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A complex-valued real-time recurrent learning (CRTRL) algorithm for
the class of nonlinear adaptive filters realized as fully connected recur-
rent neural networks is introduced. The proposed CRTRL is derived for
a general complex activation function of a neuron, which makes it suit-
able for nonlinear adaptive filtering of complex-valued nonlinear and
nonstationary signals and complex signals with strong component cor-
relations. In addition, this algorithm is generic and represents a natural
extension of the real-valued RTRL. Simulations on benchmark and real-
world complex-valued signals support the approach.

1 Introduction

Recurrent neural networks (RNNs) are a widely used class of nonlinear
adaptive filters with feedback, due to their ability to represent highly nonlin-
ear dynamical systems (Elman, 1990; Tsoi & Back, 1994), attractor dynamics,
and associative memories (Medsker & Jain, 2000; Principe, Euliano, & Lefeb-
vre, 2000).1 In principle, a static feedforward network can be transformed
into a dynamic recurrent network by adding recurrent connections (Haykin,
1994; Puskorius & Feldkamp, 1994; Feldkamp & Puskorius, 1998). A very
general class of networks that has both feedforward and feedback connec-
tions is the recurrent multilayer perceptron (RMLP) network (Puskorius &
Feldkamp, 1994; Feldkamp & Puskorius, 1998), for which the representa-
tion capabilities have been shown to be considerably greater than those of
static feedforward networks. Feedback neural networks have proven their
potential in processing of nonlinear and nonstationary signals, with appli-
cations in signal modeling, system identification, time-series analysis, and
prediction (Mandic & Chambers, 2001).

1 Nonlinear autoregressive (NAR) processes can be modeled using feedforward net-
works, whereas nonlinear autogressive moving average (NARMA) processes can be rep-
resented using RNNs.
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In 1989, Williams and Zipser proposed an on-line algorithm for training
of RNNs, called the real-time recurrent learning (RTRL) algorithm (Williams
& Zipser, 1989), which has since found a variety of signal processing applica-
tions (Haykin, 1994). This is a direct gradient algorithm, unlike the recurrent
backpropagation used for the training of RMLPs. Despite its relative simplic-
ity (as compared to recurrent backpropagation), it has been demonstrated
that one of the difficulties of using direct gradient descent algorithms for
training RNNs is the problem of vanishing gradient. Bengio, Simard, and
Frasconĭ (1994) showed that the problem of vanishing gradients is the es-
sential reason that gradient descent methods are often slow to converge.
Several approaches have been proposed to circumvent this problem, which
include both the new algorithms (such as extended Kalman filter, EKF) and
new architectures, such as cascaded recurrent neural networks (Williams,
1992; Puskorius & Feldkamp, 1994; Haykin & Li, 1995).

In the fields of engineering and biomedicine, signals are typically nonlin-
ear, nonstationary, and often complex valued. Properties of such signals vary
not only in terms of their statistical nature but also in terms of their bivari-
ate or complex-valued nature (Gautama, Mandic, & Hulle, 2003). As for the
learning algorithms, in the area of linear filters (linear perceptron), the least
mean square (LMS) algorithm was extended to the complex domain in 1975
(Widrow, McCool, & Ball, 1975). Subsequently, complex-valued backprop-
agation (CBP) was introduced by Leung and Haykin (1991) and Benvenuto
and Piazza (1992). Thereby, a complex nonlinear activation function (AF)
that separately processes the in-phase (I) and quadrature (Q) components
of the weighted sum of input signals (net input) was employed. This way,
the output from a complex AF takes two independent paths, which has
since been referred to as the split-complex approach.2 Although bounded,
a split-complex AF cannot be analytic, and thus cannot cater to signals with
strong coupling between the magnitude and phase (Kim & Adali, 2000).

In the 1990s, Georgiou and Koutsougeras (1992) and Hirose (1990) de-
rived the CBP that uses nonlinear complex AFs that jointly process the I and
Q components. However, these algorithms had difficulties when learning
the nonlinear phase changes and the AF used in Georgiou and Koutsougeras
(1992) was not analytic (Kim & Adali, 2000). In general, the split-complex
approach has been shown to yield reasonable performance for some applica-
tions in channel equalization (Leung & Haykin, 1991; Benvenuto & Piazza,
1992; Kechriotis & Manolakos, 1994), and for applications where there is no
strong coupling between the real and imaginary part within the complex
signal. However, for the common case where the inphase (I) and quadra-

2 In a split-complex AF, the real and imaginary components of the input signal x are
separated and fed through the real-valued activation function fR(x) = fI(x), x ∈ R. A
split-complex activation function is therefore given as f (x) = fR(Re(x)) + jfI(Im(x)), for
example, f (x) = 1

1+e−β(Re(x)) + j 1
1+e−β(Im(x)) .
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ture (Q) components are strongly correlated, algorithms employing split-
complex activation function tend to yield poor performance (Gautama et al.,
2003). Notice that split-complex algorithms cannot calculate the true gradi-
ent unless the real and imaginary weight updates are mutually independent.

Research toward a fully complex RNN has focused on the issue of analyt-
ical activation functions. A comprehensive account of elementary complex
transcendental activation functions (ETFs) used as AFs is given in Kim and
Adali (2002). They employed ETFs to derive a fully CBP algorithm using
the Cauchy-Riemann3 equations, which also helped to relax requirements
on the properties of a fully complex activation function.4

For the case of RNNs, Kechriotis and Manalokas (1994) and Coelho (2001)
introduced a complex-valued RTRL (CRTRL) algorithm. Both approaches,
however, employed split complex AFs, thus restricting the domain of appli-
cation. In addition, these algorithms did not follow the generic form of their
real RTRL counterpart. There are other problems encountered with split-
complex RTRL algorithms for nonlinear adaptive filtering: (1) the solutions
are not general since split-complex AFs are not universal approximators
(Leung & Haykin, 1991); (2) split-complex AFs are not analytic and hence
the Cauchy-Riemann equations do not apply; (3) split-complex algorithms
do not account for a “fully” complex nature of signal (Kim & Adali, 2003)
and such algorithms therefore underperform in applications where complex
signals exhibit strong component correlations (Mandic & Chambers, 2001);
(4) these algorithms do not have a generic form of their real-valued coun-
terparts, and hence their signal flow graphs are fundamentally different
(Nerrand, Roussel-Ragot, Personnaz, & Dreyfus, 1993a).

Therefore, there is a need to address the problem of training a fully con-
nected complex-valued recurrent neural network. Although there have been
attempts to devise fully complex algorithms for online training of RNNs,
a general fully complex CRTRL has been lacking to date. To this cause, we
derive a CRTRL for a single recurrent neural network with a general “fully”
complex activation function. This makes complex RNNs suitable for adap-
tive filtering of complex-valued nonlinear and nonstationary signals. The
fully connected recurrent neural network (FCRNN) used here is the canoni-
cal form of a feedback neural network (Nerrand, Roussel-Ragot, Personnaz,
& Dreyfus, 1993b) that is general enough for the class of direct gradient-
based CRTRL algorithms. The analysis is comprehensive and is supported
by examples on benchmark complex-valued nonlinear and colored sig-
nals and together with simulations on real-world radar and environmental
measurements.

3 Cauchy-Riemann equations state that the partial derivatives of a function f (z) =
u(x, y) + jv(x, y) along the real and imaginary axes should be equal: f ′(z) = ∂u

∂x + j ∂v
∂x =

∂v
∂y − j ∂u

∂y . This way ∂u
∂x = ∂v

∂y , ∂v
∂x = − ∂u

∂y .
4 A fully complex activation function is analytic and bounded almost everywhere in

C.
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Figure 1: A fully connected recurrent neural network.

2 The Complex-Valued RTRL Algorithm

Figure 1 shows an FCRNN, which consists of N neurons with p external
inputs. The network has two distinct layers consisting of the external input-
feedback layer and a layer of processing elements. Let yl(k) denote the
complex-valued output of each neuron, l = 1, . . . , N at time index k and
s(k) the (1 × p) external complex-valued input vector. The overall input to
the network I(k) represents the concatenation of vectors y(k), s(k) and the
bias input (1 + j), and is given by

I(k) = [s(k − 1), . . . , s(k − p), 1 + j, y1(k − 1), . . . , yN(k − 1)]T

= Ir
n(k) + jIi

n(k), n = 1, . . . , p + N + 1, (2.1)

where j = √−1, (·)T denotes the vector transpose operator, and the super-
scripts (·)r and (·)i denote, respectively, the real and imaginary parts of a
complex number.

A complex-valued weight matrix of the network is denoted by W, where
for the lth neuron, its weights form a (p + F + 1) × 1 dimensional weight
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vector wl = [wl,1, . . . , wl,p+F+1]T where F is the number of feedback connec-
tions. The feedback connections represent the delayed output signals of the
FCRNN. In the case of Figure 1, we have F = N.

The output of each neuron can be expressed as

yl(k) = �(netl(k)), l = 1, . . . , N, (2.2)

where

netl(k) =
p+N+1∑

n=1

wl,n(k)In(k) (2.3)

is the net input to lth node at time index k. For simplicity, we state that

yl(k) = �r(netl(k)) + j�i(netl(k)) = ul(k) + jvl(k) (2.4)

netl(k) = σl(k) + jτl(k) (2.5)

where � is a complex nonlinear activation function.

3 The Derivation of the Complex-Valued RTRL

The output error consists of its real and imaginary parts and is defined as

el(k) = d(k) − yl(k) = er
l (k) + jei

l(k) (3.1)

er
l (k) = dr(k) − ul(k), ei

l(k) = di(k) − vl(k), (3.2)

where d(k) is the teaching signal. For real-time applications the cost function
of the recurrent network is given by (Widrow et al., 1975),

E(k) = 1
2

N∑
l=1

|el(k)|2 = 1
2

N∑
l=1

el(k)e∗
l (k) = 1

2

N∑
l=1

[(er
l )

2 + (ei
l)

2], (3.3)

where (·)∗ denotes the complex conjugate. Notice that E(k) is a real-valued
function, and we are required to derive the gradient E(k) with respect to
both the real and imaginary part of the complex weights as

∇ws,t E(k) = ∂E(k)
∂wr

s,t
+ j

∂E(k)
∂wi

s,t
, 1 ≤ l, s ≤ N, 1 ≤ t ≤ p + N + 1. (3.4)

The CRTRL algorithm minimizes cost function E(k) by recursively altering
the weight coefficients based on gradient descent, given by

ws,t(k + 1) = ws,t(k) + 
ws,t(k) = ws,t(k) − η∇ws,t E(k)|ws,t=ws,t(k), (3.5)
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where η is the learning rate, a small, positive constant. Calculating the gra-
dient of the cost function with respect to the real part of the complex weight
gives

∂E(k)
∂wr

s,t(k)
= ∂E

∂ul

(
∂ul(k)

∂wr
s,t(k)

)
+ ∂E

∂vl

(
∂vl(k)

∂wr
s,t(k)

)
,

1 ≤ l, s ≤ N
1 ≤ t ≤ p + N + 1

. (3.6)

Similarly, the partial derivative of the cost function with respect to the imag-
inary part of the complex weight yields

∂E(k)
∂wi

s,t(k)
= ∂E

∂ul

(
∂ul(k)

∂wi
s,t(k)

)
+ ∂E

∂vl

(
∂vl(k)

∂wi
s,t(k)

)
,

1 ≤ l, s ≤ N
1 ≤ t ≤ p + N + 1

. (3.7)

The factors ∂yl(k)
∂wr

s,t(k)
= ∂ul(k)

∂wr
s,t(k)

+ j ∂vl(k)
∂wr

s,t(k)
and ∂yl(k)

∂wi
s,t(k)

= ∂ul(k)
∂wi

s,t(k)
+ j ∂vl(k)

∂wi
s,t(k)

are

measures of sensitivity of the output of the mth unit at time k to a small
variation in the value of ws,t(k). These sensitivities can be evaluated as

∂ul(k)
∂wr

s,t(k)
= ∂ul

∂σl
· ∂σl

∂wr
s,t(k)

+ ∂ul

∂τl
· ∂τl

∂wr
s,t(k)

(3.8)

∂ul(k)
∂wi

s,t(k)
= ∂ul

∂σl
· ∂σl

∂wi
s,t(k)

+ ∂ul

∂τl
· ∂τl

∂wi
s,t(k)

(3.9)

∂vl(k)
∂wr

s,t(k)
= ∂vl

∂σl
· ∂σl

∂wr
s,t(k)

+ ∂vl

∂τl
· ∂τl

∂wr
s,t(k)

(3.10)

∂vl(k)
∂wi

s,t(k)
= ∂vl

∂σl
· ∂σl

∂wi
s,t(k)

+ ∂vl

∂τl
· ∂τl

∂wi
s,t(k)

(3.11)

Following the derivation of the real-valued RTRL (Williams & Zipser, 1989),
to compute these sensitivities, start with differentiating equation 2.3 which
yields

∂σl(k)
∂wr

s,t(k)
=

 N∑

q=1

(
∂uq(k − 1)

∂wr
s,t(k)

wr
l,p+1+q(k) − ∂vq(k − 1)

∂wr
s,t(k)

wi
l,p+1+q(k)

)
+ δslIr

n(k)

∂τl(k)
∂wr

s,t(k)
=

 N∑

q=1

(
∂vq(k − 1)

∂wr
s,t(k)

wr
l,p+1+q(k) + ∂uq(k − 1)

∂wr
s,t(k)

wi
l,p+1+q(k)

)
+ δslIi

n(k)

∂σl(k)
∂wi

s,t(k)
=

 N∑

q=1

(
∂uq(k − 1)

∂wi
s,t(k)

wr
l,p+1+q(k) − ∂vq(k − 1)

∂wi
s,t(k)

wi
l,p+1+q(k)

)
− δslIi

n(k)
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∂τl(k)
∂wi

s,t(k)
=

 N∑

q=1

(
∂vq(k − 1)

∂wi
s,t(k)

wr
l,p+1+q(k) + ∂uq(k − 1)

∂wi
s,t(k)

wi
l,p+1+q(k)

)
+ δslIr

n(k),

where

δsl =
{

1, l = s
0, l �= s

(3.12)

is the Kronecker delta. For a complex function to be analytic at a point in C,
it needs to satisfy the Cauchy-Riemann equations. To arrive at the Cauchy-
Riemann equations, the partial derivatives (sensitivities) along the real and
imaginary axes should be equal, that is,

∂ul(k)
∂wr

s,t(k)
+ j

∂vl(k)
∂wr

s,t(k)
= ∂vl(k)

∂wi
s,t(k)

− j
∂ul(k)

∂wi
s,t(k)

. (3.13)

Equating the real and imaginary parts in equation 3.13, we obtain

∂ul(k)
∂wr

s,t(k)
= ∂vl(k)

∂wi
s,t(k)

(3.14)

∂ul(k)
∂wi

s,t(k)
= − ∂vl(k)

∂wr
s,t(k)

. (3.15)

For convenience, we denote the sensitivities as π
l,(rr)
s,t (k) = ∂ul(k)

∂wr
s,t(k)

, π l,(ir)
s,t (k) =

∂vl(k)
∂wr

s,t(k)
, π

l,(ri)
s,t (k) = ∂ul(k)

∂wi
s,t(k)

and π
l,(ii)
s,t (k) = ∂vl(k)

∂wi
s,t(k)

. By using the Cauchy-

Riemann equations, a more compact representation of gradient ∇ws,t E(k)
is given by

∇ws,t E(k) = π
l,(rr)
s,t (k)

∂E(k)
∂ul(k)

+ π
l,(ir)
s,t (k)

∂E(k)
∂vl(k)

+ jπ l,(ri)
s,t (k)

∂E(k)
∂ul(k)

+ jπ l,(ii)
s,t (k)

∂E(k)
∂vl(k)

=
(

∂E(k)
∂ul(k)

+ j
∂E(k)
∂vl(k)

)(
π

l,(rr)
s,t (k) + jπ l,(ri)

s,t (k)
)

=
N∑

l=1

el(k)
(
π

l,(rr)
s,t (k) − jπ l,(ir)

s,t (k)
)

=
N∑

l=1

el(k)
(
π l

s,t

)∗
(k). (3.16)

The weight update is finally given by


ws,t(k) = η

N∑
l=1

el(k)(π l
s,t)

∗(k), 1 ≤ l, s ≤ N, 1 ≤ t ≤ p + N + 1, (3.17)
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with the initial condition

(π l
s,t)

∗(0) = 0. (3.18)

Under the assumption, also used in the RTRL algorithm (Williams & Zipser,
1989), that for a sufficiently small learning rate η, we have

∂ul(k − 1)

∂ws,t(k)
≈ ∂ul(k − 1)

∂ws,t(k − 1)
, 1 ≤ l, s ≤ N, 1 ≤ t ≤ p + N + 1 (3.19)

∂vl(k − l)
∂ws,t(k)

≈ ∂vl(k − l)
∂ws,t(k − l)

, 1 ≤ l, s ≤ N, 1 ≤ t ≤ p + N + 1, (3.20)

the update for the sensitivities (π l
s,t)

∗(k) becomes

(π l
s,t)

∗(k) = ∂ul

∂σl

[
δslIr

n(k) − jδslIi
n(k) +

N∑
q=1

[(
wr

l,p+1+q(k) − jwi
l,p+1+q(k)

)

π
q,(rr)
s,t (k − 1) +

(
jwr

l,p+1+q(k) + wi
l,p+1+q(k)

)
π

q,(ri)
s,t (k − 1)

] ]

+ ∂ul

∂τl

[
δslIi

n(k) + jδslIr
n(k) +

N∑
q=1

[(
−wr

l,p+1+q(k) + jwi
l,p+1+q(k)

)

π
q,(ri)
s,t (k − 1) +

(
wi

l,p+1+q(k) + jwr
l,p+1+q(k)

)
π

q,(rr)
s,t (k − 1)

] ]

= ∂ul

∂σl


δslI∗n(k) +

N∑
q=1

[
w∗

l,p+1+q(k)π
q,(rr)
s,t (k − 1) + jw∗

l,p+1+q(k)π
q,(ri)
s,t (k − 1)

] ]

+ ∂ul

∂τl


jδslI∗n(k) +

N∑
q=1

[
−w∗

l,p+1+q(k)π
q,(ri)
s,t (k − 1)

+ jw∗
l,p+1+q(k)π

q,(rr)
s,t (k − 1)

] ]

=
(

∂ul

∂σl
+ j

∂ul

∂τl

)[
δslI∗n(k) +

N∑
q=1

w∗
l,p+1+q(k)

(
π

q,(rr)
s,t (k − 1) + jπq,(ri)

s,t (k − 1)
)

= {�′(k)}∗
[

wH
l (k)π∗(k − 1) + δslI∗n(k)

]
, (3.21)

where (·)H denotes the Hermitian transpose operator. This completes the
derivation of the fully complex RTRL (CRTRL).
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3.1 Computational Requirements. The memory requirements and
computational complexity of complex-valued neural networks differ from
those of real-valued neural networks. A complex addition is roughly equiv-
alent of two real additions, whereas a complex multiplication can be rep-
resented as four real multiplications and two additions or three multipli-
cations and five additions.5 The CRTRL computes sensitivities (π l

s,t)
∗(k) =

π
l,(ri)
s,t (k) − jπ l,(ir)

s,t (k) at every iteration with respect to all the elements of the
complex weight matrix, where every column corresponds to a neuron in
the network. For a real-valued FCRNN, there are N2 weights, N3 gradients,
and O(N4) operations required for the gradient computation per sample.
When the network is fully connected and all weights are adaptable, this al-
gorithm has space complexity of O(N3) (Williams & Zipser, 1989). Thus, the
space complexity required by the complex-valued FCRNN becomes twice
that of the real-valued case, whereas the computational complexity becomes
approximately four times that of the real-valued RTRL.

4 Simulations

For the experiments, the nonlinearity at the neuron was chosen to be the
logistic sigmoid function, given by

�(x) = 1
1 + e−βx , (4.1)

where x is complex valued. The slope was chosen to be β = 1 and learning
rate η = 0.01. The architecture of the FCRNN (see Figure 1) consists of N = 2
neurons with the tap input length of p = 4.

Simulations were undertaken by averaging 100 iterations of independent
trials on prediction of complex-valued signals. To support the analysis, we
tested the CRTRL on a wide range of signals, including the complex lin-
ear, complex nonlinear, and chaotic (Ikeda map). To further illustrate the
approach and verify the advantage of using the fully CRTRL (FCRTRL)
over split CRTRL (SCRTRL), single-trial experiment were performed on
real-world complex wind6 and radar7 data.

In the first experiment, the input signal was a complex linear AR(4) pro-
cess given by

r(k) = 1.79r(k − 1)−1.85r(k − 2)+1.27r(k − 3)+0.41r(k − 4) + n(k), (4.2)

5 There are two ways to perform a complex multiplication: for the first case, (a+ ib)(c+
id) = (ac − bd) + i(bc + ad), and for the second case, (a + ib)(c + id) = a(c + d) − d(a + b) +
i(a(c + d) + c(b − a)) (publicly available online from http://mathworld.wolfram.com/).
The latter form may be preferred when multiplication takes much more time than addition
but can be less numerically stable.

6 Publicly available online from http://mesonet.agron.iastate.edu/.
7 Publicly available online from http://soma.ece.mcmaster.ca/ipix/.

http://mathworld.wolfram.com/
http://mesonet.agron.iastate.edu/
http://soma.ece.mcmaster.ca/ipix/


2708 S. Goh and D. Mandic

0 1000 2000 3000 4000 5000
−25

−20

−15

−10

−5

Number of iteration (k)

10
lo

g 10
E

(k
)

SCRTRL 

FCRTRL 

Figure 2: Performance curves for FCRTRL and SCRTRL on prediction of com-
plex colored input, equation 4.2.

with complex white gaussian noise (CWGN) n(k) ∼ N (0, 1) as the driv-
ing input. The CWGN can be expressed as n(k) = nr(k) + jni(k). The real
and imaginary components of CWGN are mutually independent sequences
having equal variances so that σ 2

n = σ 2
nr +σ 2

ni . For the second experiment, the
complex benchmark nonlinear input signal was (Narendra & Parthasarathy,
1990):

z(k) = z(k − 1)

1 + z2(k − 1)
+ r3(k). (4.3)

Figures 2 and 3 show, respectively, the performance curves for the FCRTRL
and SCRTRL on complex colored (see equation 4.2) and nonlinear (see equa-
tion 4.3) signal. The proposed approach showed improved performance for
both the complex colored and nonlinear input. The performance improve-
ment was roughly 3 dB for the linear and 6 dB for the nonlinear signal. In
addition, the proposed CRTRL exhibited faster convergence.

The simulations results for the Ikeda map are shown in Figure 4. Observe
that the FCRTRL algorithm was more stable and has exhibited improved
and more consistent performance over that of the SCRTRL algorithm.

Figure 5 shows the prediction performance of the FCRNN applied to the
complex-valued radar signal in both the split and fully CRTRL case. The
FCRNN was able to track the complex radar signal, which was not the case
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Figure 3: Performance curves for FCRTRL and SCRTRL on prediction of com-
plex nonlinear input, equation 4.3.

for split CRTRL. For the next experiment, we compared the performance
of FCRTRL and SCRTRL on wind data. Figures 6 and 7 show the results
obtained for FCRTRL and SCRTRL. The FCRTRL achieved much improved
prediction performance over the SCRTRL.

5 Conclusions

A fully complex real-time recurrent learning (CRTRL) algorithm for on-
line training of fully connected recurrent neural networks (FCRNNs) has
been proposed. The FCRTRL algorithm provides an essential tool for non-
linear adaptive filtering using FCRNNs in the complex domain and is de-
rived for a general complex nonlinear activation function of a neuron. We
have made use of the Cauchy-Riemann equations to obtain a generic form
of the proposed algorithm. The performance of the CRTRL algorithm has
been evaluated on benchmark complex-valued nonlinear and colored input
signals, Ikeda map, and also on real-life complex-valued wind and radar
signals. Experimental results have justified the potential of the CRTRL algo-
rithm in nonlinear neural adaptive filtering applications. Expanding fully
complex RNN into modular RNNs and developing extended Kalman fil-
ter techniques to enhance the estimation capability remain among the most
important further challenges in the area of fully complex RNNs.
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Figure 4: Performance curve of FCRTRL and SCRTRL for Ikeda map.
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Figure 5: Prediction of complex radar signal based on fully complex and
split complex activation function. (A) Split-complex CRTRL. (B) Fully complex
CRTRL. Solid curve: actual radar signal. Dashed curve: nonlinear prediction.
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Figure 6: Prediction of complex wind signal using FCRTRL. Solid curve: Actual
wind signal. Dotted curve: Predicted signal.
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Figure 7: Prediction of complex wind signal using SCRTRL. Solid curve: Actual
wind signal. Dotted curve: Predicted signal.
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