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Complex Empirical Mode Decomposition
Toshihisa Tanaka and Danilo P. Mandic

Abstract—A method for the empirical mode decomposition
(EMD) of complex-valued data is proposed. This is achieved based
on the filter bank interpretation of the EMD mapping and by
making use of the relationship between the positive and negative
frequency component of the Fourier spectrum. The so-generated
intrinsic mode functions (IMFs) are complex-valued, which facili-
tates the extension of the standard EMD to the complex domain.
The analysis is supported by simulations on both synthetic and
real-world complex-valued signals.

Index Terms—Complex-valued signals, empirical mode de-
composition (EMD), nonlinear signal analysis, time-frequency
analysis.

I. INTRODUCTION

THE empirical mode decomposition (EMD) is a novel
signal analysis tool, whereby the underlying notion of in-

stantaneous frequency provides insight into the time-frequency
signal features. This technique has been first introduced in
ocean research [1] and has since become an established tool
for the analysis of nonstationary and nonlinear data [1] with a
number of important applications in signal processing [2]–[4].
Unlike other signal decomposition techniques, which map
the signal space onto a space spanned by a predefined basis,
the idea behind this method is to decompose a general data
set into a number of “basis functions” termed intrinsic mode
functions (IMFs), which are derived directly from the data, in
a natural way. In spite of the well-established and understood
EMD-based analysis of real-valued processes, a major issue
that prevents a wider application of EMD in signal processing
is that this concept has been developed strictly for real-valued
data. On the other hand, several important signal processing
areas (telecommunications, sonar, radar, to mention but a few)
use complex-valued data structures. To analyze these within
the EMD framework, it is necessary to develop an extension
of the standard EMD suitable for dealing with complex-valued
data. In addition, a strong motivation for the development of
the EMD for complex-valued data comes from the concept of
so-called instantaneous frequency [1], which gives EMD an
edge over other established time-frequency analyzers.

Notice that an extension of EMD to the complex domain is
not trivial; this is due to the mutual dependence between the real
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and imaginary component of complex data and the fact that arith-
meticoperationson formanalgebra.Asimplewaytoextendthe
EMD to the field of complex numbers would be to apply EMD
separately to the real and imaginary part of a complex-valued
signal. Alternatively, consider the amplitude-phase representa-
tion of complex quantities, and apply EMD separately to the am-
plitude and the phase function. Although these approaches may
at first seem appealing, the problem they introduce is that in this
way, a complex, bivariate quantity with some existing mutual in-
formationbetweentherealandimaginarypart ismappedontotwo
independent real-valued univariate quantities where this mutual
information is lost. Moreover, the power of EMD comes from the
possibility of physical interpretation of the IMFs within EMD,
which in the above case is not applicable.

To develop our proposed complex EMD, we first introduce
the concept of complex-valued IMFs, for which we make use
of the fact that EMD behaves stochastically as a filter bank
[5]. More precisely, when the nature of IMFs within the EMD
framework is stochastic, the EMD behaves as a dyadic sub-
band decomposition structure. We embark upon this result and
derive a complex EMD method, for which the only require-
ment is that the complex EMD preserves the desired property
of a filter bank “on the average.” This is achieved by oper-
ating directly in , which opens up the possibility to divide a
complex signal in hand into its positive and negative frequency
parts. This provides the basis for a subsequent application of the
standard EMD. To illustrate the proposed complex EMD oper-
ating as a filter bank, examples on randomly generated com-
plex signals support the analysis. In addition, simulations com-
bining the complex EMD and the instantaneous frequency anal-
ysis method termed Hilbert–Huang spectrum [1] are conducted
on real-world complex-valued signals.

II. EMPIRICAL MODE DECOMPOSITION AND THE

CONCEPT OF INSTANTANEOUS FREQUENCY

The EMD aims at representing an arbitrary signal via a
number of IMFs and the residual . By design, an IMF
is a function for which the number of extrema and the number
of zero crossings are either equal or they differ at most by one,
together with the mean value of two envelopes associated with
the local maxima and minima being zero. More precisely, for a
real-valued signal , the EMD performs the mapping

(1)

where is a set of IMFs, and is the residual. The
first IMF can be obtained as follows [1].

1) Let .
2) Identify all local minima and maxima of .
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3) Find an “envelope,” (resp. ) that interpo-
lates all local minima (resp. maxima).

4) Extract the “detail,”
.

5) Let and go to step 2); repeat until be-
comes an IMF.

Once the first IMF is obtained, to obtain the next IMF, the above
procedure is applied to the residual . In
the same spirit, by applying this procedure recursively, the re-
maining IMFs are calculated. The set of so-obtained IMFs, in
fact, represents a unique “time-frequency” analyzer that allows
for the analysis of the instantaneous frequency, defined via the
Hilbert transform [6].

For illustration, consider a real-valued signal , and apply
the Hilbert transform to generate the corresponding analytic
signal (for more information, see [1])

(2)

where is the Hilbert transform pair,
is the amplitude of , and is its phase given by

. The instantaneous frequency
is derived from as [1]

(3)

It is this combination of the concept of instantaneous fre-
quency and EMD that makes the EMD framework so powerful
for time-frequency signal analysis. To illustrate this, further
consider signal , which by means of EMD is described
as , where is the set
of IMFs representing “modes,” and is a residual of the
decomposition. This way, we obtain a “spectgram” [1], given
by , that provides a new insight into the
time-frequency characteristics of a signal.

Unfortunately, this method is defined only for real-valued
data. Given the importance of the EMD framework, and
the rapidly increasing number of the applications of com-
plex-valued signal processing [7], it would be highly beneficial
to find a natural way to extend the conventional EMD to the
complex domain .

III. EMPIRICAL MODE DECOMPOSITION

FOR COMPLEX-VALUED DATA

To derive complex EMD, we first decompose a complex-
valued data set into its positive and negative frequency compo-
nents, whereby either component becomes an analytic signal.
Owing to the well-known properties of signal representations in
the complex domain (Fourier), this provides us with an oppor-
tunity to deal with only the real part of such signal and without
loss of information.

Let be a complex-valued time sequence and
the discrete-time Fourier transform of . There are two
possibilities to obtain a desired real time sequence from .
First, if is already an analytic signal, say, for

, we may opt to analyze only the real part of ,

Fig. 1. Complex-valued EMD and the equivalent filters within a filter bank
deduced by complex-valued IMFs y [n].

Fig. 2. Time sequences of wind speed and direction.

since it can be converted back into by using the Hilbert
transform. Unfortunately, is generally not guaranteed to be
analytic. We therefore propose to extract positive and negative
frequency components from , as follows. Let be an
ideal band-pass filter specified by

(4)

From (4), we can generate two analytic signals

(5)

(6)

where denotes the complex conjugate of . Ac-
cording to the Hilbert transform functional relationship, by em-
ploying the inverse Fourier transform, denoted by , we
obtain

(7)

(8)

where symbol denotes the operator that extracts the real part
of a complex function. This way, since and are
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Fig. 3. (Left) Hilbert–Huang spectrum and (right) the corresponding IMFs of complex-valued wind data. (a) Positive frequency. (b) Negative frequency.

now real valued, we can obtain the corresponding IMF using
standard EMD. Such a procedure can be expressed as

(9)

(10)

where and denote sets of IMFs corre-
sponding, respectively, to and , and and
denote the associated residuals. The reconstruction of so-de-
composed complex-valued signal is accomplished by

(11)

where denotes the Hilbert transform operator.

We next define the th complex IMF of a complex process
(that is a complex-valued counterpart of a real IMF) as

(12)

By using complex-valued IMFs from (11), the proposed com-
plex EMD can be described as

(13)

where residual , for instance, may represent a trend within
the data set. This completes the derivation of complex EMD,
which retains the generic form of standard EMD.

In practice, the ideal band-pass filter from (4) for which the
transfer function is may need to be approximated, using
standard methods from the theory of digital filters [6]. Another
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practical issue to consider is the behavior of residual , for
the different approximations of from (3).

IV. EXAMPLES

We provide two sets of simulations, an illustration of the be-
havior of complex EMD as a filter bank, followed by a time-fre-
quency analysis of a real-world complex-valued data set.

A. Complex EMD as a Complex Filter Bank

Following the approach from [5], we first analyze the power
spectra of IMFs generated from random complex-valued time
series. In this experiment, a set of 1000 independent Gaussian
complex-valued time series of 1024 samples each were gen-
erated, and the resulting spectra were averaged. Fig. 1 depicts
these averaged spectra for the first seven IMFs in both the posi-
tive and negative frequency range. Observe from Fig. 1 that, on
the average, the complex EMD exhibits the desired behavior of
a filter bank. This result conforms with our proposed complex
EMD being a natural extension of the standard EMD.

B. Decomposition of Complex-Valued Wind Signal

To further support the analysis, experiments were conducted
by applying the complex EMD to real-world wind measure-
ments 1 consisting of wind speed and wind direction ,
which can be represented by a single complex variable:

(for more detail of this representation, see [7]). Again,
the major difference between the complex EMD and its real
counterpart is the existence of positive and negative frequen-
cies. We applied the complex EMD to the complex-valued wind
signal with sampling period of 20 min, which is depicted in
Fig. 2.

Fig. 3 shows the IMFs from the signal components with pos-
itive/negative frequency, obtained by (11)–(13), and the cor-
responding Hilbert–Huang spectra of the wind data plotted in

1The data examined here are publicly available from [8] and are recorded
by the Automated Weather Observing System (AWOS), Iowa, managed by the
Iowa Department of Transportation.

Fig. 2. Observe from Fig. 3 that IMFs generated using the pro-
posed complex EMD do indeed have a physical meaning and
represent the instantaneous frequency and power of the analyzed
data.

V. CONCLUSION

We have introduced the complex EMD method, which repre-
sents an extension of the real-valued EMD to the complex do-
main. This has been achieved based on some inherent proper-
ties of complex signals, such as the relationship between their
positive and negative frequency components. This way, we have
been able to apply standard EMD to the corresponding analytic
components of complex-valued data. Examples illustrating the
operation of the proposed complex EMD as a filter bank, and
also the potential of complex EMD when processing real-world
complex-valued data, support the analysis.
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