
PHYSICAL REVIEW E 84, 061918 (2011)

Multivariate multiscale entropy: A tool for complexity analysis of multichannel data
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This work generalizes the recently introduced univariate multiscale entropy (MSE) analysis to the multivariate
case. This is achieved by introducing multivariate sample entropy (MSampEn) in a rigorous way, in order to
account for both within- and cross-channel dependencies in multiple data channels, and by evaluating it over
multiple temporal scales. The multivariate MSE (MMSE) method is shown to provide an assessment of the
underlying dynamical richness of multichannel observations, and more degrees of freedom in the analysis than
standard MSE. The benefits of the proposed approach are illustrated by simulations on complexity analysis of
multivariate stochastic processes and on real-world multichannel physiological and environmental data.
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I. INTRODUCTION

Recent advances in multimodal sensing have highlighted
the need for more insight into the dynamical properties of the
complex phenomena under observation. The literature related
to nonlinear and attractor dynamics is extensive and typically
each nonlinear analysis measure focuses on one particular as-
pect of the data, such as complexity, dimensionality, regularity
or irregularity, randomness, predictability, self-similarity, and
synchrony. Among them, the time-delay embedded reconstruc-
tion [1] provides a general framework for the estimation of
invariant quantities (in terms of smooth transformations of
the state space of the attractor) of the original system, such
as attractor dimensions, Lyapunov exponents, and entropies
[2,3].1 Information theoretic measures of structural complexity
include effective measure complexity (EMC) [4,5], excess
entropy [6], and predictive information [7].2

However, there is neither a unique way of defining com-
plexity rigorously, nor is it used in a consistent way in the
literature. Some authors consider any signal that is not constant
or periodic as complex, while most agree that neither strictly
periodic nor completely random processes should be deemed
complex [2]. For example, traditional entropy-based complex-
ity measures, such as Shannon entropy [8], Kolmogorov-Sinai
(KS) entropy [9], approximate entropy (ApEn) [10], and
sample entropy (SampEn) [11], are maximized for random
sequences—they thus suggest higher structural complexity for
randomized surrogate time series than for the original one. This
is misleading, especially when the signal comes from more
complex systems, with pronounced correlation structures over
multiple spatio-temporal scales.

In 2002, Costa et al. [12] introduced the multiscale entropy
(MSE) method to help resolve this issue by defining a quantita-
tive measure of complexity that is small for both deterministic
(predictable) and uncorrelated random (unpredictable) signals
and large for correlated (linear and/or nonlinear) stochastic

1A practical implementation of most of the methods can be found
in the free software package TISEAN [36], publicly available at
http://www.mpipks-dresden.mpg.de/∼tisean/.

2For a comparative classification of complexity measures, see
Ref. [37] and references therein.

processes, when evaluated over larger scales. This is in
agreement with the consensus that the notion of dynamical
complexity spans a whole range between the properties of
perfect regularity and total randomness.

Multiscale entropy analysis is based on evaluating at multi-
ple time scales the sample entropy, a refinement of approximate
entropy that measures the degree of randomness (or inversely,
the degree of orderliness) of a time series. Historically,
correlation entropy was developed to distinguish between
deterministic systems by rates of information generation and
was not developed for applications on stochastic data. In
contrast, in Ref. [10] Pincus introduced approximate entropy
as a regularity statistic to distinguish between finite, noisy,
possibly stochastic (or composite deterministic), and truly
stochastic data sets. It represents the conditional probability
that sequences that are close (in the sense of some metric) to
one another over m consecutive data points will still exhibit
similarity when one more data point is added.

Approximate entropy was constructed along similar lines
as the correlation entropy but it has a different aim: to provide
a widely applicable and statistically valid entropy formula.
The justification is that if joint probability measures for
reconstructed dynamics that describe the two systems are dif-
ferent, then their marginal probability distributions for a fixed
partition, given by aforementioned conditional probabilities,
are likely to be different too. As a result, using approximate
entropy one needs orders of magnitude less points to accurately
estimate these marginal probabilities as compared to the
number of points needed to accurately reconstruct the attractor
measure, as is the case with correlation entropy.

Approximate entropy is applicable to noisy, typically short,
real-world time series and unlike the correlation entropy, it can
distinguish between correlated stochastic processes. Sample
entropy is a modification of approximate entropy, and is based
on the definition of the distance between two vectors in a
maximum norm sense, when self-matches are excluded. As
such, it represents an unbiased estimator, which is largely
independent of the length of the time series.

Standard entropies are based on a one-step difference
(e.g., Hn+1 − Hn) and hence do not account for features related
to structure and organization over a range of time scales, other
than the shortest one. To that end, multiscale entropy analysis
aims at quantifying the interdependence between entropy and
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scale, achieved by evaluating sample entropy of univariate
time series coarse grained at multiple temporal scales. This
facilitates the assessment of the dynamical complexity of a
system; in biology this is associated with the ability of living
systems to adjust to a changing environment. The underlying
integrative multiscale functionality is interpreted by nondimin-
ishing entropy values across increasing time scales. A detailed
analysis of MSE for correlated and uncorrelated noises with
Gaussian and inverse Gaussian distributions can be found in
Refs. [13] and [14].

There exist several improvements of MSE, especially
regarding the definition of the time scales [15–17], con-
tributing to its theoretical foundations. The method has
been successfully applied across biomedical research, such
as in fluctuations of the human heartbeat under pathologic
conditions [12], EEG and MEG in patients with Alzheimer’s
disease [18], complexity of human gait under different walking
conditions [19], variations in EEG complexity related to
aging [20], and human red blood cell flickering [21]. These
results strongly support the general complexity-loss theory
for systems under stress, for instance, through aging and
disease [22].

The existing MSE algorithm has been designed for the
analysis of scalar time series, and is not suited for multivariate
time series that are routinely measured in experimental and
biological systems. Standard MSE treats multivariate time
series as a set of individual time series by considering each
variable separately, however, this is only applicable if all the
data channels are statistically independent or uncorrelated at
the very least (which is often not the case). For example,
measurements of the z coordinate of the Lorenz system cannot
reconstruct the dynamics of the Lorenz system, because they
do not resolve the x-y symmetry [23]. In addition, there are
substantial advantages in simultaneously analyzing several
variables observed from the same phenomenon, especially if
there is a large degree of uncertainty and coupling underlying
the system dynamics or data acquisition.

The multivariate extension of MSE in this work is based
on our definition of multivariate sample entropy (MSampEn).
The proposed multivariate MSE (MMSE) evaluates MSampEn
over different time scales and deals with the different em-
bedding dimensions, time lags, and amplitude ranges of data
channels in a rigorous and unified way. The method is shown
to cater for linear and/or nonlinear within- and cross-channel
correlations as well as for complex dynamical couplings
and various degrees of synchronization over multiple scales,
thus allowing for direct analysis of multichannel data. The
advantages of the proposed multivariate approach, in contrast
to analyzing each data channel separately, are illustrated for
both synthetic stochastic processes and real-world gait, wind,
and physiological data.

II. MULTIVARIATE MULTISCALE ENTROPY

The multivariate multiscale entropy (MMSE) analysis is
performed through the following two steps:

(i) Define temporal scales of increasing length by coarse
graining the multivariate time series {xk,i}Ni=1,k = 1,2, . . . ,p,
where p denotes the number of variates (channels) and N the
number of samples in each variate. Then, for a scale factor ε,

the elements of the multivariate coarse-grained time series are
calculated as

yε
k,j = 1

ε

jε∑
i=(j−1)ε+1

xk,i , (1)

where 1 � j � N
ε

and k = 1, . . . ,p.
(ii) Calculate the multivariate sample entropy, MSampEn,

for each coarse-grained multivariate yε
k,j , and plot MSampEn

as a function of the scale factor ε.
Multivariate sample entropy is therefore a prerequisite for

performing multiscale entropy (MMSE) analysis simultane-
ously over a number of data channels.

Recall from multivariate embedding theory [23] that the
multivariate embedded reconstruction for a p-variate time
series {xk,i}Ni=1,k = 1,2, . . . ,p generated from the same sys-
tem and observed through p measurement functions hk(yi), is
based on the composite delay vector

Xm(i) = [x1,i ,x1,i+τ1 , . . . ,x1,i+(m1−1)τ1 ,

x2,i ,x2,i+τ2 , . . . ,x2,i+(m2−1)τ2 , . . . ,

xp,i ,xp,i+τp
, . . . ,xp,i+(mp−1)τp

], (2)

where M = [m1,m2, . . . ,mp] ∈ Rp is the embedding vector,
τ = [τ1,τ2, . . . ,τp] the time lag vector, and Xm(i) ∈ Rm

(m = ∑p

k=1 mk).
For illustration, consider a wind signal recorded using a

two-dimensional (2D) anemometer, where the wind speed
time series from the east-west and north-south directions are
denoted respectively by x(t) = {x1,x2, . . . ,xN } and y(t) =
{y1,y2, . . . ,yN }, with each time series of N data points. For
the time lag vector τ = [2,1] and the embedding vector M =
[2,2], some of the composite delay vectors are [x1,x3,y1,y2],
[x2,x4,y2,y3], and [x3,x5,y3,y4]. Section II-B evaluates this
issue further and provides a geometric interpretation.

A. Multivariate sample entropy method

Richman and Moorman [11] introduced sample entropy
(SampEn) as a conditional probability that two sequences of m

consecutive data points, which are similar to within a tolerance
level r , will remain similar when the next data point is included,
provided that self-matches are not considered in calculating the
probability. When extending univariate sample entropy to the
multivariate case, we need to consider the following issues.

First, it is important to notice that multivariate data do
not necessarily have the same amplitude range among the data
channels, so that the distances calculated on embedded vectors
may be biased toward the variates with largest amplitude
ranges. To that end, we propose to scale all the data channels
to the same amplitude range, and choose the range [0,1] as a
preferred choice. As shown later, other choices will not affect
the multivariate sample entropy calculation.

Second, for a fixed embedding dimension m, sample
entropy calculates the average number of delay vector pairs
that are within a fixed threshold r , and repeats the same
for dimension (m + 1). There are p ways in which we
can evolve from the space of dimension m described by
the embedding vector [m1,m2, . . . ,mk, . . . ,mp] to any space
of dimension (m + 1) described by the embedding vector
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[m1,m2, . . . ,mk + 1, . . . ,mp] where k = 1, . . . ,p is the index
of data channel. It is important to notice that the average
number of delay vector pairs that are within a fixed threshold
for dimension (m + 1) can be calculated in two ways. A naive
approach would be, if for each of the k-th subspaces of the
(m + 1)-dimensional space, we calculate the average number
of delay vector pairs that are within a fixed threshold, and then
average over all the p subspaces. A rigorous approach would
be to take into account all the delay vectors in all the subspaces
and then compare the delay vectors both within and across the
p subspaces. This way, along with time correlations, we have
means to cater for linear and/or nonlinear spatial correlations.
This is crucial in situations where the measurements come
from similar physical quantities, simultaneously recorded at
different positions in a spatially extended system, as in the case
of geophysical sensors or scalp EEG. For heterogeneous data
channels (i.e., heartbeat interval series and respiratory signals),
this makes it possible to cater for the dynamical couplings and
various degrees of synchronization over multiple scales.

Third, as sample entropy is a relative measure and the
threshold parameter is set as some percentage of the standard
deviation of the observed time series, we also need a multivari-
ate generalization of the univariate notion of variance. Though
the covariance matrix, S, is one such generalization, we still
need a single number to measure the multivariate scatter in
the data. Two such common measures are the generalized
variance, |S|, and the total variation, tr(S); in this work we
use total variation. To maintain the same total variation for
all the multivariate series under consideration, we normalize
each data channel to unit variance so that the total variation
becomes equal to the number of channels or variables. This
way, differences in the variance among the multivariate time
series under consideration do not influence the calculation of
multivariate sample entropy.

Finally, in univariate approximate (sample) entropy meth-
ods, the time delay, τ , is not used as a parameter (a unit
time delay is assumed), thus assuming that the phase-space
representation of a time series is independent of the value of
the time lag τ . However, this is only the case for an infinite
amount of data. In digital signal processing, both embedding
dimension, m, and time lag, τ , ought to be considered for
determining the optimal tap input length of an adaptive filter
or a time-delay neural network. For instance, if the temporal
span (m × τ ) is too small, the signal variation within the delay
vector is largely governed by noise and either m or τ should
be increased. There is no established criterion for choosing
which of the two parameters to modify, and it is common
to have a fixed time lag τ (sampling rate) and to adjust the
embedding dimension m (length of a filter) accordingly. In
the multivariate case, different observed variables are likely to
have different embedding dimensions and time lags, and we
need to use different mk and τk values for different channels
or variables. In our approach, both M and τ are varying
(vector parameter) and can be optimized either separately or
simultaneously [24].

Multivariate sample entropy calculation. For a p-variate
time series {xk,i}Ni=1,k = 1,2, . . . ,p, we introduce MSampEn
through the following procedure:

(i) Form (N − n) composite delay vectors Xm(i) ∈ Rm,
where i = 1,2, . . . ,N − n and n = max{M} × max{τ }.

(ii) Define the distance between any two composite delay
vectors Xm(i) and Xm(j ) as the maximum norm [25],
that is, d[Xm(i),Xm(j )] = maxl = 1,...,m{|x(i + l − 1) − x(j +
l − 1)|}.

(iii) For a given composite delay vector Xm(i) and a
threshold r , count the number of instances Pi where
d[Xm(i),Xm(j )] � r , j �= i, then calculate the frequency of
occurrence, Bm

i (r) = 1
N−n−1Pi , and define a global quantity

Bm(r) = 1

N − n

N−n∑
i=1

Bm
i (r). (3)

(iv) Extend the dimensionality of the multivariate delay
vector in (2) from m to (m + 1). This can be performed in
p different ways, as from a space defined by the embed-
ding vector M = [m1,m2, . . . ,mk, . . . ,mp] the system can
evolve to any space for which the embedding vector is
[m1,m2, . . . ,mk + 1, . . . ,mp] (k = 1,2, . . . ,p). Thus, a total
of p × (N − n) vectors Xm+1(i) in Rm+1 are obtained, where
Xm+1(i) denotes any embedded vector upon increasing the
embedding dimension from mk to (mk + 1) for a specific
variable k. In the process, the embedding dimension of the
other data channels is kept unchanged, so that the overall
embedding dimension of the system undergoes the change
from m to (m + 1).

(v) For a given Xm+1(i), calculate the number of vectors Qi ,
such that d[Xm+1(i),Xm+1(j )] � r , where j �= i, then calcu-
late the frequency of occurrence, Bm+1

i (r) = 1
p(N−n)−1Qi , and

define the global quantity

Bm+1(r) = 1

p(N − n)

p(N−n)∑
i=1

Bm+1
i (r). (4)

(vi) This way, Bm(r) represents the probability that any two
composite delay vectors are similar in dimension m, whereas
Bm+1(r) is the probability that any two composite delay vectors
will be similar in dimension (m + 1).
(vii) Finally, for a tolerance level r , MSampEn is calculated

as the negative of a natural logarithm of the conditional
probability that two composite delay vectors close to each
other in an m dimensional space will also be close to each
other when the dimensionality is increased by one, and is
given by

MSE(M,τ ,r,N ) = −ln

[
Bm+1(r)

Bm(r)

]
. (5)

where the symbol MSE denotes MSampEn.

B. Geometric Interpretation

Figure 1 illustrates the principle behind multivariate sample
entropy calculation. Consider a two-dimensional recording of
wind speed, shown in Fig. 1(a), where the eastward component
is denoted by x(t) (solid blue line) and the northward
component by y(t) (dotted red line). Assume the time lag
vector τ = [1,1] and the embedding vector M = [1,1]; then
the composite delay vectors will be [x(t),y(t)] where t denotes
the time index, as shown in Fig. 1(b). For any such vector (e.g.,
[x(64),y(64)]), we need to find the number of neighbors that
are within a distance r (tolerance level), illustrated by a circle
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FIG. 1. (Color online) Geometry behind the calculation of MSampEn.

centered at [x(64),y(64)] with radius r . For an m-dimensional
space, the set of neighboring vectors is enclosed by an
m-sphere if the distance is calculated using the Euclidean norm
and by an m-cube if we use a maximum distance norm. The
average number of vectors that are within a fixed threshold r

in this two-dimensional space is next calculated. The number
of r-neighbors of an embedded vector is an estimate of the
local probability density, and is also a measure of their joint
probability, as all the m-components of the neighboring vector
have to be simultaneously similar to those of the vector
in hand. When increasing the embedding dimension m, we
therefore inherently involve joint probabilities covering larger
time spans.

For the example in Fig. 1, upon increasing the embedding
dimension from two to three, we have two subspaces of
dimension three: (i) the subspace of all the vectors [x(t),x(t +
1),y(t)] [Fig. 1(c)] and (ii) the subspace of all the vectors
[x(t),y(t),y(t + 1)] [Fig. 1(d)]. A naive approach would be
to calculate the number of vectors that are within a fixed
threshold r in each three-dimensional subspace and then
average over both subspaces [26]. Instead, we employ a
rigorous approach and compare composite delay vectors (to
find the neighbors) not only within each subspace but also
across all the subspaces, thus fully catering for both within-
and cross-channel correlations. This allows us to calculate the

conditional probability that two sequences of m data points
(or two composite delay vectors in m-dimensional space),
which are similar to within a tolerance level r , will remain
similar in the same sense, when the next data point is included
(or the dimension of the composite delay vector is increased
by one), provided that self-matches are not considered. A
negative logarithm of this conditional probability defines the
multivariate sample entropy.

III. MULTIVARIATE COMPLEXITY ANALYSIS

The multivariate MSE (MMSE) plots, that is, multivariate
sample entropy represented as a function of the scale factor,
are next used to assess relative complexity of normalized
multichannel temporal data. The interpretation of the MMSE
analysis is as follows:

(i) The multivariate time series X is considered more
dynamically complex than the multivariate time series Y, if
for the majority of time scales the multivariate sample entropy
values for signal X are higher than those for signal Y.

(ii) A monotonic decrease in the multivariate entropy values
with the scale factor indicates that the signal in hand only
contains useful information at the smallest scales, this is typical
for both completely random and fully predictable signals.
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FIG. 2. (Color online) MMSE analysis for three-channel data
containing white and 1/f noise, each with 10 000 data points. The
curves represent an average of 20 independent realizations and error
bars the standard deviation (SD).

(iii) A multivariate system exhibiting long-range correla-
tions and complex generating dynamics is characterized by
either a constant multivariate sample entropy or it exhibits a
monotonic increase in multivariate sample entropy with the
scale factor.3

A. Validation on synthetic data

The univariate MSE analysis has shown [12,13] that for
random white noise (uncorrelated), the sample entropy values
decrease monotonically with scale, whereas for a 1/f noise
(long-range correlated) sample entropy remains constant over
multiple time scales. This indicates that the univariate 1/f

noise is structurally more complex than uncorrelated random
signals.

To illustrate the corresponding behavior for the multivariate
case, we generated a trivariate time series, where originally all
the data channels were realizations of mutually independent
white noise. We then gradually decreased the number of
variates that represent white noise (from 3–0) and simulta-
neously increased the number of data channels that represent
independent 1/f noise (from 0–3), so that the total number of
variates was always three. The values of the parameters used to
calculate MSampEn in this section were mk = 2, τk = 1, and
r = 0.15×(standard deviation of the normalized time series)
for each data channel. Figure 2 shows the MMSE curves for
the cases considered; notice that as the number of variates
representing 1/f noises increased, MSampEn at higher scales
also increased, and when all the three data channels contained
1/f noise, the complexity at larger scales was the highest. The
analysis in Fig. 2 therefore confirms that, as desired, the more
variables or channels within a multivariate time series exhibit
long-range correlations, the higher the overall complexity of
the underlying multivariate system.

3MATLAB toolbox for the proposed MMSE method can be found
at http://www.commsp.ee.ic.ac.uk/∼mandic/research/Complexity
Stuff.htm.
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FIG. 3. (Color online) Multivariate multiscale entropy (MMSE)
analysis for trivariate white and 1/f noise, each with 10 000 data
points. The curves represent an average of 20 independent realizations
and error bars the standard deviation (SD).

Recall that the original univariate MSE algorithm accounts
for long-term correlations within a single data channel,
however, due to its univariate nature, it cannot model the
cross-channel information present in multivariate recordings.
On the other hand, MMSE is designed for multivariate data.
To illustrate this difference, we first generated independent
realizations of white and 1/f noise, and the three channels
of trivariate white and 1/f noise were constructed using
combinations of those independent realizations, thus making
the channels correlated. Figure 3 illustrates the ability of
MMSE to model both within- and cross-channel properties in
multivariate data. Figure 3(a) shows that the naive multivariate
approach accounts for within-channel correlations but not for
cross-channel correlations, and was not able to distinguish
between uncorrelated and correlated trivariate random and 1/f

noises. Figure 3(b) shows that, as desired, the proposed mul-
tivariate MSE fully caters for both within- and cross-channel
correlations. Indeed, based on MMSE the complexity of the
correlated trivariate 1/f noise at large scales was the highest,
followed by the uncorrelated 1/f noise, and correlated and
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uncorrelated white noise. This conforms with the underlying
physics and validates the proposed MMSE method, as the
complexity of the considered multivariate processes exhibiting
both within- and cross-channel correlations is higher than
that of uncorrelated multivariate white noise and uncorrelated
multivariate 1/f noise (where long-range correlations only
exist within single channels).

The usefulness of the MMSE analysis is further illustrated
for the analysis of scalar and vector autoregressive (AR)
processes [27]. The AR processes were designed so as to
have an increasing correlation span with the model order.
Figure 4 shows the standard univariate MSE analysis for the
scalar AR processes considered and Fig. 5 the MMSE analysis
for the corresponding bivariate vector AR (VAR) processes.
As desired, in both cases, as the model order increased, the
complexity of the corresponding signals measured by MSE
and MMSE increased too.
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FIG. 5. (Color online) Multivariate multiscale entropy (MMSE)
analysis for bivariate white noise and bivariate AR processes, each
with 10 000 data points. The curves represent an average of 20
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IV. APPLICATIONS FOR REAL-WORLD
MULTIVARIATE PROCESSES

The multivariate multiscale entropy analysis is next evalu-
ated for three multivariate real-world recordings: human stride
interval analysis, three-dimensional wind measurements from
different dynamical regimes, and bivariate physiological data
(breathing and heartbeats) from young and elderly subjects.

A. Stride interval characterization

The data used were from Ref. [28], where stride interval
fluctuations were recorded from ten healthy subjects who
walked for one hour at their usual, slow, and fast paces.
The participants were further asked to walk following a
metronome, which was set to each participant’s mean stride
interval.

To assess the differences in relative complexity between
the unconstrained (slow, normal, fast) and the corresponding
constrained (metronomically-paced) conditions, we consid-
ered the three walking paces as different variables from the
same system, and used MMSE to discriminate between the
self-paced and metronomically-paced walk.

To test the hypothesis that the complexity of such time
series is encoded into the sequential ordering of the samples of
stride intervals, we also produced the corresponding surrogate
time series by shuffling (randomly reordering) the sequence of
data points. In this way, in surrogates the correlations among
the data samples were destroyed, while preserving statistical
properties of the distributions (particularly the first and second
moment), and the complexity of the surrogates is lower than
or equal to (if the original is completely random) that of the
original signal.

The values of the parameters used to calculate MSampEn
were mk = 2, τk = 1 and r = 0.15×(standard deviation of the
normalized time series) for each data channel; these parameters
were chosen on the basis of previous studies indicating
good statistical reproducibility for SampEn [11]. For MSE
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FIG. 6. (Color online) Multivariate multiscale entropy (MMSE)
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(solid cyan circle) stride interval (human gait) time series and for their
corresponding randomized surrogates (dashed line). Top: univariate
MSE analysis; Middle: bivariate MMSE analysis; Bottom: Trivariate
MMSE analysis. The curves represent an average of trials from 10
subjects and error bars the standard deviation (SD).
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or MMSE, the length of each coarse-grained sequence was ε

(scale factor) times shorter than the length of the original series,
so the highest scale factor considered in the analysis was ε = 7.

The top panel in Fig. 6 shows the results obtained by
the univariate MSE performed for the normal speed time
series [19]—the univariate MSE was not able to perform
statistically significant discrimination between the self-paced
and metronomically-paced walk as the error bars overlapped.
The middle and bottom panels in Fig. 6 show that when
the walking conditions are considered within the multivari-
ate approach (bivariate for any two walking conditions or
trivariate for all the three walking conditions), the proposed
MMSE was able to discriminate between the self-paced
and metronomically-paced walk. This opens unique analysis
possibilities, since the MMSE method was able to consider all
the walking conditions within one unifying model, directly
benefiting from the multivariate approach. Figure 6 also
indicates the presence of persistent serial correlations, which
are long-range dependent in self-paced walking, and the lack
of any correlations in metronomically-paced walking; in this
case the shape of the MMSE curve is similar to that for
multivariate white noise. As expected, the surrogate series
(randomly shuffled) showed a similar pattern to that for white
noise (dashed line in Fig. 6).

To evaluate the statistical difference of the entropy statis-
tics between self-paced and metronomically-paced sets, the
Student’s t-test and the Mann-Whitney U test (also known
as Wilcoxon rank sum test) were applied. Student’s t-test is
a parametric approach that tests the null hypothesis that the
means of normally distributed populations are equal. On the
other hand, the Mann-Whitney U test is a nonparametric test
where the null hypothesis, that independent samples come
from identical (similar shape) continuous (not necessarily
normal) distributions with equal medians, is tested against
the alternative that they do not have equal medians.

Entries in Table I represent the scales at which MSam-
pEn measures between self-paced and metronomically-paced
walking are significantly different according to the above
two statistical tests. When all three walking conditions were
simultaneously considered, both the statistical significance
tests revealed significant differences (p < 0.01) in MSampEn
measures at all scales except for ε = {1,2} and the correspond-
ing null hypothesis (equal mean or median) was rejected.
On the other hand, for the univariate MSE there were no
statistically significant differences between self-paced walking
and metronomically-paced walking at any scales.

TABLE I. Statistical significance tests for the univariate, bivariate,
and trivariate human stride interval analysis. Shown are scales for
which the differences are statistically significant.

Conditions taken Student’s t-test Mann-Whitney U test

Normal No scale No scale
Fast No scale No scale
Slow No scale No scale
Fast and Normal 6,7 6,7
Fast and Slow 4,5,6,7 4,5,6,7
Normal and Slow 5,6,7 5,6,7
Fast, Normal, and Slow 3,4,5,6,7 3,4,5,6,7

This result also indicates that for metronomically-paced
walking in slow, normal, and fast conditions, the time series
share uncorrelated random underlying dynamics both within-
and cross-channel, whereas for free walking, the time series for
slow, normal, and fast conditions are correlated both within-
and cross-channel. That explains why at larger scales the
complexity for the multivariate measurements was highest
for self-paced walking (compared to metronomically-paced
walking), and the separation was statistically significant over
more scales when we considered all the available walking con-
ditions. The MMSE therefore offers a significant improvement
over the previous studies [19,28] and also supports the more
general concept of multiscale complexity loss with aging and
disease or when a system is under constraints (metronomically-
paced), which all reduce the adaptive capacity of biological
organization at all levels [22].

B. Complexity analysis of physiological signals

We shall now apply the MMSE method to the Fantasia
database [29] to simultaneously analyze the complexity of
interbeat interval (R-R) and interbreath interval series. The
presence of long-range correlations in both cardiac and respi-
ratory dynamics was previously established using detrended
fluctuation analysis (DFA) in Refs. [30] and [31].

A subset of the Fantasia database was chosen consisting of
ten young (21–34 years old) and ten elderly (68–85 years
old) rigorously screened healthy subjects who underwent
120 minutes of continuous supine resting while continuous
electrocardiographic (ECG) and respiration signals were
collected. Each subgroup of subjects included seven women
and three men. The continuous ECG and respiration signals
were digitized at 250 Hz, and the interbeat interval (R-R)
time series and interbreath interval time series were generated
(for more details see Refs. [30] and [31]). The values of the
parameters used to calculate MSampEn were mk = 2, τk = 1,
and r = 0.15×(standard deviation of the normalized time
series) for each variate.

First, the univariate MSE was applied separately to the in-
terbeat interval (R-R) series [Fig. 7(a)] and interbreath interval
series [Fig. 7(b)]. For rigor, the corresponding surrogate time
series were also produced by shuffling (randomly reordering)
the sequence of data points. In both cases, although, as desired,
for some scales physiological signals from healthy young
subjects exhibited higher complexity than those of healthy
elderly subjects, the complexity values were lower than those
of the randomized surrogates. This behavior wrongly suggests
a lack of long-term correlations in both cardiac and respiratory
dynamics, illustrating that the univariate approach was not able
to produce robust estimates.

Next, MMSE was applied to a bivariate time series
consisting of the R-R and interbreathing intervals. Figure 8
reveals long-range correlations in both cardiac and respiratory
dynamics, illustrated by the fact that the MSampEn values
for larger scales were higher than those of the randomized
surrogates, which have no temporal structure. Figure 8 also
indicates lower complexity of physiological responses of
elderly subjects than the young ones, conforming with the
complexity loss theory with aging [30].
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FIG. 7. (Color online) Univariate multiscale entropy (MSE) anal-
ysis for the cardiac and respiratory dynamics. The curves represent
an average of 10 subjects and error bars the standard deviation (SD).

C. Complexity analysis of different wind regimes

Evidence of long-range correlations in wind speed record-
ings exists, and was evaluated using, for example, Hurst
parameters and detrended fluctuation analysis (DFA) [32–34].
We shall now illustrate that the MMSE method allows us to
characterize different wind regimes in terms of the underlying
dynamical complexity.

The data set was recorded using a 3D ultrasonic anemome-
ter (measurements taken in the north-south, east-west, and
vertical directions) at a sampling frequency of 50 Hz in the
courtyard of the Institute of Industrial Science (IIS) of the
University of Tokyo. To reduce the effects of high-frequency
noise, the data was preprocessed by a moving average filter.
Figure 9 shows that throughout the day, the wind dynamics was
changing, and the three wind regimes of different dynamics
were identified and labeled as low, medium, and high. The
values of the parameters used to calculate MSampEn were
mk = 2, τk = 1, and r = 0.20×(standard deviation of the
normalized time series), for each of the three data channels.
The univariate multiscale entropy analysis was first applied
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FIG. 8. (Color online) Multivariate multiscale entropy (MMSE)
analysis of the bivariate (R-R, interbreath interval) signal. The curves
represent an average of 10 subjects and error bars the standard
deviation (SD).

separately to data channels representing the eastward, north-
ward, and vertical direction, as well as to the modulus of the
3D wind. For rigor, the corresponding surrogate time series
were also produced by shuffling (randomly reordering) the
sequence of data points.

Figure 10 shows the univariate complexity profiles for the
three channels and for different wind regimes. For the eastward
wind [Fig. 10(a)], the high dynamics regime exhibited the
highest univariate complexity, followed by the medium and
low dynamics regimes. This is contrary to the intuition and
the underlying physics, and is attributed to the shortcomings
of univariate MSE, as it represents the variability in each
univariate regime (identified in Fig. 9) and not true complexity.
For the vertical wind [Fig. 10(c)], the same interpretation
applies. Only the analysis of northward wind [Fig. 10(b)]
and the modulus of the 3D wind [Fig. 10(d)] behaved in
the expected way, that is, medium wind dynamics has fewest
constraints, and is thus most complex [35] as mild winds
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FIG. 9. (Color online) Magnitude of the 3D wind signal. The
wind dynamics regimes are identified as low, medium, and high.

061918-8



MULTIVARIATE MULTISCALE ENTROPY: A TOOL FOR . . . PHYSICAL REVIEW E 84, 061918 (2011)

0 2 4 6 8 10
0

1

2

3

4

5

Scale factor

S
am

p
le

 e
n

tr
o

p
y

Wind data from high dynamics (HD) regime
Wind data from medium dynamics(MD) regime
Wind data from low dynamics (LD) regime
Randomized wind data from HD regime
Randomized wind data from MD regime
Randomized wind data from LD regime

Randomized wind data

Low dynamics regime

Medium dynamics regime
High dynamics regime

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Scale factor

S
am

p
le

 e
n

tr
o

p
y

Low dynamics regime

Randomized wind data

Medium dynamics regime

High dynamics regime

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Scale factor

S
am

p
le

 e
n

tr
o

p
y

Randomized wind data

High dynamics regime

Medium dynamics regime

Low dynamics regime

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Scale factor

S
am

p
le

 e
n

tr
o

p
y Randomized wind data

Low dynamics regime
High dynamics regime

Medium dynamics regime

(a) Eastward wind speed (b) Northward wind speed

(c) Vertical wind speed (d) Modulus of 3D wind speed

FIG. 10. (Color online) Univariate multiscale entropy (MSE) analysis of 3D wind speed data. The curves represent an average of six trials
and error bars the standard deviation (SD).

come from a wide range of directions. For each direction, the
wind data showed lower complexity than their corresponding
surrogate series, wrongly suggesting that the wind data set
considered had no long-range correlations.

Figure 11 shows the corresponding multivariate multiscale
entropy analysis, performed by considering the three wind
directions as variables in a trivariate model. Observe that the
multivariate approach was capable of detecting long-range
correlations in the wind speed for all wind regimes as the
MMSE curves were similar to that of 1/f noise (cf. Fig. 2),
conforming with the existing results [32–34]. Figure 11 also
shows that, as desired, the medium dynamics regime had
higher complexity than either high or low dynamics regime.
This trend can also be seen in the MSE curves of the modulus
of the 3D wind [Fig. 10(d)], but there the complexity did
not exceed that of surrogate data. Since we can consider
the wind with medium dynamics as the least constrained
system, as opposed to the high or low dynamics regimes which
are constrained [35], this interpretation also agrees with the
general complexity loss theory with constraints.
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analysis of 3D wind speed data. The curves represent an average of
six trials and error bars the standard deviation (SD).
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V. CONCLUSION

This paper has generalized the recently introduced mul-
tiscale entropy (MSE) method to the multivariate case, to
suit real-world biological and physical systems, which are
typically of multivariate, correlated, and noisy natures. The
inherent complexity of such structures and their coupled dy-
namics also make the proposed multivariate multiscale entropy
(MMSE) method naturally suited to reveal the long-range
within- and cross-channel correlations present. The MMSE
method has been validated on both illustrative benchmark data

and on real-world multivariate gait, physiological, and wind
data.
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