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ABSTRACT
Recently, the augmented complex LMS (ACLMS) algorithm has
been proposed for modeling complex-valued signal relationships
in which a widely-linear model can be more appropriate [1]. It is
not clear, however, how the behavior of ACLMS differs from that
of the conventional complex LMS (CCLMS) algorithm. In this
paper, we leverage a recently-developed analysis for the complex
LMS algorithm [2] to illuminate the performance relationships be-
tween the ACLMS and CCLMS algorithms. Our analysis shows
that the ACLMS algorithm can potentially achieve a lower steady-
state mean-squared error as compared to that of CCLMS, but the
convergence speed of ACLMS is slowed in the presence of highly
non-circular complex-valued input signals. An adaptive beamform-
ing example indicates the utility of the results.

Index Terms— adaptive arrays, adaptive lters, adaptive signal
processing, adaptive systems, least mean square methods

1. INTRODUCTION

The complex LMS (CLMS) algorithm extends the well-known real-
valued LMS algorithm to allow the processing of complex-valued
signals found in applications ranging from wireless communications
to medicine [3, 4]. The complex LMS algorithm is given by

y(k) = x
H(k)w(k) (1)

e(k) = d(k)− y(k) (2)
w(k + 1) = w(k) + μe(k)x(k). (3)

where w(k) = [w1(k) · · ·wL(k)]T is the weight vector at time k,
x(k) = [x1(k) · · ·xL(k)]T is the input signal vector, y(k) is the
output signal, d(k) is the desired response signal, e(k) is the error
signal, and μ is the step size.

In the CLMS algorithm, how x(k) is de ned determines the
modeling capabilities of the adaptive lter. If d(n) can be well-
modeled from a set of complex measurements {z1(k), z2(k), . . . ,
zM (k)}, then it makes sense to de ne x(k) = z(k) = [z1(k) · · ·
zM (k)]T and L = M . For this particular choice, y(k) is related
to z(k) through a complex linear model, and we shall employ the
algorithm notationw(k) = h(k) = [h1(k) · · ·hM (k)]T , such that

y(k) = z
H(k)h(k) (4)

h(k + 1) = h(k) + μe(k)z(k). (5)

We shall refer to this procedure as the conventional CLMS (CCLMS)
algorithm. Recently, it has been shown that additional modeling ca-
pabilities can be obtained by using a widely linear model in which

x(k) = [zT (k) z
H(k)]T (6)

w(k) = [hT (k) g
T (k)]T , (7)

where g(k) = [g1(k) · · · gM (k)]T andL = 2M . With this choice,
the system output and coef cient updates are

y(k) = z
T (k)g(k) + z

H(k)h(k) (8)
g(k + 1) = g(k) + μe(k)z∗(k) (9)
h(k + 1) = h(k) + μe(k)z(k). (10)

We shall refer to this procedure as the augmented CLMS (ACLMS)
algorithm.

The behavior of the ACLMS algorithm has been explored
through application to speci c complex-valued data sets [1]. Partic-
ular attributes of its general performance, however, have not been
studied. The main challenge in this understanding is in carefully
handling the potentially non-circular nature of z(k), as ACLMS
algorithm performance depends on both the covariance matrix Rz

and pseudo-covariance matrixPz for z(k), de ned as

Rz = E{z(k)zH (k)} (11)
and Pz = E{z(k)zT (k)} (12)

respectively, as well as the potential widely-linear relationship be-
tween d(k) and z(k) where a model of the form in (8) may be more
appropriate than that in (4).

In this paper, we leverage a recently-developed analysis of the
CLMS algorithm for non-circular complex Gaussian random pro-
cesses [2] as well as other derivations to develop an analytical un-
derstanding of and performance comparisons between the CCLMS
and ACLMS algorithms. Our results make use of important tools in
the independent component analysis literature [5] that allow the joint
decomposition of bothRz andPz to enable a careful comparison of
the ACLMS and CCLMS algorithms. From these results, several
important issues are highlighted, including:

• Unlike the CCLMS algorithm, the ACLMS algorithm con-
verges more slowly when the input signal vector z(k) is more
non-circular.

• The ACLMS algorithm often achieves a lower steady-state
MSE due to its additional modeling capability. The steady-
state MSE depends both on the degree of input signal non-
circularity and on how widely-linear the input-desired re-
sponse signal relationship is.

An application to adaptive beamforming shows the predictive accu-
racy and utility of our results and conclusions.

2. CONVERGENCE SPEED ANALYSIS

From [2], an analysis of the mean and mean-square behavior of
the CLMS algorithm for complex non-circular Gaussian signals has
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been performed. Since both CCLMS and ACLMS are special cases
of CLMS, we can leverage the general results in [2] to understand
and compare the behaviors of these two algorithms. Only the mean
behavior is considered below for brevity, and only general results are
outlined due to their similarity to those of other adaptive algorithm
analyses. Our study assumes without loss of generality that d(k) is
generated from the linear model

d(k) = z
T (k)go + z

H(k)ho + η(k), (13)

where η(k) is complex non-circular Gaussian and uncorrelated with
x(k), because of the joint Gaussianity of d(k) and z(k). It also
makes use of the well-known independence assumptions that assume
that {d(l), z(l)} is independent of {d(k), z(k)} when k �= l.

For the CCLMS algorithm, de ne the coef cient error vector

v(k) = h(k)− hopt. (14)

where hopt is the steady-state value of h(k) at convergence for this
algorithm. Then, using the general results of [2], the evolutionary
behavior of E{v(k)} for CCLMS evolves as

E{v(k + 1)} = (I− μRz)E{v(k)}. (15)

For the ACLMS algorithm, de ne the coef cient error vector

v(k) =

»
h(k)− h0

g(k)− g0

–
(16)

Then, using the general results of [2], the evolutionary behavior of
E{v(k)} for ACLMS evolves as

E{v(k + 1)} = (I− μRx) E{v(k)} (17)

Rx =

»
Rz Pz

P∗

z R∗

z

–
(18)

Comparing (15) and (18), both relations have the same form,
and these relations match the mean behavior of the real-valued LMS
algorithm. As such, the time constant of the ith mode of convergence
of the coef cient error is inversely proportional to the ith eigenvalue
ofRz for the CCLMS algorithm and the ith eigenvalue ofRx for the
ACLMS algorithm. Moreover, convergence will be dif cult to tune
via the choice of μ in situations where the spread of eigenvalues is
large [3]. From these facts, it is clear that, in order for a more detailed
performance comparison, convenient eigendecompositions of both
Rz and Rx are required. We can employ the strong-uncorrelating
transform (SUT) for the eigendecomposition ofRx. The SUT is the
unique complex matrixC such that [5]

Rz = CC
H = QΣ

2
Q

H (19)
Pz = CΛC

T (20)

where Λ is a diagonal matrix of real-valued non-circularity coef -
cients λi, 1 ≥ λ1 ≥ · · · ≥ λM ≥ 0, and we have used the complex
SVD of C to representRz where

C = QΣV
H . (21)

Using the SUT, it is possible to decompose Rx uniquely as

Rx =

»
C 0

0 C∗

– »
I Λ

Λ I

– »
CH 0

0 CT

–
(22)

Furthermore, using the complex SVD ofC, we have

Rx =

»
Q 0

0 Q∗

– »
Σ 0

0 Σ

– »
VH 0

0 VT

– »
I Λ

Λ I

–

×
»

V 0

0 V∗

– »
Σ 0

0 Σ

– »
QH 0

0 QT

–
(23)

In addition, we have that
»

I Λ

Λ I

–
=

1√
2

»
I −I

I I

–»
I + Λ 0

0 I−Λ

–»
I I

−I I

–
1√
2
(24)

Thus, the autocorrelation matrix that determines the mean behavior
of ACLMS has the following structure:

E{x(k)xH(k)} = Q1D
1/2
c Q2DncQ

H
2 D

1/2
c Q

H
1 , (25)

whereQ1 andQ2 are particular complex orthonormal matrices and

D
1/2
c = I⊗Σ (26)

Dnc =

»
I + Λ 0

0 I−Λ

–
(27)

We can now compare the convergence behavior of the update
relations in (15) and (18), as the eigenstructure of both Rz and Rx

are completely speci ed by (19) and (25), respectively.

Remark #1: As is the case for the real-valued LMS algorithms, the
convergence speeds of both CCLMS and ACLMS are exponential,
with modes of convergence that depend on the eigenvalues of the
(M ×M) matrix Rz and the the (2M × 2M) matrix Rx, respec-
tively. As in real-valued LMS, an increased eigenvalue spread typ-
ically leads to slower convergence for a xed step size μ for both
algorithms.

Remark #2: The mean behavior of ACLMS is jointly determined
by the eigenvalues σ2

i of Rz and the non-circularity coef cients λi

of Pz. The way in which these terms combine, however, is non-
trivial, as can be seen in (25), such that it is not possible to easily see
how a particular distribution of {σi, λi} affects overall convergence
performance.

Remark #3: The worst-case eigenvalue spread ofRx for the ACLMS
algorithm is increased over that ofRz in the CCLMS algorithm. The
condition number or ratio of maximum to minimum eigenvalues of
Rz for the CCLMS algorithm withM taps is

κ(Rz) =
σ2

max

σ2
min

. (28)

The condition number of Rx for the ACLMS algorithm with 2M
taps is upper bounded by

κ(Rx) ≤ (1 + λmax)

(1− λmax)
κ(Rz). (29)

So, the convergence speed disparity between the fastest and slowest
modes of ACLMS can be much greater than that of CCLMS, par-
ticularly if the data is highly non-circular. This fact shows a draw-
back of ACLMS: with an increased modeling capability comes a
potential slowdown in convergence depending on the data statistics.
This slowdown is not due to simply having more lter coef cients to
adapt; it is structural within the algorithm itself.
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Remark #4: An easily computed step size bound for ACLMS –
something that is extremely important from a practical perspective
– can be found from the mean analysis:

0 < μ <
1

tr[Rz]
(30)

Thus, the upper bound on the step size for ACLMS is roughly half
the value one might use for CCLMS.

3. STEADY-STATEMEAN-SQUARE ERROR ANALYSIS

The CCLMS and ACLMS algorithms have differing modeling capa-
bilities due to the fundamental difference in their linear input-output
models as indicated in (4) and (8), respectively. As a result, the
mean-square performances of the algorithms differ in steady-state.
In this section, we determine the difference in steady-state MSE as-
suming that both algorithms have converged. We neglect any perfor-
mance differences due to errors in adaptation caused by a non-zero
step size, such as excess MSE or misadjustment in steady-state. We
assume that d(k) is generated according to the widely-linear model
in (13), where both z(k) and η(k) are jointly Gaussian with zero
means and covariances Rz and σ2

η , respectively. Moreover, we as-
sume that E{η(k)z(k)} = 0.

For the ACLMS algorithm, the minimum MSE achievable is
given by

ξ
(ACLMS)
MMSE = ming,hE{|d(k) − z

T (k)g − z
H(k)h|2}.(31)

This minimum is achieved when g = go and h = ho, such that

ξ
(ACLMS)
MMSE = σ2

η. (32)

For the CCLMS algorithm, the optimum solution for h(k) is not
necessarily equal to ho due to the widely-linear nature of the rela-
tionship between z(k) and d(k). Thus, we must employ the classic
expressions for minimum MSE estimation, in which

hopt = R
−1
z E{d(k)z(k)}. (33)

It is straightforward to show that

E{d(k)z(k)} = Rzho + Pzgo, (34)

such that

hopt = ho + R
−1
z Pzgo. (35)

The minimum MSE for the CCLMS algorithm is therefore

ξ
(CCLMS)
MMSE = E{|d(k)− z

H(k)ho − z
H(k)R−1

z Pzgo|2}(36)
which after expanding this relation and evaluating all expectations
results in

ξ
(CCLMS)
MMSE = ξ

(ACLMS)
MMSE + g

H [R∗

z −P
∗

zR
−1
z Pz]go (37)

From these results, several remarks are in order:

Remark #5: The matrix R∗

z − P∗

zR
−1
z Pz in (37) is known as the

Schur complement ofRx [6]. BecauseRx is positive semi-de nite,
the matrixR∗

z −P∗

zR
−1
z Pz is also positive semi-de nite. Hence,

ξ
(CCLMS)
MMSE ≥ ξ

(ACLMS)
MMSE (38)

due to the quadratic form appearing on the right of (37). Thus, the
minimum MSE of the augmented complex LMS algorithm will be
no greater than that of the conventional complex LMS algorithm.

Remark #6: The minimum MSEs of ACLMS and CCLMS are the
same if at least one of the following two conditions holds:

1. The system being modeled is complex linear, e.g. go = 0.

2. The complex signal z(k) has a real-valued subspace where
the circularity coef cients λi are unity and go falls entirely
within this subspace, such that [R∗

z −P∗

zR
−1
z Pz]go = 0.

As the second condition is highly-unlikely in practice, CCLMS will
be competitive with ACLMS only in situations involving complex-
linear models.

Remark #7: If the input signal z(k) is circular such thatPz = 0, the
minimum MSE of CCLMS can still be larger than that of ACLMS if
the relationship between z(k) and d(k) is widely-linear. This result
points to the lack of any connection between the non-circularity of
z(k) and the widely-linear nature of the input-output model; that
is, circularly-distributed data does not imply that a complex linear
model is appropriate.

Remark #8: If the relationship between z(k) and d(k) is complex
linear, then the minimum MSEs of ACLMS and CCLMS are the
same. In such cases, one should choose CCLMS over ACLMS based
on the results of the last section, as ACLMS may converge more
slowly despite achieving a similar MSE in steady-state due to signal
non-circularity.

4. SIMULATIONS

We now compare the behaviors of the CCLMS and ACLMS algo-
rithms in a useful signal processing task: beamforming for multi-
port antenna arrays. Such systems exploit spatial diversity to build
one or more signal estimates from a set of measured signals. For a
uniform linear array (ULA), an appropriate signal model for a set of
received signals {zi(k)}, 1 ≤ i ≤ M is

zi(k) = νi(k) +

NX
p=1

δi(φp)sp(k) (39)

δi(φ) = exp

„
−j2π

Δ sin(φ)

γ
(i− 1)

«
(40)

where sp(k) is the signal from the pth user at time k, φp is the an-
gle of arrival of the pth narrowband signal with respect to the array
normal,Δ is the inter-element antenna spacing, γ is the wavelength,
and νi(k) is the complex-valued sensor noise at the ith sensor. Using
either (4) or (8), an output signal can be produced to estimate one of
the user signals sp(k). Parallel versions of this structure are used to
estimate several user signals simultaneously.

For our simulations, the normalized sensor spacing is Δ/γ =
1/2, the number of sources is N = 4, and the number of sensor
elements is M = 3. Because the number of sources is smaller
than the number of sensors, it is not possible to resolve each source
using a traditional complex beamformer adapted using the CCLMS
algorithm. It is possible, however, to resolve all four sources using
y(k) in (8) if if two or more of the sources are real-valued. Let
s1(k) and s2(k) be two independent BPSK signals, and let s3(k)
and s4(k) be two independent QPSK signals. Furthermore, let
{φ1, φ2, φ3, φ4} = {−45◦, 8◦,−13◦, 30◦}, and let the complex
Gaussian measurement noise be of such a level that the signal-to-
noise ratio (SNR) of each source in each sensor is 25dB. We apply
four versions of the CCLMS algorithm and four versions of the
ACLMS algorithm to this data, with d(k) = s∗p(k), 1 ≤ p ≤ 4,
and μ = 0.0001. Shown in Fig. 1 are the baseband output signal
constellations for 4500 ≤ k ≤ 5000 for the ACLMS beamformers,
in which the BPSK and QPSK output signal patterns are readily
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Fig. 1. Output signal constellations for the ACLMS beamformers.
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Fig. 2. Output signal constellations for the CCLMS beamformers.

evident. The normalized mean-square errors (NMSEs) are close to
the true values computed from theory, given by −21.045, −14.145,
−15.510, and −17.381 dB, respectively. Fig. 2 shows the corre-
sponding performance for the tranditional CCLMS beamformers, in
which the BPSK and QPSK output signal patterns are not resolved
for sources 2 and 3 and are barely resolvable for sources 1 and 4.
The NMSEs for these beamformers are also higher than those for
the ACLMS beamformers.

Figs. 3 and 4 show the convergence of the squared errors for
these simulations for the ACLMS and CCLMS algorithms, respec-
tively. From these plots, it is readily apparent that the ACLMS al-
gorithm converges much more slowly – about 2500 iterations – than
does the CCLMS algorithm – about 50 iterations – for this data. This
fact could have been easily determined from the condition numbers
κ(Rz) = 117.1 and κ(Rx) = 2.618, indicating that the worst-
case convergence rate of the ACLMS algorithm will be 45 times
slower than that of the CCLMS algorithm for similar fast-converging
modes. Also shown are the minimum MSEs for all of the beam-
formers as a dashed line, indicating that the algorithms’ MSEs do
approach these minimum MSEs.
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Fig. 3. Convergence of the errors for the ACLMS beamformers.
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Fig. 4. Convergence of the errors for the CCLMS beamformers.

5. CONCLUSIONS

In this paper, we have examined the performance relationships be-
tween the conventional and augmented CLMS algorithms for mod-
eling complex-valued systems that are potentially widely-linear and
driven by signals with potentially non-circular complex statistics.
Our study indicates that the ACLMS can achieve a lower steady-state
MSE due to its additional modeling capabilities, but its convergence
speed is likely to be slower than that of the CCLMS algorithm. These
attributes are illustrated in an adaptive beamforming example. Addi-
tional results concerning the mean-square performance of ACLMS
and CCLMS and the interplay of modeling capability vs. excess
mean-square error is the subject of current investigation.
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