are
verified by simulations in various power system conditions, as
well as for a real-world measurement.

II. DERIVATION OF THE PROPOSED COMPLEX LEAST-SQUARES
ENHANCED SMART DFT (SDFT) ALGORITHMS

A. Original Smart DFT (SDFT) Algorithm
The voltages of a power system in a noise-free and har-

monics-free environment can be represented in a discrete time
form as

(1)

where is the voltage amplitude, is the initial phase angle,
, and is the nominal system frequency. For the

sampling rate , where is the number of
samples per voltage cycle, the voltage can be expressed as

(2)

where is the voltage phasor. The fundamental fre-
quency component within the DFT of is then given by

(3)

When the system frequency deviation is taken into considera-
tion by setting , from (2) and (3), we obtain

(4)

Upon denoting the first term of (4) by and the second term
by , then in (4) can be written as

(5)

For simplicity, we shall denote the exponential kernel in (4) as

(6)

Then, from (4) and (5), it follows that:

(7)

and, therefore, the three consecutive DFT fundamental compo-
nents based on (4) can be expressed as

(8)

After some algebraic manipulations of (8), the following time-
series relationship among three consecutive DFT fundamental
components can be found:

(9)

where

(10)

which can be estimated by

(11)

Therefore, the estimate of the system frequency by the SDFT
algorithm is given by [1]

(12)

where denotes the real part of a complex number.

B. SDFT in the Presence of Harmonics
In the presence of an th-order harmonic, the system volt-

ages assume the form

(13)

Upon taking into consideration frequency deviation from the
nominal frequency, the fundamental frequency component
within the DFT of can now be obtained as
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(14)

We shall denote the third and the fourth terms by and ,
respectively, then (14) can be simplified as

(15)

to give the following relationships within two consecutive DFT
fundamental components:

(16)

We can now construct a new variable as

(17)

and use a general polynomial function of to
represent for any integer1 . Based on (17), the fol-
lowing time-series relationship among three consecutive sam-
ples of holds

(18)

Upon substituting (17) into (18), and after a few algebraic ma-
nipulations, we obtain the polynomial equation employed by the
so-called algorithm to estimate , given by

(19)

Now that the variable has been determined, the al-
gorithm gives the estimated system frequency using (12).
Remark 1: Although the principle behind the SDFT fre-

quency estimation algorithms is theoretically correct, these
algorithms are inaccurate when the voltage samples contain
noise or unexpected higher order harmonics, since in such
situations, the equalities in (9) and (18) do not hold and an
implicit real-valued property of is likely to be
violated.
Although the original SDFT algorithms aim to use in

the argument of (12) to eliminate the effects of noise and higher
order harmonics pollution on the performance of frequency es-
timation, this does not address the root of the problem—the in-
coherent sampling for DFT algorithms, which, in turn, renders
frequency estimates inaccurate.

1Note that using (6), we have , where for nota-
tion simplicity, we define . The term can
be represented by using the Chebyshev polynomials of the first
kind as , and the unique polynomials can be de-
fined by the recurrent relation as , ,
and . Therefore,

can be uniquely represented as a polynomial function of ,
where .

C. Complex-Valued Least-Squares Enhanced Smart DFT
(CLS-SDFT) Algorithms
To solve the aforementioned problems encountered by the

original SDFT algorithms, we propose using a complex-valued
least-squares (CLS) framework. Since the relationship in (9)
holds for an arbitrary time instant , by assuming that the
system parameters are time-invariant within a sliding window
consisting of consecutive DFT fundamental components, we
have

...
...

...
(20)

Upon defining , this gives

(21)

We next quantify the extent to which the time-series relation-
ship among three consecutive DFT fundamental samples in (9)
breaks down in the presence of artifacts. The corresponding
error vector has the form

(22)

Its Hermitian transpose is given by (since is real)

(23)

which makes it possible for the optimal coefficient to be
solved by CLS, with the additional constraint that is real-
valued. The CLS framework aims to find an optimal in order
to minimize the total mean-square error

(24)

over a number of available observations, where denotes
the vector norm. To this end, the partial derivative
becomes

(25)

Upon setting , the LS solution to by the pro-
posed CLS enhanced SDFT (CLS-SDFT) algorithm is obtained
as

(26)

Observe that the real-valued property of has now been guar-
anteed and, hence, the system frequency estimated by the
CLS-SDFT algorithm is given by

(27)

In the next stage, we consider how to establish the CLS frame-
work on the basis of the algorithm, specifically de-



XIA et al.: A COMPLEX LEAST SQUARES ENHANCED SMART DFT TECHNIQUE FOR POWER SYSTEM FREQUENCY ESTIMATION 1273

signed for frequency estimation of harmonic-polluted system
voltages. To this end, upon revisiting (18), the estimation error
vector can be expressed as

(28)

where . From (17), the estima-
tion error vector can be further evaluated as

(29)

while its Hermitian transpose is

(30)

This also guarantees the real-valued nature of and . After
some algebraic manipulations, the total mean-square error
becomes

(31)

By setting the partial derivative , we arrive at
the polynomial equation for the optimal coefficient obtained
by the proposed CLS enhanced algo-
rithm, in the form

(32)

where . Note that like within the original
algorithm, this polynomial equation contains multiple

roots for , however, the correct value of can be selected by
employing the reasonable assumption that the system frequency
does not deviate from the nominal frequency toomuch; there-
fore, the value of is close to . Note that (32) is
valid for any integer higher order harmonic, that pollutes power
system voltages. Here, for illustration purposes, we provide the

detailed expression of (32) for ; in the same spirit, ex-
pressions can be obtained when other higher order harmonics
are involved. For 3, we have

(33)

Substituting (33) into (32), we finally arrive at the polynomial
function of by the proposed algorithm, given in
(34) at the bottom of the page.

III. SIMULATIONS

To verify the performance advantages of the proposed com-
plex-valued least squares enhanced SDFT (CLS-SDFT) algo-
rithms over the original ones, numerical simulations on various
types of voltage signals encountered in the real power system
were conducted in the MATLAB programming environment.
This includes noise and harmonic contaminations, frequency
drift, power oscillations, and sudden power changes. A compar-
ison of the results with a newly developed LS-based technique
[8] is also presented to demonstrate the merit of the proposed
method. In the implementation of all the considered algorithms,
the nominal system frequency and the sampling frequency
of the simulated power systems were fixed at 50 Hz and

1600 Hz, respectively; therefore, 32 sam-
ples of the system voltage were required to calculate the DFT
fundamental component, while for a fair performance compar-
ison, the observation length of the LS method was also set to
32. As required for practical implementations, a third-order

low-pass infinite impulse response (IIR) Butterworth filter with
a crossover frequency at 20 Hz was employed to postfilter the
frequency estimates, when handling the voltages in the presence
of noise or harmonics [33]. The observation length of the pro-
posed SDFT algorithms was fixed at 5.
We first performed the statistical variance and bias analysis of

all considered frequency estimators for a noisy power system.
The system frequency was 50.5 Hz, and devi-
ated from the nominal 50 Hz, resulting in an asynchronous sam-
pling situation. The pure sinusoidal voltage was contaminated
with zero-mean Gaussian noise, giving

, to which the white noise was added with various
SNRs. Fig. 1(a) and (b), respectively, illustrates the estimation
variance and the estimation bias of all the considered frequency
estimators against different levels of noise. The consistent per-
formance advantages of the SDFT-based algorithms over the
LS algorithm can be observed and, as designed, the proposed
CLS-SDFT algorithm using an observation window with mul-
tiple samples exhibited better noise rejection than the original

(34)
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Fig. 1. Performance comparison among all of the considered frequency
estimation algorithms for a noisy power system and against different SNRs.
(a) Estimation variance. (b) Estimation bias. The frequency estimates have
been postfiltered by a low-pass IIR filter.

one. The results were obtained by averaging 1000 independent
trials.
In the next set of simulations, we considered a moder-

ately harmonically distorted power system, where the system
frequency was deviated to 49.8 Hz and the voltages

.
The performances of the original SDFT and the proposed
CLS-SDFT algorithms in such a situation are given in Fig. 2.
Since the original SDFT algorithm does not consider higher
order harmonics in its underlying mathematical formulation,
the existence of this third harmonic within the voltage causes
the breakdown of the time-series relationship among the three
consecutive DFT fundamental components given in (9), which,
in turn, renders frequency estimates inaccurate. On the con-
trary, by design, the proposed CLS-SDFT algorithm is based
on the minimization of the degree of the breakdown of such
a relationship, and it thus provides higher immunity to the
harmonic pollution while an observation window lasting for 5
samples enables it to track the system frequency more accu-
rately with a maximum estimation bias of 0.0129 Hz compared
with 0.3545 Hz obtained by the original SDFT algorithm. By

Fig. 2. Performance comparison between the proposed CLS-SDFT and the
original SDFT frequency estimation algorithms for a moderately harmon-
ically distorted power system, where

, and 49.8 Hz.

Fig. 3. Performance comparison between the proposed CLS-SDFT
and the original SDFT frequency estimation algorithms (without post-
filtering) for a heavily harmonically distorted power system, where

, and
50.1 Hz.

applying the low-pass filtering technique on the frequency
estimates, the estimate ripples can be further suppressed; the
maximum estimation bias of the original SDFT and the pro-
posed CLS-SDFT algorithms were, respectively, reduced to
0.0019 and 0.0005 Hz.
We next considered the frequency estimation performances

of the proposed algorithm and the original
for a heavily harmonic distorted power system,

where the third, fifth, and seventh harmonics were added
to the voltages, giving

, and the system frequency was
deviated from the nominal 50 Hz at 50.1 Hz. As shown in
Fig. 3, and rendered unavoidable frequency
oscillations due to the submodelling of the system voltage, for
instance, the fifth and seventh harmonics were not considered
in the underlying voltage modelling of the algorithm.
However, the proposed CLS framework enabled both algo-
rithms to track the exact system frequency more accurately;
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Fig. 4. Frequency responses of all considered algorithms under power system abrupt change. (a) Amplitude steps. (b) Phase-angle steps. (c) Frequency steps.

TABLE I
MAXIMUM ESTIMATION ERRORS OF SDFT-BASED FREQUENCY ESTIMATORS IN

THE PRESENCE OF HEAVY HARMONICS AFTER APPLYING THE
POSTFILTERING TECHNIQUE

the maximum frequency estimation bias of and
was, respectively, 0.0851 Hz and 0.0176 Hz. The

postfiltering technique was able to suppress ripples in the esti-
mate effectively, and the final results were provided in Table I.
It is worth mentioning that the original frequency
estimation algorithm is also able to deal with this paradigm, by
employing matched voltage modeling, however, the advantage
of the proposed CLS framework is in that by minimizing the
degree of system modelling breakdown, it equips SDFT algo-
rithms with robustness in frequency estimation even when the
voltage modelling is suboptimal; for instance, in the presence
of noise and unexpected higher order harmonics.
We next considered the frequency estimation performances

of the LS, the original SDFT, and the proposed CLS-SDT algo-
rithms in the cases where the power system experiences abrupt
changes in the amplitude, phase angle, and system frequency.
These disturbances may result from faults or switching opera-
tions, and were modeled by step changes in the corresponding
parameters as specified in the IEEE standard C37.118 [34]. The
simulated power systems were initialized with
50.1 Hz, giving , and they ex-

perienced a 10% step in amplitude, a 10 step in phase angle
and a 1 Hz step in frequency at 0.2 s, respectively, and were
reversed back to the initial condition at 0.3 s. As illustrated in
Fig. 4, all of the considered frequency estimators suffered from
transition effects during the disturbances. In all cases, the orig-
inal SDFT and the proposed CLS-SDFT exhibited a similar but
shorter settling period compared with the LS-based frequency
estimator. It has to be pointed out that the response time of the
proposed CLS-SDFT algorithm depends on the length of the
voltage observations. Its response time to power system abrupt
changes is expected to be prolonged when a larger number of
voltage observations is involved. However, the advantages of
the proposed CLS framework are in a relatively short observa-
tion window, for instance, an observation window with 5 sam-
ples used in these experiments is sufficient. This equips the

SDFT algorithm with enhanced robustness in the presence of
noise and harmonics-contaminated environments, as indicated
by the previous simulations.
Power systems may experience modulations in amplitude,

phase angle, and system frequency modulations, when the bal-
ance of power generation and consumption is violated due to
system disturbances, such as a fault or loss of load. We first
considered the case when the power system, whose system fre-
quency was fixed at 49.9 Hz, experienced a slow 0.2 p.u. voltage
amplitude modulation at 1 Hz. As shown in Fig. 5(a), the pro-
posed CLS-SDFT algorithm produced the smallest estimation
error (with a maximum of 2.5 mHz) among all of the considered
frequency estimators. We next considered the simulated power
system which experienced sinusoid phase modulation, given by

(35)

where was 0.2 p.u., was 1 Hz, and was . The
equivalent modulated system frequency can be expressed as

(36)

Simulation results in Fig. 5(b) show that the frequency estimates
by the SDFT-based algorithms tracked the modulated system
frequency more quickly and accurately than the LS-based
frequency estimator under this slowly changing condition. As
shown in Fig. 5(c), these frequency tracking advantages can be
also observed in a more dynamical frequency modulation case,
where the system experienced combined sinusoid frequency
variations, described by

elsewhere
(37)

The frequency-tracking capabilities of all considered fre-
quency estimators in the context of frequency ramp variations
were investigated next. Two examples of 1 and 1 Hz/s ramps
were considered. The responses of all the considered frequency
estimators for the positive and negative rate of change are
shown in Fig. 6(a) and (b), respectively. Again, the frequency
estimates by SDFT-based algorithms followed the ramps very
closely, while the LS algorithm had fairly large errors as the
frequency deviated from its nominal value.
In the last set of simulations, a real-world power system

was considered. The phase-ground voltage was recorded at a
110/20/10 kV transformer station. The measured voltage with
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Fig. 5. Frequency responses of all the considered algorithms under power system modulations. (a) Amplitude modulation. (b) Phase modulation. (c) Frequency
modulation.

Fig. 6. Responses of all considered algorithms for frequency ramps. (a) Fre-
quency rise at a rate of 1 Hz/s. (b) Frequency decay at a rate of 1 Hz/s.

a system frequency around 50 Hz was sampled at a rate of
1 kHz and was normalized with respect to its normal peak
voltage value. The frequency tracking performances of all the
algorithms considered for this experiment are given in Fig. 7.
To meet the commercial needs, the frequency estimates by all
approaches at time instant were postfiltered using the filter
given by , where
was measured for every cycle. Conforming with the analysis

Fig. 7. Frequency estimation by the least squares (LS), the original SDFT, and
the proposed CLS-SDFT algorithms for real-world system voltages.

TABLE II
ESTIMATION VARIANCES OF ALL CONSIDERED ALGORITHMS FOR THE

REAL-WORLD SYSTEM VOLTAGES

in Section II, the proposed CLS framework clearly equips the
SDFT algorithm with enhanced robustness in the presence
of measurement noise, as evidenced by a smaller estimation
variance, given in Table II.

IV. CONCLUSIONS
We have introduced the CLS framework in order to equip

the original SDFT algorithms with robustness to noise and
harmonics, key issues in practical applications. This has
been achieved by employing the error vector to represent
the breakdown of the relationship between the consecutive
DFT fundamental components within a sliding window under
consideration. The so-introduced mean-square minimization
allows the SDFT algorithms to provide robust frequency esti-
mates even when the underlying voltage model is suboptimal,
such as in the presence of measurement noises or unexpected
higher order harmonics. The performance advantage of the
proposed CLS framework has been verified by simulations over
various power system conditions, as well as for a real-world
measurement.
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