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Abstract—This paper proposes a real-time detector of recti-
linearity of signals received by an antenna array. A rectilinear
source is characterised by having a circularity coefficient of unity
and it represents a real-valued source with an arbitrary phase
shift. Real-time detection of rectilinearity has been introduced
as a new challenge in communications since identifying the
rectilinearity of the sources would help designers choose between
strictly linear and widely linear beamformers. The proposed
real-time detector of rectilinearity, first separates the sources
with an online blind source separation (BSS) algorithm, then
estimates the circularity coefficient of the separated sources
using a real-time circularity tracker. We exploit the result that
the variance of the circularity tracker is null for rectilinear
signals to tune the algorithm for rapid convergence and robust
detection. Simulations on synthetic communication data support
the analysis and claims.

Index Terms—Rectilinearity, CLMS, adaptive filters, blind
source separation, circularity tracker.

NOTATION

Lower-case letters are used to denote scalars, boldface
letters for vectors and boldface upper-case letters for matrices.
The symbol (·)∗ denotes complex conjugation, while (·)T and
(·)H are used for transposition and conjugate transposition.
The subscript k is used as a time index and E {·} represents
the statistical expectation operator. The operator |z| is used to
represent the magnitude of a complex variable z.

I. INTRODUCTION

Adaptive beamforming is crucial for wireless communica-
tion networks as it is used to extract signals of interest (SOI)
by rejecting the interference and noise for signals and channels
with time varying statistics. Consider a uniform linear array
(ULA) of N sensors which receives a signal of interest mk at
time instant k according to the following relationship

xk = mks+ nk (1)

where xk ∈ CN×1 is the measurement vector with the entries
from each ULA sensor, s ∈ CN×1 is the steering or the
channel vector of the SOI and nk ∈ CN×1 is the total noise
vector.

Traditional complex-valued adaptive beamformers were de-
rived as generic extensions of their real-valued counterparts
where the signal mk is recovered by a strictly linear adaptive
filter yk = hH

k xk with output yk which corresponds to the
recovered signal and the input xk is from the antenna array

measurements given in (1). The beamforming filter weight
vector hk is adaptively estimated by minimising the mean
square error (MSE) cost function given by

JMSE(hk) = E

{

|mk − yk|
2
}

= E
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∣

∣
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}

. (2)

The strictly linear solution to the cost function in (2) is
only optimal for a restricted class of signals which are second
order circular and a widely linear beamformer is required
for a general class of non-circular signals. The widely linear
beamformer is able to recover non-circular SOI using a widely
linear model which utilizes both xk and its conjugate x

∗

k to
give yk = hH

k xk+gH
k x

∗

k. The filter weight vectors hk and gk

are also derived by minimising the MSE cost function given
by [1]

JMSE(hk,gk) = E

{

∣

∣mk − hH
k xk − gH

k x
∗

k

∣

∣

2
}

. (3)

Adaptive (real-time) beamformers are derived by minimising
the cost functions given in (2) and (3) either via the stochastic
gradient descent to form the complex least mean square
(CLMS) [2] and augmented CLMS (ACLMS) algorithms [3],
[4] or by minimising sum of the error squares recursively to
form the recursive least squares (RLS) [5] and widely linear
RLS (WL–RLS) algorithms [6].

For an N−sensor antenna array, widely linear beamformers
are able to process more than the conventional limit of N − 1
sources when two or more of the sources are rectilinear [7]. A
rectilinear source is a special case of a complex-valued source
as it is effectively a single real-valued source with an arbitrary
phase shift. However, since the widely linear solution for (3)
requires twice the number of complex coefficients compared
to the strictly linear solution for (2), this results in an increase
in computational complexity. Moreover, doubling the number
of coefficients for adaptive filters results in a larger steady
state excess MSE [8]. Therefore, it is important to determine
the rectilinearity of the sources prior to employing either a
strictly linear or a widely linear adaptive beamformer1.

The idea of detecting the rectilinearity of sources after a
blind source separation (BSS) step for wireless communication
signals was first suggested in [7], where the sample covariance
and pseudocovariance were used to estimate the rectilinearity

1Note that we have assumed that the criterion for choosing between strictly
linear and widely linear processing is solely based on the number of sources
that can be separated.978–1–4673–6540–6/15/$31.00 c⃝2015 IEEE



of the signal. Other more sophisticated tools to estimate the
non-circularity (hence, rectilinearity) of signals have been
suggested in the past, see [9]–[11]. However, as most of these
algorithms, including the approach in [7], are block-based,
they are not suitable for real-time applications or for non-
stationary data.

To this end, we show that the rectilinearity detection idea in
[7] can be extended for online applications by a combination
of an adaptive (online) BSS algorithm [12] and a real-time
rectilinearity tracker based on the circularity tracker in [13].

II. BACKGROUND

A. Online Circularity Tracker

The circularity quotient of a zero-mean random variable
(r.v.) sk ∈ C, is given by [14]

ρs
def
=

ps
cs

(4)

where cs = E
{

|sk|2
}

and ps = E
{

s2k
}

are respectively the
covariance and pseudocovariance of the signal sk. The circu-

larity coefficient of the signal sk is given by the magnitude
of the circularity quotient i.e. |ρs|. A signal is considered to
be rectilinear if its circularity quotient can be expressed as
ρs = ejφ, with an arbitrary phase shift φ. Therefore, rectilinear
signals have circularity coefficients |ρs| = 1.

To understand the principle of the online circularity (and
rectilinearity) tracker, first consider the problem of using sk to
estimate its complex conjugate, s∗k, linearly using a coefficient
w as

ŝ∗k = w∗sk (5)

where ŝ∗k denotes the estimate of the complex conjugate of
sk. Since it is impossible to find a single coefficient w for all
realisations of sk, we opt to employ a minimum mean square
error (MMSE) estimation, whereby the optimal value of w is
found by minimising the cost function

JMSE(w) = E
{

|s∗k − w∗sk|
2
}

(6)

The optimal value of w, denoted by wopt, that minimizes the
cost function in (6) is then given by the Wiener solution

wopt =
E
{

s2k
}

E {|sk|2}
= ρs (7)

From (7), we can see that the circularity quotient can be
interpreted as the strictly linear MMSE solution for estimating
the complex conjugate of a random variable from the original
random variable itself. Using the interpretation in (7), we are
able to derive an adaptive estimator of the circularity quotient
using the CLMS, given by [13]

ŝ∗k = ρ̂∗ksk (8a)

ρ̂k+1 = ρ̂k + µ
(

s∗k − ŝ∗k

)∗

sk (8b)

where the parameter µ in (8b) is the step-size which de-
termines the trade-off between the convergence rate and the
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Σ
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k

Fig. 1. Block diagram of the circularity (or rectilinearity) tracker.

steady-state error of the algorithm [2].

Statistical properties of the real-time circularity tracker.
From [13], we observe that the statistical properties (mean and
variance) of the circularity coefficient estimate ρ̂k is identical
to the CLMS algorithm. Namely, the online circularity tracker
is asymptotically unbiased

lim
k→∞

E {ρs − ρ̂k} = 0 ⇐⇒ 0 < µ < 2/cs (9)

where cs is the covariance (power) of the input signal sk.
Secondly, the steady-state covariance of the estimation error
ρs − ρ̂k (misadjustment) is

lim
k→∞

E
{

|ρs − ρ̂k|
2
}

= µcs

(

1− |ρs|2
) (

2− |ρs|2
)

2− µcs (2 + |ρs|2)
(10)

Remark #1: The weight error covariance (misadjustment)
depends on the degree of impropriety of the signal and is lower
for signals that are less proper. Moreover, the steady state
covariance for the circularity estimate is null for rectilinear
signals which have a circularity coefficient of |ρs| = 1.

B. Online Blind Source Separation

Consider representing the signal in (1) as a mixture of M
sources corrupted by background noise nb,k, such that

xk =
M
∑

ℓ=1

sℓ,kaℓ + nb,k = Ask + nb,k (11)

where sk = [s1,k, s2,k, . . . , sM,k]T is a vector containing all
the sources sℓ,k, the columns of A are the channel vectors aℓ
of the sources ℓ = {1, . . . ,M}, and nb,k is the background
noise assumed to be zero-mean, circular and Gaussian. At each
time instant k, the separation task can be expressed as

yk = Bkxk (12)

where xk is the mixture of sources given in (11).
In this work, we employ the well known class of equivariant

adaptive separation via independence (EASI) algorithms for
adaptive (real-time) separation of instantaneous mixtures of
blind sources [12], [15]. A serial update of the de-mixing
matrix Bk in the EASI algorithm is derived using the relative
gradient of the objective function. Considering the presence of
non-circular sources, we also modify the normalised version
of the EASI algorithm in [12] using the concept of removing



the unitary constraint on the de-mixing matrix as suggested
by [16] to give the de-mixing matrix update as

Bk+1 = Bk + λ
I− g(yk)yH

k

1 + λ
∣

∣yH
k g(yk)

∣

∣

Bk (13)

where λ is a positive step-size which governs the trade-off
between convergence rate and separation accuracy.

The function g(y) = [g1(y1), g2(y2), . . . , gN (yN )]T is a
component-wise nonlinear function of the elements in y =
[y1, y2, . . . , yN ]T . Choosing the optimal nonlinear function
g(·) is difficult in practice since it depends on the statistical
distributions of the sources which are unknown a priori.
Having said that, a simple nonlinear function for non-Gaussian

sources is gi(yi) = yifi
(

|yi|
2
)

∀i ∈ {1, 2, . . . , N} where

fi (·) is any real-valued function that exploits higher order
information of the data [17]. The simplest choice of fi is

fi
(

|yi|
2
)

= |yi|
2 which gives [18], [19]

gi(yi) = yi |yi|
2 . (14)

III. PROPOSED ALGORITHM: REAL-TIME DETECTION OF

RECTILINEAR SOURCES

Consider the problem of estimating the rectilinearity of the
sources within the noisy instantaneous mixture xk given in
(11) at each time instant k. As a new measurement xk arrives,
the proposed algorithm separates the sources, updates the de-
mixing matrix Bk and updates the circularity coefficient of
the separated sources.

Specifically, at each time instant k, the following steps are
repeated:

for M̂ = {1, 2, 3, · · · , N} do

1) Separate the M̂ blind sources which are assumed to
be mixed in xk using (12) and update the de-mixing
matrix Bk using (13).

2) Update the circularity quotient ρyi,k for each ele-
ment of yk = [y1,k . . . , yM̂,k]

T using (8a) – (8b).
3) If the circularity coefficient |ρyi,k| > βM̂ , then

source yi is rectilinear.

end for

Since the number of sources M is unknown a priori, we
separate the sources for each M̂ = {1, 2, 3, . . . , N}.

Remark #2: Although rectilinear sources have a circularity
coefficient of unity, the separated sources would be corrupted
by noise which may not be rectilinear. Therefore, even in the
case of perfect separation, the separated source which is fed
into the rectilinear tracker will never be perfectly rectilinear.
Consequently, the detection detection threshold is chosen to
be βM̂ < 1.

The optimal choice of the detection threshold βM̂ is out of
the scope of this paper and in our simulations we used a value
that was close to one, e.g. βM̂ = 0.9.

IV. SIMULATIONS

A. Case Study #1: Real-Time Detection of Rectilinearity

We considered a ULA of 4 omnidirectional sensors, equis-
paced half a wave length apart, that received four statistically
independent narrow band sources which were either binary
phase shift keying (BPSK) or quadrature phase shift keying
(QPSK) sources that were corrupted by zero-mean white
Gaussian noise. The directions of arrival of the sources were
{−45◦, 8◦,−13◦, 30◦} and the SNR was chosen to be 10 dB.

The type of narrowband signals received by the antenna
array changes so that for the first 500 samples, the sources
were chosen to be four independent QPSK signals (circular,
non-rectilinear) and for the last 500 samples, three indepen-
dent BPSK signals (rectilinear) and one independent QPSK
signal were chosen. The modified EASI shown in (13) was
applied to separate sources hidden in the observed signal. The
separation matrix Bk was initialised with random entries and
the nonlinear function g(·) given in (14) was used.

For the first 100 iterations, the step-size λ was set to be
relatively large (λ = 0.1) for rapid convergence. Then value
of λ was reduced to λ = 0.01 for steady-state accuracy. Figure
2 and Figure 3 show the constellations of separated sources
(M̂ = 4) within the first 500 samples and the last 500 samples
respectively. The separated sources in Figure 2 appear noisier
than the sources in Figure 3 since a larger step-size λ was
used for the first 100 samples.

For the circularity tracker, the initial estimates were set
to be zero while the step-size was chosen to be relatively
large, µ = 0.2, for a fast convergence rate. The evolution
of the circularity coefficient estimates of the sources is shown
in Figure 4. The estimates of the circularity coefficients of
the four separated QPSK sources oscillate between 0 (the
true value of the circularity coefficient) and 0.5. This large
fluctuation is attributed to the background noise and the rela-
tively large step-size µ which was chosen so that the algorithm
converges rapidly. Nevertheless, from samples 500 onwards,
the circularity coefficient estimates of the three separated
BPSK sources converge to a value close to 1. As mentioned
in Remark #2, this is due to the fact that the sources are
corrupted by non-rectilinear noise. When the estimated number
of sources was not equal to the true number (M̂ = 1, 2, 3),
the circularity coefficients were all less than the threshold
βM̂ = 0.9.

B. Case Study #2: Steady-State Misadjustment of the Circu-

larity Tracker

Next, we tested the steady-state misadjustment of the
circularity tracker for various levels of non-circularity. We
generated a 1000-sample long white Gaussian noise with unit
covariance c = 1 and varying degrees of pseudocovariance p
(hence circularity coefficients, |ρ|) and applied the circularity
tracker to estimate the circularity coefficient. The steady-
state misadjustment was computed over 5000 independent
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Fig. 2. Constellations of four separated QPSK sources (circular, non-
rectilinear) present in the first 500 samples of the received signal.
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Fig. 3. Sources 1–3 show the constellations of three separated BPSK sources
(rectilinear) while Source 4 shows the constellation of one separated QPSK
source (circular, non-rectilinear) present in the second 500 samples of the
received signal.

simulations using the formula

M =
1

5000

5000
∑

i=1

||ρ|− |ρ̂∞(i)||2 (15)

where |ρ| was the true circularity coefficient and |ρ̂∞(i)|
was the steady-state estimate of the circularity coefficient for
simulation i. Figure 5 compares the theoretical steady-state
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Fig. 4. Circularity coefficient estimates of the separated sources. Detection
threshold was chosen to be β

M̂
= 0.9.

misadjustment given in (10) to the empirical estimate from
the Monte-Carlo simulations given in (15). Conforming with
the analysis, the steady-state misadjustment of the circularity
coefficient estimate decreases with increasing levels of non-
circularity and reaches zero for rectilinear signals (|ρ| = 1).
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Fig. 5. Steady-state misadjustment of the circularity tracker for varying levels
of signal non-circularity.

V. CONCLUSION

We have proposed a novel real-time detector of rectilinearity
for wireless communication signals. The proposed algorithm
combines an online BSS algorithm to separate the signal
received by an antenna array and a recently introduced cir-
cularity tracker to detect the rectilinearity of the separated
sources. The fact that the circularity tracker has a steady-state
misadjustment of null for rectilinear signals was exploited to
tune the algorithm with a high detection threshold to increase
robustness and a large step-size for rapid convergence. The
proposed method was verified using synthetically generated
BPSK and QPSK sources.
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