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Abstract

Brain responses to audio stimuli are analysed using data driven time-frequency
analysis. This is achieved based on the electroencephalogram (EEG) recordings
and with auditory chirps or music as the audio stimulus. The empirical mode
decomposition (EMD) is applied to multichannel EEG recordings, and the insight
into the brain responses is provided by the analysis of the dynamics of auditory
steady-state responses (ASSR). The proposed approach is further illustrated on
the analysis of EEG responses to classical music. A comprehensive synchrony
analysis is provided based on the visualization of EMD and spectrogram matching
techniques. Simulation results illustrate the potential of the proposed approach in
future brain computer/machine interfaces.

1 Introduction

Research on the interpretation of musical experience from neurophysiological recordings, such as
electroencephalograms (EEG), has gained considerable attention in neuroscience community. Music
is an important part of human daily experience, and it seems natural to explore ways to incorporate
it in brain computer/machine interfaces (BCI/BMI). Research on BCI/BMI has been ongoing since
three decades with the aim to enable additional or independent communication channel between the
brain/mind and a computer/machine. This is achieved without involvement of the peripheral nervous
system or muscles activities, as first postulated in [1] and later extensively summarized in [2]. This
also allows for computer-aided communication with the outside world [3].

Due to the non-invasive manner there are several important and difficult challenges in the designing
of BCI/BMI, however, this technology is envisaged to be at the core of future “intelligent” prosthet-
ics, and is particularly suited to the needs of the handicapped and paralyzed. Other industries which
would benefit greatly from the development of BCI include theentertainment, computer games, and
automotive industries, where the control and navigation ina computer-aided application is achieved
without the use of hands or gestures. The idea to utilize auditory or general musical stimuli for
BCI/BMI is very appealing [3] as it allows to: (i) deliver stimuli via headphones or loudspeakers;
(ii) integrate the auditory devices in user’s environment in a natural way (sound stimuli can be per-
ceived by human spatially - in comparison to visual or tactile stimuli where direct modality channel
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must be established - looking at or touching); (iii) minimaluser’s distraction, since humans can gen-
erally concentrate on other tasks while listening to music or simple auditory tones (e.g. applications
in cars, since auditory stimulation generally does not distract driver’s visual attention); (iv) possible
embedding of spell out ASSR stimuli within music, which usercan listen to simultaneously; it is
also possible to adaptively modify stimuli in order to avoidenvironmental sounds such as a car en-
gine or other interferences; (v) there is no evidence of health hazard (causing seizures) by auditory
steady-state stimuli [4]. This paper presents a study of EEGsynchrony as a response to ASSR stim-
uli; this is used as a reference for further more complex analysis of natural musical stimuli. ASSR
is already an established tool in objective hearing levels estimation [4, 5]. The auditory steady-state
response (ASSR) is an auditory evoked potential, caused by modulated tones, that can be utilized in
BCI/BMI for users of all ages. The ASSR response itself is an evoked neural potential that follows
the envelope of a complex auditory stimulus. It is evoked by the periodic modulation, or turning
on and off, of a tone or an auditory flutter [6]. The neural response is a brain potential that closely
follows the time course of the modulation and thus is perfectly suited for initial study of subject’s
auditory responses. ASSR is also longer and more user friendly comparing to short clicks or beeps
used in classical auditory evoked potential (AEP) studies [7, 8].

The steady–state responses can be recorded over a range of AMand FM modulation rates. Different
modulation frequencies rates result in stimulation of different areas of the auditory pathway in the
brain [6]. It was summarized in [4] that lower frequency rates (fm < 20Hz) cause activity of
the generators responsible for late-latency response, moderate rates (fm = 20Hz, . . . , 60Hz) are
responsible for the middle-latency response, and higher rates (fm > 60Hz) reflect activity from the
brainstem. For experiments in this paper a frequency setfm ∈ {7, 10, 13, 17, 21, 27, 31}Hz was
chosen so we could cover lower frequency ranges which are more vulnerable to subject’s state and
motivational/attentional control as well as the middle stimuli frequencies which are less affected by
subject’s mental states.

We use the following novel approach to measure the interdependence of the EEG signals, based on
the pairwise alignment (“matching”) of their Hilbert-Huang spectra which provide more accurate
and sharper time frequency representations comparing to contemporary methods [9]: first, empirical
modes are extracted from the signals, which represent oscillatory components with time-varying
amplitude and frequency. Second, the empirical modes are Hilbert transformed, resulting in very
sharply localized ridges in the time-frequency plane; the obtained time-frequency representations are
known as Hilbert-Huang spectra. Finally, the latter are pairwise aligned by means of the stochastic-
event synchrony method (SES), a recently proposed procedure to match pairs of multi-dimensional
point processes [12]. The level of similarity of two Hilbert-Huang spectra is quantified by three
parameters: timing and frequency jitter of coincident ridges, and fraction of non-coincident ridges.

This paper is organized as follows. In the next section, we review the empirical mode decomposition
(EMD) method and explain how it can be used to obtain intrinsic mode functions (IMFs) as well
as time-frequency maps (“Hilbert-Huang spectra”). In Section 3, the idea behind stochastic event
synchrony is outlined, its usability to quantify the similarity of Hilbert-Huang spectra is discussed.
In Section 4, several measures to analyze EEG with brain response to steady-state auditory and mu-
sical stimuli are reviewed. The paper is concluded with comments on further potential applications
of the proposed approach.

2 Empirical model decomposition (EMD)

Empirical Mode Decomposition (EMD) decomposes signals into so called “intrinsic mode func-
tions” (IMF) [9]. They are functions that satisfy the following two conditions: (i) the number of
extrema and the number of zero crossings are either equal or differ at most by one; (ii) at any point,
the mean value of the envelope defined by the local maxima and the envelope defined by the local
minima is zero. An IMF represents an oscillatory mode withina given signal: its cycles (defined
by its zero crossings) corresponds toone (and not more than one) mode of oscillation; both the
amplitude and frequency of this oscillation may vary over time, in other words, the oscillation is not
necessarily stationary nor narrow-band.

The process of extracting an IMF from a signalx(t) (“sifting process” [9]) consists of the following
steps:
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1. determine the local maxima and minima ofx(t);

2. generate the upper and lower signal envelope by connecting those local maxima and
minima respectively by some interpolation method (e.g., linear, spline, piece-wise
spline [9] [10]);

3. determine the local meanm(t), by averaging the upper and lower signal envelope;

4. subtract the local mean from the data:h1(t) = x(t) − m1(t).

Ideally,h1(t) can already represent an IMF, however, in practice,h1(t) still typically contains local
asymmetric fluctuations, and the above four steps need to be repeated several times. In order to
obtain the second IMF, the sifting process is applied to the residueε1(t) = x(t)− IMF1(t), obtained
by subtracting the first IMF fromx(t); the third IMF is extracted from the residueε2(t) and so
on. The sifting process is terminated when two consecutive iterations yield similar results. The
empirical mode decomposition of the signalx(t) can be written as:

x(t) =

n
∑

k=1

IMFk(t) + εn(t), (1)

wheren is the number of extracted IMFs, and the final residueεn(t) can either be the mean trend or
a constant. An EMD example for EEG signal decomposition is given in Fig. 1.
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Figure 1: Empirical mode decomposition (EMD): the originalsignal (top), three IMFs (middle), and
residue (bottom).

From (1), the empirical mode decomposition is a complete operator; the original signal can be
reconstructed from the IMFs and the final residue. Note that due to their data dependent nature, in
practice the IMFs are not guaranteed to be mutually orthogonal, but are often close to orthogonal.
Based on IMFs we can construct a time-frequency representation of the signalx(t), i.e., the Hilbert-
Huang spectrum (HHS) [9]. The idea is to compute the instantaneous amplitude and frequency for
each IMF, for instance derived from the analytic signal:

Z(t) = IMF(t) + i Y (t), i =
√
−1, (2)

with Y (t) the Hilbert transform of the IMF:

Y (t) =
1

π
P
∫ +∞

−∞

IMF(t)

t − t′
dt′, (3)
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where P indicates the Cauchy principal value of the integral[11]. The instantaneous amplitude
a(t) and phaseθ(t) of the IMF are defined respectively as the magnitude and angleof Z(t). The
instantaneous frequency is then simply defined as:

ω =
dθ(t)

dt
. (4)

Hilbert-Huang spectra (HHS) are plots of the instantaneousamplitude against instantaneous fre-
quency and time [9]. HHS images are typically sparse and contain sharp ridges, as illustrated in
Fig. 2. In the following section, we propose a method to quantify the similarity of two Hilbert-
Huang spectra; the key idea will be to match ridges in one HHS to ridges in the other HHS.
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Figure 2: Hilbert-Huang spectra (bottom) of two EEG channels (top)

3 Stochastic Event Synchrony (SES)

In earlier work [12], we developed a measure that quantifies the similarity (“interdependence” or
“synchrony”) of two (one- or multi-dimensional) point processes, referred to asstochastic event
synchrony (SES); that measure was applied to point processes on the time-frequency plane, more
precisely, to bump models [13]. Here we will use SES to quantify the similarity of two Hilbert-
Huang spectra. The first step is to extract a point process (“event string”) from an HHS (see Fig. 3
(left)): from the given HHS, we only retain theN largest instantaneous amplitudes (N is typically
about 100). Each of theN remaining points (“ridges”)rj = (tj , aj , fj) with j = 1, . . . , N is viewed
as an event, and the sequencer = (r1, . . . , rN ) is a three-dimensional point process; in other words,
the remaining pointsrj in Fig. 3 (left) take the role of the “bumps”. Fig. 3 (left) suggests a natural
way to define the similarity of two HHS: ridges in one time-frequency map (red) may not be present
in the other map (blue) (“non-coincident” ridges); other ridges are present in both maps (“coincident
ridges”), but appear at slightly different positions on themaps. Fig. 3 (right) depicts the coincident
ridges, obtained after matching the event stringsr (red) andr′ (blue); the black lines connect the
centers of coincident ridges, and hence, they visualize theoffset in position between pairs of co-
incident ridges. Stochastic event synchrony consists of the following parameters: (i)ρ: fraction of
non-coincident ridges; (ii)δt andδf : average time and frequency offset respectively between coinci-
dent ridges; (iii)st andsf : variance of the time and frequency offset respectively between coincident
ridges. The alignment of the two ridge traces (cf. Fig. 3 (right)) is cast as a statistical inference prob-
lem [12]. The associated probabilistic model depends on theSES parametersθ = (δt, δf , st, sf )
besides the following two kinds of latent variables: (i) binary variablesCkk′ , associated to each pair
of ridges, whereCkk′ = 1 indicates that eventrk of the first HHS is coincident with eventr′k′ in
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Figure 3: (left) Events (“ridges”) extracted from HHS1 (red) and HHS2 (blue) of Fig. 2; (right)
coincident ridges.

the other HHS, and whereCkk′ = 0 otherwise; (ii) binary variablesBk andB′

k′ , which indicate
whether a ridge is non-coincident. The latent-variable model is of the form:

p(r, r′, b, b′, c, θ) ∝
n

∏

k=1

(βδ[bk − 1] + δ[bk])

n′

∏

k′=1

(βδ[b′k − 1] + δ[b′k])

·
n

∏

k=1

n′

∏

k′=1

(

N (t′k′ − tk; δt, st)N (f ′

k′ − fk; δf , sf )
)c

kk′

·
n

∏

k=1

(

δ[bk +

n′

∑

k′=1

ckk′ − 1]
)

n′

∏

k′=1

(

δ[b′k′ +

n
∑

k=1

ckk′ − 1]
)

p(δt)p
(

st

)

p(δf )p
(

sf

)

, (5)

whereβ is a constant (which serves as a knob to control the number of non-coincident ridges),n
andn′ is the total number of ridges in the two HHS, andN (x; m, s) stands for a univariate Gaus-
sian distribution with meanm and variances [12]. For convenience, we choose “improper” priors
p(δt) = p(δf ) = p(st) = p(sf ) = 1. The SES parametersθ = (δt, δf , st, sf ) and the latent
variablesC, B andB′ are determined jointly by MAP estimation. This may be carried out by cyclic
maximization [12]: for fixedθ, one maximizeslog p (cf. (5)) w.r.t. C, B andB′ and vice versa.
Conditional maximization w.r.t.θ is straightforward, however, the conditional maximization w.r.t.
C, B andB′ is non-trivial: it involves a mathematically intractable discrete optimization problem.
This problem is solved approximately (but successfully) byiterative max-product message passing
(“iterative dynamic programming”) on a graphical model corresponding to the latent-variable prob-
abilistic model (5) [12]. In Fig. 4, the edges correspond to variables, and the nodes corresponds to
factors in (5). The nodesN corresponds to the Gaussian distributions in (5), whereas the nodes de-

noted byΣ̄ represent the factors
(

δ[bk +
∑n′

k′=1
ckk′ −1]

)

(blue) and
(

δ[b′k′ +
∑n

k=1
ckk′ −1]

)

(red),
and the nodes denoted byβ correspond to the factors(βδ[bk − 1] + δ[bk]) and(βδ[b′k − 1] + δ[b′k]).
The arrows in Fig. 4 depict “messages” (i.e., probabilitiesassociated with the coincident and non-
coincident pairs of ridges) that are iteratively computed at each node according to the max-product
computation rules. Intuitively, the nodes may be viewed as computing elements that iteratively
update their evaluation about which ridges match and which do not, based on the opinions (“mes-
sages”) they receive from neighboring nodes. After the algorithm has converged (and the nodes
have found a “consensus”), the messages are combined to obtain a decision onC, B andB′, and an
estimate ofρ and the other SES parameters [12].

4 Experiments and Results

We considered the proposed ridge analysis and SES matching method and applied them to a
BCI/BMI problem where subject was asked to concentrate or ignore given auditory stimuli. The
EEG signal were recorded from a human subject listening to steady-state auditory and musical ex-
amples (introduction of theBeethoven Symphony No. 7). The EEG signals were recorded from 12
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Figure 4: Graphical model of (5).

locations (four frontal [Fp1, Fp2, F3, F4], six auditory cortex areas [C3, C5, T7, C4, C6, T8], and
two parietal [P3, P4]) [7]. EMD was used to extract IMF components from those the EEG signals
(cf. Section 2). Correlation analysis of IMF components in frequency ranges from1Hz to 32Hz is
presented in Fig. 5, where different patterns of brain responses are presented. Observe, that ASSR
stimuli “correlated” across the whole brain, whereas musical stimuli caused synchrony at only a few
EEG locations. The lack of auditory stimuli is represented in the from of “non-correlated” patterns.
This simple correlation analysis of IMFs did not result in good classification of “musical states”. To
overcome this problem, as a next step the IMF components wereHilbert transformed (resulting in
Hilbert-Huang spectra). Based on the underlying psychophysics, the low-frequency drifts (<5Hz)
and high-frequency interference parts (>32Hz) of the IMFs were removed; one such a segment of
two EEG signals (recorded by two auditory channels) together with their Hilbert-Huang spectra is
shown in Fig. 2. Finally, the similarity of the so obtained HHS was analyzed by means of stochastic
event synchrony (cf. Section 3). Each pair of HHS was matched, and the timing and frequency jitter
st andsf of the coincident ridges, and the fraction of non-coincident ridgesρ were computed. Those
parameters were then averaged over all pairs of Hilbert-Huang spectra, resulting in three global mea-
sures of interdependence. As a benchmark, we also quantifiedthe synchrony of the EEG signals by
some classical measures: magnitude squared coherence (COH), partial directed coherence (PDC),
and directed transfer function (DTF) [15] (see Table 1).
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Figure 5: EMD based correlation analysis of the responses related to musical and non-musical
events.
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Table 1: A comparison of the percentage of incorrectly classified EEG signals using conventional
measures for auditory stimuli and the EEG response to steady-state visual evoked potential (SSVEP)
experiment for comparison [14].

FEATURES SYMPHONY ASSR 500Hz ASSR 1500Hz SSVEP

dDTF with PDC 37.5% 38.0% 24.0% 42.2%
PDC with SESρ 30.0% 40.0% 34.0% 12.5 %
PDC with SESst 25.0% 54.0% 30.0% 40.6%
PDC with SESsf 32.5% 46.0% 30.0% 29.7%
COH with SESρ 45.0% 50.0% 56.0% 7.8%
DTF 45.0% 42.0% 46.0% 39.1%
PDC 30.0% 46.0% 32.0% 42.2%
COH 42.5% 40.0% 42.0% 25.0%

We next investigated whether fluctuations in EEG synchrony (“interdependence”) can be detected in
this way. In particular, our aim was to distinguish between EEG signals recorded during stimulation
and silent intervals; for each of those two conditions, we considered32 EEG segments of the same
length (2 to 5s). Table 1 shows classification errors obtained by the leave-one-out method; for the
sake of simplicity, a linear classifier (hyperplane) was used, whereby synchrony measures were
used as single features and as pairs of features. Table 1 onlycontains the results for the pairs that
resulted in the smallest classification errors: for the pairs without SES parameters, the combination
of several measures with PDC or even the only use of PDC gave the preliminary results showing
minimum25% of incorrect classification for musical stimuli. Similar results were obtained in the
case of ASSR stimuli with carrier frequenciesfm ∈ {500, 1500}Hz and modulation frequencies
fs ∈ {7, 10, 13, 17, 21, 27, 31}Hz and duration of1s for each segment showed (see Table 1). The
presented preliminary results show significant improvement in classification rates as compared to
previously published examples [3]; in our experiment, the stimuli exposure times were shorter, and
resulted in clear separation as seen in Figure 6. For comparison, results using the same method
applied to the much stronger EEG response of the steady-state visual evoked potential (SSVEP) are
also shown.

5 Conclusions

We have analyzed the synchrony in multichannel EEG recordings during both ASSR and musical
stimulation. This has been achieved for a number of performance metrics, with most promising
results obtained by PDC and the SES parameters for musical stimuli. The results based on simpler
ASSR stimuli have exhibited slightly lower recognition rates, suggesting the high potential of mu-
sical stimuli in future BCI/BMI. Previous studies have reported similar findings, emphasizing the
level of EEG synchrony is correlated with the subject’s attention [13]. This study show that ASSR
and BCI/BMI based on musical stimuli may be even used by subjects without prior training. How-
ever, state-of-the-art ASSR and musical stimuli based BCI/BMI systems require computationally
demanding signal processing and response detection algorithms, yielding relatively low data rates.
This is largely due to the fact that those systems typically use the power spectrum as input features
only, in particular, the power spectrum at the ASSR and musical stimulation frequencies. Our study
has shown (see also [16]), that EEG synchrony has great potential for ASSR detection; despite a
relatively short stimulation period (only2 to 5s), we obtained low classification errors (25% at best).
As a consequence, synchrony measures (particularly SES in conjunction with EMD) may prove very
useful in the context of future practical BCI/BMI.
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