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a b s t r a c t

An augmented affine projection adaptive filtering algorithm (AAPA), utilising the full

second order statistical information in the complex domain is proposed. This is achieved

based on the widely linear model and the joint optimisation of the direct and conjugate

data channel parameters. The analysis illustrates that the use of augmented complex

statistics and widely linear modelling makes the AAPA suitable for the processing of

both second order complex circular (proper) and noncircular (improper) signals. The

derivation is supported by the analysis of convergence in the energy conservation

setting. Simulations on both benchmark and real-world noncircular wind signals

support the analysis.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic gradient based adaptive filtering algorithms
are designed to minimise an instantaneous error power
and have been widely used in numerous signal processing
applications, such as noise cancellation, system identifica-
tion and adaptive prediction. The normalised least mean
square (NLMS) algorithm is the most popular choice, due
to its stability, fast convergence and low complexity.
Learning algorithms based on the least squares estima-
tion, such as the recursive least squares (RLS) algorithm
[1], converge faster, however, in practical applications,
they suffer from high computational complexity. To
combine the benefits of both approaches, that is excellent
stability, low computational complexity and fast conver-
gence, the affine projection algorithm (APA), based on
affine subspace projections, has been introduced as a link
between the NLMS and RLS algorithm [2,3]. This way, the
APA updates the weight vector on the basis of both past
ll rights reserved.
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and current input vectors, resulting in faster convergence
as compared to the NLMS algorithm [4,5], and much fewer
computations and enhanced stability as compared to the
RLS algorithm [6].

These class of APAs have been originally introduced
for real-valued signals. However, some real world pro-
cesses, such as vector fields and directional signals with
‘‘intensity’’ and ‘‘direction’’ components, are best under-
stood when considered complex-valued [7]. Unfortu-
nately, standard adaptive filtering algorithms in C are
straightforward extensions of the corresponding
algorithms in R, and do not make full use of the algebraic
structure of the complex domain. For instance, it is
commonly assumed that the covariance matrix of a zero
mean complex vector z is EfzzHg, and is seen as an
extension of the real covariance EfzzTg, achieved by
replacing the vector transpose operator by the Hermitian
transpose. However, recent advances in the so-called
augmented complex statistics show that the complex
covariance matrix EfzzHg is not sufficient to fully describe
second order statistics in C, and the pseudo-covariance
matrix EfzzT g should also be considered. This proves
particularly important when processing second order
noncircular (improper) signals [8].
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The use of augmented complex statistics has opened
the possibility to design adaptive filtering algorithms
suitable for processing both circular and noncircular
signals. Such algorithms are based on a widely linear
model [8,9], and are usually called ‘‘widely linear’’ or
‘‘augmented’’ algorithms. Examples include the work by
Valkama et al. who have introduced widely linear
algorithms in wireless communication applications to
solve the complex-valued I/Q mismatch problem [10,11].
Other examples include the widely linear complex least
mean square (WL-CLMS) algorithm for direct sequence
code division multiple access (DS-CDMA) applications by
Schober et al. [12], which used a real valued error. It was
subsequently extended to the augmented CLMS (ACLMS)
algorithm in [13] in order to cater for both complex
signals and complex errors. A widely linear recursive least
squares (WL-RLS) algorithm was proposed by Douglas
[14], and also by Kuh and Mandic [15] in the context of
complex augmented kernels. An extension of widely
linear filtering for feedback systems was addressed in
[16].

In the context of the APAs, a widely linear affine
projection algorithm (WL-APA) for DS-CDMA applications
has been proposed by Lima and Lamare [17]. This
algorithm is based on the minimisation of real-valued
error vector, as required in the DS-CDMA setting, where
the error vector is given by

eWL
APA ¼ bAPA�R½UAPAwWL

APA� ð1Þ

and UAPA is the matrix of complex-valued received signals,
deteriorated by complex noise, bAPA are the desired real-
valued input symbols, i.e. amplitude-shift keying (ASK) or
binary phase-shift keying (BPSK), wWL

APA is the weight
vector for estimating the coefficients of adaptive linear
multiuser receivers, and R½�� denotes the real part of
complex numbers. However, as this algorithm is devel-
oped for DS-CDMA and uses a real-valued output error, it
does not fully exploit the advantages of the widely linear
model [12]. Recent attempts to make full use of the
information available in the widely linear model include
the approach in [18], which optimises two separate cost
functions for the ‘‘standard’’ and ‘‘conjugate’’ parts of the
widely linear model.

A rigorously derived augmented APA algorithm for the
processing of general complex signals (both circular and
noncircular) is therefore still missing. To this end, we now
provide a general augmented APA (AAPA), which uses a
global cost function in the derivation and is a generic
extension of standard APA for the filtering of second order
noncircular signals. This algorithm simplifies into the
normalised ACLMS when only a scalar instantaneous error
is considered. The analysis of steady state performance is
provided based on the energy conservation principle [19]
and illustrates the advantage of AAPA over APA for the
filtering of general complex signals.

The paper is organised as follows. We first provide
mathematical foundations for complex-valued second
order statistics and the CR (Wirtinger) calculus
[7,20,21], which is required for the derivation of a real-
valued function of complex variables. Next, the derivation
of the augmented affine projection algorithm (AAPA) is
provided in an adaptive prediction context. The improve-
ment in the performance of AAPA as compared to the
standard APA is supported by both theoretical analysis
and simulations performed on benchmark complex-
valued both circular and noncircular signals, as well as
on real world noncircular wind measurements. In this
paper, the following notations are adopted: ð�Þr and ð�Þi
denote respectively the real and imaginary parts of
complex variables in partial derivative respectively, E½��

the statistical expectation operator, j � j the absolute value
of a variable, J � J the Euclidean norm of a vector, ð�Þ� the
complex conjugate, ð�ÞT the transpose of a vector or a
matrix, ð�ÞH the Hermitian conjugate of a vector or a
matrix, Trð�Þ the trace of a matrix, and Rð�Þ the real part of
complex numbers.

2. Augmented complex statistics and CR calculus

2.1. Augmented complex statistics

For a complex random vector (RV) z 2 CL, with
Efzg ¼ 0, we can define two correlation matrices,
Czz ¼ EfzzHg and Pzz ¼ EfzzT g, which are called respec-
tively the covariance matrix and pseudo-covariance
matrix [9]. Based on augmented complex statistics, in
order to allow for completing the second order statistical
information available within a complex RV to be utilised,
the signal model should be based on the augmented 2L�

1 complex vector za ¼ ½zT ; zH�T [22]. Then, the augmented
covariance matrix Czaza contains information from both
the covariance and pseudo-covariance matrices of z, and
is given by [8]

Czaza ¼ E
z

z�

� �
½zHzT � ¼

Czz Pzz

P�zz C�zz

" #
ð2Þ

When Pzz ¼ 0, the complex random vector is called
second order circular (proper), indicating that the prob-
ability density functions for such processes are rotation
invariant. However, in most applications, complex signals
are noncircular, and the probability density functions are
not rotation invariant. Second order noncircular signals
are termed improper.

2.2. CR calculus

The Cauchy–Riemann conditions for a holomorphic
complex function f ðzÞ ¼ uðx; yÞþ jvðx; yÞ impose very strict
constraints, i.e. @u=@x¼ @v=@y and @u=@y¼�@v=@x. How-
ever, for real-valued functions with complex arguments,
these conditions are not satisfied. For instance, our usual
cost function, E¼ 1

2 ee� ¼ 1
2 jej

2, a real-valued function of
complex variables, is not analytic, and so it does not
satisfy the Cauchy–Riemann conditions. Since a holo-
morphic function f ðzÞ : C-C can be viewed as a real
bivariate function of its real and imaginary components
gðx; yÞ : R2-R2, the stringent conditions of standard
complex derivative (C�derivative) of f ðzÞ can be circum-
vented by using CR calculus. The main idea behind CR

calculus is to introduce the so-called conjugate coordi-

nates, which apply to any real or complex-valued function
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dependent on both z and z�. This way, the R�derivative of
a real function of a complex variable f ¼ f ðz; z�Þ is given by

@f

@zjz� ¼ const
¼

1

2

@f

@x
�j
@f

@y

� �
ð3Þ

where @f=@x and @f=@y are the partial derivatives of the
function f ðzÞ ¼ f ðz; z�Þ ¼ gðx; yÞ, whereas the conjugate
R�derivative (R��derivative) of a function f ðzÞ ¼ f ðz; z�Þ

is given by

@f

@z�jz ¼ const
¼

1

2

@f

@x
þ j

@f

@y

� �
ð4Þ

For a complex analytic function, the R�derivative is
equivalent to the standard C�derivative and the
R��derivative vanishes. For real functions of complex
variables (cost function), the R��derivative gives the
standard pseudo-gradients. Thus, the generalised Cauchy–
Riemann conditions can be expressed as @f=@z� ¼ 0, that is,
in stochastic gradient filtering in the complex domain, the
gradient should be calculated with respect to the
conjugate weight vector. This was used in the derivation
of the proposed AAPA. For more detail, see an excellent
overview by Kreutz-Delgado [20] and a recent book by
Mandic and Goh [7].
2.3. Augmented CLMS

To illustrate the convenience of the use of CR calculus
and to connect standard augmented CLMS (ACLMS) and
AAPA, we shall now use CR calculus to derive ACLMS.
Consider the output of an adaptive filter,

yðkÞ ¼ xT ðkÞhðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
standard part

þ xHðkÞgðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
conjugate part

where hðkÞ and gðkÞ are the L� 1 weight vectors of filter
coefficients, and xðkÞ denotes the L� 1 input vector at
time instant k, defined as

xðkÞ ¼ ½xðkÞ; . . . ; xðk�Lþ1Þ�T

The error eðkÞ and cost function JðkÞ can be defined as

eðkÞ ¼ dðkÞ�yðkÞ and JðkÞ ¼ 1
2 jeðkÞj

2 ¼ 1
2eðkÞe�ðkÞ

and the update form of the standard part weight vector
hðkÞ is given by

hðkþ1Þ ¼ hðkÞ�mrJhðkÞ

where m is the learning rate. Note that since JðkÞ is a real-
valued function of complex variables, the steepest decent
points to the direction of @JðkÞ=h�ðkÞ (see Section 2.2).
Following the R��derivative (4)

rJhðkÞ ¼
@JðkÞ

@h�ðkÞ
¼

1

2

@JðkÞ

@hrðkÞ
�j

@JðkÞ

@hiðkÞ

� �

and

@JðkÞ

@hrðkÞ
¼ �

1

2
eðkÞx�ðkÞ and

@JðkÞ

@hiðkÞ
¼�

j

2
eðkÞx�ðkÞ
Finally, the derivative of cost function JðkÞ with respect to
h�ðkÞ becomes

@JðkÞ

@h�ðkÞ
¼

1

2
eðkÞx�ðkÞ

and the update of hðkÞ becomes

hðkþ1Þ ¼ hðkÞþmeðkÞx�ðkÞ ð5Þ

Note that a factor 1
2 has been incorporated into m. In a

similar way, we can obtain

gðkþ1Þ ¼ gðkÞþmeðkÞxðkÞ ð6Þ

Combining hðkÞ and gðkÞ into an augmented weight vector
waðkÞ, we have

waðkþ1Þ ¼waðkþ1ÞþmeðkÞx�aðkÞ

where xaðkÞ is the augmented input vector
xaðkÞ ¼ ½xT ðkÞ;xHðkÞ�T .

3. Augmented affine projection algorithm

The output vector yðkÞ of a FIR adaptive filter trained
by AAPA can be written as

yðkÞ ¼ XT
ðkÞhðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

standard part

þ XH
ðkÞgðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

conjugate part

ð7Þ

where hðkÞ and gðkÞ are the L� 1 weight vectors, and XðkÞ
is the L� K data matrix in the filter memory at time
instant k, defined as [3]

XðkÞ ¼ ½xðk�Kþ1Þ; . . . ;xðkÞ� ð8Þ

where K is the observation length, and xðkÞ denotes the
L� 1 input vector,

xðkÞ ¼ ½xðk�1Þ; . . . ; xðk�LÞ�T ð9Þ

The vector of desired signals dðkÞ from the K most recent
observations is given by

dðkÞ ¼ ½dðk�Kþ1Þ; . . . ; dðkÞ�T ð10Þ

whereas the error vector eðkÞ for the augmented affine
projection filter is

eðkÞ ¼ dðkÞ�yðkÞ ð11Þ

To update the weight vectors gðkÞ of the ‘‘conjugate’’ part
and hðkÞ of the ‘‘standard’’ part of a widely linear affine
projection filter, similar to the standard APA approach
[23], based on the principle of minimum disturbance, we
need to solve a constrained minimisation problem given
by

JðkÞ ¼ Jhðkþ1Þ�hðkÞJ2
þJgðkþ1Þ�gðkÞJ2

þR½ðdðkÞ�XT
ðkÞhðkþ1Þ�XH

ðkÞgðkþ1ÞÞH �K� ð12Þ

where the K � 1 dimensional vector K comprises La-
grange multipliers and JðkÞ is a real function of complex
variables. Based on the widely linear model (7), the
constraints in (12) become

dðkÞ ¼XT
ðkÞhðkþ1ÞþXH

ðkÞgðkþ1Þ ð13Þ

To calculate the update for the ‘‘conjugate’’ part of the
widely linear model, that is, for the weight vector gðkÞ, the
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Table 1
Comparison of the computational complexity between standard APA and

proposed AAPA.

Standard APA Proposed AAPA

Multiplications ðK2þ2KÞLþK3þK2 ð2K2þ4KÞLþK3þK2

Additions ðK2þ2KÞLþK3þK2-K ðK2þ4KÞLþK3þ2K2
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cost function JðkÞ can be rewritten as

JðkÞ ¼ Jhðkþ1Þ�hðkÞJ2
þ½gðkþ1Þ�gðkÞ�H½gðkþ1Þ�gðkÞ�

þ1
2½ðd

H
ðkÞ�hH

ðkþ1ÞX�ðkÞ�gHðkþ1ÞXðkÞÞK�

þ1
2½ðd

T
ðkÞ�hT

ðkþ1ÞXðkÞ�gT ðkþ1ÞX�ðkÞÞK��

As JðkÞ is a real-valued function of complex variables (as
shown in Section 2.2) the steepest descent points to the
direction of @JðkÞ=@g�ðkþ1Þ. Following the R��derivative
in (4), we have

@JðkÞ

@g�ðkþ1Þ
¼

1

2

@JðkÞ

@grðkþ1Þ
þ j

@JðkÞ

@giðkþ1Þ

� �
ð14Þ

and

@JðkÞ

@grðkþ1Þ
¼ gðkþ1Þ�gðkÞ�

1

2
XðkÞK

@JðkÞ

@giðkþ1Þ
¼�jðgðkþ1Þ�gðkÞÞþ

j

2
XðkÞK

Finally, the derivative of the cost function JðkÞwith respect
to the coefficients vector g�ðkþ1Þ becomes

@JðkÞ

@g�ðkþ1Þ
¼ gðkþ1Þ�gðkÞ�

1

2
XðkÞK ð15Þ

Setting this derivative to zero, the update of the
‘‘conjugate’’ part of the AAPA model is obtained as

gðkþ1Þ�gðkÞ ¼ 1
2XðkÞK ð16Þ

In the same way, the update of weight vector hðkÞ of the
‘‘standard’’ part of the AAPA model is given by

hðkþ1Þ�hðkÞ ¼ 1
2X�ðkÞK ð17Þ

Following the standard APA approach [23], to eliminate
the Lagrange multiplier vector K from (16) and (17), we
shall premultiply both sides of (16) by XH

ðkÞ and both
sides of (17) by XT

ðkÞ to yield

XH
ðkÞðgðkþ1Þ�gðkÞÞ ¼ 1

2XH
ðkÞXðkÞK

XT
ðkÞðhðkþ1Þ�hðkÞÞ ¼ 1

2XT
ðkÞX�ðkÞK

Upon adding these two equations together and using the
constraints (13) and the widely linear model (7), the
output error becomes

eðkÞ ¼ 1
2ðX

H
ðkÞXðkÞþXT

ðkÞX�ðkÞÞK ð18Þ

giving the Lagrange multiplier vector

K¼ 2½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1eðkÞ ð19Þ

Thus, the update of the ‘‘conjugate’’ weight vector within
the widely linear AAPA becomes

gðkþ1Þ ¼ gðkÞþmXðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1eðkÞ

In a similar way, for the update of the ‘‘standard’’ weight
vector within AAPA, we have

hðkþ1Þ ¼ hðkÞþmX�ðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1eðkÞ

To avoid singularities due to the inversion of a rank
deficient matrix, a positive constant d, called the regular-
isation parameter, is added to the above updates, giving

hðkþ1Þ ¼ hðkÞþmX�ðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞþdI��1eðkÞ

ð20Þ

gðkþ1Þ ¼ gðkÞþmXðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞþdI��1eðkÞ

ð21Þ

In the derivation, the estimation is assumed to be of
sufficient order. Compared with the weight update of
standard APA [23], the AAPA includes both the estimate of
the covariance matrix XT

ðkÞX�ðkÞ and its complex con-
jugate XH

ðkÞXðkÞ in the denominator term within the
update for both the weight vectors hðkÞ and gðkÞ. Observe
that, as desired, when the observation length is K ¼ 1,
AAPA degenerates into the normalised ACLMS [7], given
by

hðkþ1Þ ¼ hðkÞþ
mx�ðkÞeðkÞ

xHðkÞxðkÞþxT ðkÞx�ðkÞþd

gðkþ1Þ ¼ gðkÞþ
mxðkÞeðkÞ

xHðkÞxðkÞþxT ðkÞx�ðkÞþd

and when the denominator is omitted, we have the
standard ACLMS algorithm [7]. Table 1 presents the
computational complexity of the proposed AAPA
compared with the standard APA based on [1]. Note that
the differences in the computational complexity are
marginal.

4. Steady state mean square error (MSE) performance of
APA and AAPA

The aim of this section is to demonstrate analytically
the suitability of the proposed AAPA to filter complex-
valued noncircular data, for which the standard APA is
suboptimal, and to provide insight into its convergence.
Consider a second order noncircular (improper) teaching
signal dðkÞ arising from the widely linear model

dðkÞ ¼ xT ðkÞhoþxHðkÞgoþvðkÞ ð22Þ

where ho and go are unknown optimal weight vectors that
we wish to estimate, vðkÞ represents the measurement
noise and xðkÞ is the input vector with a positive-definite
covariance matrix Cxx ¼ E½xxH�.

4.1. Steady state analysis of standard APA for noncircular

signals

The steady state mean square error performance of the
standard APA is evaluated based on the mean square error

MSE¼ lim
k-1

E½jeðkÞj2� ð23Þ
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where eðkÞ, the first element of eðkÞ, is the error at the time
instant k, given by

eðkÞ ¼ dðkÞ�xT ðkÞhðkÞ ð24Þ

and hðkÞ is the weight vector, for which, the update is
given by [23]

hðkþ1Þ ¼ hðkÞþmX�ðkÞ½XT
ðkÞX�ðkÞþdI��1eðkÞ ð25Þ

We next follow the approach from [19], based on the
energy conservation principle, to formulate a closed form
solution of the MSE for improper signals represented by
the widely linear model (22). Using this approach, the
update in (25) can be rewritten in terms of the weight
error vector ~hðkÞ ¼ ho�hðkÞ as

~hðkþ1Þ ¼ ~hðkÞ�mX�ðkÞ½XT
ðkÞX�ðkÞþdI��1eðkÞ ð26Þ

Multiplying both sides of (26) by XT
ðkÞ gives

XT
ðkÞ ~hðkþ1Þ ¼XT

ðkÞ ~hðkÞ�mXT
ðkÞX�ðkÞ � ½XT

ðkÞX�ðkÞþdI��1eðkÞ

ð27Þ

Then the a posteriori and a priori error vectors epðkÞ and
eaðkÞ can be introduced as [23]

epðkÞ ¼XT
ðkÞ ~hðkþ1Þ and eaðkÞ ¼XT

ðkÞ ~hðkÞ

The MSE analysis of standard APA is given in [24],
however, we here need to account for the differences
coming from the widely linear model, as the standard APA
is optimal only for second order circular (proper) data.
This results in the following expression for eðkÞ, obtained
by substituting (22) into (24),

eðkÞ ¼ eaðkÞþvðkÞþXH
ðkÞgo ð28Þ

where vðkÞ ¼ ½vðkÞ;vðk�1Þ; . . . ;vðk�Kþ1Þ�T . Note that since
we assume a widely linear model, compared with the
work in [24], an extra term ‘‘XH

ðkÞgo’’ is included. The
excess mean square error (EMSE), can be defined as

EMSE¼ lim
k-1

E½jeaðkÞj
2� ð29Þ

We can now employ the energy conservation principle to
derive the excess mean square error (EMSE) of standard
APA, denoted by EMSEs. A sketch of the derivation is given
in Appendix A; for a full derivation for standard APA
applied to circular signals we refer to [24]. When the
regularisation parameter d is small enough, EMSEs can be
conveniently analysed for two cases: for a small learning
rate m, we obtain

EMSEs ¼
ms2

v

2�m
þ
mgH

o E½CsðkÞ�go

TrðE½AsðkÞ�Þ
ð30Þ

whereas, for a large learning rate, we obtain

EMSEs ¼
ms2

v

2�mTrðCxxÞ E
K

JxðkÞJ2

" #
þmgH

o E½CsðkÞ�go

 !
ð31Þ

where

AsðkÞ ¼ ½X
T
ðkÞX�ðkÞþdI��1XT

ðkÞX�ðkÞ½XT
ðkÞX�ðkÞþdI��1

and

CsðkÞ ¼XðkÞAsðkÞX
H
ðkÞ ð32Þ

Compared with the expressions of EMSEs for standard APA
for circular signals in [24], both (30) and (31) contain an
additional term due to the ‘‘conjugate’’ term ‘‘XH

ðkÞgo’’
within the widely linear model (22), illustrating that the
standard APA is a suboptimal solution for the filtering of
second order improper (noncircular) signals.

4.2. Steady state analysis of augmented APA for noncircular

signals

Similarly to the analysis in Section 4.1, the update of
‘‘standard’’ weight vector of AAPA in (20) can be rewritten
in terms of its weight error vector ~hðkÞ ¼ ho�hðkÞ as

~hðkþ1Þ ¼ ~hðkÞ�mX�ðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞþdI��1eðkÞ

ð33Þ

Multiplying both sides of (20) by XT
ðkÞ gives

XT
ðkÞ ~hðkþ1Þ ¼XT

ðkÞ ~hðkÞ�mXT
ðkÞX�ðkÞ½XH

ðkÞXðkÞ

þXT
ðkÞX�ðkÞþdI��1eðkÞ ð34Þ

For the ‘‘conjugate’’ weight error vector ~gðkÞ, we have

~gðkþ1Þ ¼ ~gðkÞ�mXðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞþdI��1eðkÞ

ð35Þ

and

XH
ðkÞ ~gðkþ1Þ ¼XH

ðkÞ ~gðkÞ�mXH
ðkÞXðkÞ½XH

ðkÞXðkÞ

þXT
ðkÞX�ðkÞþdI��1eðkÞ ð36Þ

Note that both the terms ~hðkÞ and ~gðkÞ have the same
generic form, and that the denominator in the above
updates is different from that of standard APA in (26).
Then the a posteriori and a priori error vectors epðkÞ and
eaðkÞ can be introduced as

epðkÞ ¼XT
ðkÞ ~hðkþ1ÞþXH

ðkÞ ~gðkþ1Þ ð37Þ

eaðkÞ ¼XT
ðkÞ ~hðkÞþXH

ðkÞ ~gðkÞ ð38Þ

and the sum of (34) and (36) gives the relationship
between the a posteriori and a priori error vectors epðkÞ

and eaðkÞ in the form

epðkÞ ¼ eaðkÞ�mðXH
ðkÞXðkÞþXT

ðkÞX�ðkÞÞ

� ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞþdI��1eðkÞ ð39Þ

The next step is to use both the a posteriori and a priori

error vectors in the update equations (33) and (35) to
obtain the updates of weight error vectors as functions of
eaðkÞ and epðkÞ

~hðkþ1Þ ¼ ~hðkÞ�X�ðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1 � ðeaðkÞ�epðkÞÞ

ð40Þ

and

~gðkþ1Þ ¼ ~gðkÞ�XðkÞ½XH
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1 � ðeaðkÞ�epðkÞÞ

ð41Þ

Making the standard assumption that at the steady state
~hðkþ1Þ � ~hðkÞ, and ~gðkþ1Þ � ~gðkÞ, the application of the
energy conservation principle gives

J ~hðkþ1ÞJ2
þ ~h

H
ðkÞX�ðkÞ½XH

ðkÞXðkÞþXT
ðkÞX�ðkÞ��1eaðkÞ

¼ J ~hðkÞJ2
þ ~h

H
ðkþ1ÞX�ðkÞ½XH

ðkÞXðkÞþXT
ðkÞX�ðkÞ��1epðkÞ
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and

J ~gðkþ1ÞJ2
þ ~gH
ðkÞXðkÞ½XH

ðkÞXðkÞþXT
ðkÞX�ðkÞ��1eaðkÞ

¼ J ~gðkÞJ2
þ ~gH
ðkþ1ÞXðkÞ½XH

ðkÞXðkÞþXT
ðkÞX�ðkÞ��1epðkÞ

Upon adding together the above two equations and
applying the statistical expectation operator, as k-1,
E½J ~hðkþ1ÞJ2

� ¼ E½J ~hðkÞJ2
� and E½J ~gðkþ1ÞJ2

� ¼ E½J ~gðkÞJ2
�,

and we obtain

E½eH
a ðkÞ½X

H
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1eaðkÞ�

¼ E½eH
p ðkÞ½X

H
ðkÞXðkÞþXT

ðkÞX�ðkÞ��1epðkÞ� ð42Þ

Similarly to the analysis in Appendix A, it can be shown
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Fig. 1. Geometric view of circularity. (a) Circular AR(1) model (47);

(b) noncircular ARMA model (48); (c) Ikeda map (50); and (d) wind

(high) signal.
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Fig. 2. Learning curves of AAPA for the noncircular ARMA model (48) and noncir

ARMA and (b) Ikeda map.
that, for a small learning rate m, the EMSE of AAPA,
denoted as EMSEa, is given by

EMSEa ¼
ms2

v

2�m ð43Þ

whereas for a large m, we obtain

EMSEa ¼
ms2

v

2�m TrðCxxÞE
K

JxðkÞJ2

" #
ð44Þ

Observe that the EMSE is proportional to the observation
length K.

Note that in [18], a widely linear APA (WL-APA) has
been derived by solving two separate constrained mini-
misation problems, where

J1ðkÞ ¼ Jhðkþ1Þ�hðkÞJ2
þR½ðdðkÞ�XT

ðkÞhðkþ1Þ�XH
ðkÞgðkþ1ÞÞH �K1�

ð45Þ

J2ðkÞ ¼ Jgðkþ1Þ�gðkÞJ2
þR½ðdðkÞ�XT

ðkÞhðkþ1Þ�XH
ðkÞgðkþ1ÞÞH �K2�

ð46Þ

Compared with the global cost function of the proposed
AAPA, this WL-APA employs two different Lagrange
multiplier vectors, with additional assumptions that for
the update of hðkÞ, gðkþ1Þ � gðkÞ, and vice versa, leading
to the following weight updates:

hðkþ1Þ ¼ hðkÞþmX�ðkÞ½XT
ðkÞX�ðkÞþdI��1eðkÞ

gðkþ1Þ ¼ gðkÞþmXðkÞ½XH
ðkÞXðkÞþdI��1eðkÞ

In this case, the weight update forms of hðkÞ and gðkÞ do
not share the same denominator, which causes additional
difficulties to find the closed form relationship between
the a posteriori and a priori error vectors epðkÞ and eaðkÞ in
widely linear model as compared with AAPA, rendering
the algorithm suboptimal.
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1 Wind can be represented as a bivariate process of its speed and

direction, that is, wðkÞ ¼ jvðkÞjejFðkÞ , where vðkÞ denotes the speed and

FðkÞ the direction.
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4.3. Comparison of steady state performance of APA and

AAPA

Consider, without loss in generality, a complex-valued
noncircular signal is generated from a widely linear model
(22), so that mgH

o E½CsðkÞ�go40 (proof is given in Appendix
B). This, in turn, makes EMSEs4EMSEa (MSEs4MSEa,
since MSE¼ EMSEþs2

v) for both small and large learning
rates at the steady state. On the other hand, when a
complex-valued circular signal is considered, the weight
vector go ¼ 0, leading to EMSEs ¼ EMSEa ðMSEs ¼MSEaÞ,
resulting in both the APA and AAPA having the same
performance at the steady state.
5. Simulations

To verify the benefits of AAPA as compared with
standard APA, simulations were conducted for both small
and large learning rates, in a one step ahead prediction
setting. In all the simulations, the filter length was L¼ 10,
and the regularisation parameter d¼ 0:01. Comprehensive
statistical tests comparing APA and AAPA were performed
on benchmark complex-valued circular and noncircular
signals, and the graphs were produced by averaging 200
iterations of independent trials. In addition, single trial
simulations were performed on real-world nonstationary
and noncircular wind signals.1 The test signals employed
in the simulations were:
�
 The linear circular complex signal was a stable AR (1)
model, given by

rðkÞ ¼ 0:5rðk�1ÞþnðkÞ ð47Þ

where nðkÞ is complex valued doubly white Gaussian
noise with unit variance (nr ? ni and s2

nr
¼ s2

ni
Þ.
�
 The benchmark widely linear noncircular complex
signal was an autogressive moving average ARMA
complex process, made by combining the MA model
in [25] and the stable AR(1) model, given by

rðkÞ ¼ 0:5rðk�1Þþ2nðkÞþ0:5n�ðkÞþnðk�1Þþ0:9n�ðk�1Þ

ð48Þ

with

Efnðk�iÞn�ðk�jÞg ¼ dði�jÞ

Efnðk�iÞnðk�jÞg ¼ edði�jÞ ð49Þ
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Fig
(a)

Fig
(a)
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where nðkÞ was complex valued doubly white Gaussian
noise with unit variance and e¼ 0.

�
 The nonlinear and noncircular chaotic Ikeda map

signal, given by [26]

xðkþ1Þ ¼ 1þuðxðkÞcos½tðkÞ��yðkÞsin½tðkÞ�Þ

yðkþ1Þ ¼ uðxðkÞsin½tðkÞ�þyðkÞcos½tðkÞ�Þ ð50Þ

where typically u¼ 0:9 and tðkÞ ¼ 0:4�f6=ð1þx2ðkÞþ

y2ðkÞÞg.

�
 The noncircular wind signals employed were with

different dynamical characteristics, identified as re-
gions of high, medium and low dynamics, based on the
changes in the wind intensity.
Fig. 1 shows the scatter plots of the complex-valued
signals considered. Observe the circular symmetry of the
distribution for the AR(1) model (47) and the
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noncircularity of the ARMA model (48), Ikeda map (50)
and Wind (high) signal; for a detailed account of the
noncircularity of complex signals we refer to [7]. Fig. 2
shows learning curves of AAPA for the noncircular ARMA
process and Ikeda map, plotted for different small step-
sizes, indicating that for noncircular signals, for a small
step-size, increasing the step-size of AAPA will cause a
larger MSE at the steady state, although with faster
convergence. Fig. 3 illustrates the advantage of the AAPA
at steady state over the standard APA on both the
noncircular ARMA model and Ikeda map for the step-
size was m¼ 0:1, and observation lengths K ¼ 2, 4, and 8.

In the next experiment, the performances of APA and
AAPA for large m were considered. The results in [24]
indicate that the stability bound on m is approximately
0omo2 for APA, and Fig. 4 illustrates the stability bound
of AAPA on the noncircular signals was mo2. The
simulation results in Fig. 5 illustrate that with a fixed
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observation length K, an increment in the step-size will
cause MSE of AAPA to increase at the steady state of AAPA,
whereas Fig. 6 shows that with a fixed large m, the MSE at
the steady state increases with an increment in K. Note
that both Figs. 5 and 6 illustrate the advantage of AAPA
over APA for noncircular signals considered with a large m.
The learning curves of both APA and AAPA on the circular
AR(1) model for K ¼ 1 and m¼ 0:1, 0.2, 1.5, and 1.7 are
shown in Fig. 7, which indicates that APA converges faster
than AAPA for the circular signal, however, at the steady
state, there is no clear difference between the
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and (b) Ikeda map.
performances. Thus, although AAPA optimises both the
weight vectors hðkÞ and gðkÞ of the widely linear model,
for circular signals, go ¼ 0, leading to the same model as
that of standard APA.

To further illustrate the advantage of using the AAPA
over APA, in the next experiment, the prediction gain Rp

was used as an overall performance measurement,
defined as

RpðkÞ ¼ 10 log10
s2

x

ŝ2
e

 !
½dB� ð51Þ
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Table 2
Prediction gains Rp of standard APA and the proposed AAPA for various noncircular signals.

Rp (dB) Noncircular ARMA Ikeda Wind (low) Wind (medium) Wind (high)

APA 2.4641 1.8734 3.6774 5.8851 9.3610

AAPA 3.0072 4.6517 4.0500 6.2368 9.9181
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Fig. 9. Comparison of theoretical and simulated steady state MSE of AAPA on noncircular ARMA (48) when K ¼ 1, 2 and 3 using (a) (43) and (b) (44).
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where s2
x denotes the variance of the input signal xðkÞ, and

ŝ2
e denotes the variance of the prediction error eðkÞ [27].

Table 2 shows the prediction gains Rp of the proposed
AAPA and standard APA for m¼ 0:2 and K ¼ 2. As
expected, for all noncircular signals considered, there
was a significant improvement when the AAPA was
employed over that of the standard APA. Fig. 8 shows
the effects of the control parameters e (49) and u (50) on
the performances of standard APA and AAPA for
noncircular ARMA and Ikeda map, in all the cases, the
performance of AAPA was superior than that of APA. Note
that in Fig. 8(a), AAPA gradually loses advantage when e
increases to 1, which conforms with the experimental
results in [25].

We next performed one step ahead prediction on noisy
noncircular ARMA signal, where the measurement noise
was added to the noncircular ARMA signal in (48) such
that the signal-to-noise ratio (SNR) was 30 dB. Fig. 9(a)
and (b) illustrate the theoretical steady state MSE of AAPA
using (43) and (44) as a function of step-size with K ¼ 1, 2,
and 3, and both showed good agreement with the
simulation results.
6. Conclusions

We have introduced an augmented affine projection
algorithm (AAPA) for adaptive filtering of complex valued
noncircular signals. The AAPA has been derived based on
recent advances in the so-called augmented complex
statistics, the widely linear model and CR calculus. Steady
state analysis of MSE performance of AAPA and APA has
proved the advantage of AAPA over standard APA for
adaptive filtering of second order noncircular signals, and
comparable performance for adaptive filtering of circular
signals. Comprehensive simulations on both synthetic and
real world complex-valued, circular and noncircular
signals support the analysis.
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Appendix A. Derivation of EMSE of APA for noncircular
signals

Following the approach in [1,24], the energy conserva-
tion relation is given by

J ~hðkþ1ÞJ2
þeH

a ðkÞ½X
T
ðkÞX�ðkÞ��1eaðkÞ

¼ J ~hðkÞJ2
þeH

p ðkÞ½X
T
ðkÞX�ðkÞ��1epðkÞ ð52Þ

Taking statistical expectation of both sides, and as k-1,
E½J ~hðkþ1ÞJ2

� ¼ E½J ~hðkÞJ2
�, the following equations hold:

mE½eHðkÞAsðkÞeðkÞ� ¼ E½eH
a ðkÞBsðkÞeðkÞ�þE½eHðkÞBsðkÞeðkÞ�

ð53Þ
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where

AsðkÞ ¼ ½X
T
ðkÞX�ðkÞþdI��1XT

ðkÞX�ðkÞ½XT
ðkÞX�ðkÞþdI��1

and

BsðkÞ ¼ ½X
T
ðkÞX�ðkÞþdI��1

Note that

eðkÞ ¼ eaðkÞþvðkÞþXH
ðkÞgo ð54Þ

With the assumptions that the noise vðkÞ is i.i.d. and
statistically independent of the input matrix XðkÞ, and at
the steady state XðkÞ is statistically independent of eaðkÞ,
E½eaðkÞ� ¼ 0 as k-1, and the first term in (53) becomes

mE½eHðkÞAsðkÞeðkÞ� ¼ mE½eH
a ðkÞAsðkÞeaðkÞ�

þmE½vHðkÞAsðkÞvðkÞ�

þmE½ðXH
ðkÞgoÞ

HAsðkÞX
H
ðkÞgo�

where the second term has the form

E½eH
a ðkÞBsðkÞeðkÞ� ¼ E½eH

a ðkÞBsðkÞeaðkÞ�

and the third term

E½eHðkÞBsðkÞeaðkÞ� ¼ E½eH
a ðkÞBsðkÞeaðkÞ�

Then (53) can be rewritten as

mE½eH
a ðkÞAsðkÞeaðkÞ�þmE½vHðkÞAsðkÞvðkÞ�þmE½ðXH

ðkÞgoÞ
HAsðkÞX

H
ðkÞgo�

¼ 2E½eH
a ðkÞBðkÞeaðkÞ� ð55Þ

To compute these statistical expectations, we shall further
assume E½eaeH

a � ¼ E½jeaðkÞj�
2 � S, where S� I for small m, and

S� 1 � 1T for large m, with 1¼ ½1;0; . . . ;0�T . As k-1, the
first term in (55) now becomes

mE½eH
a ðkÞAsðkÞeaðkÞ� ¼ mTrðE½eH

a ðkÞeaðkÞAsðkÞ�Þ

¼ mE½jeaðkÞj�
2 TrðS � E½AsðkÞ�Þ

where symbol Trð�Þ denotes the matrix trace operator.
Similarly, the second term in (55) becomes

mE½vHðkÞAsðkÞvðkÞ� ¼ ms2
v TrðE½AsðkÞ�Þ

whereas the third and fourth terms become

2E½eH
a ðkÞBsðkÞeaðkÞ� ¼ 2EjeaðkÞj

2 TrðS � E½BsðkÞ�Þ

and

mE½ðXH
ðkÞgoÞ

HAsðkÞX
H
ðkÞgo� ¼ mgH

o E½CsðkÞ�go

where

CsðkÞ ¼XðkÞAsðkÞX
H
ðkÞ

With the introduction of following equations:

am9TrðS � E½AsðkÞ�Þ and Zm9TrðS � E½BsðkÞ�Þ

When the regularisation parameter d is small enough,
AsðkÞ ¼ BsðkÞ, and Zm ¼ am. In this case, the EMSE of the
standard APA, denoted by EMSEs, becomes

EMSEs ¼
ms2

v TrðE½AsðkÞ�ÞþmgH
o E½CsðkÞ�go

2Zm�mam

For a small enough d and for a small learning rate m, S� I,
we obtain

EMSEs ¼
ms2

v

2�m
þ
mgH

o E½CsðkÞ�go

TrðE½AsðkÞ�Þ
ð56Þ
On the other hand, for a large learning rate, S� 1 � 1T , and
we obtain

EMSEs ¼
ms2

v

2�m TrðCxxÞ E
K

JxðkÞJ2

" #
þmgH

o E½CsðkÞ�go

 !
ð57Þ

Appendix B

To prove that mgH
o E½CsðkÞ�go40, observe that when d is

small enough, gH
o CsðkÞgo can be written as gH

o XðkÞ
½XT
ðkÞX�ðkÞþdI��1ðgH

o XðkÞÞH . Since d40, the inversion
term ½XT

ðkÞX�ðkÞþdI��1 is positive definite [28]. Note that
gH

o XðkÞ is a 1� K vector with all nonzero elements, since
for complex-valued noncircular signal go is with all
nonzero elements. Following the properties of positive
definite matrix [29], gH

o CsðkÞgo40, then mgH
o E½CsðkÞ�go40.
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