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ABSTRACT
Current approaches to the mean-square analyses of the complex-
least-mean-square (CLMS) and augmented CLMS (ACLMS) algo-
rithms can be challenging due to the difficulty in diagonalising the
augmented covariance matrix. By employing the recently introduced
approximate uncorrelating transform (AUT), which diagonalizes the
covariance and pseudocovariance matrices with a single singular
value decomposition (SVD), we derive closed form expressions for
both transient and steady-state mean square stability for the CLMS
and ACLMS. Relationships between the degree of circularity of
the input signal and the bound on the step-sizes of the CLMS and
ACLMS are also established. We also show that for both CLMS and
ACLMS, the steady-state misadjustment increases with the degree
of non-circularity of the input signal. Simulations in the context of
frequency estimation in power grid support the analyses.

Index Terms— Complex least mean square (CLMS), aug-
mented statistics, mean square convergence, non-circularity.

1. INTRODUCTION
The standard complex least mean square (CLMS) [1] uses a data
model where at time k, the desired signal dk 2 C, and input vector,
xk 2 CL⇥1, are related via the so-called strictly linear relationship
given by dk = h

H
optxk + ⌘k where hopt 2 CL⇥1 is an unknown opti-

mal weight vector, ⌘k ⇠ N (0,�2

⌘) is white noise, and (·)H denotes
the Hermitian transpose operator.

The CLMS estimates the set of system parameters hopt, by min-
imising the instantaneous squared error cost function Jk = eke

⇤
k,

where the error ek = dk � h

H
k xk and vector hk is the CLMS es-

timate of the optimal weight vector, hopt, to give the weight update
equation

hk+1

= hk + µe⇤kxk (1)

where the parameter µ is the step-size [2].
The standard strictly linear approach to adaptive filtering is re-

strictive for a general class of complex-valued signals for which the
powers in the real and imaginary parts are different (second order
non-circularity, improperness) [3, 4]. To this end, the widely lin-
ear approach for adaptive filtering uses an augmented input vector,
zk = [xT

k x

H
k ]T 2 C2L⇥1 and augmented weight vector wopt =

[hT
opt g

T
opt]

T 2 C2L⇥1, to give dk = w

H
optzk + ⌘k. Estimating

the augmented optimal weight vector wopt requires the augmented
CLMS (ACLMS) algorithm which is given by [5]

wk+1

= wk + µe⇤kzk (2)

where the output error ek = dk �w

H
k zk.

The term “augmented” is used instead of widely linear for con-
venience, and to indicate that widely linear estimators are able to
use the complete second-order (augmented) statistics of the signal
by exploiting both the covariance matrix, R = E

⇥
xkx

H
k

⇤
and pseu-

docovariance matrix P = E
⇥
xkx

T
k

⇤
which are contained within the

augmented covariance matrix

R

a = E
h
zkz

H
k

i
= E


xk

x

⇤
k

� ⇥
x

H
k x

T
k

⇤
=


R P

P

⇤
R

⇤

�
(3)

where E [·] is the statistical expectation operator. The input vector
xk is said to be second-order circular (proper) if it has a vanishing
pseudocovariance (P = 0).

The transient and steady-state mean square analyses of the
CLMS and ACLMS algorithms are challenging because they re-
quire a simultaneous diagonalization of both the covariance matrix
R and pseudocovariance matrix P. For the CLMS, standard ap-
proaches inherently assume that the data is circular, such as in the
seminal paper by Horowitz and Senne [6]. By applying the strong
uncorrelating transform (SUT) [7, 8, 9] which diagonalizes the co-
variance matrix R and pseudocovariance matrix P via two separate
singular value decompositions (SVD), the mean square analysis for
the CLMS was conducted in [10] without assuming that the input
signal was circular. Using the SUT to analyse the behavior of the
ACLMS algorithm requires calculating the SUT which can be diffi-
cult in practice, and it obscures any performance relationship caused
by the degree of non-cirularity of the input signal.

Recently, the approximate uncorrelating transform (AUT) was
introduced in order to diagonalize both the covariance and pseudoco-
variance matrices with a single SVD [11]. The AUT allows for both
simpler analysis and a clearer physical insight into the behaviour of
widely linear adaptive filters. For example, the AUT based deriva-
tion for the mean convergence behaviour of the ACLMS in [11] was
easier and more intuitive to interpret compared to the SUT-based
analysis in [12].
The aim of this work is to revisit the CLMS and ACLMS, and to:

1. present closed form expressions for the transient and steady-
state mean square behaviour using the AUT;

2. find the relationship between the bounds for the maximum
step-size against the degree of non-circularity1 of the input;

3. establish relationships between the steady-state misadjust-
ment and the degree of non-circularity.

The analysis is supported by illustrative simulations, including a
study in the context of power grid frequency estimation.

1The degree of non-circularity, ⇢, of a complex random variable x can be
measured by the ratio of its pseudocovariance, p = E

⇥
x

2

⇤
, to its covariance,

c = E
⇥
|x|2

⇤
, to give ⇢ = p/c [13].
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2. DIAGONALIZING THE COVARIANCE AND
PSEUDOCOVARIANCE MATRICES

Recall that for an input vector xk, the covariance matrix is R =
E
⇥
xkx

H
k

⇤
and pseudocovariance matrix is P = E

⇥
xkx

T
k

⇤
. The

Takagi factorization states that any complex symmetric matrix, like
the pseudocovariance matrix P

T = P, can be diagonalized as

P = Q⇤pQ
T (4)

where Q is a unitary matrix, QQ

H = I, and ⇤p is a diagonal
matrix of real-valued entries, ⇤p = diag{p

max

, . . . , p
min

} of cir-
cularity coefficients pi. The approximate uncorrelating transform
(AUT) states that the same matrix Q can be used to approximately
diagonalize the covariance matrix R, so that [11]

R ⇡ Q⇤rQ
H (5)

where ⇤r = diag{�
max

, . . . ,�
min

} and �i are the eigenvalues. An
additional benefit of the AUT is that it allows for the diagonalisation
of the pseudocovariance P directly while the SUT [8] requires the
diagonalisation of R� 1

2
PR

�T
2 . The approximation in (5) is valid for

univariate data, and its benefits in obtaining closed form solutions for
the mean square performance of the CLMS and ACLMS are shown
in Sections 3 and 4.

3. MEAN SQUARE ANALYSIS OF THE CLMS

The mean square performance of the CLMS and ACLMS is anal-
ysed through the evolution of the weight error covariance [14]. The
weight error vector for the CLMS is obtained by subtracting the op-
timal weights hopt from both sides of equation (1), to give

h̃k+1

= h̃k � µxkx
H
k h̃k � µxk⌘

⇤
k (6)

where h̃k = hopt � hk. To find the evolution of the weight error
covariance matrix Kk , E

h
h̃kh̃

H
k

i
, both sides of (6) are first mul-

tiplied by h̃

H
k+1

to give

h̃k+1

h̃

H
k+1

= h̃kh̃
H
k � µh̃kh̃

H
k xkx

H
k � µxkx

H
k h̃kh̃

H
k

+ µ2

xkx
H
k h̃kh̃

H
k xkx

H
k + µ2

xkx
H
k |⌘k|2 (7)

+ cross-terms

Upon taking the statistical expectation E [·] of (7) and using the well-
known independence assumption [15], we arrive at

Kk+1

= Kk � µKkR� µRKk + µ2�2

⌘R

+µ2(RKkR+PK

T
k P

⇤ +RTr[KkR])
(8)

where the Gaussian moment factorizing theorem was employed to
decompose the fourth order moments in (7) as

E
h
xkx

H
k h̃kh̃

H
k xkx

H
k

i
= RKkR+PK

T
k P

⇤ +RTr[KkR]

Pre– and post– multiplying both sides of (8) with the unitary matri-
ces Q

H and Q, defined in (4), rotates the weight error covariance
matrix to

K̃k , Q

H
KkQ (9)

The evolution of Kk is now given by

K̃k+1

= K̃k � µK̃k⇤r � µ⇤rK̃k + µ2�2

⌘⇤r (10)

+ µ2(⇤rK̃k⇤r +⇤pK̃
T
k ⇤p +⇤rTr[K̃k⇤r])

where according to the AUT, ⇤p = Q

H
PQ

⇤ and ⇤r ⇡ Q

H
RQ.

For each diagonal term of K̃k, denoted by ii,k, we have

ii,k+1

= (1� µ�i)
2ii,k + µ2(p2iii,k + �iTr[K̃k⇤r])

+ µ2�2

⌘�i (11)

where �i and pi are respectively the diagonal terms of ⇤r and ⇤p.
It is convenient to collect all the diagonal terms of K̃k into an L⇥ 1
vector k = [

11,k, . . . ,LL,k]
T to yield

k+1

=
h
(I� µ⇤r)

2 + µ2

⇤

2

p + µ2��T
i

| {z }
A

k + µ2�2

⌘� (12)

where � = [�
max

, . . . ,�
min

]T is an L ⇥ 1 column vector con-
taining the eigenvalues of R.

3.1. Mean Square Stability

For the recursion in (12) to converge, the eigenvalues of A have to
be less than unity. Instead of attempting to determine the eigenvalues
of A directly [16, 17], using the Gantmacher theorem [18] or using
the z-domain [6], we utilize the Weyl inequality which states that for
two L⇥ L Hermitian matrices X and Y

�̄
⇥
X+Y

⇤
 �̄

⇥
X

⇤
+ �̄

⇥
Y

⇤
(13)

where the �̄
⇥
·
⇤

operator denotes the maximum eigenvalue [19]. Ap-
plying this inequality to A in (12) yields

�̄
⇥
A

⇤
 �̄

⇥
(I� µ⇤r)

2

⇤
+ µ2

⇣
�̄
⇥
⇤

2

p

⇤
+ �̄

⇥
��T ⇤⌘ (14)

so that the condition �̄
⇥
A

⇤
< 1 can be replaced with

1� 2µ�
min

+ µ2

�
�2

max

+ p2
max

+ Tr[⇤2

r]
�
< 1 (15)

where �
min

and �
max

are the minimum and maximum eigenvalues
of the covariance matrix R and p

max

is the maximum singular value
of the pseudo-covariance matrix P. The inequality in (15) still holds
if Tr[⇤2

r] is replaced by L�2

max

and therefore the CLMS achieves
mean square stability for

0 < µ <
2

s[R]�
max

(1 + L+ |⇢|2) (16)

where �
max

and s[R] = �
max

/�
min

are respectively the maximum
eigenvalue and eigenvalue spread of the covariance matrix R. The
term |⇢|2 = p2

max

/�2

max

can be interpreted as the maximum circu-
larity coefficient of the input.

Remark #1: The maximum step-size for mean square stability is
inversely proportional to the degree of circularity, |⇢|.

3.2. Steady State Analysis

The steady-state value of k in (12) is given by

1 =
h
2⇤r � µ(⇤2

p +⇤

2

r)� µ��T
i�1

µ�2

⌘� (17)

Upon employing the matrix inversion lemma, the steady state mis-
adjustment can be expressed as

MCLMS =
�T1

�2

⌘

=

LX

j=1

µ�j

2� µ�j(1 + |⇢j |2)

1�
LX

j=1

µ�j

2� µ�j(1 + |⇢j |2)

(18)
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Remark #2: The steady-state misadjustment of the CLMS algo-
rithm increases with the increase in the non-circularity of the in-
put signal. This is easily verified through the first derivative of the
misadjustment MCLMS with respect to the circularity coefficient |⇢|,
which gives (@MCLMS/@|⇢|) > 0.

4. MEAN SQUARE ANALYSIS OF THE ACLMS

A similar analysis is carried out for the ACLMS whereby the input
and weight vectors within the CLMS are replaced by the augmented
vectors that are twice the length of the vectors in the CLMS equa-
tions. The widely linear data model is given by dk = h

H
optxk +

g

H
optx

⇤
k + ⌘k, so that the augmented weight error vector recursion

from (2) becomes

w̃k+1

= w̃k � µzkz
H
k w̃k � µzk⌘

⇤
k (19)

where w̃k =
⇥
h

T
opt � h

T
k , g

T
opt � g

T
k

⇤T while the augmented weight
error covariance matrix is Ka

k = E
⇥
w̃kw̃

H
k

⇤
. By multiplying both

sides of (19) by w̃

H
k+1

, we have

w̃k+1

w̃

H
k+1

= w̃kw̃
H
k � µw̃kw̃

H
k zkz

H
k � µzkz

H
k w̃kw̃

H
k

+ µ2

zkz
H
k w̃kw̃

H
k zkz

H
k + µ2

zkz
H
k |⌘k|2 (20)

+ cross-terms

Similarly to (8) the augmented weight error covariance matrix is

K

a
k+1

= K

a
k � µKa

kR
a � µRa

K

a
k + µ2�2

⌘R
a+ (21)

µ2(Ra
K

a
kR

a +P

a
K

aT
k P

a⇤ +R

aTr[Ka
kR

a])

where the augmented covariance matrix R

a is given in (3) and the
augmented pseudocovariance matrix P

a is

P

a = E
h
zkz

T
k

i
= E


xk

x

⇤
k

� ⇥
x

T
k x

H
k

⇤
=


P R

R

⇤
P

⇤

�
(22)

Recall that the augmented covariance and pseudocovariance matri-
ces are jointly diagonalized with the AUT as

R

a ⇡ Q̄DrQ̄
H

P

a = Q̄DpQ̄
T (23)

where the unitary matrix Q̄ consists of the unitary matrices from (4),
and has the form

Q̄ =
1p
2


Q �Q
Q

⇤
Q

⇤

�

The diagonal matrices Dr and Dp are identical except for opposite
signs of the last L diagonal elements, that is

Dr =


⇤r +⇤p 0

0 ⇤r �⇤p

�

Dp =


⇤r +⇤p 0

0 �(⇤r �⇤p)

� (24)

The recursion in (21) can be also rotated by pre– and post– multiply-
ing it by Q̄

H and Q̄, so that

K̃

a
k+1

= K̃

a
k � µK̃a

kDr � µDrK̃
a
k + µ2�2

⌘Dr+ (25)

µ2(DrK̃
a
kDr +DpK̃

aT
k Dp +DrTr[K̃

a
kDr])

where K̃

a
k+1

= Q̄

H
K

a
kQ̄. The diagonal elements of K̃a

k, denoted
by a

ii,k, then evolve according to

a
ii,k+1

= (1� µri)
2a

ii,k + µ2(r2i 
a
ii,k + riTr[K̃

a
kDr])

+ µ2�2

⌘ri (26)

where ri, i = 1, . . . 2L are the diagonal elements of Dr and D

2

r =
D

2

p. The diagonal elements of K̃a
k are next combined into a vector

a
k = [a

11,k, . . . ,a
2L2L,k]

T and admit a vector recursion

a
k+1

=
h
(I� µDr)

2 + µ2

D

2

r + µ2

rr

T
i

| {z }
B

a
k + µ2�2

⌘r (27)

where r = [r
max

, . . . , r
min

]T is a 2L ⇥ 1 vector containing the
diagonal elements of Dr.

4.1. Mean Square Stability

The ACLMS is stable in the mean square sense if the condition
�̄
⇥
B

⇤
< 1 is satisfied. Applying the Weyl inequality in (13) to B

yields

�̄
⇥
B

⇤
 �̄

⇥
(I� µDr)

2

⇤
+ µ2

⇣
�̄
⇥
D

2

r

⇤
+ �̄

⇥
rr

T ⇤⌘ (28)

which gives to the bound on the step-size,

0 < µ <
2r

min

2r2
max

+ 2Lr2
max

(29)

Dividing the numerator and denominator with r
min

and recogniz-
ing that the maximum eigenvalue of the augmented covariance ma-
trix, r

max

, is the sum of the maximum eigenvalues of the covari-
ance matrix, R, and pseudocovariance matrix, P that is, r

max

=
�
max

+ p
max

, gives

0 < µ <
1

s[Ra](�
max

+ p
max

)(L+ 1)
(30)

where the eigenvalue spread of the augmented covariance matrix is

s[Ra] =
r
max

r
min

=
�
max

+ p
max

�
min

� p
min

. (31)

Remark #3: By comparing (16) and (30), notice that for circular
data, since the filter order of the ACLMS is twice that of the CLMS
the maximum learning rate of the ACLMS can be at most half the
maximum learning rate of the CLMS.

4.2. Steady State Analysis

In steady-state, the ACLMS weight error covariance in (27) settles
to

a
1 =

h
2Dr � 2µD2

r � µrrT
i�1

µ�2

⌘r (32)

Similarly to (18), the ACLMS misadjustment is

MACLMS =
r

Ta
1

�2

⌘

=

2LX

j=1

µrj
2� 2µrj

1�
2LX

j=1

µrj
2� 2µrj

(33)

where the eigenvalues of the augmented covariance matrix are given
by

rj =

⇢
�j + pj , j = 1, . . . , L
�j � pj , j = L+ 1, . . . , 2L

(34)

Remark #4: The ACLMS has a larger misadjustment compared to
the CLMS due to the additional gradient noise introduced by dou-
bling the number of weight vectors2. Like the CLMS, the ACLMS
has increasing misadjustment for increasingly non-circular signals.

2This effect can be mitigated by setting µACLMS = 1

2

µCLMS.
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5. SIMULATIONS

In the first set of simulations, the steady-state misadjustment of the
CLMS and ACLMS was investigated in a system identification set-
ting, for a strictly linear FIR channel of length L = 2, with coeffi-
cients hopt = [0.4, 0.7j]T . The input xk was a zero-mean Gaussian
process with covariance matrix R and pseudocovariance matrix P,
given by

R =


rxx ↵rxx

↵⇤rxx rxx

�
P =


pxx ↵pxx
↵pxx pxx

�
(35)

where rxx =
1

1� |↵|2 , pxx =
⇢

1� ↵2

and ↵ = 0.2j. The output

of the system was contaminated with circular white Gaussian noise
with variance �2

⌘ = 0.05. For a fair comparison, the step-size of
CLMS was set to µCLMS = 0.2 while the ACLMS step-size was
µACLMS = 1

2

µCLMS = 0.1, see also footnote 2 [20] and [21].
The steady-state misadjustment was computed via a Monte-

Carlo simulation over 50,000 independent trials and for varying
degrees of input circularity ⇢. Figure 1(a) shows the steady-state
misadjustment of CLMS for non-circular signals, which conforms
with the analysis in (18) and Remark #2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5.5

−5

−4.5

−4

Circularity Coefficient (|ρ|)

M
is

a
d
ju

st
m

e
n
t(

d
B

)

 

 

      CLMS Simulation
      CLMS Theory

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5.5

−5

−4.5

−4

Circularity Coefficient (|ρ|)

M
is

a
d
ju

st
m

e
n
t(

d
B

)

 

 

      ACLMS Simulation
      ACLMS Theory

(b)

Fig. 1: Steady-state misadjustment of the (a) CLMS and (b) ACLMS
algorithms for varying degrees of input circularity.

Figure 1(b) shows the misadjustment of ACLMS for varying de-
grees of circularity, observe a similar behaviour to the CLMS. Al-
though the covariance matrices R and P in (35) cannot be jointly
diagonalized with a single SVD, the use of AUT allowed us to esti-
mate the theoretical misadjustment of the CLMS and ACLMS and
their relationships to the circularity of the input in an intuitive, com-
pact and physically meaningful way.

5.1. Three-phase frequency estimation

The misadjustment was next investigated for the ACLMS based
three-phase frequency estimator, which estimates the frequency of a
complex-valued 3-phase signal – for more information we refer to
[22]. The complex-valued ↵-� voltage is given by

vk = v↵,k + v�,k + ⌘k ⌘k ⇠ N (0,�2

⌘) (36)

and was generated by applying the Clarke’s transformation to a
three-phase voltage signal with angular frequency ! = 2⇡fo and
frequency, fo = 50 Hz


v↵,k

v�,k

�
=

r
2
3


1 � 1

2

� 1

2

0
p
3

2

�
p
3

2

�
Re

8
<

:

2

4
V̄a

V̄b

V̄c

3

5 ej!k�T

9
=

; (37)

where V̄a, V̄b and V̄c are phasor representations of the three-phase
voltage and Re {·} extracts the real part of a complex variable. The
sampling frequency fsamp = 1/�T was chosen to be 2 kHz. Under
a general operating condition, V̄a = �, V̄b = � �

2

� j
p

3

2

and V̄c =

� �
2

+j
p

3

2

. In the simulations, we used � = 1 for a balanced system
and � = 0.2 for the Type D imbalance, see also Figure 2.

Real Part

Im
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g
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a
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rt

Balanced

Type D
Sag

(a) Circularity plot

Type D
Sag

(b) Phasor representation

Fig. 2: Geometric and phasor diagrams for a Type D imbalance
(voltage sag) of the three-phase power system voltages.

Table 1 shows that the ACLMS frequency estimator has a higher
misadjustment for a noncircular signal, arising from an unbalanced
set of system voltages within a three-phase power system. This con-
forms with the analysis and Remark #4.

Data Statistics Misadjustment (dB)

Balanced (circular) 2.2325

Type D Imbalance (non-circular) 2.6142

Table 1: Steady-state misadjustment values for the ACLMS-based
frequency estimator. The three-phase voltage signals were generated
at SNR = 30 dB.

6. CONCLUSION

We have conducted mean square stability and steady-state analyses
of the CLMS and ACLMS for non-circular data. This has been
achieved using the recently introduced approximate uncorrelating
transform (AUT), which first diagonalises the pseudocovariance ma-
trix and then uses the same SVD to diagonalise the covariance ma-
trix. This has greatly simplified the analysis and has provided com-
pact and physically meaningful relationships between the circular-
ity of the input and the mean square behaviour of the CLMS and
ACLMS. We have found that the step-size bounds of the CLMS and
ACLMS are inversely proportional to the degree of circularity of
the input and the steady-state misadjustment increases as the non-
circularity of the input signal is increased. Simulations on bench-
mark and 3-phase power signals support the analysis.
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