Identification of improper processes by variable tap-length complex-valued adaptive filters

Bukhari Che Ujang, Clive Cheong Took and Danilo P. Mandic

Abstract—Variable tap-length is introduced into complex-valued adaptive filters in order to provide an additional degree of freedom, enhance tracking ability, and provide data-adaptive optimal modelling. This is achieved by extending the fractional tap-length (FT) algorithm from the real domain \mathbb{R} and by accounting for some special properties of the complex domain \mathbb{C}. For generality, the augmented least mean square (ACLMS) and augmented complex nonlinear gradient descent (ACNGD) are equipped with the variable tap-length in order to cater for both the second order circular and noncircular signals. Simulations on model order selection and the identification of the noncircular nature of complex data support the approach.

Index Terms—Widely linear modelling, complex circularity, fractional tap-length, augmented complex least mean square (ACLMS)

I. INTRODUCTION

For optimal stochastic filtering of complex-valued signals, we need to consider three important factors: 1) the nature of the signal (circular or noncircular); 2) the signal generation mechanism (linear or nonlinear); 3) the order of the signal model. Although much work has been devoted to address the first two issues [1]–[3], model order selection in \mathbb{C} is still an open problem. In \mathbb{C} we also have more degrees of freedom, for instance, we differentiate between the standard and widely linear models and circular and noncircular signals.

One convenient way to perform the identification of time-varying parameters of a complex-valued system is to employ adaptive complex-valued filters with variable tap-length and optimise for both the filter length and filter coefficients. Amongst many such adaptive tap length algorithms [4], the fractional tap-length (FT) is considered in this work, due to its simplicity and robustness [5]. However, the FT algorithm was designed specifically for real-valued filters and therefore is not readily suited for processing complex-valued signals [5]. To this end, we extend the FT algorithm to the complex domain; this is achieved by considering specific features of \mathbb{C}, such as noncircularity of probability distributions. In this work, the fractional tap-length (FT) algorithm [5] will be incorporated within both linear and nonlinear adaptive complex-valued adaptive filters.

The aim of this paper is to: 1) introduce the variable tap-length into widely linear complex-valued adaptive filters; 2) provide a rigorous steady-state analysis to achieve optimal performance; 3) investigate the convergence properties of complex-valued adaptive algorithms for the identification of complex models (linear and widely linear); 4) identify the second order circular (proper) and second order noncircular (improper) complex processes.

We consider four algorithms, the standard complex LMS (CLMS) [6], the augmented complex LMS (ACLMS) [1], the complex nonlinear gradient descent (CNGD) [1] and the newly introduced augmented complex nonlinear gradient descent (ACNGD) [7]. The ACLMS is based on a widely linear stochastic moving average (MA) model, given by [1]

$$y(k) = \begin{cases} x^T(k)h_0 + x_H(k)g_0 + v(k) & \text{standard part} \\ x^H(k)g + v(k) & \text{augmented part} \end{cases}$$

(1)

where $x(k)$ denotes the regressor vector, h and g are the coefficient vectors of the standard and ‘augmented’ part of the model, and $v(k)$ is circular white Gaussian noise. The symbols $(\cdot)^H$ and $(\cdot)^T$ denote respectively the Hermitian and vector transpose operator. The widely linear model (1) was also extended into the quaternion domain in [8].

The power of ACLMS and ACNGD stems from the so-called augmented complex statistics, where for a centered complex random vector (RV) $x \in \mathbb{C}^L$, the covariance C_{xx} and pseudocovariance P_{xx} matrices are defined as [9]

$$C_{xx} = E(xx^H) \quad P_{xx} = E(xx^T)$$

(2)

A signal is called circular if it has a rotation invariant probability distribution. The distinguishing property of a circular signal is that its pseudocovariance vanishes, that is, $P_{xx} = 0$ [9]. Observe that the widely linear model (1) enables the ACLMS algorithm to operate on both the covariance $E(xx^H)$ and pseudocovariance $E(xx^T)$; making it suitable for the modelling of both second order circular (proper) and noncircular (improper) data, in contrast to CLMS and CNGD.

The paper is organized as follows. Section 2 presents an overview of \mathbb{C} calculus. The following section introduces the FT-ACLMS, FT-CLMS, FT-ACNGD and FT-CNGD fractional tap-length algorithms. This is followed by a steady-state analysis of all the algorithms considered. Section 4 provides performance comparisons between the four FT algorithms, through comprehensive simulations on Autoregressive (AR) and Nonlinear Autoregressive (NAR) systems.
II. OVERVIEW OF CR CALCULUS

In order to extend the standard complex algorithms into their augmented complex (widely linear) counterparts, CR calculus can be applied in order to simplify the derivations [1]. When dealing with complex valued functions, it is required that the Cauchy-Riemann equation are satisfied (for the function to be analytic) in order to calculate the gradient. The standard adaptive filtering cost function (error power) is given by

$$J(x) := \mathbb{E}(e^2)$$

where $$J(x)$$ is the cost function and $$e(k)$$ is the error signal. The error power is defined as

$$e(k) = d(k) - y(k)$$

where $$d(k)$$ is the desired signal and $$y(k)$$ is the output of the adaptive filter. The optimal value of $$e(k)$$ is achieved when the gradient of the cost function is zero.

$$\nabla J(x) = 0$$

In this context, the Cauchy-Riemann equation is satisfied if the function is analytic. If the function is not analytic, then it is possible to evaluate the derivative of the cost function separately with respect to $$x$$ and $$x^*$$ while keeping the other variable constant, resulting in

$$\frac{\partial J}{\partial x} \bigg|_{x^*=\text{const}} = \frac{1}{2} \left(\frac{\partial J}{\partial x} - i \frac{\partial J}{\partial x^*} \right)$$

and

$$\frac{\partial J}{\partial x^*} \bigg|_{x=\text{const}} = \frac{1}{2} \left(\frac{\partial J}{\partial x} + i \frac{\partial J}{\partial x^*} \right)$$

It can then be shown that the direction of the steepest descent is given by the derivative with respect to $$x^*$$ [10]. If CR calculus is applied to analytic functions, the $$\mathbb{R}^+$$ derivative vanishes and we are only left with the $$\mathbb{R}^+$$ derivative [10].

III. MODEL ORDER IDENTIFICATION

The proposed algorithms comprise of two parts: the finite impulse response (FIR) filter weights update which optimises the adaptive weight coefficients, followed by the FT algorithm that adapts the tap-length of the filter to an optimal value. We first review the existing approaches and then illustrate how the FT algorithm can be exploited within complex-valued adaptive systems.

A. Filter Weight Update Algorithms

The weight update of the standard CLMS algorithm is given by [6]

$$w(k+1) = w(k) + \mu e(k)x^*(k)$$

where $$w(k)$$ is the weight vector of the filter, $$x(k)$$ is the filter input, $$(\cdot)^*$$ denotes the complex conjugate operator and $$\mu$$ is a real-valued learning rate.

Given a complex function $$f(z) = u(x_r, x_i) + i v(x_r, x_i)$$, the Cauchy-Riemann conditions are given by

$$\frac{\partial u}{\partial x_r} = \frac{\partial v}{\partial x_i}; \quad \frac{\partial u}{\partial x_i} = -\frac{\partial v}{\partial x_r}$$

The standard adaptive filtering cost function (error power) is not analytic and thus standard calculus in $$\mathbb{C}$$ is not adequate to evaluate its derivative. However, by using the CR calculus, it is possible to evaluate the derivative of the cost function directly in $$\mathbb{C}$$ [1], [10].

In this context, $$J(x) : \mathbb{C} \rightarrow \mathbb{R}$$ can be rewritten as a function of complex vectors $$x$$ and $$x^*$$ such that $$J(x, x^*) : \mathbb{C} \rightarrow \mathbb{R}$$ where $$x$$ and $$x^*$$ are termed conjugate coordinates. Expanding the complex vectors in terms of their real and imaginary components, $$x_r$$ and $$x_i$$, gives $$J(x_r, x_i) : \mathbb{R}^2 \times \mathbb{C} \rightarrow \mathbb{R}$$.

Proceeding in the same manner as with ACLMS, the AC-NGD algorithm weight updates are given by [7]

$$w(k+1) = w(k) + \mu e(k)x^*(k)$$

The corresponding cost function $$E(k) = e(k)e^*(k)$$ is then minimised using a steepest descent adaptation given by

$$h(k+1) = h(k) - \mu g(k)e^*(k)$$

where $$h(k)$$ and $$g(k)$$ are the weight vectors of the filter.

Recall from the CR calculus that the direction of steepest descent is given by $$\mathbb{R}^+$$--derivative, for both update equations. This yields the ACLMS weight update in the form [1]

$$h(k+1) = h(k) + \mu \nabla_h E(k)$$

$$g(k+1) = g(k) + \mu \nabla g^* E(k)$$

B. Fractional Tap Length Algorithm

The FT tap-length adaptation for complex-valued filters is governed by [5]

$$\eta_f(k+1) = (\eta_f(k) - \alpha - \gamma) \left(E^{(N)}_N(k) - E^{(N)}_{N-\Delta}(k) \right)$$

where $$\eta_f$$ is the pseudo fractional tap-length which can take only positive real value, $$\alpha$$ and $$\gamma$$ are the leaky factor and tap-length learning rate, which are small positive real values that satisfy $$\alpha \ll \gamma$$. Symbols $$E^{(N)}_N(k)$$ and $$E^{(N)}_{N-\Delta}(k)$$ denote respectively the instantaneous square errors for the tap-lengths of $$N$$ and $$N-\Delta$$, symbol $$N(k)$$ denotes the “true” tap-length at discrete time instant ‘k’, and $$\Delta$$ is a real positive integer such that $$\min\{N(k) - \Delta\} > 0$$.

The instantaneous square output errors for filters of lengths $$N$$ and $$N-\Delta$$ are given by

$$E^{(N)}_N(k) = \left(e^{(N)}_N(k) \right)^2$$

$$E^{(N)}_{N-\Delta}(k) = \left(e^{(N)}_{N-\Delta}(k) \right)^2$$
based on the errors \(e^{(N)}_M(k)\) and \(e^{(N)}_{N-\Delta}(k)\) given by
\[
e^{(N)}_M(k) = d(k) - y^{(N)}_M(k)
\]
where \(1 \leq M \leq N\), and \(w^{(N)}_M(k)\) and \(x^{(N)}_M(k)\) are vectors consisting of the first \(M\) coefficients of \(w^{(N)}(k)\) and \(x^{(N)}(k)\) respectively.

To calculate the optimal filter length, which also reflects the complexity of the system that generates the data, the tap-length parameter \(N(k)\) is made adaptive according to [5]
\[
N(k+1) = \begin{cases} \lfloor \eta_f(k) \rfloor / N \lfloor \eta_f(k) \rfloor, & \lfloor \eta_f(k) \rfloor \geq \delta \\ N(k), & \text{otherwise} \end{cases}
\]
where \(\delta\) is a predefined integer threshold and \(\lfloor \cdot \rfloor\) denotes the floor operator. This way, the true tap-length is robust to noise and remains unchanged until the fractional tap-length accumulates to the predefined integer threshold \(\delta\). The minimum value for \(N(k)\) is defined as \(\Delta + \delta\), to ensure that the lowest possible term \(E^{(N)}_{N-\Delta}(k)\) is \(E^{(N)}_1(k)\).

IV. Steady-State Analysis of FT Algorithms

In this section, we first provide a rigorous steady-state analysis of the FT algorithm in the context of the ACLMS and illustrate how this analysis also applies to the FT-CLMS, FT-ACNGD and FT-CNGD algorithms. We shall define the desired (teaching) signal \(d(k)\) as
\[
d(k) = x^T(k)h^o(k) + x^H(k)g^o(k) + v(k)
\]
where \(h^o_Lopt\) and \(g^o_Lopt\) are the optimal weights coefficients of the optimal tap length.

Based on the widely linear FIR model (1), the ACLMS algorithm [1] makes the coefficient vectors adaptive, giving
\[
y(k) = \frac{x^T(k)h(k) + x^H(k)g(k)}{y(k)}
\]
and illustrate how this analysis also applies to the FT-CLMS, proceeding in a manner similar to the analysis in [12], the optimal coefficients of the standard and conjugate part of the augmented weight vectors \(h^o_Lopt\) and \(g^o_Lopt\) can be split into three parts
\[
h^o_Lopt = \begin{bmatrix} h^o(k) \\ h^o(k) \end{bmatrix}, \quad g^o_Lopt = \begin{bmatrix} g^o(k) \\ g^o(k) \end{bmatrix}
\]
where \(h^o(k), g^o(k)\) are the coefficients modelled by tap-length \(1:N-\Delta\), \(h^o(k)\) and \(g^o(k)\) are the coefficients modelled by the tap-length \(N-\Delta + 1 : N\), and \(h^o(k), g^o(k)\) are the undermodelled coefficients.

The coefficient error vectors of ACLMS are denoted as
\[
\begin{align*}
\tilde{h}(k) &= h^o_N - h_N(k) \\
\tilde{g}(k) &= g^o_N - g_N(k)
\end{align*}
\]
where \(h_N(k)\) and \(g_N(k)\) are the weight vectors of length \(N\). Then, the weight error vectors \(\tilde{h}(k)\) and \(\tilde{g}(k)\) can also be split up into three parts
\[
\begin{align*}
\tilde{h}(k) &= \begin{bmatrix} \tilde{h}^{(o)}(k) \\ \tilde{h}^{(o)}(k) \end{bmatrix}, \quad \tilde{g}(k) = \begin{bmatrix} \tilde{g}^{(o)}(k) \\ \tilde{g}^{(o)}(k) \end{bmatrix}
\end{align*}
\]
Substitute (24) and (27) into (23) to obtain the errors \(e^{(N)}_N(k)\) and \(e^{(N)}_{N-\Delta}(k)\) defined in (19) as (the time index ‘\(k\)’ has been dropped due to space limitations)
\[
\begin{align*}
e^{(N)}_N &= \begin{bmatrix} x' \\ x'' \\ x'''' \end{bmatrix}^T \begin{bmatrix} \tilde{h}^{(o)} \\\ \tilde{h}^{(o)} \\\ \tilde{h}^{(o)} \end{bmatrix} + \begin{bmatrix} x' \\ x'' \\ x'''' \end{bmatrix}^T \begin{bmatrix} \tilde{g}^{(o)} \\ \tilde{g}^{(o)} \\\ \tilde{g}^{(o)} \end{bmatrix} + v \quad (28) \\
e^{(N)}_{N-\Delta} &= \begin{bmatrix} x' \\ x'' \\ x'''' \end{bmatrix}^T \begin{bmatrix} \tilde{h}^{(o)} \\\ \tilde{h}^{(o)} \\\ \tilde{h}^{(o)} \end{bmatrix} + \begin{bmatrix} x' \\ x'' \\ x'''' \end{bmatrix}^T \begin{bmatrix} \tilde{g}^{(o)} \\ \tilde{g}^{(o)} \\\ \tilde{g}^{(o)} \end{bmatrix} + v \quad (29)
\end{align*}
\]
To ensure mathematical tractability of the steady-state analysis, we shall make the following standard assumptions [12]:

- Both the input signal \(x(k)\) and the noise \(v(k)\) are i.i.d. zero mean white jointly Gaussian with the respective variances \(\sigma_X^2\) and \(\sigma_v^2\);
- At the steady state, the input signal \(x(k)\) is independent of both the weight vectors \(h(k)\) and \(g(k)\);
- The tap-length parameter has converged at steady-state, hence \(E\{\eta_f(k + 1)\} = E\{\eta_f(k)\}\), leading to

\[
\begin{align*}
\|h^{(o)}(k)\|_2^2 &= 0, & \|g^{(o)}(k)\|_2^2 &= 0.
\end{align*}
\]
The MSE at the steady-state is obtained by applying the statistical expectation operator to (16) to give
\[
E\left\{ \left(E^{(N)}_N(k) - E^{(N)}_{N-\Delta}(k) \right) \right\} = -\frac{\alpha}{\gamma} \quad (30)
\]
From the expectations of \(E^{(N)}_N(k)\) and \(E^{(N)}_{N-\Delta}(k)\) given in (18), we can substitute (28) and (29) into (30) to express the steady-state performance in terms of the leaky factor \(\alpha\) and the stepsize \(\gamma\), as
\[
E\{\|x'^T(k)h^{(o)}(k)\|_2^2 + \|x'^T(k)g^{(o)}(k)\|_2^2 - \|x'^T(k)h^{(o)}(k)\|_2^2 - \|x'^T(k)g^{(o)}(k)\|_2^2 \} = -\frac{\alpha}{\gamma} \quad (31)
\]
The steady-state of the FT-CLMS algorithm is obtained by substituting \(\tilde{g}(k) = g^o_N\) into (27) and \(g(k) = 0\), as it cannot model the augmented part into (22) while proceeding in a same manner for FT-ACLMS. This will yield the steady-state performance expectation in the form
\[
E\{\|x'^T(k)h^{(o)}(k)\|_2^2 - \|x'^T(k)h^{(o)}(k)\|_2^2 \} = -\frac{\alpha}{\gamma} \quad (32)
\]
Observe that the steady-state tap-length of the FT-ACLMS algorithm takes into consideration both the standard complex and augmented complex parts in the widely linear model (31), whereas the FT-CLMS only considers the standard complex parts (32). Therefore, the FT-ACLMS is suited for the processing of widely linear processes unlike the FT-CLMS which is optimal for only second order circular data. For second order linear circular processes, since \(g(k) = 0 \), the steady-state performance of the FT-ACLMS degenerates into that of FT-CLMS.

B. Steady-State Analysis of the FT-CNGD and FT-ACNGD Algorithms

The output of the ACNGD algorithm \(y(k) \) is given by [7]

\[
y(k) = \Phi \left(\frac{x^T(k) h(k)}{x^T(k) g(k)} \right) + x^H(k) g(k)
\] (33)

Following the same approach to obtain (31) and replacing (22) with (33), the steady-state of the FT-ACNGD for the processing of widely linear processes is given by

\[
E \left\{ \left\| \Phi \left(x^{\prime T}(k) h''(k) + x^{\prime T}(k) g''(k) \right) \right\|^2 \right\}_2^2
\]
\[
-\|x^{\prime T}(k) h^{no}(k)\|^2_2 - \|x^{\prime T}(k) g^{no}(k)\|^2_2 = -\frac{\alpha}{\gamma}
\] (34)

Similarly, the steady-state for the FT-CNGD is obtained by substituting \(g(k) = g_N \) into (27) and \(g(k) = 0 \) into (33) to give

\[
E \left\{ \left\| \Phi \left(x^{\prime T}(k) h''(k) \right) \right\|^2_2 - \|x^{\prime T}(k) h^{no}(k)\|^2_2 \right\}_2^2 = -\frac{\alpha}{\gamma}
\] (35)

Comparing (34) and (35), similar to the case of FT-ACLMS and FT-CLMS, the FT-ACNGD is more appropriate for the modelling of second order noncircular (improper) data than the FT-CNGD. The FT-ACNGD will degenerate into the FT-CNGD when processing second order linear circular processes.

V. Simulations

Simulations were conducted in the system identification setting. To generate the circular and noncircular test signals, a circular doubly white Gaussian noise was fed to the systems defined as

\[
W_1: z_k = 1.79z_{k-1} - 1.85z_{k-2} + 1.27z_{k-3} - 0.41z_{k-4} + w_k
\]

\[
W_2: z_k = \Phi(1.79z_{k-1} - 1.85z_{k-2} + 1.27z_{k-3} - 0.41z_{k-4} + w_k)
\] (37)

\[
W_3: z_k = 1.79z_{k-1} - 1.85z_{k-2} + 1.27z_{k-3} - 0.41z_{k-4} + w_k + 0.5w_k + 0.9w_{k-1}
\]

\[
W_4: z_k = \Phi(1.79z_{k-1} - 1.85z_{k-2} + 1.27z_{k-3} - 0.41z_{k-4} + w_k + 0.5w_k + 0.9w_{k-1})
\] (39)

where \(W_1 \) is a circular linear system (AR4) [1], \(W_2 \) is a nonlinear system (NAR4), \(W_3 \) is a widely linear system, and \(W_4 \) is a nonlinear widely linear system. The nonlinearity \(\Phi(\cdot) \) used to generate the signals is the tanh function which was the same as the nonlinearity used in the CNGD and ACNGD algorithms. System \(W_2 \) was obtained by applying a nonlinearity to \(W_1 \) and \(W_3 \) is constructed by extending \(W_1 \) with the augmented part of the widely linear system \(W_4 \), given by [14]

\[
W: z_k = \exp(j)z_{k-1} + 2w_k + 0.5w_k^* + w_{k-1} + 0.9w_{k-1}^*
\] (40)

where \(j \) is the imaginary unit. System \(W_4 \) was obtained by applying a nonlinearity to \(W_3 \).

The following experiments were conducted in order to illustrate the usefulness of the proposed approach: 1) the optimal tap-length selection; 2) comparison of the proposed algorithms for system order identification of conventional and augmented complex systems.

A. Optimal Tap-Length

The optimal tap-lengths for both systems were determined by the steady-state MSE estimated by [5]

\[
\bar{\varepsilon}(k) = \lambda \bar{\varepsilon}(k-1) + (1-\lambda)E(k)
\] (41)

where \(\bar{\varepsilon} \) is the estimated steady-state MSE and \(\lambda = 0.9 \). Figure 1 depicts the steady-state MSE for linear system \(W_1 \) and \(W_3 \) when using the CLMS, ACLMS, CNGD and ACNGD algorithms with \(\mu = 10^{-4} \). All the four algorithms performed identically and the optimal tap-length for \(W_1 \) was found to be around \(N_0 = 25 \). Figure 2 shows the steady-state MSE for nonlinear second order circular system \(W_2 \) for all the four algorithms. Similar to Figure 1, all the algorithms performed identically and the optimal tap-length was approximately \(N_0 = 25 \). Figure 3 illustrates the steady-state MSE for a widely linear system \(W_3 \) for the four algorithms. The two augmented algorithms performed similarly and were able to indicate the optimal tap-length, roughly \(N_0 = 25 \), whereas the standard techniques were not able to do so. Figure 4 depicts the steady-state MSE of a nonlinear widely linear system \(W_4 \); the optimal tap-length was found to be that of equivalent to the optimal tap-length of \(W_3 \). However, as desired, the ACNGD algorithm steady-state MSE was slightly lower than the ACLMS algorithm.

To summarize, the standard CLMS and CNGD algorithms were only able to estimate the optimal tap-length for conventional complex systems \(W_1 \) and \(W_2 \). In order to approximate the optimal tap-length for augmented complex linear systems \(W_3 \) and \(W_4 \), the augmented statistics must be considered. As a result, the ACLMS and ACNGD algorithms were able to find the optimal tap-length of the widely linear systems.

B. Modelling of Conventional Complex Systems

Figure 5 depicts the evolution of the optimal filter length parameter \(N \) for the FT-ACLMS, FT-CLMS, FT-CNGD and FT-ACNGD algorithms when employed for the modelling of linear system \(W_1 \). These algorithms were initialized with the following parameters: \(\alpha = 0.03, \gamma = 10000, \delta = 1, \Delta = 4, N(0) = 7 \) and \(\mu = 5 \times 10^{-5} \). The large value of \(\gamma \) compensates for the scaling of the data prior to feeding them into the filters. The input data was scaled to the range \([-0.8, 0.8]\). From Figure 5, it is evident that the performances of all
the algorithms considered were similar, as they all converged to the optimal tap-length at around the same time. Figure 6 illustrates the evolution of the optimal filter length for the modelling of the nonlinear system W_2, initialized with the same parameters as previously. From Figure 6, it is apparent that the evolution of the filter length parameter is similar to that in Figure 5. Indeed, this is expected for both the linear and nonlinear systems, as the augmented algorithms (widely linear) degenerate into their conventional counterparts.

C. Modelling of Augmented Complex Systems

Figure 7 shows the evolution of the optimal filter length parameter N for FT-ACLMS, FT-CLMS, FT-ACNGD and FT-CNGD algorithms when employed for the modelling of the noncircular widely linear system W_3. These algorithms were initialized with the following parameters: $\alpha = 0.03$, $\gamma = 10000$, $\delta = 1$, $\Delta = 4$, $N(0) = 7$ and $\mu = 5 \times 10^{-5}$. As mentioned in the previous subsection, the reason behind the large value of γ is due to the input scaling. Observe that the augmented algorithms FT-ACNGD and FT-ACLMS were
able to model W_3 correctly, in contrast to the FT-CLMS and FT-CNGD algorithms. In addition, the FT-CLMS and FT-CNGD algorithms were unstable at steady-state, whereas the FT-ACLMS and FT-ACNGD algorithms exhibited a smooth and stable convergence to the true tap-length. Notice also the slower convergence of FT-ACLMS and FT-ACNGD for the modelling of W_3 compared to W_1 and W_2, due to the additional information related to the widely linear models of W_3.

Figure 8 illustrates the evolution of the optimal filter length parameter N employed for the modelling of the nonlinear widely linear system W_4. As expected, the results were very similar to the modelling of W_3. The augmented algorithms were able to model W_4 accurately whereas their standard complex counterparts underperformed.

VI. Conclusions

We have introduced the fractional tap-length (FT) algorithm into complex-valued adaptive filters trained by the augmented least mean square (ACLMS) and augmented nonlinear gradient descent (ACNGD), and showed that the steady-state performance of the complex widely linear algorithms FT-ACLMS and FT-ACNGD can be used as a criterion for the identification of second order noncircular systems and model order selection. This complements the ability of ACLMS and ACNGD to model both second order circular (proper) and noncircular (improper) real world processes, and to track their nonlinear and nonstationary dynamics. Simulations on model order selection and the identification of complex improperity support the approach.

REFERENCES