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ABSTRACT

This paper presents the least-mean-magnitude-phase (LMMP)

algorithm for adaptive signal processing of complex-valued

signals. The algorithm employs a decomposition of the mean-

squared error cost and allows different normalized step sizes

to be selected for the magnitude and phase errors. Sim-

ulations show that the algorithm is useful when either the

amplitude or the phase relationship between the input and

desired response signals can be accurately estimated.

Index Terms— Adaptive algorithm, adaptive equalizers,

adaptive signal processing, adaptive systems, antenna arrays

1. INTRODUCTION
The least-mean-square (LMS) algorithm is perhaps the most

popular adaptive filtering algorithm in existence. Its compu-

tational simplicity, ease of use, and consistency of behavior

make it an excellent first choice in numerous signal process-

ing applications. Originally specified for real-valued signals,

it was extended to complex-valued signals in [1]. The com-

plex LMS (CLMS) algorithm has proven to be particularly

useful in communications and array processing.

There are a number of situations where the complex LMS

algorithm does not perform adequately, particularly when the

input and/or desired response signals exhibit unusual behavior

in either their complex amplitudes or complex phases. One

case is when the desired response signal undergoes a complex

phase shift due to Doppler effects. To this end, Rupp pro-

posed the constant-modulus channel estimator (CMCE) algo-

rithm and showed its usefulness [2]. Another case is when

the main information about the desired response signal is in

its phase component. To this end, Tarighat and Sayed pro-

posed the least-mean-phase (LMP) algorithm and indicated

its usefulness [3].

In this paper, we propose an algorithm which we call

the least-mean-magnitude-phase (LMMP) algorithm. The

LMMP algorithm decomposes the instantaneous squared-

error cost into the sum of two terms that are most-closely

related to the amplitude-only error and the phase-only er-

ror, respectively, between the desired signal and the adaptive

filter’s output. The LMMP algorithm includes the CLMS

algorithm as a special case, and a normalized version of the

algorithm is easily specified. Unlike the CMCE algorithm,

the LMMP algorithm is sensitive to phase. Unlike the LMP

algorithm, the LMMP algorithm uses different step sizes to

directly control the magnitude and phase error components

of the MSE cost during adaptation. The LMMP algorithm

exhibits excellent and robust convergence behavior when step

size normalization is used. Most importantly, the LMMP

algorithm can outperform the LMS algorithm in situations

where portions of the input or desired response signals ex-

hibit either amplitude or phase variations that are easily

estimated or tracked. Simulation examples corresponding to

these scenarios illustrate the new algorithm’s advantages.

2. DERIVATION
Let wk = [w1,k · · ·wL,k]T denote the weight vector of a lin-

ear adaptive system with complex coefficients at time k. The

complex-valued input signal vector xk = [x1,k · · ·xL,k]T is

used to model a desired response signal dk via the relation

yk = wT
k xk. For the moment, we neglect the time indices of

these scalars and vectors in the following.

Consider the instantaneous least-mean-square cost:

JLMS(d, y) = |d − y|2 (1)

We seek a decomposition of this cost that splits it into the sum

of two costs: one that is minimized when |d| = |y|, and one

that is minimized when � d = � y. To this end, we expand the

cost function in the complex domain to get

.JLMS(d, y) = |d|2 + |y|2 − 2|d||y| cos( � d − � y), (2)

where we have used the polarization identity for complex vec-

tors to express dy∗+d∗y. We can now add and subtract 2|d||y|
from the right-hand-side of (2) and group terms to get

JLMS(d, y) = (|d|−|y|)2 + 2|d||y|[1−cos( � d − � y)] (3)

= Jm(d, y) + Jp(d, y), (4)

where we have defined the magnitude and phase costs as

Jm(d, y) = (|d| − |y|)2 (5)

Jp(d, y) = 2|d||y|(1 − cos( � d − � y)). (6)
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Remark 1: The value of Jm(d, y) is zero when |d| = |y|,
and the value of Jp(d, y) is zero when � d = � y. Thus, the

goals of decomposing of JLMS(d, y) have been met. The only

caveat we have with Jp(d, y) is that it is also minimized when

|y| = 0. Fortunately, the minimization of Jm(d, y) tends to

force the value of |yk| away from the origin in practice, so

long as |dk| does not remain at the complex origin for many

consecutive samples.

Remark 2: Gradient minimization of Jm(d, y) + Jp(d, y)
yields the complex LMS algorithm. The key idea of this

work is the design of novel criteria employing different linear

combinations of Jm(d, y) and Jp(d, y) that lead to a new

algorithm. To this end, consider the gradient of Jm(d, y) with

respect to w∗, given by is

∇w∗Jm(d, y) = −2(|d| − |y|)sgn(y)x∗

= −2[|d|sgn(y) − y]x∗, (7)

where sgn(y) = y/|y|. The gradient of Jp(d, y) with respect

to w∗ is

∇w∗Jp(d, y) = −2|d|[cos( � d − � y)
+ j sin(� d − � y) − 1]sgn(y)x∗

= −2[d − |d|sgn(y)]x∗. (8)

Our proposed algorithm is defined as

wk+1 = wk − μm,k

2
∇w∗Jm(dk, yk)

− μp,k

2
∇w∗Jp(dk, yk), (9)

where we have reinserted the time indices of all quantities.

Similar to the LMP algorithm, the proposed LMMP algorithm

has two (possibly time-varying) step sizes μm,k and μp,k that

control the adaptation behavior. Substituting for the gradient

expressions given above, we obtain

wk+1 = wk + μm,k[|dk|sgn(yk) − yk]x∗
k

+ μp,k[dk − |dk|sgn(yk)]x∗
k (10)

Finally, we group like terms to get

wk+1 = wk + [μp,kdk − μm,kyk

+ (μm,k − μp,k)|dk|sgn(yk)]x∗
k (11)

yk = wT
k xk. (12)

The above equations define the LMMP algorithm. The nor-

malized LMMP algorithm sets μm,k = μm/(xH
k xk) and

μp,k = μp/(xH
k xk).

Remark 3: The LMMP algorithm has two different step sizes

μm,k and μp,k at iteration k. The first step size largely con-

trols the adaptation dynamics of the magnitude of the output

signal, and the second step size largely controls the adaptation

dynamics of the phase of the output signal. The first point is

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Real Axis
Im

ag
in

ar
y 

A
xi

s

d
y
Δ Jm(d,y)

Δ Jp(d,y)

(|y|sgn(d)−y)
(d − |y|sgn(d))

Fig. 1. Various performance improvements for magnitude-

phase algorithms as described in Remark 5.

clear given the form of (5). To see the latter point, we can

rewrite the form of ∇w∗Jp(d, y) in (8) as

∇w∗Jp(d, y) = −[d − |d| exp(j � y)]x∗ (13)

= |d|[exp(j � d) − exp(j � y)]x∗. (14)

The gradient clearly depends on the angle of the output signal

and not on its magnitude.

Remark 4: The LMMP algorithm includes several existing

algorithms as special cases. Choosing μm,k = μp,k = μ
yields the CLMS algorithm [1]. Choosing μm,k = α/(xH

k xk)
and μp,k = 0, the a posteriori form of the CMCE algorithm

in [2] is obtained. Finally, if one considers the alternate form

of the algorithm given by

wk+1 = wk + μm,k(dk − yk)x∗
k

+ (μp,k − μm,k)
(

dk − |dk|
|yk|yk

)
x∗

k, (15)

it can be shown via a Taylor series expansion that

(
dk − |dk|

|yk|yk

)
≈ (� dk − � yk)

j|dk||yk|
y∗

k

, (16)

if |� dk − � yk| is small, yielding the LMP algorithm [3] for

the specific step size choices of μ1 = μm,k and μ2 = (μp,k −
μm,k)|dk||yk|.
Remark 5: Like the LMP algorithm of [3], it is useful to look

at the geometrical properties of the LMMP algorithm in the

complex plane. Fig. 1 shows a vector-based example similar
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Fig. 2. Evolution of the average ICIs in the antenna array

example.

to a figure in [3] illustrating all of the important vectors that

describe the LMMP update. Using a similar “performance

improvement metric” as introduced in [3],

Δy = wT
k+1x − wT

k x, (17)

we obtain for the LMMP algorithm the expression

ΔyLMMP = ||x||2 [μmΔJm(d, y) + μpΔJp(d, y)] (18)

ΔJm(d, y) = |d|sgn(y) − y (19)

ΔJp(d, y) = d − |d|sgn(y) (20)

Fig. 1 shows the accumulation of these vectors in the case of

normalized step sizes, such that the NLMS algorithm is ob-

tained. The decomposition of the a posteriori output is in po-

lar coordinates, in which ΔJm(d, y) is in the radial direction

of y and ΔJp(d, y) performs a rotation on y + ΔJm(d, y)
to reach d. It is difficult to compare the least mean phase

and LMMP algorithms geometrically due to the different step

sizes required by the algorithms in practice.

There are an infinite number of ways to decompose d−y;

one example is shown in Fig. 1 and yields the update

wk+1 = wk + μ1,k[|yk|sgn(dk) − yk]x∗
k

+ μ2,k[dk − |yk|sgn(dk)]x∗
k. (21)

While this alternative approach might seem viable, simula-

tions of (21) indicate that it can behave in an unstable manner.

The LMP algorithm [3] also can suffer from erratic behavior

because of the y∗
k term in the denominator of the phase cost

term when μ2 is constant. From simulations, we observe that

the LMMP algorithm is much better behaved from both a con-

vergence and stability standpoint as compared to these other

approaches, especially when step size normalization is used.

3. NUMERICAL EXAMPLES
3.1 Array Processing Example: Let xk denote individual

snapshots from an L = 6-element uniform linear array with
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Fig. 3. Signal constellations for the various algorithms in the

antenna array example.

λ/4 spacing. Three signal sources of equal powers are re-

ceived at arrival angles of [φ1 φ2 φ3] = [−31◦ 11◦ 35◦] to the

array and are corrupted by complex circular Gaussian noise

with element powers of 0.0001. Each source is generated

from a 16-QAM signal constellation according to the model

si,k = αi,kdi,k, where di,k is the ith i.i.d. 16-QAM symbol

sequence satisfying maxk Re{di,k} = maxk Im{di,k} = 1,

and αi,k is the unknown time-varying amplitude sequence of

the ith transmitter. Such time-varying amplitudes could oc-

cur due to signal fading local to the transmitter, imperfections

such as nonlinear power amplification, or other effects. The

distribution of αi,k is real-valued Gaussian with a mean of

one and a variance that changes sequentially every 2000 snap-

shots from σ2
α = 0.1 to σ2

α = 0 to σ2
α = 0.2. The normalized

versions of the LMS, LMP, and LMMP algorithms are used

to estimate the first signal source from the snapshots using

dk = d1,k. The average interchannel interference (ICI) is

found at each snapshot for each algorithm.

Fig. 2 shows the evolution of the average ICI over 1000

different simulation runs for four normalized algorithms: 1)

LMS with μ = 0.2, 2) LMS with μ = 0.02, 3) LMP with

μ1 = 0.02 and μ2 = 0.2, and 4) LMMP with μm = 0.02
and μp = 0.2. As can be seen, the LMMP algorithm outper-

forms all other algorithms for the first 2000 snapshots, con-

verging as fast as NLMS with μ = 0.2 but achieving a lower

steady-state ICI as compared to either LMS algorithm during

this period. When the amplitude fluctuations stop in the sec-

ond 2000 snapshots, the LMS algorithm with μ = 0.02 con-

verges to a lower steady-state ICI, and the LMMP algorithm
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Fig. 4. Evolution of the average ISIs in the channel equaliza-

tion example.

has about the same ICI as that of the LMS algorithm with

μ = 0.2. When the amplitude fluctuations commence again in

the last 2000 snapshots, the performance of the LMMP algo-

rithm is again superior. The average performance of the LMP

and LMMP algorithms are similar when the error is small, but

LMMP has better initial convergence than does LMP.

Fig. 3 shows the complex baseband signal constellations

produced by each algorithm in this example over the last 1500

snapshots of each adaptation period. The amplitude spread

of the output signals cannot be estimated using the chosen

desired response signal during the first and third adaptation

periods. The LMMP algorithm is the least affected by these

amplitude fluctuations.

3.2 Channel Equalization Example: Define the input sym-

bol sequence sk as an i.i.d. 16-QAM source as before. The

received signal xk is generated as

xk = ηk + ej2πkfk [h0sk + h1sk−1 + h2sk−2], (22)

where {h0 h1 h2} = {0.2ej0.1π 1ej0.2π 0.1ej0.3π} and the

channel noise ηk is complex circular Guassian with variance

0.01. The parameter fk models frequency offset effects due

to physical motion, and its value varies from fk = 0.01 to

fk = 0 to fk = 0.02 over three different 10000-sample pe-

riods. Four different L = 11-tap FIR adaptive equalizers are

applied to xk, with dk = sk−5: 1) LMS with μ = 0.2, 2) LMS

with μ = 0.02, 3) the constant modulus algorithm (CMA)

with μ = 0.2, and 4) LMMP with μm = 0.2 and μp = 0.02.

The LMP algorithm cannot be tuned to de-emphasize fre-

quency offsets and was not tested. The average intersymbol

interference (ISI) is found for each algorithm at each iteration.

Fig. 4 shows the evolution of the average ISI over 100

different simulation runs for the four algorithms. As can be

seen, the LMMP algorithm outperforms the other three algo-
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Fig. 5. Signal constellations for the various algorithms in the

channel equalization example.

rithms over the first 10000 samples, providing the lowest av-

eraged ISI value over this adaptation period. When there is no

Doppler, the LMS algorithm with μ = 0.02 eventually pro-

duces the lowest ISI, and the performance of the LMMP algo-

rithm approaches that of LMS with μ = 0.2. When Doppler

effects are reintroduced for the final 10000 samples, LMMP

again provides the lowest ISI.

Fig. 5 shows the complex baseband signal constellations

produced by each algorithm in this example over the last 7500

samples of each adaptation period. The Doppler shift can-

not be adequately tracked using any of the algorithms. The

NLMMP algorithm provides the best performance in such

cases by producing a rotated signal constellation during the

first and third adaptation periods and accurately estimating

the signal constellations during the second adaptation period.

4. CONCLUSIONS

In this paper, the least-mean-magnitude-phase algorithm is

introduced for complex-valued adaptive signal processing.

Simulations indicate its utility for various communication

tasks. A stability analysis of the algorithm is underway.
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