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a b s t r a c t 

The augmented complex LMS (ACLMS) algorithm deals with second order noncircular (improper) input 

signals, based on widely linear modelling and the use of full second order statistical information. In cur- 

rent analyses of ACLMS, it is implicitly or explicitly assumed that the length of the adaptive filter is 

equal to that of the unknown system’s impulse response (optimal model order). In many applications, 

however, the length of the adaptive filter is smaller than required, the so called deficient length case, 

which renders the analysis for a ‘sufficient length’ ACLMS inadequate. To this end, we examine the statis- 

tical behaviour of the ACLMS algorithm in undermodelling situations. Exact expressions are developed to 

completely characterise both the transient and steady-state mean and mean square performances of the 

deficient length ACLMS for general second order noncircular Gaussian input signals. This is achieved us- 

ing the recently introduced approximate uncorrelating transform (AUT), in order to jointly diagonalise the 

covariance and pseudo-covariance matrices with a single singular value decomposition (SVD), which both 

simplifies the analysis and enables a link between the degree of input noncircularity and the steady state 

mean square error (MSE) performance of the deficient length ACLMS. Simulations in system identification 

settings support the analysis. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The complex least mean square (CLMS) adaptive filtering algo-

rithm has found application in numerous areas, including noise

cancellation, system identification and prediction [1] . Standard

learning algorithms in the complex domain, C , are normally con-

sidered as generic extensions of the corresponding algorithms in

the real domain, R , a consequence of a restricted use of the avail-

able second order statistics analysis which is narrowed down to

only the M × M covariance matrix, R x = E [ x (k ) x H (k )] , where x (k ) ∈
C 

M×1 [2,3] . However, recent results in the so-called augmented

complex statistics [4–7] show that the covariance matrix R x can-

not completely describe the second order behaviour of general

complex signals, and another second order moment, the M × M

pseudo-covariance matrix, P x = E [ x (k ) x T (k )] , should also be taken

into account, especially when processing second order noncircular

(improper) signals. For second order circular signals, the pseudo-

covariance matrix P x = 0 , and the standard adaptive filtering al-
∗ Corresponding author. 
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orithms (based on the covariance only) are adequate. For non-

ircular signals, P x � = 0 , and complex-valued adaptive filtering al-

orithms should be designed based on the 2 M × 1 so-called aug-

ented input vector z (k ) = [ x T (k ) , x H (k )] T , for which the 2 M × 2 M

ugmented covariance matrix is given by [4–9] 

 z = E[ z (k ) z H (k )] 

= 

[
E[ x (k ) x 

H (k )] E[ x (k ) x 

T (k )] 

E[ x 

∗(k ) x 

H (k )] E[ x 

∗(k ) x 

T (k )] 

]
= 

[
R x P x 

P 

∗
x R 

∗
x 

]
(1)

The augmented complex statistics have opened the possibil-

ty to design LMS-type adaptive filtering algorithms based on the

idely linear model [4,6,7,10] , leading to the so called augmented

LMS (ACLMS) [11,12] , which is suitable for processing both second

rder circular and noncircular signals. This advantage over the con-

entional CLMS algorithm has led to its applications in signal pro-

essing [9,13,14] , communications [15] , and power systems [16,17] .

n most current analyses, it is implicitly or explicitly assumed that

he filter length is equal to the length of the unknown system im-

ulse response, an optimal modelling situation [18–24] , which is

ften not the case in practical settings. Therefore, the results for

he ‘sufficient length’ ACLMS do not directly apply to the ‘deficient

ength’ situations; these arise in scenarios where a system with an

https://doi.org/10.1016/j.sigpro.2017.10.021
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nknown but long impulse response is modelled with an adaptive

lter of a relatively shorter length. On the other hand, it is im-

ortant for practical purposes to understand and quantify the sta-

istical behaviour of the deficient length ACLMS, a subject of this

ork. This analysis could allow answers to more detailed perfor-

ance analysis questions in specific contexts, such as the identi-

cation of a filter order that would allow a specific performance

riterion such as an achievable minimum MSE to be obtained. 

The first attempt to address accurate performance analysis of

daptive filters in the undermodelling situations is established in

25] , where a deficient length LMS in R has been considered for

orrelated Gaussian data. An insufficient length transform domain

MS, which employs a real-valued discrete cosine transformation

DCT) to speed up the convergence, has been discussed in [26] .

his work has been implicitly extended into the complex domain

 in [27] in the sense that a complex-valued discrete Fourier trans-

ormation (DFT) has been utilised. However, from the perspective

f the augmented complex statistics in C , the analysis in [27] is

till rather limited. On one hand, it directly extends the analyses

n R [25,26] by considering a strictly linear undermodelling prob-

em. On the other hand, the assumption of signal properness (sec-

nd order circularity) has been implicitly imposed on the complex-

alued data after the DFT operation, which has been justified based

n central limit theorem in [28] . 

Therefore, in this paper, we develop a rigourous analysis of both

he transient and steady-state performances of the deficient length

CLMS, which employs the most general widely linear framework

n C for the processing of complex-valued data in terms of the full

econd order statistics. For rigour, this is achieved for second order

orrelated noncircular Gaussian inputs; the corresponding results

or the case of doubly white 1 Gaussian inputs are readily obtained

s a special case. In order to both simplify the analysis and ex-

licitly link the degree of noncircularity of the input with steady

tate performance of the deficient length ACLMS, we employ the

ecently introduced approximate uncorrelating transform (AUT), 

hich jointly diagonalises the covariance and pseudo-covariance

atrices with a single singular value decomposition (SVD) [29] .

he analysis shows that for correlated second order noncircular in-

uts, the deficient length ACLMS exhibits a distinctive statistical

ehaviour compared to noncircular doubly white Gaussian inputs.

imulations in the system identification setting validate the theo-

etical results. 

. Performance Analysis 

Consider a second order noncircular (improper) desired signal

 ( k ) generated by the following widely linear model [4,6,30] 

(k ) = h 

o H 
N x N (k ) + g 

o H 
N x 

∗
N (k ) + q (k ) (2)

here h 

o 
N = [ h o 

1 
, h o 

2 
, . . . , h o 

N 
] T and g o 

N 
= [ g o 

1 
, g o 

2 
, . . . , g o 

N 
] T are re-

pectively the standard and conjugate unknown (optimal) sys-

em impulse response vectors of length N , x N (k ) = [ x (k ) , x (k −
) , . . . , x (k − N + 1)] T is the N × 1 tap input vector to the unknown

ystem at the time instant k, q ( k ) is stationary, zero-mean, in-

ependent noise, while ( · ) T , ( · ) ∗, and ( · ) H are respectively the

ranspose, complex conjugate and Hermitian operators. The widely

inear model in (2) has provided modelling advantages in the

epresentation of complex-valued baseband communication sig-

als at the receiver side which arise in real-valued modulation

chemes, e.g., amplitude-shift keying (ASK), binary phase-shift key-

ng (BPSK) and pulse amplitude modulation (PAM) [15,22,31,32] .

mproper baseband communication signals represented by (2) can
1 For a doubly white input vector x (k ) , we have R x = σ 2 
x I M and P x = ρx I M , where 

2 
x = E[ x (k ) x ∗(k )] and ρx = E[ x 2 (k )] are respectively the covariance and pseudo- 

ovariance of x (k ) , and I M is an M × M identity matrix [6,7] . 

U

w

lso arise due to amplitude and phase imbalances between their

n-phase and quadrature (I/Q) components [33–35] . The utility of

he model in (2) has also been demonstrated in unbalanced three-

hase power systems [16,17] . For generality, we further assume

hat the input x ( k ) is a correlated second order noncircular Gaus-

ian process, i.e. the off-diagonal elements in both R x and P x 

o exist. Note that in (2) , performance analysis of the deficient

ength ACLMS is implicitly performed in a stationary environment,

here the unknown system coefficients h 

o 
N and g o 

N 
are time invari-

nt. However, in practice, nonstationary environments may appear,

here h 

o 
N and g o 

N 
exhibit time variations, which for modelling pur-

oses typically assumes a random walk process. The purpose of the

racking analysis of an adaptive filter is to study its ability to track

uch time variations, and we refer to [36–38] for more detail along

his direction. 

In order to estimate the the unknown system impulse response

ectors in (2) , the ACLMS algorithm updates its weight vectors ac-

ording to [11] 

 (k + 1) = h (k ) + μe ∗(k ) x (k ) (3) 

 (k + 1) = g (k ) + μe ∗(k ) x 

∗(k ) (4) 

here μ is the step-size and the output error e ( k ) is given by 

 (k ) = d(k ) − h 

H 
(k ) x (k ) − g 

H (k ) x 

∗(k ) (5) 

ith x (k ) = [ x (k ) , x (k − 1) , . . . , x (k − M + 1)] T being the input sig-

al vector and h (k ) and g (k ) the M × 1 weight vectors of the

idely linear adaptive filter. In the deficient length case, M < N . 

For compactness of the analysis, we shall employ the following

orm of the desired signal in (2) 

(k ) = w 

o H 
2 N z 2 N (k ) + q (k ) (6)

here w 

o 
2 N 

= [ h 

o T 
N , g 

o T 
N 

] T and z 2 N (k ) = [ x T 
N 
(k ) , x H 

N 
(k )] T are respec-

ively the augmented system impulse response vector and the aug-

ented system input vector. 

The ACLMS update in (3) and (4) can now be compactly ex-

ressed as 

 (k + 1) = w (k ) + μe ∗(k ) z (k ) (7) 

here w (k ) = [ h 

T (k ) , g T (k )] T and z (k ) = [ x T (k ) , x H (k )] T are re-

pectively the 2 M × 1 augmented weight and input vectors of

CLMS, and 

 (k ) = d(k ) − w 

H (k ) z (k ) (8) 

ince for the deficient length case M < N , it is convenient to rear-

ange w 

o 
2 N 

and z 2 N (k ) so as to reflect the 2 M × 1 ‘modelled’, w 

o ,

nd the 2(N − M) × 1 ‘unmodelled’, w̄ 

o 
, parts of the system in the

orm 

 

o 
2 N = 

[
w 

o 

w̄ 

o 

]
, z 2 N (k ) = 

[
z (k ) 
z̄ (k ) 

]
(9) 

here 

w 

o = [ h 

o T 
, g 

o T ] T 

= [ h 

o 
1 , h 

o 
2 , . . . , h 

o 
M 

, g o 1 , g 
o 
2 , . . . , g 

o 
M 

] T 

w̄ 

o = [ ̄h 

o T 
, ̄g 

o T ] T 

= [ h 

o 
M+1 , h 

o 
M+2 , . . . , h 

o 
N , g 

o 
M+1 , g 

o 
M+2 , . . . , g 

o 
N ] 

T 

¯ (k ) = [ ̄x 

T (k ) , ̄x 

H (k )] T 

= [ x (k − M) , x (k − M − 1) , . . . , x (k − N + 1) , 

x ∗(k − M) , x ∗(k − M − 1) , . . . , x ∗(k − N + 1)] T 

pon introducing the 2 M × 1 augmented weight error vector 

˜ 

 (k ) = w (k ) − w 

o (10) 



216 Y. Xia et al. / Signal Processing 144 (2018) 214–225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

t  

a

0  

R  

R  

f  

(

0  

O  

s  

m  

t  

b  

t

 

e

E  

s  

v

E  

R  

c  

s  

i  

p  

v  

o  

p  

a

 

v  

i

b  

R  

m  

u

2

 

t  

n

J  

U  

i

J

 

w  

2  

o  

A  

w

from (6), (9) and (10) and after some mathematical manipulations,

the output error in (8) can be rewritten as 

e (k ) = w̄ 

o H z̄ (k ) ︸ ︷︷ ︸ 
unmodelled part of d(k ) 

− ˜ w 

H (k ) z (k ) ︸ ︷︷ ︸ 
modelled part of (k ) 

+ q (k ) (11)

while for its conjugate we have 

e ∗(k ) = w̄ 

o T z̄ ∗(k ) − ˜ w 

T (k ) z ∗(k ) + q ∗(k ) (12)

Observe that the output error e ( k ) in (11) is now governed by both

the weight error part (second term) and the undermodelling part

(first term). From (7) and (12) , the recursion for the update of the

augmented weight error vector ˜ w (k ) becomes 

˜ w (k + 1) = 

˜ w (k ) + μ
(
w̄ 

o T z̄ ∗(k ) − ˜ w 

T (k ) z ∗(k ) + q ∗(k ) 
)
z (k ) 

= 

(
I 2 M 

− μz (k ) z H (k ) 
)˜ w (k ) 

+ μ
(
w̄ 

o T z̄ ∗(k ) 
)
z (k ) + μq ∗(k ) z (k ) (13)

where I 2 M 

is a 2 M × 2 M identity matrix. 

2.1. Convergence in the mean 

The mean behaviour of the augmented weight error vector of

deficient length ACLMS can now be determined by applying the

statistical expectation operator E [ · ] to both sides of (13) and using

the standard independence assumptions, that is, the noise q ( k ) is

statistically independent of any other variable in the ACLMS and˜ w (k ) is statistically independent of the filter input z (k ) [39,40] , to

yield 

E[ ̃  w (k + 1)] = [ I 2 M 

− μR z ] E[ ̃  w (k )] + μb (14)

where R z is the augmented covariance matrix of the input data to

the ACLMS, as defined in (1) , and the 2 M × 1 vector b is defined

as 

b = E 
[(

w̄ 

o T z̄ ∗(k ) 
)
z (k ) 

]
(15)

which reflects the unmodelled part of the system being modelled,

that is, the scalar product w̄ 

o T z̄ ∗(k ) , although its dimensionality

2 M × 1 is subject to the modelled part of the system by the ACLMS

adaptive filter, that is, the augmented input vector z (k ) . Since

as defined, z (k ) = [ x T (k ) , x H (k )] T , we further have b = [ b 

T 
1 , b 

T 
2 ] 

T ,

where b 1 = [ b 1 , 1 , b 1 , 2 , . . . , b 1 ,M 

] T and b 2 = [ b 2 , 1 , b 2 , 2 , . . . , b 2 ,M 

] T can

be expressed as 

b 1 = E 
[(

w̄ 

o T z̄ ∗(k ) 
)
x (k ) 

]
= E 

[(
h̄ 

o T 
x̄ 

∗(k ) + ḡ 

o T x̄ (k ) 
)
x (k ) 

]
(16)

b 2 = E 
[(

w̄ 

o T z̄ ∗(k ) 
)
x 

∗(k ) 
]

= E 
[(

h̄ 

o T 
x̄ 

∗(k ) + ḡ 

o T x̄ (k ) 
)
x 

∗(k ) 
]

(17)

The i th components of b 1 and b 2 can be derived as 

b 1 ,i = E 

[ N ∑ 

j= M+1 

(
h 

o 
j x 

∗(k − j + 1) + g o j x (k − j + 1) 
)
x (k − i + 1) 

] 

= 

N ∑ 

j= M+1 

(
h 

o 
j r( j − i ) + g o j p( j − i ) 

)
(18)

b 2 ,i = E 

[ N ∑ 

j= M+1 

(
h 

o 
j x 

∗(k − j + 1) + g o j x (k − j + 1) 
)
x ∗(k − i + 1) 

] 

= 

N ∑ 

j= M+1 

(
h 

o 
j p 

∗( j − i ) + g o j r 
∗( j − i ) 

)
(19)

where r( j − i ) = E[ x (k − i ) x ∗(k − j)] and p( j − i ) = E[ x (k − i ) x (k −
j)] are respectively the covariance and pseudo-covariance coeffi-

cient at a discrete lag ( j − i ) . 
Recall that λmax ≤ tr ( R z ) , where λmax is the maximum eigen-

alue of R z and tr (·) is the trace operator. Hence, according to (14) ,

he convergence of the deficient length ACLMS in the mean is guar-

nteed if the step-size μ satisfies 

 < μ < 

2 

tr ( R z ) 
(20)

emark 1. From the structure of the augmented covariance matrix

 z in (1) , we have tr ( R z ) = 2 tr ( R x ) , and hence the step-size bound

or deficient length ACLMS can be found from the mean analysis in

20) , as 

 < μ < 

1 

tr ( R x ) 
(21)

bserve that this form is identical to that for mean stability of the

ufficient length ACLMS in [18,19] , due to the identical transition

atrix [ I 2 M 

− μR z ] within the recursion of the weight error vec-

or E[ ̃  w (k )] in (14) . It is also interesting to observe that the upper

ound on the step-size for the deficient length ACLMS is half of

hat for the real-valued deficient length LMS [25] . 

At the steady state, from (14) , for the deficient length weight

rror vector we have 

[ ̃  w (∞ )] = R 

−1 
z b (22)

o that, from (10) , the steady-state value for the augmented weight

ector of ACLMS becomes 

[ w (∞ )] = w 

o + R 

−1 
z b (23)

emark 2. Eq. (23) indicates that a correlated or pseudo-

orrelated complex-valued input to the deficient length ACLMS re-

ults in biased estimation of the optimal weight vector, w 

o , which

s reflected in the term R 

−1 
z b in (23) . The value of this bias de-

ends upon the degree of undermodelling ( M relative to N ), the

alues of the weight coefficients within w 

o , as well as the full sec-

nd order statistics of the input signal, that is, the covariance and

seudo-covariance coefficients contained in the augmented covari-

nce matrix R z and the vector b . 

When the input signal x ( k ) is doubly white (DW), both the co-

ariance, r( j − i ) , and the pseudo-covariance, p( j − i ) , coefficients

n (18) and (19) vanish, since j ≥ M + 1 and i = 1 , 2 , . . . , M. Thus, 

 DW 

= 0 and E[ w DW 

(∞ )] = w 

o (24)

emark 3. For doubly white inputs, the ACLMS converges in the

ean to the first 2 M weight coefficients within w 

o 
2 N 

in (9) in an

nbiased manner. 

.2. Convergence in the mean square 

We now consider the mean square error (MSE) performance of

he deficient length ACLMS. From (5) , the MSE of the ACLMS, de-

oted by J ( k ), can be defined as 

(k ) = E[ | e (k ) | 2 ] = E[ e (k ) e ∗(k )] (25)

sing the independence assumptions stated in Section 2.1 , the MSE

n (25) can be evaluated as 

(k ) = E[ ̄w 

o H z̄ (k ) ̄z H (k ) ̄w 

o ] − E[( ̄w 

o H z̄ (k )) z H (k ) ̃  w (k )] 

−E[ 
(
w̄ 

o T z̄ ∗(k ) 
)
z T (k ) ̃  w 

∗(k )] + E[ ̃  w 

H (k ) z (k ) z H (k ) ̃  w (k )] + σ 2 
q 

= w̄ 

o H R z ̄w 

o − 2 � 

[
b 

H 
E[ ̃  w (k )] 

]
+ tr 

(
R z K (k ) 

)
+ σ 2 

q (26)

here � [ · ] is the ‘real part’ operator, R z = E[ ̄z (k ) ̄z H (k )] is the

(N − M) × 2(N − M) augmented covariance matrix of the part

f system input which is not considered by the deficient length

CLMS, and K (k ) = E[ ̃  w (k ) ̃  w 

H (k )] is the 2 M × 2 M augmented

eight error covariance matrix. 
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The mean square analysis rests upon the second order proper-

ies of the weight error vector E[ ̃  w (k ) ̃  w 

H (k )] in (26) . To this end,

e first apply the Hermitian operator ( · ) H to both sides of (13) , to

ield 

˜ 

 

H (k + 1) = 

˜ w 

H (k ) 
(
I 2 M 

− μz (k ) z H (k ) 
)

+ μ
(
w̄ 

o H z̄ (k ) 
)
z H (k ) 

+ μq (k ) z H (k ) (27) 

pon multiplying both sides of (13) by ˜ w 

H (k + 1) and taking

he statistical expectation, the mean square evolution of the aug-

ented weight error vector ˜ w (k ) becomes 

 (k + 1) = K (k ) − μR z K (k ) − μK (k ) R z + μ2 R z K (k ) R z 

+ μ2 P z K 

T (k ) P 

∗
z + μ2 R z tr 

(
R z K (k ) 

)
+ μE[ ̃  w (k )] b 

H 

+ μb E[ ̃  w 

H (k )] − μ2 
(
T (k ) + T 

H (k ) 
)

+ μ2 D + μ2 σ 2 
q R z (28) 

here 

 z = E[ z (k ) z T (k )] 

= 

[
E[ x (k ) x 

T (k )] E[ x (k ) x 

H (k )] 

E[ x 

∗(k ) x 

T (k )] E[ x 

∗(k ) x 

H (k )] 

]
= 

[
P x R x 

R 

∗
x P 

∗
x 

]
(29) 

s the 2 M × 2 M augmented pseudo-covariance matrix [21] , and 

 (k ) = E[ 
(
w̄ 

o H z̄ (k ) 
)
z (k ) z H (k ) ̃  w (k ) z H (k )] (30) 

 = E[ | ̄w 

o H z̄ (k ) | 2 z (k ) z H (k )] (31) 

he detailed expressions of the 2 M × 2 M matrices T (k ) and D are

iven respectively in Appendix A and Appendix B . Note that ex-

ressions (26) and (28) , for which the convergence of E[ ̃  w (k )] is

uaranteed by (14) , now completely describe the MSE convergence

ehaviour of the ACLMS algorithm for M < N , for both correlated

nd pseudo-correlated Gaussian input data. The impact of the de-

ree of undermodelling on the mean-square evolution of ACLMS,

n the form of b , T (k ) and D , can also be observed. 

emark 4. The MSE behaviour of the deficient length ACLMS is

ifferent from that of its sufficient length counterpart, discussed

n [18,21] , which is mainly due to the influence of the terms T (k )

nd D in (28) , as well as the dependence of the mean behaviour

n E[ ̃  w (k )] in both (26) and (28) , all arising from the system un-

ermodelling. 

From the above general analysis, the MSE behaviour of ACLMS

or the special case of doubly white (DW) Gaussian input can be

educed by noting that in this case, the vector b in (15) vanishes,

nd (26) simplifies into 

 DW 

(k ) = w̄ 

o H { R z } DW ̄

w 

o + tr 
(
R z K (k ) 

)
DW 

+ σ 2 
q (32) 

or doubly white Gaussian input data, we have 

 R z } DW 

= 

[
σ 2 

x I N−M 

ρx I N−M 

ρ∗
x I N−M 

σ 2 
x I N−M 

]
(33) 

nd 

 R z } DW 

= 

[
σ 2 

x I M 

ρx I M 

ρ∗
x I M 

σ 2 
x I M 

]
(34) 

o that the first term on the right hand side (RHS) of (32) can be

urther decomposed as 

¯  

o H { R z } DW ̄

w 

o = [ ̄h 

o H 
, ̄g 

o H ] 

[
σ 2 

x I N−M 

ρx I N−M 

ρ∗
x I N−M 

σ 2 
x I N−M 

][
h̄ 

o 

ḡ 

o 

]
= σ 2 

x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 � [ ρx ̄h 

o H 
ḡ 

o ] (35) 
n the same spirit, for doubly white Gaussian input data, the sec-

nd term on the RHS of (32) can be decomposed as 

r 
(
R z K (k ) 

)
DW 

= σ 2 
x 

(‖ ̃

 h DW 

(k ) ‖ 

2 
2 + ‖ ̃

 g DW 

(k ) ‖ 

2 
2 

)
+2 � 

[
ρx ̃

 h 

H 

DW 

(k ) ̃  g DW 

(k ) 
]

(36) 

herefore, the MSE in (32) now becomes 

 DW 

(k ) = σ 2 
x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 � [ ρx ̄h 

o H 
ḡ 

o ] 

+ σ 2 
x 

(‖ ̃

 h DW 

(k ) ‖ 

2 
2 + ‖ ̃

 g DW 

(k ) ‖ 

2 
2 

)
+2 � 

[
ρx ̃

 h 

H 

DW 

(k ) ̃  g DW 

(k ) 
]

+ σ 2 
q (37) 

o establish the evolution of the variance of the weight error vec-

or, K DW 

(k ) , note that according to Appendix B, for doubly white

aussian input data, the matrix D in (31) can be simplified as 

 DW 

= 

[
d 1 I M 

d 2 I M 

d ∗2 I M 

d 1 I M 

]
(38) 

here 

 1 = σ 4 
x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 σ 2 

x � [ ρx ̄h 

o H 
ḡ 

o ] (39) 

 2 = σ 2 
x ρx 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 ρx � [ ρx ̄h 

o H 
ḡ 

o ] (40) 

nd also b DW 

= 0 , T DW 

(k ) = 0 . Therefore, the expression for

 DW 

(k ) in (28) can be simplified as 

 DW 

(k + 1) = K DW 

(k ) − μ{ R z } DW 

K DW 

(k ) − μK DW 

(k ) { R z } DW 

+ μ2 { R z } DW 

K DW 

(k ) { R z } DW 

+ μ2 { P z } DW 

K 

T 
DW 

(k ) { P 

∗
z } DW 

+ μ2 { R z } DW 

tr 
(
R z K (k ) 

)
DW 

+ μ2 D DW 

+ μ2 σ 2 
q { R z } DW 

(41) 

here { R z } DW 

, tr 
(
R z K (k ) 

)
DW 

and D DW 

are given respectively in

34), (36) and (38) , and according to (29) , 

 P z } DW 

= 

[
ρx I M 

σ 2 
x I M 

σ 2 
x I M 

ρ∗
x I M 

]
(42) 

ithin the above expression for K DW 

(k ) , of particular interest are

he two M × M diagonal sub-matrices, H DW 

(k ) = E[ ̃  h DW 

(k ) ̃  h 

H 

DW 

(k )]

nd G DW 

(k ) = E[ ̃  g DW 

(k ) ̃  g H DW 

(k )] , since they respectively quantify

he mean square evolution of the standard weight error vector and

he conjugate weight error vector within the ACLMS. These can be

erived from (41) as 

 DW 

(k + 1) = (1 − 2 μσ 2 
x + μ2 σ 4 

x ) H DW 

(k ) 

+ μ2 | ρx | 2 
(
H 

T 
DW 

(k ) + G DW 

(k ) 
)

+ μ2 σ 4 
x G 

T 
DW 

(k ) 

−μ(ρx g (k ) h 

H 
(k ) + ρ∗

x h (k ) g 

H (k )) 

+2 μ2 σ 2 
x � [ ρx g (k ) h 

H 
(k ) + ρ∗

x h (k ) g 

H (k )] 

+ μ2 
(
σ 4 

x 

(‖ ̃

 h DW 

(k ) ‖ 

2 
2 + ‖ ̃

 g DW 

(k ) ‖ 

2 
2 

)
+2 σ 2 

x � 

[
ρx ̃

 h 

H 

DW 

(k ) ̃  g DW 

(k ) 
])

I M 

+ μ2 
(
σ 4 

x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+2 σ 2 

x � [ ρx ̄h 

o H 
ḡ 

o ] 
)
I M 

+ μ2 σ 2 
q σ

2 
x I M 

(43) 

nd 

 DW 

(k + 1) = (1 − 2 μσ 2 
x + μ2 σ 4 

x ) G DW 

(k ) 

+ μ2 | ρx | 2 
(
G 

T 
DW 

(k ) + H DW 

(k ) 
)

+ μ2 σ 4 
x H 

T 
DW 

(k ) 

−μ(ρx g (k ) h 

H 
(k ) + ρ∗

x h (k ) g 

H (k )) 

+2 μ2 σ 2 
x � [ ρx g (k ) h 

H 
(k ) + ρ∗

x h (k ) g 

H (k )] 
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c  

Y  

w  
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[  

o

R  

t  

A

 

n  

Q  

 

s

0  

T  

t  

i  

b  

b  

m

2

 

l  

(

J  

w

u  
+ μ2 
(
σ 4 

x 

(‖ ̃

 h DW 

(k ) ‖ 

2 
2 + ‖ ̃

 g DW 

(k ) ‖ 

2 
2 

)
+2 σ 2 

x � 

[
ρx ̃

 h 

H 

DW 

(k ) ̃  g DW 

(k ) 
])

I M 

+ μ2 
(
σ 4 

x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+2 σ 2 

x � [ ρx ̄h 

o H 
ḡ 

o ] 
)
I M 

+ μ2 σ 2 
q σ

2 
x I M 

(44)

Remark 5. The mean square recursions for H DW 

(k ) in (43) and

G DW 

(k ) in (44) are not statistically independent. This is due to the

fact that the weight updates for the standard part and the conju-

gate part in ACLMS, given in (3) and (4) respectively, involve the

same error e ( k ) which comprises both the outputs of the standard

and conjugate parts, as shown in (5) . 

2.3. Mean square stability 

We shall now consider the sufficient conditions for MSE conver-

gence of the deficient length ACLMS. For mathematical tractability,

we first need to diagonalise the augmented covariance matrix R z 

as 

R z = Q �R Q 

H (45)

where �R = diag { λ1 , λ2 , . . . , λ2 M 

} , λ1 ≥λ2 ≥ ��� ≥λ2 M 

, is the

2 M × 2 M diagonal matrix of the real valued eigenvalues of R z , and

Q is a 2 M × 2 M unitary matrix composed of the eigenvectors of

R z , so that Q Q 

H = Q 

H Q = I 2 M 

. 

For a clearer physical insight into the eigenstructure of the aug-

mented covariance matrix R z , and to reduce the computational

complexity, we here employ the recently introduced approximate

uncorrelating (AUT) [29] , which allows us to jointly diagonalise

both the covariance matrix R x and the pseudo-covariance matrix

P x within the augmented covariance matrix R z with a single singu-

lar value decomposition (SVD). The Takagi factorization states that

any complex symmetric matrix, such as the pseudo-covariance ma-

trix P 

T 
x = P x , can be diagonalised as [41] 

P x = Q P D P Q 

T 
P (46)

where Q P is an M × M unitary matrix, Q P Q 

H 
P = Q 

H 
P Q P = I M 

, and

D P = diag { p 1 , p 2 , . . . , p M 

} is an M × M diagonal matrix of real-

valued entries, p 1 ≥ p 2 ≥ ��� ≥ p M 

. The approximate uncorrelating

transform (AUT) establishes that the same matrix Q P can be used

to approximately diagonalise the covariance matrix R x , so that

[29] 

R x 
 Q P D R Q 

H 
P (47)

where D R = diag { r 1 , r 2 , . . . , r M 

} is a diagonal matrix of real-valued

entries, and r 1 ≥ r 2 ≥ ��� ≥ r M 

. The approximation in (47) is valid for

univariate data, and the equality is achieved when x (k ) is real-

valued, that is, maximum noncircular, or doubly white [21,29] .

Therefore, the matrices Q and �R in (45) can be expressed as

[21] 

Q = 

1 √ 

2 

[
Q P −Q P 

Q 

∗
P Q 

∗
P 

]
(48)

and 

�R = 

[
D R + D P 0 

0 D R − D P 

]
(49)

and hence 

R 

−1 
z = Q �−1 

R 
Q 

H (50)

In a similar way, the augmented pseudo-covariance matrix P z in

(29) can be diagonalised as [21] 

P z = Q �P Q 

T (51)
here 

P = 

[
D R + D P 0 

0 −( D R − D P ) 

]
(52)

e can now rotate the augmented weight error vector and the

ugmented input vector as 

ˆ  (k ) = Q 

H ˜ w (k ) and ˆ z (k ) = Q 

H ˜ z (k ) (53)

n a similar way, we can define 

ˆ 
 (k ) = Q 

H T (k ) Q and 

ˆ D = Q 

H D Q (54)

herefore, the term tr 
(
R z K (k ) 

)
on the RHS of (28) can be decom-

osed as 

r 
(
R z K (k ) 

)
= E[ ̃  w 

H (k ) R z ̃  w (k )] = E[ ̂  w 

H 
(k ) � ˆ w (k )] = λT v (k ) (55)

here the 2 M × 1 vector λ = [ λ1 , λ2 , . . . , λ2 M 

] T , and v (k ) is the

 M × 1 second order moment vector, the components of which are

he diagonal elements of E[ ̂  w (k ) ̂  w 

H 
(k )] . Then, based on (28) , the

volution of v (k ) can be expressed as 

 (k + 1) = A v (k ) + c (k ) + μ2 k + μ2 σ 2 
q λ (56)

ith 

 = I 2 M 

− 2 μ�R + μ2 �2 
R + μ2 �2 

P + μ2 λλT 

= I 2 M 

− 2 μ�R + 2 μ2 �2 
R + μ2 λλT (57)

 (k ) = 2 μ� 

[
Y E[ ̂  w 

∗
(k )] 

]
− 2 μ2 � [ p (k )] (58)

 = diag { ̂ b 1 , ̂  b 2 , . . . , ̂  b 2 M 

} (59)

here ˆ b i is the i th component of ˆ b = Q 

H b . The 2 M × 1 vector

 (k ) = [ ̂  T 1 , 1 (k ) , ̂  T 2 , 2 (k ) , . . . , ˆ T 2 M, 2 M 

(k )] T , in which 

ˆ T i,i (k ) is the i th

iagonal element of ˆ T (k ) = Q 

H T (k ) Q , and the 2 M × 1 vector k =
 ̂

 D 1 , 1 , ˆ D 2 , 2 , . . . , ˆ D 2 M, 2 M 

] T , in which ˆ D i,i is the i th diagonal element

f ˆ D = Q 

H D Q . 

emark 6. The convergence of the recursion in (56) is subject to

wo conditions: 1) all eigenvalues of the 2 M × 2 M transition matrix

 are less than unity; 2) the 2 M × 1 vector c (k ) is bounded. 

By considering (14), (30) and (58) , we find that the bounded-

ess of c (k ) is guaranteed if E[ ̂  w (k )] is bounded. Since E[ ̂  w (k )] =
 

H E[ ̃  w (k )] , by considering (20) , condition 2) is satisfied if 0 < μ <

(2 / tr ( R z )) . It is well known in the literature that condition 1) re-

ults in the following bound [42] : 

 < μ < 

2 

3 tr ( R z ) 
(60)

he upper bound in (60) is tighter than that in condition 2), and

herefore, mean square convergence of the deficient length ACLMS

s guaranteed if the step-size μ satisfies (60) . As expected, this

ound has an identical form to that obtained for mean-square sta-

ility of the deficient length LMS due to the fact that the transition

atrix A in (56) is identical in both cases [25] . 

.4. Steady state analysis 

To investigate the steady state performance of the deficient

ength ACLMS, based on (55) , we shall first rewrite the MSE in

26) as 

(k ) = σ 2 
q + u − 2 � 

[
b 

H 
E[ ̃  w (k )] 

]
+ λT v (k ) (61)

here 

 = w̄ 

o H R w̄ 

o (62)
z 
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[
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l

J

2 Note that the diagonal elements { p i } , i = 1 , 2 , . . . , M in �P obtained by the Tak- 

agi factorization are nonnegative square roots of P x P 
H 
x [41] . Therefore, for doubly 

white second order noncircular data, we have P x P 
H 
x = | ρx | 2 I M , and hence p i = | ρx | 

for ∀ i . 
uppose that μ is chosen such that the mean square stability is

uaranteed; then using (22), (50) and b = Q ̂

 b , the steady state

SE, that is, J ( ∞ ), can be derived as 

(∞ ) = σ 2 
q + u − 2 b 

H 
R 

−1 
z b + λT v (∞ ) 

= σ 2 
q + u − 2 

2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

+ λT v (∞ ) (63) 

n the other hand, the minimum MSE, denoted by J min , of the de-

cient length ACLMS can be obtained by substituting E[ ̃  w (∞ )] for˜ 

 (k ) in (61) , to give 

 min = σ 2 
q + u −

2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

(64) 

hich provides an exact measure of the effect of the level of system

ndermodelling on the minimum MSE . For comparison, the mini-

um MSE attained by the sufficient length ACLMS is σ 2 
q [18,19] . 

By definition, the steady state MSE of the LMS-type adaptive

lgorithm is described by [43] 

(∞ ) = J min + J ex (∞ ) (65) 

here J ex (∞ ) is the steady state excess MSE. From (63) and (64) ,

 ex (∞ ) of the deficient length ACLMS assumes the form 

 ex (∞ ) = λT v (∞ ) −
2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

(66) 

here using (64) in (56) and considering that in the steady state

 → ∞ , we arrive at 

 (∞ ) = ( I 2 M 

− A ) −1 d (∞ ) 

= (2 μ�R − 2 μ2 �2 
R − μ2 λλT ) −1 d (∞ ) (67) 

here 

 (∞ ) = c (∞ ) + μ2 k + μ2 
2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

λ − μ2 u λ + μ2 J min λ (68) 

pon defining 

= 2 �R − 2 μ�2 
R (69) 

nd employing the matrix inversion lemma, after a few manipula-

ions, from (67) we arrive at 

 (∞ ) = 

(
I 2 M 

+ 

μ�−1 λλT 

1 − λT μ�−1 λ

)
μ−1 �−1 d (∞ ) (70) 

nd hence 

T v (∞ ) = 

μ−1 λT �−1 d (∞ ) 

1 − μλT �−1 λ
(71) 

ubstituting (71) into (66) and following the analysis given in Ap-

endix C, we obtain 

 ex (∞ ) = 

2 M ∑ 

i =1 

μ f i 
2 − 2 μλi 

+ 

2 M ∑ 

i =1 

μλi J min 

2 − 2 μλi 

1 −
2 M ∑ 

i =1 

μλi 

2 − 2 μλi 

(72) 

here 

f i = 

ˆ D i,i − 2 � [ ̂  T i,i (∞ )] + 2 

2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

λi + 2 | ̂ b i | 2 − uλi (73) 

q. (72) is an expression for the steady state excess MSE of the

eficient length ACLMS for correlated and pseudo-correlated Gaus-

ian input data. 
emark 7. A complete view on the steady state MSE performance

f deficient length ACLMS can only be obtained by considering

64), (65) and (72) together. Observe that the steady state MSE

s influenced by the filter length 2 M , values of the system im-

ulse response w 

o 
j 
, j = 2 M + 1 , 2 M + 2 , . . . , 2 N, which are not con-

idered by ACLMS due to the system undermodelling problem, full

econd order statistics of input data (both covariance and pseudo-

ovariance coefficients), step-size and noise variance. 

For doubly white Gaussian input data, it can be verified from

73) that f i = 0 , since ˆ T i,i (∞ ) = 0 , ˆ b i = 0 , ˆ D i,i = uλi , and according

o the eigenstructure of the augmented covariance matrix in (45) ,

e have 2 

i = 

{
σ 2 

x + | ρx | , i = 1 , 2 , . . . , M 

σ 2 
x − | ρx | , i = M + 1 , M + 2 , . . . , 2 M 

(74) 

Consider a measure, κ , of the degree of noncircularity within

he complex-valued doubly white random variable x , defined as

he ratio of the absolute value of its pseudo-covariance | ρx | to its

ovariance σ 2 
x , giving κ = | ρx | / σ 2 

x , which is bounded within [0, 1)

44,45] . Then 

i = 

{
σ 2 

x (1 + κ) , i = 1 , 2 , . . . , M 

σ 2 
x (1 − κ) , i = M + 1 , M + 2 , . . . , 2 M 

(75) 

herefore, the first term in (72) vanishes, leading to the following

xpression for the steady state excess MSE 

 ex DW 
(∞ ) = 

2 M ∑ 

i =1 

μλi J min DW 

2 − 2 μλi 

1 −
2 M ∑ 

i =1 

μλi 

2 − 2 μλi 

= 

(
Mμσ 2 

x (1 + κ) 

2 − 2 μσ 2 
x (1 + κ) 

+ 

Mμσ 2 
x (1 − κ) 

2 − 2 μσ 2 
x (1 − κ) 

)
J min DW 

1 − Mμσ 2 
x (1 + κ) 

2 − 2 μσ 2 
x (1 + κ) 

− Mμσ 2 
x (1 − κ) 

2 − 2 μσ 2 
x (1 − κ) 

(76) 

o that from (64), (62) and (35) , we finally have 

 min DW 
= σ 2 

q + u DW 

= σ 2 
q + σ 2 

x 

(‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 � [ ρx ̄h 

o H 
ḡ 

o ] (77) 

herefore, the steady state MSE of the deficient length ACLMS for a

oubly white second order noncircular Gaussian input can be ob-

ained as 

 DW 

(∞ ) = J min DW 
+ J ex DW 

(∞ ) (78) 

or comparison, the steady state performance of the ‘sufficient

ength’ ACLMS is given by [18,21] 

 ex DW 
(∞ ) = 

2 N ∑ 

i =1 

μλi J min DW 

2 − 2 μλi 

1 −
2 N ∑ 

i =1 

μλi 

2 − 2 μλi 

= 

(
Nμσ 2 

x (1 + κ) 

2 − 2 μσ 2 
x (1 + κ) 

+ 

Nμσ 2 
x (1 − κ) 

2 − 2 μσ 2 
x (1 − κ) 

)
J min DW 

1 − Nμσ 2 
x (1 + κ) 

2 − 2 μσ 2 
x (1 + κ) 

− Nμσ 2 
x (1 − κ) 

2 − 2 μσ 2 
x (1 − κ) 
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w  

p  
J min DW 
= σ 2 

q 

J DW 

(∞ ) = J min DW 
+ J ex DW 

(∞ ) (79)

Remark 8. The steady state MSE of the sufficient length ACLMS

increases with an increase in noncircularity of the doubly white

Gaussian input signal. This can be verified through the first deriva-

tive of J DW 

(∞ ) in (79) with respect to the degree of noncircularity

κ , which always gives ∂ J DW 

(∞ ) /∂ κ > 0 for κ bounded within [0,

1) [21] . 

Remark 9. The relationship between the steady state MSE J DW 

(∞ )

of the deficient length ACLMS and the degree of input noncircu-

larity κ is more complicated. This is because κ is implicitly, and

to some extent nonlinearly, involved in the bias term u DW 

, which

arises within the minimum MSE J min DW 

in (77) due to system un-

dermodelling. The steady state MSE performance may therefore

decrease or increase as the input noncircularity κ increases. 

To clarify this observation, consider a doubly white Gaussian in-

put, x ( k ), whose pseudo-covariance ρx is real-valued, i.e., E[ x r x i ] =
0 . Without loss generality, we further assume that ρx is positive,

i.e. σ 2 
x r 

> σ 2 
x i 

[46] . In this case, the minimum MSE J min DW 

in (77) can

be rewritten as 

J min DW 
= σ 2 

q + u DW 

= σ 2 
q + σ 2 

x 

((‖ ̄h 

o ‖ 

2 
2 + ‖ ̄g 

o ‖ 

2 
2 

)
+ 2 κ� [ ̄h 

o H 
ḡ 

o ] 
)

(80)

If the value of � [ ̄h 

o H 
ḡ o ] in (80) is positive, it is easily verified

that ∂ J min DW 

/∂ κ > 0 , ∂ J ex DW 

(∞ ) /∂ κ > 0 and hence ∂ J DW 

(∞ ) /∂ κ >

0 , which indicates that the steady state MSE J DW 

(∞ ) of the defi-

cient length ACLMS increases with the increase in the input noncir-

cularity. However, if � [ ̄h 

o H 
ḡ o ] is negative, we have ∂ J min DW 

/∂ κ < 0 ,

but the sign of ∂ J ex DW 

(∞ ) /∂ κ can be either positive or negative,

and hence the steady state MSE J DW 

(∞ ) may decrease as the in-

put noncircularity κ increases. Note that this term, u DW 

, vanishes

in sufficient length ACLMS, due to the model matching. 

3. Simulations 

Numerical examples were conduced in the MATLAB program-

ming environment in order to evaluate the theoretical findings on

both the mean and mean square convergence performance of the

deficient length ACLMS algorithm. Experiments were performed

in a nonlinear system identification setting [4] , where the sys-

tem to be identified was a strictly linear FIR channel of length

N , for which the weight coefficients h 

o 
N were drawn from a uni-

formly distributed complex-valued vector random variable, the de-

sired signal d(k ) = 2 � [ h 

o H 
N x N (k )] + q (k ) , where the system input

x N (k ) was assumed to be a zero-mean complex-valued second or-

der noncircular Gaussian process and q ( k ) was another zero-mean

complex-valued doubly white circular Gaussian noise with σ 2 
q =

E[ | q (k ) | 2 ] . Note that the advantage of the widely linear model

based ACLMS over the strictly linear CLMS for this task was

straightforward to justify, since the desired signal d ( k ) can be de-

scribed in the widely linear sense as d(k ) = h 

o H 
N x N (k ) + g o H 

N 
x ∗

N 
(k ) +

q (k ) = w 

o H 
2 N 

z 2 N (k ) + q (k ) , with g o 
N 

= h 

o ∗
N , w (k ) = [ h 

T (k ) , g T (k )] T 

and z (k ) = [ x T (k ) , x H (k )] T . The weights within the ACLMS were

initialised with zeros, and simulation results were obtained by av-

eraging over 10 0 0 independent trials. 

3.1. Correlated and pseudo-correlated Gaussian input 

In the first experiment, both the unknown system and a widely

linear FIR filter trained by the ACLMS algorithm were fed with

a complex-valued correlated and pseudo-correlated second order

noncircular Gaussian signal, given by 

x (k ) = 0 . 8 x (k − 1) + 0 . 1 x ∗(k − 1) + η(k ) 
here η( k ) is a zero-mean doubly white circular Gaussian noise

rocess with unit variance. The real and the imaginary parts of x ( k )

herefore obey different first order autoregressive processes. 

We first chose N = 10 , M = 8 , σ 2 
q = 0 . 0 0 01 , and considered a

mall step-size μ = 0 . 0 0 01 and a larger step-size μ = 0 . 001 . Fig. 1

a) and (b) illustrate the mean convergence behaviour, in terms of

eal and imaginary parts of several weight error coefficients, of the

eficient length ACLMS, obtained from the simulations and theo-

etical analysis from (14) . Fig. 2 (a) and (b) show respectively the

heoretical and simulated convergence behaviours of the weight

rror coefficient power, tr 
(
K (k ) 

)
, and the MSE J ( k ), whose theo-

etical evolutions are respectively given in (28) and (61) . It can

e observed from Fig. 1 and Fig. 2 that our theoretical analy-

is accurately describes both the mean and mean square evolu-

ions of the weight error coefficients, as well as the MSE perfor-

ance, of the deficient length ACLMS for correlated and pseudo-

orrelated second order noncircular Gaussian inputs. In the next

tage, we investigated the validity of the proposed steady state

ean square performance analysis of the deficient length ACLMS.

n order to achieve the closed-form expression of the steady state

SE J ( ∞ ), given in (65) , the approximate uncorrelating transform

AUT) [29] was employed to approximately diagonalise the input

ovariance matrix R x by using the same orthogonal matrix Q P from

he Takagi factorisation of its pseudo-covariance P x . Within J ( ∞ )

n (65) , its corresponding minimum MSE, J min , and excess MSE,

 ex (∞ ) , were respectively evaluated by using (64) and (72) , as dis-

ussed in Remark 7 . Fig. 3 illustrates both the theoretically eval-

ated J ( ∞ ) and the simulated one of the deficient length ACLMS

or different values of the filter length M , where μ = 0 . 002 , σ 2 
q =

 . 001 . In all the cases, a good agreement between the analytical

nd empirical results can be observed, which also implies a high

ccuracy of AUT for the joint diagonalisation task. As expected, the

teady state MSE performance of the deficient length ACLMS im-

roved as the filter length increased, which is mainly due to a de-

rease in the bias term u = w̄ 

o H R z ̄w 

o within the minimum MSE

 min in (64) , which results from the system undermodelling. 

.2. Doubly white Gaussian input 

We next considered the case where both the unknown system

o be identified and the adaptive filter were excited by a zero-

ean second order noncircular doubly white Gaussian signal x ( k )

ith unit variance, for which both the covariance coefficient r ( i )

nd the pseudo-covariance coefficient p ( i ) vanish for lags i � = 0. The

ength of the unknown channel impulse response N was fixed to

 = 40 . We first designed x ( k ) to have pseudo-covariance ρ = 0 . 2 ,

o give a degree of noncircularity κ = ρ/σ 2 = 0 . 2 , and chose the

ength of adaptive filter M = 25 , step-size μ = 0 . 001 , and system

oise variance σ 2 
q = 0 . 0 0 01 . For illustration, Fig. 4 shows the mean

ehaviour of the fifth and twenty-fifth weight error coefficient in

erms of their real part and that of the tenth and twentieth weight

rror coefficient in terms of their imaginary part, obtained from

he simulations and theoretical analysis given in (24) . Note that in

his case, the vector b in (24) vanishes since the Gaussian input is

oubly white, enabling the deficient length ACLMS adaptive filter

o converge in the mean sense to the first 2 M weight coefficients

ithin the unknown system impulse response vector w 

o 
2 N 

, that is,

 

o in (9) , in an unbiased manner, as discussed in Remark 3 and

llustrated in Fig. 4 . We next compared the steady state MSE given

y (78) and its simulated counterpart for different values of M, μ
nd σ 2 

q . As illustrated in Table 1 , a good agreement between the

heoretical and simulated steady state MSE was achieved, with the

aximum performance difference of only 0.006 dB. 

As discussed in Remark 8 and Remark 9 , by virtue of AUT,

e were able to diagonalise both the covariance matrix and the

seudo-covariance matrix within the augmented covariance matrix
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Fig. 1. Comparison of the theoretical and simulated curves of the mean evolution of some weight error coefficients of the deficient length ACLMS. Both correlated and 

pseudo-correlated Gaussian input data were considered, with N = 10 , M = 8 , and σ 2 
q = 0 . 0 0 01 . (a) Real part, and (b) Imaginary part. 

Fig. 2. Comparison of the theoretical and simulated curves for the mean square behaviours of the deficient length ACLMS for correlated and pseudo-correlated Gaussian 

input data, with N = 10 , M = 8 , and σ 2 
q = 0 . 0 0 01 . (a) Weight error power, and (b) MSE. 

Table 1 

Comparison of theoretical and simulated steady state MSE of the deficient length ACLMS 

for doubly white second order noncircular Gaussian input data, and for different values 

of M, μ and σ 2 
q . 

μ σ 2 
q Theoretical J ( ∞ ) (dB) in (78) Simulated J ( ∞ ) (dB) 

M = 10 M = 20 M = 30 M = 10 M = 20 M = 30 

0.0 0 01 0.0 0 01 14.317 12.520 10.090 14.321 12.526 10.101 

0.0 0 05 0.001 14.334 12.561 10.143 14.337 12.566 10.145 

0.001 0.01 14.358 12.607 10.214 14.360 12.613 10.218 

w  

b  

A  

b  

f  

i  

M  

i  

n  

w  

c  

i  

s  

c  

d  

a  

a  

fi  

w  

R  

M  

fi

ith a single SVD, so as to build up an intuitive and explicit link

etween the theoretical steady state MSE of the deficient length

CLMS algorithm and the degree of noncircularity κ of the dou-

ly white Gaussian input data. Unlike the sufficient length ACLMS,

or which the steady state MSE always increases with an increase

n the noncircularity κ of the doubly white input, the steady state

SE of its deficient length counterpart may even decrease as the

nput noncircularity κ increases, if the value of � [ ̄h 

o H 
ḡ o ] in (80) is

egative. To illustrate this phenomenon, in the final experiment,

e compared the steady state MSE performances of both the defi-

ient length ACLMS and its sufficient length counterpart for vary-

ng degrees of input noncircularity. Since the doubly white Gaus-
ian input with unit variance was used in the simulations, for a fair

omparison, the different degrees of input noncircularity κ were

irectly achieved by varying its pseudo-covariance ρx . The upper

nd the lower panel of Fig. 5 give respectively both the simulated

nd theoretical steady state MSEs of the deficient length and suf-

cient length ACLMS for varying degrees of input noncircularity κ ,

hich conforms with the corresponding analysis in Remark 9 and

emark 8 . The agreement between the simulated and theoretical

SE performances can also be observed in Fig. 5 for both the de-

cient length ACLMS and its sufficient length counterpart. 
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Fig. 3. Comparison of the theoretical and simulated steady state MSE (dB) of the 

deficient length ACLMS for both correlated and pseudo-correlated Gaussian input 

data, with N = 10 , μ = 0 . 002 , σ 2 
q = 0 . 001 , and for different filter lengths M . 

Fig. 4. Comparison of the theoretical and simulated curves for the mean behaviour 

of several weight error coefficients of the deficient length ACLMS for doubly white 

Gaussian input data, with N = 40 , M = 25 , μ = 0 . 001 , and σ 2 
q = 0 . 0 0 01 . 

Fig. 5. Steady state MSE performances of both the deficient length ACLMS and its 

sufficient length counterpart for varying degrees of input noncircularity κ with N = 

40 , M = 20 , μ = 0 . 01 , σ 2 
q = 0 . 0 0 01 , and � [ ̄h o H ḡ o ] = –0.622. 

4
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t
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N  

m

T  
. Conclusions 

The mean and mean square convergence behaviours of the de-

cient length ACLMS have been analysed for second order non-

ircular Gaussian input data. The analysis has provided theoreti-

al mean and mean square evolutions for the weight error coeffi-

ients, as well as the MSE performance, and has shown that the

eficient length ACLMS exhibits a different convergence behaviour

s compared with the sufficient length ACLMS for both correlated

nd pseudo-correlated Gausian input data. For doubly white Gaus-

ian input data, the deficient length ACLMS has been shown to ex-

ibit similar mean convergence properties to its sufficient length

ounterpart, in the sense that its weight coefficients unbiasedly

onverge to the corresponding coefficients of an unknown system.

ean square stability conditions and closed-form expressions for

he steady state MSE and excess MSE of the deficient length ACLMS

ave been derived using the recently introduced approximate un-

orrelating transform (AUT), which diagonalises the covariance and

seudo-covariance matrices with a single singular value decompo-

ition (SVD). We have also shown that unlike the sufficient length

CLMS, for which the steady state MSE always increases with an

ncrease in the degree of noncircularity of doubly white Gaussian

nputs, the steady state MSE of its deficient length counterpart may

ven decrease as the input noncircularity increases. Simulations in

ystem identification tasks support the analysis. 
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ppendix A. The Detailed Form of T( k ) in (30) 

Since w̄ 

o = [ ̄h 

o T 
, ̄g o T ] T and z̄ (k ) = [ ̄x T (k ) , ̄x H (k )] T , observe that

n the RHS of (30) , the term w̄ 

o H z̄ (k ) can be decomposed as 

¯  

o H z̄ (k ) = 

N ∑ 

j= M+1 

(
h 

o ∗
j x (k − j + 1) + g o ∗j x ∗(k − j + 1) 

)
(81)

imilarly, since z (k ) = [ x T (k ) , x H (k )] T and 

˜ w (k ) = [ ̃  h 

T 
(k ) , ̃  g T (k )] T ,

he term z H (k ) ̃  w (k ) can be expressed as 

 

H (k ) ̃  w (k ) = 

M ∑ 

i =1 

(̃
 h i (k ) x ∗(k − i + 1) + ̃

 g i (k ) x (k − i + 1) 
)

(82)

sing the independence assumptions, T (k ) in (30) can be written

s 

 (k ) = 

M ∑ 

i =1 

N ∑ 

j= M+1 

E [ ̃  h i (k )] E 
[(

h 

o ∗
j x ∗(k − i + 1) x (k − j + 1) 

+ g o ∗j x ∗(k − i + 1) x ∗(k − j + 1) 
)
z (k ) z H (k ) 

]
+ 

M ∑ 

i =1 

N ∑ 

j= M+1 

E [ ̃  g i (k )] E 
[(

h 

o ∗
j x (k − i + 1) x (k − j + 1) 

+ g o ∗j x (k − i + 1) x ∗(k − j + 1) 
)
z (k ) z H (k ) 

]
(83)

ow, using the fourth order moment factoring theorem for zero

ean Gaussian input data, T (k ) can be expressed as 

 (k ) = 

[
E (k ) F (k ) 
G (k ) H (k ) 

]
(84)

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
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i  

F

E

F

G

H

A

 

b

|

A  

r

D

i  

a

n which, the ( m, l )th elements of the M × M sub-matrices E (k ) ,

 (k ) , G (k ) and H (k ) are respectively given by 

 m,l (k ) 

= 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  h i (k )] 

(
h 

o ∗
j 

(
r(i − j) r(l − m ) 

+ r(i − m ) r(l− j) + p ∗(i − l) p( j−m ) 
)
+ g o ∗j 

(
p ∗( j − i ) r(l − m ) 

+ r(i − m ) p ∗(l − j) + p ∗(i − l) r( j − m ) 
))

+ 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  g i (k )] 

(
h 

o ∗
j 

(
p(i − j) r(l − m ) + p(i − m ) r(l − j) 

+ r(l − i ) p( j − m ) 
)
+g o ∗j 

(
r( j−i ) r(l − m )+p(i − m ) p ∗(l − j) 

+ r (l − i ) r ( j − m ) 
)))

(85) 

 m,l (k ) 

= 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  h i (k )] 

(
h 

o ∗
j 

(
r(i − j) p(m − l) 

+ r(i − m ) p( j − l) + r(i − l) p( j − m ) 
)

+ g o ∗j 
(

p ∗(i − j) p(m − l) 

+ r(i − m ) r( j − l) + r(i − l) r( j − m ) 
))

+ 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  g i (k )] 

(
h 

o ∗
j 

(
p(i − j) p(m − l) 

+ p(i − m ) p( j − l) + p(i − l) p( j − m ) 
)

+ g o ∗j 
(
r( j − i ) p(m − l) 

+ p(i − m ) r( j − l) + p(i − l) r( j − m ) 
))

(86) 

 m,l (k ) 

= 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  h i (k )] 

(
h 

o ∗
j 

(
r(i − j) p ∗(m − l) 

+ p ∗(i − m ) r(l − j) + p ∗(i − l) r(m − j) 
)

+ g o ∗j 
(

p ∗(i − j) p ∗(m − l) 

+ p ∗(i − m ) p ∗( j − l) + p ∗(i − l) p ∗( j − m ) 
))

+ 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  g i (k )] 

(
h 

o ∗
j 

(
p(i − j) p ∗(m − l) 

+ r(m − i ) r(l − j) + r(l − i ) r(m − j) 
)

+ g o ∗j 
(
r( j − i ) p ∗(m − l) + r(m − i ) p ∗( j − l) 

+ r(l − i ) p ∗( j − m ) 
))

(87) 

 m,l (k ) 

= 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  h i (k )] 

(
h 

o ∗
j 

(
r(i − j) r(m − l) 

+ p ∗(i − m ) p( j − l) + r(i − l) r(m − j) 
)

+ g o ∗j 
(

p ∗(i − j) r(m − l) 

+ p ∗(i − m ) r( j − l) + r(i − l) p ∗( j − m ) 
))
+ 

M ∑ 

i =1 

N ∑ 

j= M+1 

E[ ̃  g i (k )] 

(
h 

o ∗
j 

(
p( j − i ) r(m − l) 

+ r(m − i ) p( j − l) + p(i − l) r(m − j) 
)

+ g o ∗j 
(
r ( j − i ) r (m − l) + r(m − i ) r( j − l) 

+ p(i − l) p ∗( j − m ) 
))

(88) 

ppendix B. The Detailed Form of D in (31) 

Observe first that on the RHS of (31) , the term | ̄w 

o H z̄ (k ) | 2 can

e decomposed as 

 ̄w 

o H z̄ (k ) | 2 = 

N ∑ 

i = M+1 

N ∑ 

j= M+1 

(
h 

o 
i x 

∗(k − i + 1) + g o i x (k − i + 1) 
)

·
(
h 

o ∗
j x ∗(k − j + 1) + g o ∗j x (k − j + 1) 

)
(89) 

gain, by using the Gaussian fourth order moment factoring theo-

em, D in (31) can be expressed as 

 = 

[
O P 

U V 

]
(90) 

n which, the ( m, l )th elements of the M × M sub-matrices O , P , U

nd V are respectively given by 

O m,l 

= 

N ∑ 

i = M+1 

N ∑ 

j= M+1 

(
h 

o 
i h 

o ∗
j 

(
r(i − j) r(l − m ) 

+ r(i − m ) r(l − j) + p ∗(i − l) p( j − m ) 
)

+ h 

o 
i g 

o ∗
j 

(
p ∗(i − j) r(l − m ) 

+ r(i − m ) p ∗( j − l) + p ∗(i − l) r( j − m ) 
)

+ g o i h 

o ∗
j 

(
p(i − j) r(l − m ) 

+ p(i − m ) r(l − j) + r(l − i ) p( j − m ) 
)

+ g o i g 
o ∗
j 

(
r ( j − i ) r (l − m ) 

+ p(i − m ) p ∗( j − l) + r(l − i ) r( j − m ) 
))

(91) 

P m,l 

= 

N ∑ 

i = M+1 

N ∑ 

j= M+1 

(
h 

o 
i h 

o ∗
j 

(
r(i − j) p(m − l) 

+ r(i − m ) p( j − l) + r(i − l) p( j − m ) 
)

+ h 

o 
i g 

o ∗
j 

(
p ∗(i − j) p(m − l) 

+ r(i − m ) r( j − l) + r(i − l) r( j − m ) 
)

+ g o i h 

o ∗
j 

(
p(i − j) p(m − l) 

+ p(i − m ) p( j − l) + p(i − l) p( j − m ) 
)

+ g o i g 
o ∗
j 

(
r( j − i ) p(m − l) 

+ p(i − m ) r( j − l) + p(i − l) r( j − m ) 
))

(92) 

U m,l 

= 

N ∑ 

i = M+1 

N ∑ 

j= M+1 

(
h 

o 
i h 

o ∗
j 

(
r(i − j) p ∗(m − l) 

+ p ∗(i − m ) r(l − j) + p ∗(i − l) r(m − j) 
)
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+ h 

o 
i g 

o ∗
j 

(
p ∗(i − j) p ∗(m − l) 

+ p ∗(i − m ) p ∗( j − l) + p ∗(i − l) p ∗( j − m ) 
)

+ g o i h 

o ∗
j 

(
p(i − j) p ∗(m − l) 

+ r(m − i ) r(l − j) + r(l − i ) r(m − j) 
)

+ g o i g 
o ∗
j 

(
r( j − i ) p ∗(m − l) 

+ r(m − i ) p ∗( j − l) + r(l − i ) p ∗( j − m ) 
))

(93)

V m,l 

= 

N ∑ 

i = M+1 

N ∑ 

j= M+1 

(
h 

o 
i h 

o ∗
j 

(
r(i − j) r(m − l) 

+ p ∗(i − m ) p( j − l) + r(i − l) r(m − j) 
)

+ h 

o 
i g 

o ∗
j 

(
p ∗(i − j) r(m − l) 

+ p ∗(i − m ) r( j − l) + r(i − l) p ∗( j − m ) 
)

+ g o i h 

o ∗
j 

(
p(i − j) r(m − l) 

+ r(m − i ) p( j − l) + p(i − l) r(m − j) 
)

+ g o i g 
o ∗
j 

(
r ( j − i ) r (m − l) 

+ r(m − i ) r( j − l) + p(i − l) p ∗( j − m ) 
))

(94)

Appendix C. The Derivation of J ex ( ∞ ) in (72) 

Following the approach in [26] , substituting (68) into (71) yields

λT v (∞ ) = 

2 M ∑ 

i =1 

2 | ̂ b i | 2 
λi 

+ μ ˆ D i,i − 2 μ� [ ̂ T i,i (∞ )] + μ∑ 2 M 
j=1 

| ̂ b j | 2 
λ j 

λi − μuλi 

2 − 2 μλi 
+ 

2 M ∑ 

i =1 

μλi J min 

2 − 2 μλi 

1 −
2 M ∑ 

i =1 

μλi 

2 − 2 μλi 

(95)

Since 

2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

= 

2 M ∑ 

j=1 

| ̂ b j | 2 (2 − 2 μλ j ) 

λ j (2 − 2 μλ j ) 
(96)

We have 

J ex (∞ ) = λT v (∞ ) −
2 M ∑ 

j=1 

| ̂ b j | 2 
λ j 

= 

2 M ∑ 

i =1 

2 | ̂ b i | 2 
λi 

+ μ ˆ D i,i −2 μ� [ ̂ T i,i (∞ )] + 2 μ∑ 2 M 
j=1 

| ̂ b j | 2 
λ j 

λi −μuλi 

2− 2 μλi 
−

2 M ∑ 

j=1 

| ̂ b j | 2 (2 − 2 μλ j ) 

λ j (2 − 2 μλ j ) 

1 −
2 M ∑ 

i =1 

μλi 

2 −2 μλi 

+ 

2 M ∑ 

i =1 

μλi J min 

2 − 2 μλi 

1 −
2 M ∑ 

i =1 

μλi 

2 − 2 μλi 

= 

2 M ∑ 

i =1 

μ f i 
2 − 2 μλi 

+ 
2 M ∑ 

i =1 

μλi J min 

2 − 2 μλi 

1 −
2 M ∑ 

i =1 

μλi 

2 − 2 μλi 

(97)

where f is defined in (73) . 
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