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a b s t r a c t 

Mean and mean square performance analyses of the strictly linear complex least mean square (CLMS) 

algorithm are addressed for widely linear estimation (WLE) of second order noncircular (improper) Gaus- 

sian inputs, for which both the covariance and pseudo-covariance matrices contain nonzero off-diagonal 

elements. A detailed performance analysis of standard CLMS in this ‘suboptimal’ context is not trivial but 

is important for practical applications. To this end, we here consider the strictly linear CLMS as a ‘de- 

ficient length’ version of the widely linear augmented CLMS (ACLMS) algorithm, which is second order 

optimal for improper inputs. Rigorous performance analysis is provided, which also statistically quantifies 

the suboptimality of CLMS in both the transient and steady state stages. The recently introduced approx- 

imate uncorrelating transform (AUT) is employed to derive closed-form expressions for the mean square 

stability and the steady-state performance of CLMS. In addition, since WLE with second order noncircular 

inputs is a general linear estimation problem in the complex domain C , these results provide a gener- 

alised framework from which current statistical descriptions of CLMS for strictly linear estimation (SLE) 

can be deduced as special cases. Simulations in system identification settings validate the findings. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The complex least mean square (CLMS) algorithm is the most

often used adaptive signal processing algorithm in the complex do-

main C . Based on a stochastic version of gradient descent applied

to a simple mean square error (MSE) cost function, for an N × 1

weight vector h (k ) = [ h 1 ( k ), h 2 ( k ), . . . , h N (k )] T at a time instant k ,

the CLMS weight update is given by Widrow et al. [1] 

e (k ) = d SL (k ) − h 

H 
(k ) x (k ) (1)

h (k + 1) = h (k ) + μe ∗(k ) x (k ) (2)

where x (k ) = [ x 1 (k ) , x 2 (k ) , . . . , x N (k )] T ∈ C 

N×1 is the input vector,

e ( k ) the output error, and μ the step-size. Within the standard

CLMS, the desired signal, d SL (k ) , is generated by a strictly linear

estimation (SLE) model, given by 

d (k ) = h 

o H 
x (k ) + q (k ) (3)
SL 
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here h 

o = [ h o 
1 
, h o 

2 
, . . . , h o 

N 
] T is the optimal system impulse re-

ponse vector to be estimated and q ( k ) ∈ C is zero-mean indepen-

ent identically distributed Gaussian noise, q (k ) ∼ N (0 , σ 2 
q ) . 

The analysis of the CLMS algorithm for this strictly linear es-

imation (SLE) problem was introduced by Horowitz and Senne

n their seminal paper [2] . A related analysis in the context of

n adaptive line enhancer appears in [3] . In both papers, the

air of the desired and input signals { d SL (k ) , x (k ) } is considered

o be jointly Gaussian, and the zero-mean input x (k ) is implic-

tly assumed to be second order circular (proper) with a vanish-

ng pseudo-covariance matrix, P = E[ x (k ) x T (k )] = 0 [4,5] . This as-

umption on the signal circularity has been implicitly or explicitly

nherited in performance analyses of CLMS and its variants in var-

ous applications [6–12] , since in this way, complex-valued anal-

ses have a similar statistical form to their real-valued counter-

arts, which reduces the complexity of the performance analysis

f CLMS. On the other hand, recent advances in the so-called aug-

ented complex statistics allow for the analysis of a general case

f second order noncircular random signals with non-vanishing

seudo-covariance matrix P . Such signals may arise from different

owers of their real and imaginary parts or a degree of correla-

ion between the real and imaginary parts, and in order to make

se of all the available second order information, we also need to
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l  

(

a

onsider the pseudo-covariance matrix, P , alongside with the stan-

ard covariance matrix R = E[ x (k ) x H (k )] [13–18] . 

A concept closely related to augmented complex statistics is

he so-called widely linear estimation (WLE), which considers the

esired signal, d WL (k ) , generated by the following widely linear

odel [14,15,19] 

 WL (k ) = h 

o H 
x (k ) + g 

o H x 

∗(k ) + q (k ) (4) 

here g o = [ g o 
1 
, g o 

2 
, . . . , g o 

N 
] T is the so-called conjugate optimal sys-

em impulse response vector, associated with the input conju-

ate x ∗(k ) . The WLE can be considered as a generalised estima-

ion framework in the complex domain, and has provided mod-

lling advantages over SLE in numerous applications in signal pro-

essing, communications, power systems, biomedical engineering

nd renewable energy [20–32] . The augmented complex statis-

ics have opened the possibility to design LMS-type adaptive algo-

ithms based on the widely linear model, leading to the so-called

ugmented CLMS (ACLMS), given by Mandic et al. [23] , Javidi et al.

25] , Xia et al. [26] , Khalili et al. [28] , Xia and Mandic [29] , Korpi

t al. [30] , Shi et al. [31] 

 (k ) = d WL (k ) − h 

H 
(k ) x (k ) − g 

H (k ) x 

∗(k ) (5) 

 (k + 1) = h (k ) + μe ∗(k ) x (k ) (6) 

 (k + 1) = g (k ) + μe ∗(k ) x 

∗(k ) (7) 

ompared with standard CLMS, the ACLMS updates an additional

eight vector g (k ) in order to track the optimal system impulse

esponse vector, g o , associated with the desired signal d WL (k ) gen-

rated by the widely linear model in (4) . The ACLMS has been

roved to be second order optimal for the WLE of both second or-

er circular and noncircular input signals [33] . Although prelimi-

ary results do exist which show that CLMS yields suboptimal es-

imates in the steady-state when employed for WLE [34,35] , a de-

ailed quantitative assessment of its statistical behaviour for WLE

s still missing. 

In this paper, we provide a comprehensive mean and mean

quare performance analysis of CLMS for WLE with both second

rder circular and noncircular Gaussian signals. For the first time,

e provide a statistical framework to quantify the suboptimal-

ty of CLMS in both transient and steady state stages under the

ame umbrella, by considering CLMS as a special case of a deficient

half-length’ ACLMS, whereby the weight vector g (k ) vanishes. In

ddition, since WLE is the most general framework for the pro-

essing of complex-valued data in terms of second order statis-

ics, this work provides a rigourous generalised performance anal-

sis of CLMS, from which current statistical descriptions for SLE

an be deduced as special cases. Closed-form expressions for the

teady state performance of CLMS are subsequently obtained from

he mean square analysis, where the recently introduced approxi-

ate uncorrelating transform (AUT) [33,36] is employed in order

o achieve a single joint singular value decomposition (SVD) of

oth the covariance and pseudo-covariance matrices, R and P , if

he data are second order noncircular. 

The rest of the paper is organised as follows. The mean and

ean square convergence of CLMS for WLE are respectively ad-

ressed in Sections 2 and 3 . A detailed mean square stability anal-

sis to quantify the bound on the step-size μ is given in Section 4 .

ection 5 provides the steady state mean square error (SSMSE)

erformance of CLMS for WLE. Simulations in system identifica-

ion setting are given in Section 6 to support the analysis. Finally,

ection 7 concludes this paper. 

. Mean convergence analysis 

Consider the use of CLMS, summarised in (1) and (2) , for WLE

f the desired widely linear response d (k ) given in (4) . The out-
WL 
ut error e ( k ) in (1) then becomes 

 (k ) = ( h 

o − h (k )) H x (k ) + g 

o H x 

∗(k ) + q (k ) (8) 

pon introducing the N × 1 weight error vector 

 

 (k ) = h (k ) − h 

o 
(9) 

he output error e ( k ) in (8) can be rewritten as 

 (k ) = g 

o H x 

∗(k ) − ˜ h 

H 
(k ) x (k ) + q (k ) (10) 

hile for the conjugate error we have 

 

∗(k ) = g 

o T x (k ) − ˜ h 

T 
(k ) x 

∗(k ) + q ∗(k ) (11) 

rom (2) , the recursion for the update of the weight error vector
 

 (k ) becomes 

 

 (k + 1) = ̃

 h (k ) + μ( g 

o T x (k ) − ˜ h 

T 
(k ) x 

∗(k ) + q ∗(k )) x (k ) 

= ( I − μx (k ) x 

H (k )) ̃  h (k ) + μ
(
g 

o T x (k ) 
)
x (k ) 

+ μq ∗(k ) x (k ) (12) 

here I is an N × N identity matrix. 

The mean behaviour of ̃  h (k ) can now be determined by apply-

ng the statistical expectation operator to both sides of (12) and

pon employing the standard independence assumptions, that is,

he noise q ( k ) is statistically independent of any other signal in the

LMS algorithm and 

˜ h (k ) is statistically independent of the adap-

ive filter input x (k ) [37] , to yield 

[ ̃  h (k + 1)] = [ I − μR ] E[ ̃  h (k )] + μa (13) 

here a = E[( g o T x (k )) x (k )] = [ a 1 , a 2 , . . . , a N ] 
T . The i th component,

 i , can be derived as 

 i = 

N ∑ 

j=1 

g o j E[ x i (k ) x j (k )] = 

N ∑ 

j=1 

g o j p i j (14) 

here p i j = E[ x i (k ) x j (k )] is the ( i, j )th element in the pseudo-

ovariance matrix P . 

Recall that λmax ≤ tr [ R ] , where λmax is the maximum eigen-

alue of R and tr [ ·] the trace operator. Hence, according to (13) ,

he convergence in the mean of CLMS for WLE with second order

oncircular input is guaranteed if the step-size μ satisfies 

 < μ < 

2 

tr [ R ] 
(15) 

emark 1. The upper bound on μ for the mean stability of CLMS

or WLE in (4) is identical to that derived for SLE in (3) , for both

econd order circular and noncircular input signals [2,8,10,34,38] . 

At the steady state, from (13) we have 

[ ̃  h (∞ )] = R 

−1 a (16) 

o that the steady state value of the weight vector of CLMS be-

omes 

[ h (∞ )] = h 

o + R 

−1 a (17) 

emark 2. Eq. (17) indicates that for WLE with second order non-

ircular input signals, the CLMS yields a bias in the estimation of

he optimal weight vector, h 

o 
, associated with input vector, x (k ) ,

uantified by R 

−1 a . The level of this bias depends upon the level

f “undermodeling”, that is, the dimensionality of a , N , and the full

econd order statistics of the input vector x (k ) , that is, the covari-

nce coefficients reflected in R 

−1 and the pseudo-covariance coef-

cients contained in the vector a . 

However, when either the input x (k ) is second order circu-

ar (with P = 0 ) or when g o = 0 , which is the case when WSE in

4) reduces to SLE in (3) , we have 

 = 0 and E[ h (∞ )] = h 

o 
(18) 



238 Y. Xia et al. / Signal Processing 149 (2018) 236–245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

a

E

T  

(

K

 

E  

a  

h  

G  

o  

C

 

f  

o  

g

K

 

T  

a  

i  

r  

p

K

 

R  

o  

d  

e

4

 

s  

w  

T  

i  

m  

t  

a  

P  

f  

n  

g  

e  

b  

a  

t  

f  

a  

a

 

t  

a

P  
Remark 3. For WLE of second order circular inputs and for SLE of

the general second order noncircular inputs, the CLMS algorithm

converges in the mean to the optimal weight coefficients associ-

ated with x (k ) , that is, h 

o 
, and in an unbiased manner. 

3. Mean square convergence analysis 

The MSE of CLMS, denoted by J ( k ), can be defined as 

J(k ) = E[ | e (k ) | 2 ] = E[ e (k ) e ∗(k )] (19)

From (10) to (11) , and by employing the standard independence

assumptions stated in Section 2 , for the WLE performed by CLMS,

the MSE in (19) can be evaluated as 

J(k ) = E[ g 

o T x (k ) x 

H (k ) g 

o ∗] − E[ g 

o H x 

∗(k ) x 

H (k ) ̃  h (k )] 

− E[ ̃  h 

H 
(k ) x (k ) x 

T (k ) g 

o ] + E[ ̃  h 

H 
(k ) x (k ) x 

H (k ) ̃  h (k )] + σ 2 
q 

= g 

o T R g 

o ∗ − 2 � 

[
a H E[ ̃  h (k )] 

]
+ tr [ RK (k )] + σ 2 

q (20)

where � [ · ] is the real part operator, and K (k ) = E[ ̃  h (k ) ̃  h 

H 
(k )] is

the weight error covariance matrix. From the above, the MSE J ( k )

can be explained through the contribution of three components:

(i) a constant component g o T R g o ∗ + σ 2 
q , in which the term g o T R g o ∗

stems from the suboptimality of using CLMS for WLE, that is, from

the inherent undermodelling; (ii) a component depending on the

transient mean weight error vector E[ ̃  h (k )] ; (iii) a component de-

pending on the weight error covariance matrix K (k ) . 

The MSE of CLMS for SLE, denoted by J SLE (k ) , can be directly

deduced from (20) by setting g o = 0 , and consequently a = 0 , to

give [2,3,6,10,38,39] 

J SLE (k ) = tr [ RK (k )] + σ 2 
q (21)

Observe that the mean square analysis of CLMS rests upon the

second order characteristics of the weight error vector, K (k ) , in

(20) . To analyse its evolution, we first apply the Hermitian oper-

ator ( ·) H to both sides of (12) , to yield 

 h 

H 
(k + 1) = ̃

 h 

H 
(k )( I − μx (k ) x 

H (k )) 

+ μ( g 

o H x 

∗(k )) x 

H (k ) + μq (k ) x 

H (k ) 

Upon multiplying both sides of (12) by ˜ h 

H 
(k + 1) and taking the

statistical expectation, the evolution of the weigh error covariance

matrix K (k ) becomes 

K (k + 1) = K (k ) + μ(E[ ̃  h (k )] a H + a E[ ̃  h 

H 
(k )] − R K (k ) − K (k ) R ) 

+ μ2 
(
C − B (k ) − B 

H (k ) + σ 2 
q R 

+ E[ x (k ) x 

H (k ) ̃  h (k ) ̃  h 

H 
(k ) x (k ) x 

H (k )] 
)

(22)

where 

B (k ) = E[( g 

o H x 

∗(k )) x (k ) x 

H (k ) ̃  h (k ) x 

H (k )] (23)

C = E[ | g 

o T x (k ) | 2 x (k ) x 

H (k )] (24)

The detailed expressions for B (k ) and C are given respectively in

Appendix A and Appendix B . We shall now examine the ( i, j )th

entry of the expectation matrix of the last term on the right hand

side (RHS) of (22) under the independence assumptions, given by {
E[ x (k ) x 

H (k ) ̃  h (k ) ̃  h 

H 
(k ) x (k ) x 

H (k )] 
}

i j 

= 

N ∑ 

l=1 

N ∑ 

m =1 

E[ x i (k ) x ∗l (k ) x m 

(k ) x ∗j (k )] E[ ̃  h l (k ) ̃  h 

∗
m 

(k )] 

By employing the Gaussian fourth order moment factorising theo-

rem, we obtain 

E[ x i (k ) x ∗l (k ) x m 

(k ) x ∗j (k )] = r il r m j + p im 

p ∗l j + r i j r ml 
nd hence [33,38,39] , 

[ x (k ) x 

H (k ) ̃  h (k ) ̃  h 

H 
(k ) x (k ) x 

H (k )] 

= RK (k ) R + PK 

∗(k ) P 

∗ + R tr [ RK (k )] 

hus, the evolution of the weight error covariance matrix K (k ) in

22) now becomes 

 (k + 1) = K (k ) + μ(E[ ̃  h (k )] a H + a E[ ̃  h 

H 
(k )] − R K (k ) − K (k ) R ) 

+ μ2 
(
C − B (k ) − B 

H (k ) + σ 2 
q R 

+ RK (k ) R + PK 

∗(k ) P 

∗ + R tr [ RK (k )] 
)

(25)

qs. (20) and (25) , in which the convergence of E[ ̃  h (k )] is guar-

nteed by (13) , now completely describe the MSE convergence be-

aviour of the CLMS algorithm for WLE of second order noncircular

aussian input data. The impact of the degree of undermodelling

n the mean-square evolution of CLMS, in the form of a , B (k ) and

 , can also be observed. 

The evolution of the weight error covariance matrix of CLMS

or SLE of second order noncircular inputs, denoted by K SLE (k ) , is

btained from (25) when the terms a , B (k ) and C vanish, and is

iven by 

 SLE (k + 1) = K SLE (k ) − μ
(
R K SLE (k ) + K SLE (k ) R 

)
+ μ2 

(
σ 2 

q R + RK SLE (k ) R + PK 

∗
SLE (k ) P 

∗

+ R tr [ RK SLE (k )] 
)

(26)

his update relation has been presented in [33,38,39] . By further

ssuming that the input data of the SLE is second order circular,

.e. by setting P = 0 in (26) , we arrive at the well-known recursive

elation for the weight error covariance matrix of standard CLMS,

resented in [2,3,10] , and given by 

 SLE (k + 1) = K SLE (k ) − μ( R K SLE (k ) + K SLE (k ) R ) 

+ μ2 
(
σ 2 

q R + RK SLE (k ) R + R tr [ RK SLE (k )] 
)

(27)

emark 4. The mean square performance of CLMS for WLE of sec-

nd order noncircular input data, given in (20) and (25) , is depen-

ent on its mean convergence behaviour, a situation that does not

xist in SLE, as shown in (21) and (26) . 

. Mean square stability 

We shall now consider sufficient conditions for the mean

quare convergence of the weight error vector of CLMS for WLE

ith the general second order noncircular Gaussian input data.

his work is challenging in the sense that a simultaneous diagonal-

sation of both the covariance matrix R and the pseudo-covariance

atrix P in (25) is a prerequisite for a compact, closed-form, solu-

ion. The first attempt along this direction is given in [38] , which

pplies the strong uncorrelating transform (SUT) [40,41] on R and

 . However, since SUT admits a single SVD for both matrices only

or a doubly white and a special type of correlated second order

oncircular signals, the analysis in [38] cannot be extended to the

eneral second order noncircular signals for which the off-diagonal

lements of both R and P contain nonzero elements. In order to

oth address the diagonalisation problem encountered by SUT and

t the same time simplify the analysis, we employ the recently in-

roduced approximate uncorrelating transform (AUT), which allows

or a single singular value decomposition (SVD) of both the covari-

nce and pseudo-covariance matrices, R and P , within reasonable

pproximations [33,36,39] . 

The Takagi factorisation states that any complex symmetric ma-

rix, like the pseudo-covariance matrix P = P 

T 
, can be diagonalised

s 

 = Q �p Q 

T (28)
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here Q is a unitary matrix, that is Q Q 

H = I , and �p =
iag { p 1 , p 2 , . . . , p N } is a diagonal matrix of real-valued entries,

here p 1 ≥ p 2 ≥ ��� ≥ p N are the nonnegative square roots of P P 

H 

42] . 

The approximate uncorrelating transform (AUT) [36] states that

he same matrix Q can be used to approximately diagonalise the

ovariance matrix R , so that 

 	 Q �r Q 

H (29) 

nd hence its inversion 

 

−1 	 Q �−1 
r Q 

H (30) 

here �r = diag { λ1 , λ2 , . . . , λN } , λ1 ≥λ2 ≥ ��� ≥λN , and λi are the

eal-valued eigenvalues. The approximations in (29) and (30) are

alid for univariate data, and the equality is achieved when x (k )

s real-valued, that is, maximum noncircular [33,36] . The benefits

f using the AUT in obtaining the bound on the step-size μ in the

ean square sense and the closed-form solutions for the steady

tate performance of CLMS are illustrated in the following. 

With the AUT, we can now rotate the weight error vector and

he input vector as 

ˆ 
 (k ) = Q 

H ˜ h (k ) and ˆ x (k ) = Q 

H x (k ) (31) 

n a similar way, we can define 

ˆ 
 (k ) = Q 

H B (k ) Q and 

ˆ C = Q 

H C Q (32) 

herefore, the term tr [ RK (k )] on the RHS of (25) can be decom-

osed as 

r [ R K (k )] = E[ ̃  h 

H 
(k ) R ̃

 h (k )] = E[ ̂  h 

H 
(k ) � ˆ h (k )] = λT κ(k ) (33) 

here λ = [ λ1 , λ2 , . . . , λN ] 
T , and κ( k ) is the N × 1 second order

oment vector, the components of which are the diagonal ele-

ents of ˆ K (k ) = E[ ̂  h (k ) ̂  h 

H 
(k )] . Then, based on (25) , the evolution

f κ( k ) becomes 

(k + 1) = 

(
I − 2 μ�r + μ2 

(
�2 

r + �2 
p + λλT 

))
︸ ︷︷ ︸ 

F 

κ(k ) 

+ p (k ) + μ2 c + μ2 σ 2 
q λ (34) 

ith 

 (k ) = 2 μ� 

[
A E[ ̂  h 

∗
(k )] 

]
− 2 μ2 � [ b (k )] (35) 

 = diag { ̂  a 1 , ̂  a 2 , . . . , ̂  a N } (36) 

here ˆ a i is the i th component of ˆ a = Q 

H a . The vector b (k ) =
 ̂

 B 11 (k ) , ˆ B 22 (k ) , . . . , ˆ B NN (k )] T , in which ˆ B ii (k ) is the i th diagonal el-

ment of ˆ B (k ) , and the vector c = [ ̂  C 11 , ˆ C 22 , . . . , ˆ C NN ] 
T , in which 

ˆ C ii 
s the i th diagonal element of ˆ C . 

Similar to the analysis in Section 2 , through the vanishing of

he terms containing g o , that is, p (k ) and c in (34) , we obtain the

volution of κ( k ) in the context of SLE with general second order

oncircular inputs, as discussed in [33,38,39] and given by 

SLE (k + 1) = 

(
I − 2 μ�r + μ2 

(
�2 

r + �2 
p + λλT 

))
︸ ︷︷ ︸ 

F 

κSLE (k ) 

+ μ2 σ 2 
q λ (37) 

y further assuming that the input of SLE is second order circular,

.e. setting �p = 0 in (37) , we arrive at the well-known recursive

elation for κ( k ), provided by Horowitz and Senne [2] , Fisher and

ershad [3] , and Godavarti and Hero [10] and given by 

SLE (k + 1) = 

(
I − 2 μ�r + μ2 

(
�2 

r + λλT 
))

κSLE (k ) + μ2 σ 2 
q λ (38) 
emark 5. By comparing (34) and (37) , observe that no matter

hether CLMS is performing WLE or SLE with second order noncir-

ular inputs, the mean square evolution of the weight error vector
 

 (k ) has the same transition matrix F . 

Convergence of the recursion in (34) is subject to two condi-

ions: (1) all eigenvalues of F are less than unity; this is also the

ondition on the step-size μ of CLMS for SLE with second order

oncircular inputs, as indicated by (37) ; (2) p (k ) is bounded. First,

bserve that the boundedness of p (k ) is guaranteed if E[ ̂  h (k )] is

ounded. Since E[ ̂  h (k )] = Q 

H E[ ̃  h (k )] , by considering (15) , condition

2) is satisfied if 0 < μ < 2 / tr [ R ] . On the other hand, according to

he analysis in [39] , the upper bound on μ for the condition (1) to

old is given by 

 < μ < 

1 ∑ N 
i =1 (λi + 

p 2 
i 

2 λi 
) 

(39) 

hile for second order circular inputs, p i = 0 , from (39) , we have 

 < μ < 

1 ∑ N 
i =1 λi 

= 

1 

tr [ R ] 
(40) 

emark 6. Eqs. (39) and (40) are the respective bounds on μ for

he mean square stability of CLMS for SLE with second order non-

ircular and circular inputs. For the case of WLE, since both the

pper bounds in (39) and (40) are tighter than that governed by

ondition (2), in order to guarantee the boundedness of p (k ) in

34) , that is, 2 / tr [ R ] , these are also the conditions on the step-size

which ensure the mean square stability of the CLMS for WLE for

econd order noncircular and circular input data, respectively. From

he above discussion, we are now able to draw the conclusion that

he mean square stability bound on μ of CLMS is identical for both

he cases of WLE and SLE, mainly due to the identical transition

atrix F . 

. Steady state analysis 

To investigate the steady state performance of CLMS for WLE of

eneral second order noncircular Gaussian signals, based on (33) ,

e shall first rewrite the MSE J ( k ) in (20) as 

(k ) = σ 2 
q + g 

o T R g 

o ∗ − 2 � [ a H E[ ̃  h (k )]] + λT κ(k ) (41) 

uppose that μ is chosen such that the mean square stability is

uaranteed; then using (16), (30), (33) and a = Q ̂ a , the steady state

SE (SSMSE), that is, J ( ∞ ), can be derived from (41) as 

(∞ ) = σ 2 
q + g 

o T R g 

o ∗ − 2 a H R 

−1 a + λT κ(∞ ) 

= σ 2 
q + g 

o T R g 

o ∗ − 2 

N ∑ 

j=1 

| ̂  a j | 2 
λ j 

+ λT κ(∞ ) (42) 

n the other hand, the minimum MSE (MMSE), denoted by J min , of

he CLMS can be obtained substituting E[ ̃  h (∞ )] for ̃  h (k ) in (20) , to

ive 

 min = σ 2 
q + g 

o T R g 

o ∗ −
N ∑ 

j=1 

| ̂  a j | 2 
λ j 

(43) 

hich provides an exact measure of the effect of the level of sys-

em undermodeling on the MMSE of CLMS for WLE. 

By definition, the SSMSE of LMS-type adaptive algorithms is de-

cribed by Widrow and Stearns [43] 

(∞ ) = J min + J ex (∞ ) (44) 

here J ex (∞ ) is the steady state excess MSE (SSEMSE). From

42) to (43) , J ex (∞ ) of the CLMS assumes the form 

 ex (∞ ) = λT κ(∞ ) −
N ∑ 

j=1 

| ̂  a j | 2 
λ j 

(45) 
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1 This is because the diagonal elements { p i }, i = 1 , 2 , . . . , N, in �p obtained by 

the Takagi factorisation are nonnegative square roots of PP H . Therefore, for doubly 

white second order noncircular data, we have PP H = | ρx | 2 I , and hence p i = | ρx | for 

∀ i . 
where using (43) and (34) and considering that in the steady state

k → ∞ , we arrive at 

κ(∞ ) = ( I − F ) −1 s (∞ ) 

= (2 μ�r − μ2 �2 
r − μ2 �2 

p − μ2 λλT ) −1 s (∞ ) (46)

where 

s (∞ ) = p (∞ ) + μ2 c + μ2 σ 2 
q λ

= p (∞ ) + μ2 c + μ2 
N ∑ 

j=1 

| ̂  a j | 2 
λ j 

λ

− μ2 g 

o T R g 

o ∗λ + μ2 J min λ (47)

Upon defining 

�1 = 2 �r − μ�2 
r − μ�2 

p 

and employing the matrix inversion lemma, after some manipula-

tions, from (46) we arrive at 

κ(∞ ) = 

(
I + 

μ�−1 
1 

λλT 

1 − μλT �−1 
1 

λ

)
μ−1 �−1 

1 
s (∞ ) 

and hence, 

λT κ(∞ ) = 

μ−1 λT �−1 
1 

s (∞ ) 

1 − μλT �−1 
1 

λ

= 

∑ N 
i =1 

μ−1 λi s i (∞ ) 

2 λi −μλ2 
i 
−μp 2 

i 

1 − ∑ N 
i =1 

μλ2 
i 

2 λi −μλ2 
i 
−μp 2 

i 

(48)

where s i ( ∞ ) is the i th element of s (∞ ) in (47) . Substituting

(48) into (45) and after some mathematical manipulations, we ob-

tain 

J ex (∞ ) = 

∑ N 
i =1 

μ(t i + J min λ
2 
i 
) 

2 λi −μλ2 
i 
−μp 2 

i 

1 − ∑ N 
i =1 

μλ2 
i 

2 λi −μλ2 
i 
−μp 2 

i 

(49)

where 

 i = 

(
λi + 

p 2 
i 

λi 

)
| ̂  a i | 2 − 2 λi � [ ̂  B ii (∞ )] + λi ̂

 C ii 

+ 2 

N ∑ 

j=1 

| ̂  a j | 2 
λ j 

λ2 
i − g 

o T R g 

o ∗λ2 
i (50)

Remark 7. Eqs. (49) and (50) provide a detailed expression for the

SSEMSE of CLMS for WLE with general second order noncircular

inputs. A complete view on the SSMSE, J ( ∞ ), can be obtained by

considering (43), (44), (49) and (50) together. It is clear that J ( ∞ ) is

influenced by the values of the system impulse response associated

to the input conjugate x ∗(k ) , that is, g o in (4) , whose estimation is

not considered by CLMS due to the system undermodelling. The

SSMSE, J ( ∞ ), is also dependent on the full second order statistics

of input data (both covariance and pseudo-covariance coefficients),

the step-size μ and the noise variance σ 2 
q . 

The MMSE and SSEMSE performances of CLMS for WLE with

second order circular inputs can be subsequently deduced from

(43), (49) to (50) by setting the terms containing the pseudo-

covariance information, that is, ˆ a i , ˆ B ii (∞ ) and p i , all equal to zero,

and are given by 

J min = σ 2 
q + g 

o T R g 

o ∗ (51)

J ex (∞ ) = 

∑ N 
i =1 

μ( ̂ C ii + σ 2 
q λi ) 

2 −μλi 

1 − ∑ N 
i =1 

μλi 

2 −μλ

(52)
i 
n a similar way, the MMSE and SSEMSE performances of CLMS

or SLE with second order noncircular inputs, denoted by J SLE 
min 

and

 

SLE 
ex (∞ ) , can be respectively deduced from (43), (49) to (50) by set-

ing the terms containing g o , that is, g o T R g o ∗, ˆ a i , ˆ B ii (∞ ) , and 

ˆ C ii ,

ll equal to zero, and is given by 

 

SLE 
min = σ 2 

q (53)

 

SLE 
ex (∞ ) = 

∑ N 
i =1 

μσ 2 
q λ

2 
i 

2 λi −μλ2 
i 
−μp 2 

i 

1 − ∑ N 
i =1 

μλ2 
i 

2 λi −μλ2 
i 
−μp 2 

i 

(54)

bserve the agreement with the results in [33,38] . Furthermore,

hen the input of SLE becomes second order circular with p i = 0 ,

rom (53) to (54) , we have 

 

SLE 
min = σ 2 

q (55)

 

SLE 
ex (∞ ) = 

∑ N 
i =1 

μσ 2 
q λi 

2 −μλi 

1 − ∑ N 
i =1 

μλi 

2 −μλi 

(56)

s expected, this is identical to the well-known results in [2,3] ,

btained by implicitly using a circular input assumption. 

emark 8. In all the cases considered, both the SSEMSE and the

SMSE of CLMS are monotonically increasing functions of the step-

ize μ and the system noise variance σ 2 
q . 

.1. Steady state MSE (SSMSE) of CLMS v.s. degree of input 

oncircularity 

It is of particular interest to find an explicit link between the

egree of input noncircularity and the SSMSE performances of

LMS for both WLE and SLE. To simplify the analysis, we consider

he case when the second order noncircular Gaussian input x (k ) is

oubly white (DW), for which 

 = σ 2 
x I and P = ρx I (57)

here σ 2 
x = E[ x (k ) x ∗(k )] and ρx = E[ x 2 (k )] are respectively the co-

ariance and pseudo-covariance of x ( k ) [17,18] . Note that in this

ase, we have 1 

i = σ 2 
x and p i = | ρx | (58)

onsider a measure, η, of the degree of input noncircularity, de-

ned as the ratio of the absolute value of the pseudo-covariance

x to the variance σ 2 
x , giving 

= 

| ρx | 
σ 2 

x 

(59)

hich is bounded to within [0, 1) [44,45] . Then, from (53), (54) to

44) , the steady state performance of CLMS for SLE can be derived

s [33] 

 

SLE (∞ ) = J SLE 
min + J SLE 

ex (∞ ) 

= σ 2 
q + 

μNσ 2 
q σ

4 
x 

2 σ 2 
x −μσ 4 

x −μ| ρx | 2 
1 − μNσ 4 

x 

2 σ 2 
x −μσ 4 

x −μ| ρx | 2 

= σ 2 
q + 

μNσ 2 
q σ

2 
x 

2 − μ(N + 1) σ 2 − μσ 2 η2 
(60)
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emark 9. For SLE, the SSMSE of CLMS J SLE (∞ ) is a mono-

onically increasing function of the input noncircularity η, since

 J SLE (∞ ) /∂ η > 0 for η ∈ [0, 1). However, this relationship may be

ot applicable for a small step-size μ, a long filter length N , or a

mall input variance σ 2 
x , since in such scenarios the third term in

he denominator of the SSEMSE, J SLE 
ex (∞ ) in (60) , is negligible as

ompared with the other two terms, making J SLE (∞ ) almost inde-

endent on the input noncircularity η. 

To investigate the relationship between the steady state perfor-

ance of CLMS and the degree of input noncircularity η for WLE,

rst observe that for doubly white Gaussian input data, from (14) ,

e have 

ˆ 
 i = g o i ρx (61) 

lso note that 

 

o T R g 

o ∗ = ‖ g 

o ‖ 

2 
2 σ

2 
x (62) 

nd hence, the MMSE of CLMS for WLE, that is, J min in (43) , now

ecomes 

 min = σ 2 
q + ‖ g 

o ‖ 

2 
2 σ

2 
x (1 − η2 ) (63) 

n a similar way, according to Appendix A and (32) 

ˆ 
 ii (∞ ) = σ 2 

x ρ
∗
x 

N ∑ 

l=1 

g o ∗l E[ ̂ h l (∞ )] + 2 g o ∗i σ
2 
x ρ

∗
x E[ ̂ h i (∞ )] (64) 

ccording to (16) and (31) , we have 

[ ̂ h l (∞ )] = 

g o 
l 
ρx 

σ 2 
x 

, l = 1 , 2 , . . . , N (65) 

ow, substitute this into (64) to yield 

ˆ 
 ii (∞ ) = ‖ g 

o ‖ 

2 
2 | ρx | 2 + 2 | g o i | 2 | ρx | 2 

= (‖ g 

o ‖ 

2 
2 + 2 | g o i | 2 ) σ 4 

x η
2 (66) 

imilarly, according to Appendix B and (32) , we have 

ˆ 
 ii = ‖ g 

o ‖ 

2 
2 σ

4 
x + | g o i | 2 (| ρx | 2 + σ 4 

x ) 

= ‖ g 

o ‖ 

2 
2 σ

4 
x + | g o i | 2 σ 4 

x (1 + η2 ) (67) 

y considering (58), (61), (66) and (67) , after some mathematical

anipulations, the term t i in (50) can be simplified as 

 i = | g o i | 2 σ 6 
x (1 − η2 ) 2 (68) 

hile based on (58), (63) and (68) , the SSEMSE of CLMS for WLE,

hat is, J ex (∞ ) in (49) , can be obtained as 

 ex (∞ ) = 

μ‖ g 

o ‖ 

2 
2 σ

4 
x 

(
(1 − η2 ) 2 + N(1 − η2 ) 

)
+ μNσ 2 

q σ
2 
x 

2 − μ(N + 1) σ 2 
x − μσ 2 

x η2 
(69) 

herefore, from (63) to (69) , the SSMSE of CLMS for WLE be-

omes 

(∞ ) = J min + J ex (∞ ) 

= σ 2 
q + ‖ g 

o ‖ 

2 
2 σ

2 
x (1 − η2 ) 

+ 

μ‖ g 

o ‖ 

2 
2 σ

4 
x 

(
(1 − η2 ) 2 + N(1 − η2 ) 

)
+ μNσ 2 

q σ
2 
x 

2 − μ(N + 1) σ 2 
x − μσ 2 

x η2 

= σ 2 
q + 

2 ‖ g 

o ‖ 

2 
2 σ

2 
x (1 − η2 )(1 − μσ 2 

x η
2 ) + μNσ 2 

q σ
2 
x 

2 − μ(N + 1) σ 2 
x − μσ 2 

x η2 
(70) 

emark 10. By comparing (60) and (70) , observe that for a second

rder noncircular doubly white Gaussian input process x ( k ), CLMS

lways yields a larger MSE for WLE as compared with SLE, since

he term 2 ‖ g o ‖ 2 
2 
σ 2 

x (1 − η2 )(1 − μσ 2 
x η

2 ) in (70) is always positive

or η ∈ [0, 1) and the value of step-size μ is within the bound

n (39) for the mean square stability of CLMS, that is, 0 < μ <

 / (Nσ 2 
x (2 + η2 )) . 
emark 11. For WLE, the relationship between the steady state

erformance of CLMS, J ( ∞ ) in (70) , and the input noncircularity η
s more complicated as compared with that for SLE. Observe that

he denominator and the numerator of the SSEMSE, J ex (∞ ) , are

oth monotonically decreasing functions of η, and hence, theoret-

cally speaking, J ( ∞ ) has no monotonicity in the degree of input

oncircularity η for η ∈ [0, 1). However, since the numerator is a

uch sharper decreasing function of η than the denominator, J ( ∞ )

s very likely to decrease as the input noncircularity η increases.

imulations at the end of the next section illustrate these findings.

lso observe that when the condition ‖ g o ‖ 2 2  μNσ 2 
q / 2 holds, J ( ∞ )

ehaves as an increasing function of η. This may happen when the

L system to be estimated is of long impulse response length N ,

ery weakly WL with a small ‖ g o ‖ 2 2 , or very noisy with a large σ 2 
q .

his may also be the case when a large step-size μ is used by the

LMS algorithm. 

. Simulations 

Numerical examples were conducted in the MATLAB program-

ing environment in order to evaluate the theoretical findings

n both the mean and mean square convergence performance of

he CLMS algorithm for both widely linear estimation (WLE) and

trictly linear estimation (SLE) with second order noncircular and

ircular Gaussian input data. The experiments were performed in a

ystem identification setting, where the strictly linear system to be

dentified was a strictly linear FIR channel, for which the weight

oefficients h 

o 
were drawn from a uniformly distributed complex-

alued vector random variable. For the WLE task, the desired signal

 WL (k ) assumed the form [19] , 

 WL (k ) = h 

o H 
x (k ) + g 

o H x 

∗(k ) + q (k ) 

= 2 � [ h 

o H 
x (k )] + q (k ) (71) 

here g o = h 

o ∗
, while the system input x (k ) was assumed to be

 zero-mean complex-valued Gaussian process and q ( k ) was zero-

ean complex-valued doubly white circular Gaussian noise with
2 
q = E[ | q (k ) | 2 ] . The SLE task considered here is directly deduced

rom (71) , through a vanishing g o , as given in (3) . The Gaussian

nput x (k ) to both the unknown system and the CLMS algorithm

as second order noncircular, and obeys the following widely lin-

ar autoregressive (AR)(1) process 

 (k ) = 0 . 7 x (k − 1) + 0 . 2 x ∗(k − 1) + u (k ) (72) 

here u ( k ) is a zero-mean doubly white circular Gaussian noise

rocess with unit variance. In this case, the real and the imaginary

arts of x ( k ) obey different AR(1) processes. For the second order

ircular input considered, x (k ) obeys the following strictly linear

R(1) process, given by 

 (k ) = 0 . 7 x (k − 1) + u (k ) (73) 

he weights within the CLMS algorithm were initialised with ze-

os, and simulation results were obtained by averaging over 10,0 0 0

ndependent trials. Note that the proposed performance analysis

n second order noncircular Gaussian input data, together with

he above WLE task represented in (71) , are valid to theoretically

nvestigate the suboptimalities of a CLMS based multiple access

nterference (MAI) suppressor in multiuser wireless communica-

ions over frequency selective channels for real-valued constella-

ion schemes, such as amplitude-shift keying and binary phase-

hift keying (BPSK) [20] . The present analysis is a missing piece in

uch scenarios, since just simulation results exist in [20] to reflect

he performance deficiency of CLMS. 

We first chose filter length N = 5 , step-size μ = 0 . 0 0 01 , 0 . 0 01 ,

nd σ 2 
q = 0 . 0 0 01 . Fig. 1 (a) and (b) illustrate the mean behaviour,

n terms of real and imaginary parts of several weight error coef-

cients, of CLMS for WLE with second order noncircular Gaussian
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Fig. 1. Comparison of the theoretical and simulated curves of the mean evolution of representative weight error coefficients of the CLMS for WLE with second order 

noncircular Gaussian input signals, where μ∈ {0.0 0 01, 0.0 01}, and σ 2 
q = 0 . 0 0 01 . (a) Real part, and (b) Imaginary part. 

Fig. 2. Comparison of the theoretical and simulated curves of the mean evolution of representative weight error coefficients of the ACLMS for WLE with second order circular 

Gaussian input signals, where μ∈ {0.0 01, 0.0 05}, and σ 2 
q = 0 . 0 05 . (a) Real part, and (b) Imaginary part. 

Fig. 3. Comparison of the theoretical and simulated curves for the mean square behaviours of the CLMS for WLE with second order noncircular Gaussian input data, with 

N = 5 , μ∈ {0.0 01, 0.0 05} and σ 2 
q = 0 . 0 0 01 . (a) Weight error power, and (b) MSE. 
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input signals. The results were obtained for both the simulations

and theoretical analysis from (13) . Due to its strictly linear nature,

the CLMS algorithm was of ‘deficient length’ when used for WLE,

as it does not consider the conjugate weight coefficients g o associ-

ated with the input conjugate x ∗(k ) in (71) , resulting in unavoid-

able bias in the estimation of h 

o 
, and hence, as shown in Fig. 1 (a)

and (b), the mean weight error vector E[ ̃  h (k )] was not able to con-

verge to 0 . However, as discussed in Remark 3 , the case of circular

input can remove this bias, as shown in Fig. 2 (a) and (b). 

In the next stage, we investigated the validity of the proposed

mean square convergence analysis of CLMS for WLE with second

order noncircular Gaussian input data. Fig. 3 (a) and (b) show re-

spectively the theoretical and simulated convergence behaviours

of the weight error power tr [ K (k )] , where K (k ) = E[ ̃  h (k ) ̃  h 

H 
(k )] ,
nd the MSE J ( k ), for which theoretical expressions are respectively

iven in (25) and (20) . It can be observed that our theoretical anal-

sis accurately describes both the transient and the steady state

ean square behaviours of CLMS for different values of the step-

ize μ. Also note that the mean square convergence analysis pro-

ided in (25) and (20) is the most general one for the CLMS in

erms of second order statistics, since other mean square statisti-

al descriptions of CLMS on SLE in the literature [2,3,10,38] can be

onveniently deduced as special cases, as discussed in Section 3 . 

The steady state performance of CLMS for both WLE and SLE

ith second order noncircular input data against different val-

es of the step-size μ and system noise variance σ 2 
q is given in

able 1 . In order to achieve the closed-form expressions of the

teady state excess MSE (SSEMSE) of CLMS for WLE and SLE, re-
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Table 1 

Comparison of theoretical and simulated SSMSE of the CLMS algorithm for 

both WLE and SLE of second order noncircular Gaussian input data against 

different values of the step-size μ and the system noise variance σ 2 
q . 

μ σ 2 
q Theoretical SSMSE (dB) Simulated SSMSE (dB) 

WLE SLE WLE SLE 

0.0 0 05 0.0 0 01 −1.263 −39.987 −1.252 −39.980 

0.001 0.0 0 01 −1.250 −39.973 −1.240 −39.971 

0.005 0.0 0 01 −1.124 −39.860 −1.034 −39.820 

0.0 0 05 0.001 −1.258 −29.987 −1.246 −29.985 

0.001 0.001 −1.243 −29.973 −1.224 −29.965 

0.005 0.001 −1.119 −29.860 −1.105 −29.799 

0.0 0 05 0.01 −1.206 −19.987 −1.191 −19.973 

0.001 0.01 −1.191 −19.966 −1.179 −19.961 

0.005 0.01 −1.067 −19.860 −0.987 −19.810 

0.005 0.02 −1.010 −16.850 −0.977 −16.825 

0.005 0.05 −0.843 −12.871 −0.805 −12.839 

Fig. 4. Steady state MSE performances of CLMS for both WLE and SLE against vary- 

ing degrees of input noncircularity η, with N = 10 , μ = 0 . 001 , and σ 2 
q = 0 . 01 . 
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Fig. 5. Steady state MSE performances of CLMS, for both WLE and SLE, against vary- 

ing degrees of input noncircularity η. For SLE, the system to be identified was gen- 

erated with N = 2 and σ 2 
q = 0 . 001 , and a large step-size μ = 0 . 3 was used by CLMS. 

For WLE, the system to be identified was generated with N = 2 , σ 2 
q = 0 . 2 , a very 

small ‖ g o ‖ 2 2 = 0 . 001 , and a large step-size μ = 0 . 25 was used by CLMS. 
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pectively given in (49) and (54) , the approximate uncorrelating

ransform (AUT) was used to diagonalise both the covariance and

seudo-covariance matrices R and P with a single SVD [33,36] . The

teady state MSE (SSMSE) of CLMS, J ( ∞ ), for both cases was sub-

equently obtained by using (44) . This conforms with the analy-

is in Remark 8 , showing that in both the cases of WLE and SLE,

 ( ∞ ) increases with an increase in μ or σ 2 
q , and the good agree-

ent between the theoretical results and the simulated ones can

e observed. Also observe that CLMS yielded a much larger MSE

or WLE as compared with that obtained for SLE for a specific set-

ing. This is mainly because of the positive term g o T R g o ∗ in the

MSE of CLMS for WLE, given in (43) , that appears as a result of

he undermodelling problem, which constituted the major part of

he corresponding SSMSE. 

By virtue of AUT, we are also able to build up an intuitive and

xplicit link between the theoretical SSMSE of the CLMS algorithm

nd the degree of noncircularity η of the doubly white Gaussian

nput data. As discussed in Remark 9 , theoretically speaking, for

LE, the SSMSE of CLMS in (60) is a monotonically increasing func-

ion of the input noncircularity η, however, this relationship is not

ikely to be visible for a small step-size μ or a long filter length

 , since the term involving η is negligible compared with other

erms, making the SSMSE of CLMS largely independent on η in

uch scenarios. This phenomenon is illustrated in Fig. 4 , in which

he results were obtained by using a long filter length N = 10 and a

mall step-size μ = 0 . 001 . For a fair comparison, the doubly white

nput vector x (k ) was fixed to have unit variance, and the dif-
erent degrees of input noncircularity η were produced by vary-

ng the pseudo-covariance ρx . On the other hand, as discussed in

emark 11 , the SSMSE of the CLMS algorithm for WLE theoretically

as no monotonicity in η, however, since the numerator is a much

harper decreasing function of η as compared with the denomina-

or, it is very likely to decrease as the input noncircularity η in-

reases, which is the case shown in Fig. 4 . The simulation results

n Fig. 4 also support our analysis in Remark 10 , which states that

or a specific input noncircularity η, CLMS renders a larger MSE

n the steady state for WLE as compared with SLE. Again, observe

he good match between the simulated and theoretical SSMSE of

LMS in all the cases considered. In order to illustrate the theo-

etical links between the SSMSE of CLMS and η for WLE and SLE,

e carefully designed the following experiment: the system to be

dentified in SLE was of short impulse response with N = 2 , and a

arge step-size μ = 0 . 3 was used by CLMS, so as to make the value

f the term μσ 2 
x η

2 in (60) closer to the other two terms within

he denominator of the SSEMSE of CLMS. For WLE, the system to

e identified was also of short impulse response, with N = 2 , but

ery weakly WL with a small value of ‖ g o ‖ 2 
2 

= 0 . 001 , and very

oisy with σ 2 
q = 0 . 2 . A large step-size μ = 0 . 25 was used by CLMS,

n order to introduce the condition ‖ g o ‖ 2 
2 

 μNσ 2 
q / 2 . The simula-

ion results for this experiment are given in Fig. 5 , which conforms

ith our finding that for SLE, the MSE performance decreases with

n increase in input noncircularity η, which can also be the case

or WLE. However, we should emphasise that the discrepancy be-

ween the theoretical SSMSE of CLMS and the corresponding sim-

lated one became obvious due to the use of a large step-size μ. 

. Conclusions 

The mean and mean square convergence behaviours of the

omplex least mean square (CLMS) adaptive filtering algorithm

ave been analysed for widely linear estimation (WLE) with sec-

nd order noncircular Gaussian input data, in order to quantify

ts suboptimality in this scenario. This is achieved by consider-

ng CLMS as a special, deficient length, case of augmented CLMS

ACLMS) for WLE. The analysis has provided theoretical mean and

ean square evolutions for the weight error coefficients, as well

s the MSE performance, and has shown that CLMS exhibits differ-
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ent convergence behaviours for second order noncircular and cir-

cular inputs. It has also been illustrated that the existing statisti-

cal descriptions of CLMS for strictly linear estimation (SLE) can be

conveniently obtained as special cases of this analysis. A unified

bound on the step-size has been derived for mean square stability

of CLMS when performing WLE, illustrating that CLMS has iden-

tical stability bound on the step-size for both WLE and SLE, but

exhibits different bounds for second order circular and noncircular

inputs. The closed-form expressions for the steady state MSE and

excess MSE of CLMS for WLE have also been derived, enabling us

to explicitly link the degree of input noncircularity with the steady

state MSE for doubly white Gaussian input data. We have shown

that, unlike the case of SLE where the steady state MSE of CLMS

always increases with an increase in the degree of noncircularity,

the steady state MSE for WLE has no monotonicity in the input

noncircularity. We have also showed that in some scenarios, the

steady state performance of CLMS for WLE increases as the input

noncircularity increases. Simulations in system identification set-

ting support the analysis. The proposed performance analysis, to-

gether with the simulation results, also provide physical insights

into the suboptimalities in both the transient and steady state

stages of a CLMS based multiple access interference (MAI) suppres-

sor in multiuser wireless communications when real-valued con-

stellation schemes are adopted. A detailed analysis of this applica-

tion scenario is subject to our future work. 
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Appendix A. The Detailed Form of B ( k ) in (23) 

Using the independence assumptions stated in Section 2 , B (k )

in (23) can be written as 

B (k ) = 

N ∑ 

l=1 

N ∑ 

m =1 

g o ∗m 

E [ ̃  h l (k )] E [ x ∗l (k ) x ∗m 

(k ) x (k ) x 

H (k )] (74)

The ( i, j )th term of B (k ) is then given by 

B i j (k ) = 

N ∑ 

l=1 

N ∑ 

m =1 

g o ∗m 

E [ ̃  h l (k )] E [ x ∗l (k ) x ∗m 

(k ) x i (k ) x ∗j (k )] 

= 

N ∑ 

l=1 

N ∑ 

m =1 

g o ∗m 

E[ ̃  h l (k )](p ∗lm 

r i j + r il p 
∗
m j + p ∗l j r im 

) (75)

The last step in (75) is achieved by using the Gaussian fourth order

moment factorisation theorem. 

Appendix B. The Detailed Form of C in (24) 

First note that from (24) , the term | g o T x (k ) | 2 can be decom-

posed as 

| g 

o T x (k ) | 2 = 

(
g 

o T x (k ) 
)(

g 

o H x 

∗(k ) 
)

= 

N ∑ 

l=1 

N ∑ 

m =1 

g o l g 
o ∗
m 

x l (k ) x ∗m 

(k ) (76)
sing the independence assumptions stated in Section 2 and ap-

lying the Gaussian fourth order moment factorisation, we can

rite the ( i, j )th term of C in (24) as 

 i j = 

N ∑ 

l=1 

N ∑ 

m =1 

g o l g 
o ∗
m 

E[ x l (k ) x ∗m 

(k ) x i (k ) x ∗j (k )] 

= 

N ∑ 

l=1 

N ∑ 

m =1 

g o l g 
o ∗
m 

(r lm 

r i j + p li p 
∗
m j + r l j r im 

) (77)

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.sigpro.2018.03.009 . 

eferences 

[1] B. Widrow , J. McCool , M. Ball , The complex LMS algorithm, in: Proceedings of
the IEEE, 63, 1975, pp. 719–720 . 

[2] L.L. Horowitz , K.D. Senne , Performance advantage of complex LMS for control-
ling narrow-band adaptive arrays, IEEE Trans. Acous. Speech Signal Process. (3)

(1981) 722–736 . ASSP- 29 
[3] B. Fisher , N.J. Bershad , The complex LMS adaptive algorithm-transient weight

mean and covariance with applications to the ALE, IEEE Trans. Acoust. Speech

Signal Process. (1) (1983) 34–44 . ASSP-31 
[4] F.D. Neeser , J.L. Massey , Proper complex random processes with applications

to information theory, IEEE Trans. Inf. Theory 39 (4) (1993) 1293–1302 . 
[5] B. Picinbono , On circularity, IEEE Trans. Signal Process. 42 (12) (1994)

3473–3482 . 
[6] D.T.M. Slock , On the convergence behavior of the LMS and the normalized LMS

algorithms, IEEE Trans. Signal Process. 41 (9) (1993) 2811–2825 . 
[7] M. Rupp , A.H. Sayed , A time-domain feedback analysis of filtered-error adap-

tive gradient algorithms, IEEE Trans. Signal Process. 44 (6) (1996) 1428–1439 . 

[8] L. Lindbom , M. Sternad , A. Ahlen , Tracking of time-varying mobile radio chan-
nels - part I: the Wiener LMS algorithm, IEEE Trans. Commun. 49 (12) (2001)

2207–2217 . 
[9] A. Ahlen , L. Lindbom , M. Sternad , Analysis of stability and performance of

adaptation algorithms with time-invariant gains, IEEE Trans. Signal Process. 52
(1) (2004) 103–116 . 

[10] M. Godavarti , A.O. Hero III , Partial update LMS algorithms, IEEE Trans. Signal

Process. 53 (7) (2005) 2382–2399 . 
[11] Y. Avargel , I. Cohen , Adaptive nonlinear system identification in the short-

-time Fourier transform domain, IEEE Trans. Signal Process. 57 (10) (2009)
3891–3904 . 

[12] X. Zhao , A.H. Sayed , Performance limits for distributed estimation over LMS
adaptive networks, IEEE Trans. Signal Process. 57 (10) (2009) 3891–3904 . 

[13] A. van den Bos , The multivariate complex normal distribution - a generaliza-

tion, IEEE Trans. Inf. Theory 41 (2) (1995) 537–539 . 
[14] B. Picinbono , Second-order complex random vectors and normal distributions,

IEEE Trans. Signal Process. 44 (10) (1996) 2637–2640 . 
[15] B. Picinbono , P. Bondon , Second-order statistics of complex signals, IEEE Trans.

Signal Process. 45 (2) (1997) 411–420 . 
[16] P.J. Schreier , L.L. Scharf , Second-order analysis of improper complex random

vectors and process, IEEE Trans. Signal Process. 51 (3) (2003) 714–725 . 

[17] D.P. Mandic , S.L. Goh , Complex Valued Nonlinear Adaptive Filters: Noncircular-
ity, Widely Linear and Neural Models, Wiley, New York, 2009 . 

[18] P.J. Schreier , L.L. Scharf , Statistical Signal Processing of Complex-Valued Data:
The Theory of Improper and Noncircular Signals, Cambridge University Press,

2010 . 
[19] B. Picinbono , P. Chevalier , Widely linear estimation with complex data, IEEE

Trans. Signal Process. 43 (8) (1995) 2030–2033 . 

[20] R. Schober , W.H. Gerstacher , L.H.J. Lampe , Data-aided and blind stochastic gra-
dient algorithm for widely linear MMSE MAI supperssion for DS-CDMA, IEEE

Trans. Signal Process. 52 (3) (2004) 746–756 . 
[21] M. Valkama , M. Renfors , V. Koivunen , Blind signal estimation in conjugate sig-

nal models with application to i/q imbalance compensation, IEEE Signal Pro-
cess. Lett. 12 (11) (2005) 733–736 . 

[22] P. Chevalier , A. Blin , Widely linear MVDR beamformers for the reception of

an unknown signal corrupted by noncircular interferences, IEEE Trans. Signal
Process. 55 (11) (2007) 5323–5336 . 

[23] D.P. Mandic , S. Javidi , S.L. Goh , A. Kuh , K. Aihara , Complex-valued prediction of
wind profile using augmented complex statistics, Renew. Energy 34 (1) (2009)

44–54 . 
[24] J. Navarro-Moreno , J. Moreno-Kayser , R.M. Fernandez-Alcálá, J.C. Ruiz-Molina ,

Widely linear estimation algorithms for second-order stationary signals, IEEE
Trans. Signal Process. 57 (12) (2009) 4 930–4 935 . 

[25] S. Javidi , D.P. Mandic , A. Cichocki , Complex blind source extraction from noisy

mixtures using second-order statistics, IEEE Trans. Circuits Syst. I 57 (7) (2010)
1404–1416 . Regular Papers 

[26] Y. Xia , S.C. Douglas , D.P. Mandic , Adaptive frequency estimation in smart grid
applications: exploiting noncircularity and widely linear adaptive estimators,

IEEE Signal Process. Mag. 29 (5) (2012) 44–54 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
https://doi.org/10.1016/j.sigpro.2018.03.009
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0026


Y. Xia et al. / Signal Processing 149 (2018) 236–245 245 

 

 

[  

 

[  

 

[  

 

 

[  

 

 

 

 

[  

 

 

 

 

 

[  

 

[  

 

 

[  

[  

 

 

 

[
[  

[  

[  

 

[27] Y. Xia , D.P. Mandic , Augmented performance bounds on strictly linear and
widely linear estimators with complex data, IEEE Trans. Signal Process. 66 (2)

(2018) 507–514 . 
28] A . Khalili , A . Rastegarnia , S. Sanei , Quantized augmented complex least-mean

square algorithm: derivation and performance analysis, Signal Process. 121
(2016) 54–59 . 

29] Y. Xia , D.P. Mandic , Complementary mean square analysis of augmented CLMS
for second order noncircular gaussian signals, IEEE Signal Process. Lett. 24 (9)

(2017) 1413–1417 . 

30] D. Korpi , L. Anttila , V. Syrjälä, M. Valkama , Widely linear digital self-interfer-
ence cancellation in direct-conversion full-duplex transceiver, IEEE J. Sel. Areas

Commun. 32 (9) (2014) 1674–1687 . 
[31] Y. Shi , L. Huang , C. Qian , H.C. So , Shrinkage linear and widely linear complex–

valued least mean squares algorithms for adaptive beamforming, IEEE Trans.
Signal Process. 63 (1) (2015) 119–131 . 

32] Z. Li , Y. Xia , W. Pei , K. Wang , Y. Huang , D.P. Mandic , Noncircular measure-

ment and mitigation of I/Qimbalance for OFDM-based WLAN transmitters,
IEEE Trans. Instrum. Meas. 66 (3) (2017) 383–393 . 

[33] D.P. Mandic , S. Kanna , S.C. Douglas , Mean square analysis of the CLMS and
ACLMS for non-circular signals: the approximate uncorrelating transform ap-

proach, in: Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 3531–3535 . 

34] S.C. Douglas , D.P. Mandic , Performance analysis of the conventional complex

LMS and augmented complex LMS algorithms, in: Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2010,

pp. 3494–3497 . 
[35] D.P. Mandic , Y. Xia , S.C. Douglas , Steady state analysis of the CLMS and aug-
mented CLMS algorithms for noncircular complex signals, in: Proceedings of

44th Asilomar Conference on Signals, Systems and Computers (ASILOMAR),
2010, pp. 1635–1639 . 

36] C. Cheong-Took , S.C. Douglas , D.P. Mandic , On approximate diagonalization of
correlation matrices in widely linear signal processing, IEEE Trans. Signal Pro-

cess. 60 (3) (2012) 1469–1473 . 
[37] A.H. Sayed , Fundamentals of Adaptive Filtering, Wiley, New York, 2003 . 

38] S.C. Douglas , D.P. Mandic , Mean and mean-square analysis of the complex LMS

algorithm for non-circular Gaussian signals, in: Proceedings of Digital Signal
Processing Workshop and 5th IEEE Signal Processing Educducation Workshop

(DSP/SPE), 2009, pp. 101–106 . 
39] Y. Xia , D.P. Mandic , A full mean square analysis of CLMS for second-order non-

circular inputs, IEEE Trans. Signal Process. 65 (21) (2017) 5578–5590 . 
40] J. Eriksson , V. Koivunen , Complex random vectors and ICA models: identi-

fiability, uniqueness, and separability, IEEE Trans. Inf. Theory 52 (3) (2006)

1017–1029 . 
[41] S.C. Douglas , Fixed-point algorithms for the blind separation of arbitrary com-

plex-valued non-Gaussian signal mixtures, EURASIP J. Adv. Signal Process. 2007
(2007) 1–15 . 036525 

42] R.A. Horn , Topics in Matrix Analysis, Cambridge University Press, 1991 . 
43] B. Widrow , S.D. Stearns , Adaptive Signal Processing, Prentice-Hall, New Jersey,

1985 . 

44] E. Ollila , On the circularity of a complex random variable, IEEE Signal Process.
Lett. 15 (2008) 841–844 . 

45] E. Ollila , J. Eriksson , V. Koivunen , Complex elliptically symmetric random vari-
ables - generation, characterization, and circularity tests, IEEE Trans. Signal

Process. 59 (1) (2011) 58–69 . 

http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30107-5/sbref0045

	A perspective on CLMS as a deficient length augmented CLMS: Dealing with second order noncircularity
	1 Introduction
	2 Mean convergence analysis
	3 Mean square convergence analysis
	4 Mean square stability
	5 Steady state analysis
	5.1 Steady state MSE (SSMSE) of CLMS v.s. degree of input noncircularity

	6 Simulations
	7 Conclusions
	 Acknowledgments
	Appendix A The Detailed Form of B(k) in (23)
	Appendix B The Detailed Form of C in (24)
	 Supplementary material
	 References


