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A noise-assisted approach in conjunction with multivariate empirical mode decomposi-
tion (MEMD) algorithm is proposed for the computation of empirical mode decompo-
sition (EMD), in order to produce localized frequency estimates at the accuracy level
of instantaneous frequency. Despite many advantages of EMD, such as its data driven
nature, a compact decomposition, and its inherent ability to process nonstationary data,
it only caters for signals with a sufficient number of local extrema. In addition, EMD
is prone to mode-mixing and is designed for univariate data. We show that the noise-
assisted MEMD (NA-MEMD) approach, which utilizes the dyadic filter bank property
of MEMD, provides a solution to the above problems when used to calculate standard
EMD. The method is also shown to alleviate the effects of noise interference in univari-
ate noise-assisted EMD algorithms which directly add noise to the data. The efficacy of
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the proposed method, in terms of improved frequency localization and reduced mode-
mixing, is demonstrated via simulations on electroencephalogram (EEG) data sets, over
two paradigms in brain-computer interface (BCI).

Keywords: Empirical mode decomposition; multivariate empirical mode decomposition;
electroencephalogram; brain-computer interface.

1. Introduction

The Empirical Mode Decomposition (EMD) algorithm expands a given time series
2(k) into a set of narrowband oscillatory modes, termed intrinsic mode functions
(IMFs), which, unlike the fixed basis functions within the Fourier and wavelet
transforms, emerge naturally from the inherent oscillatory modes within the signal
x(k) [Huang et al. (1998)]. This offers major advantages in the processing of real
world signals, as the basis of EMD (that is, IMFs) are data-adaptive, generic, and
much more flexible as compared to the Fourier and wavelet basis functions. Owing
to the inherent nonlinearity of the EMD algorithm, this also leads to a compact
representation and physically relevant IMFs. Subsequently, the normalized Hilbert
transform and the direct quadrature methods can be used to obtain accurate time-
frequency (TF) representations [Huang et al. (2009)].

The success of EMD has also highlighted several issues that need further atten-
tion, such as the inherent mode-mixing and aliasing. Mode-mizing across the basis
functions is mainly manifested by a single IMF either carrying signals of widely
disparate scales, or a single mode or scale residing in more than one IMF [Wu and
Huang (2009)]. This is a consequence of signal intermittency, causing the overlap-
ping of IMF spectra and aliasing in the TF domain. The mode-mixing phenomenon
compromises the physical meaning of IMF's by, for instance, erroneously suggesting
different physical processes present in a single IMF.

The two sources of aliasing are: (1) the extrema sampling, a key step in EMD
filtering, which has been shown to be a sub-Nyquist process; (2) the equivalent
interpolation filter of EMD (e.g. a cubic spline) which is far from an ideal low-pass
filter, resulting in further aliasing. It is important to highlight that the EMD fil-
tering process critically depends on the sampling of signal extrema and, therefore,
the presence of a sufficient number of extrema in an input is a prerequisite for the
initiation and the successful operation of EMD. For instance, standard EMD fails
to operate on a Dirac pulse, since there are not enough extrema for a meaningful
IMF. To obtain an equivalent impulse response of an EMD filter for its character-
ization, Flandrin et al. considered an idealized Dirac pulse as the limit of a noisy
pulse and performed an ensemble average of N such realizations [Flandrin et al.
(2005)]. The addition of noise to the Dirac pulse introduces additional extrema
to the signal, which helps to initiate the EMD filtering process and to obtain its
equivalent impulse response.

The idea of adding noise ensemble to the signal also underpins the ensem-
ble empirical mode decomposition (EEMD) algorithm [Wu and Huang (2009)],
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which operates by adding multiple independent noise realizations to data, applies
EMD to every member of the resulting ensemble, and finally performs ensemble
average of each set of IMFs to obtain an enhanced decomposition. In doing so,
EEMD makes use of the dyadic filter bank property of EMD when applied to
white Gaussian noise (WGN); subsequent averaging over the noise ensemble bene-
fits from the so induced large number of extrema, and yields more localized inherent
modes present in the data, in addition to the decomposition which is almost free
from mode-mixing. However, a consequence of adding noise directly to the data
is that a trace of residual noise is likely to remain in the IMFs. The amplitude
(power) of this residuum depends on the number of realizations averaged (size of
ensemble), thus, compromising the “completeness” of the retained signal. Several
modifications of EEMD have been proposed to deal with this problem; the approach
in Torres et al. [2011] adds a carefully chosen noise at each decomposition stage to
compute a unique residual; the complementary ensemble empirical mode decom-
position (CEEMD) removes the residue due to WGN;, via pairs of complementary
ensemble IMFs, obtained from the positive and negative portions of the added
noise [Yeh et al. (2010)]. Both algorithms, however, still add noise directly to the
input data and, hence, cannot guarantee the “completeness” of the reconstructed
signal in the strict sense; they are also computationally more expensive than the
EEMD method.

To address the above issues, the recently proposed noise-assisted multivariate
empirical mode decomposition (NA-MEMD) [Rehman and Mandic (2011)] employs
multivariate extensions of EMD (MEMD) [Rehman and Mandic (2010b); Rilling
et al. (2007); Altaf et al. (2007)], that have been originally designed for signals
containing multiple data channels and have shown significant potential in data
fusion [Looney and Mandic (2009)], phase synchronization [Looney and Mandic
(2009)], and frequency localization [Rehman and Mandic (2010a)]. The NA-MEMD
operates by first creating a multivariate signal consisting of one or more input
data channels and adjacent independent realizations of WGN in separate channels.
The resulting multivariate signal, comprising data and noise channels, is processed
using the MEMD method, and the IMFs corresponding to the original data are
reconstructed to yield the desired decomposition [Rehman and Mandic (2011)]. In
this way, unlike EEMD, the physically disjointed input and noise subspaces within
NA-MEMD prevent direct noise artifacts. Notwithstanding the differences between
the EEMD and NA-MEMD, the main rationale behind both methods remains the
same: making use of the dyadic filter bank structure of (M)EMD for WGN for
improved performance of the standard univariate EMD.

In this work, we set out to assess the potential of NA-MEMD in the processing of
both univariate and multivariate EEG signals, which are the most convenient means
to measure neurophysiological activity due to their noninvasive nature and inexpen-
sive recording equipment. Brain-computer interface (BCI), an emerging technology
focusing computer-aided control using brain activity, is based on EEG data and has
found diverse applications ranging from bioengineering to neuroprosthetics. From
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the signal processing perspective, we provide a rigorous analysis of the usefulness of
NA-MEMD for the computation of EMD, leading to the justification for its use for
both univariate and multivariate time series. The analysis relates the power of the
channels within the input noise subspace and the degree of localization provided by
the algorithm, highlighting the robustness and flexibility of the proposed approach.
The mode-alignment and filter bank properties of NA-MEMD are also analyzed,
together with its equivalent impulse response. The advantages of the NA-MEMD
method over standard EMD and EEMD, for the analysis of univariate data, are
illustrated for these key problems of standard EMD: frequency localization, noise
interference, and mode-mixing. Furthermore, we employ NA-MEMD in EEG analy-
sis and illustrate its ability to account for the nonstationarity, multichannel nature,
inherent drift in frequency estimation, and to overcome the uncertainty in the esti-
mation associated with methods employing fixed basis function. These virtues of
NA-MEMD are shown over two case studies: steady state visual evoked potential
(SSVEP) and motor imagery EEG data paradigms.

The paper is organized as follows: Secs. 2 and 3 describe the background of
EMD and MEMD related algorithms respectively. Section 4 presents an extensive
set of simulations on real and synthetic data, comparing the NA-MEMD with EMD
and EEMD. Finally, applications of NA-MEMD on nonstationary EEG signals are
presented, followed by the discussion and the conclusions.

2. Empirical Mode Decomposition and Its Noise-Aided Extensions

EMD is a data-driven technique to decompose a signal, by means of an iterative
process called the sifting algorithm, into a finite set of oscillatory components called
IMFs [Huang et al. (1998)]. These IMFs represent the temporal modes (scales)
present in the data. For a time series x(k), the EMD represents a sum of IMFs
{em(K)}, m=1,..., M and the residual r(k), that is

M
w(k) = em(k) +r(k), (1)

=1

where the residual r(k), unlike {c,,(k)}}_,, does not contain any oscillations and
its physical meaning is a trend within the signal.

However, the EMD output is prone to mode-mixing which mainly occurs due
to the overlapping of the IMF spectra [Huang et al. (1998)], and the aliasing
caused by sub-Nyquist extrema sampling. To overcome these issues, the ensemble
EMD (EEMD) algorithm [Wu and Huang (2009)], makes use of the dyadic filter
bank property of EMD for WGN by adding noise ensembles to the input data,
before applying EMD. This way, EEMD effectively populates the whole TF space.
The IMFs are then obtained from the ensemble mean of the corresponding IMFs
(obtained from noise ensemble added to input). More specifically, if x(¢) denotes
the input signal, and w, (t) the nth realization of WGN, then the ensemble of the
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Algorithm 1: Ensemble Empirical Mode Decomposition

1: Generate s, (t) = x(t) +wy(t) forn =1,..., N; where wy,(t) (n =1,...,N) are
N different realizations of WGN;

2: Decompose the ensemble s, (t) (n = 1,...,N) by applying standard EMD to
each realization s,(t) separately, obtaining M, IMFs for s, (¢), denoted by
{ep ()}

3: Average the corresponding IMFs from the whole ensemble to obtain the aver-
aged (ensembled) IMFs; for instance, mth IMF can be obtained by using

Cm(t) = 4 Sonet i (b).

input signal and WGN can be expressed as

{sn(O}nz1 = x(t) + {wa () 102 (2)

for 1 <n < N, where N is the total number of the ensemble members used in the
process. The EEMD algorithm is described in Algorithm 1.

Statistically, the effect of added WGN within the set s, (t) cancels out when
taking the mean over a sufficiently large ensemble, in accordance with the following
well-established rule:

™= TR 3)
where 7 is the amplitude of the added noise, and ~, is the standard deviation of
the error signal between the final output from EEMD and the original signal x(¢).

The relation (3) highlights a significant computational drawback in EEMD:
to completely cancel the effect of added noise from the output, that is to ensure
completeness of EEMD, an infinitely large number of ensemble members must be
considered.

3. Multivariate EMD and Its Noise-Aided Extensions
3.1. Multivariate empirical mode decomposition

Multivariate empirical mode decomposition (MEMD) algorithm was designed to
operate for an arbitrary number of input channels [Rehman and Mandic (2010b);
Rilling et al. (2007); Altaf et al. (2007)]. Similarly to EMD, the output of the MEMD
for WGN exhibits a quasi-dyadic filter bank structure [Rehman and Mandic (2011);
Flandrin and Goncalves (2004); Flandrin et al. (2005)]. This, together with min-
imal cross-channel leakage in MEMD, ensures enhanced identification of intrinsic
oscillatory modes within a signal. Generalizing (1), given a p-variate signal s(t),
MEMD produces M multivariate IMF's:

M
s(t)= ) em(t) +x(t), (4)

m=1
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where ¢, (t) represents the mth IMF of s(¢) (also p-variate) and r(t) denotes the
p-variate residual.

Within MEMD, estimation of the local multivariate mean is a key step which
is performed by taking multiple real-valued projections of the original signal. The
extrema of such single-dimensional projections are then interpolated component-
wise to yield multi-dimensional signal envelopes. Multiple signal projections are
necessary to model higher dimensional fields, this makes it possible to operate
in the domain, such as the complex C and quaternion H fields, which are not
ordered® [Mandic and Goh (2009)]. The so projected envelopes are averaged to
give an estimate of the local mean. More specifically, if efg, g,,... 0, ,1 denotes the
envelope in the direction represented by a vector 6 = {61,605, ...,6,_1} in R™, then
the local mean m(t) of a signal s(t) can be estimated by using

1 ™ ™ 27
m(t) = ?/ / / €101,02,....00_ 1}d91d02 ~df,_1, (5)
27T 01=0 J6O>=0 0,_1=0
Vi Vo
~ ‘/‘1‘/2 Z Z Z 6{001, vgsesbu, g 10 (6)
11)2 1 Un—1=— =1
where the set {Vi,Va,...,V,,_1} denotes the number of direction vectors taken

along the directions {61, 0s,...,0,_1} respectively.

The accuracy of the above approximation is dependent on the choice of the set
of direction vectors, as was shown in Cui and Freeden [1997]. To represent direction
vectors in an n-dimensional (nD) space, for convenience of presentation, sample
points on the surface of corresponding unit (n — 1)-spheres are considered.” In
MEMD, those points are generated by the low-discrepancy Hammersley sequences
in R™, ensuring more efficient and accurate implementation of the integral in (6), for
a finite point set [Niederreiter (1992)]; details on how to compute the Hammersley
sequence and the listing of the MEMD algorithm is given in Appendix A. Despite
its merits when processing multivariate nonstationary signals, MEMD inherits a
degree of mode-mixing, which motivated the development of NA-MEMD.

3.2. Noise-assisted multivariate EMD

The NA-MEMD algorithm attempts to eliminate the interference of noise in EEMD
and reduce the mode-mixing in both EMD and MEMD outputs; it is outlined in
Algorithm 2, whereby the first step ensures that the noise channels are not added
to signals which already fulfill the IMF criteria. The method operates by form-
ing a multivariate signal consisting of input data and noise in separate channel(s)
[Rehman and Mandic (2011)]. The MEMD is then applied to the so constructed

aFor instance, operations such as, “greater than” > and “less than” < do not exist in C and H.
b An n-sphere, or equivalently an (n — 1)-dimensional hypersphere, can be considered as an exten-
sion of the ordinary sphere to an arbitrary dimension.
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Algorithm 2: Noise-Assisted MEMD

1: Check if the input signal fulfills the criteria of an IMF; if not so, proceed to the
next steps otherwise stop the process;

2: Create an uncorrelated Gaussian white noise time series (I-channel) of the same
length as that of the input, with [ > 1;

3: Add the noise channels (I-channel) created in step 2 to the input multivariate
(n-channel) signal n > 1, obtaining an (n + [)-channel multivariate signal;

4: Process the resulting (n +[)-channel multivariate signal n+1{ > 2 using MEMD
algorithm, to obtain multivariate IMF's;

5: From the resulting (n+1)-variate IMFs, discard the I channels corresponding to
the noise, giving a set of n-channel IMFs corresponding to the original signal.

multivariate signal and the resulting IMF subspace corresponding to WGN is dis-
carded. The desired separation between the input and noise diminishes noise inter-
ference in the output, owing to the minimal cross-channel leakage in NA-MEMD.
Since the added noise channels occupy a broad range in the frequency spectrum,
MEMD aligns its different components (IMFs) in accordance with the quasi-dyadic
filter bank structure, with each component carrying a separate frequency sub-band
of the original signal. In doing so, the IMFs corresponding to the original data also
align themselves in accordance with the quasi-dyadic filter bank structure.® This,
in turn, helps to reduce the mode-mixing problem within the extracted IMFs.

The sifting process employed in MEMD and NA-MEMD can be stopped when all
the projected signals fulfill an EMD stopping criterion. In the simulations presented
in this paper, we use a version of the stopping criterion, proposed in Rilling et al.
[2003], which ensures that the outputs of MEMD and NA-MEMD follow a quasi-
dyadic filter bank structure and defines an evaluation function based on the envelope
amplitude of an input as:

1 \%
a(t) = > leo, (t) — m(#)]. (7)
v=1

The sifting process is continued until the the evaluation function, f(t) = |%\

falls below some predefined thresholds [o7 o2 «a, where m(t) is the local mean
signal.

3.2.1. Effect of noise power

The behavior of the NA-MEMD algorithm changes according to the power level of
the added noise channels, with the algorithm performing similarly to standard EMD
for infinitesimally small noise amplitudes. Increasing the noise power would further
enforce the quasi-dyadic filter bank structure on input data. However, excessive

©This is illustrated by an example in the next section.
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noise levels can compromise the data-driven ability of the (M)EMD-based algo-
rithms. A rule of thumb is to choose the variance (power) of noise within 2-10%
of the variance of the input. The noise with power above this range may result
in an unnecessary mode-mixing in the output (see Fig. 7 and the corresponding
discussion).

3.2.2. Ensemble NA-MEMD and its equivalent impulse response

Since the NA-MEMD method employs a single realization of [-channel Gaussian
noise for its operation, it may yield slightly different outputs for different trials
of [-channel WGN, even if same statistics are employed in all trials. To overcome
this uniqueness problem, an ensemble approach similar to EEMD can be adopted,
whereby instead of using a single realization of I-channel noise, an ensemble of
independent [-channel noise realizations can be considered, in a manner similar to
EEMD. The set of multivariate IMFs obtained from MEMD are then ensemble
averaged to obtain the output. Although the ensemble NA-MEMD method uses
the approach similar to that of EEMD, it does not suffer from the inherent EEMD
problem — the noise interference in the output data — since noise is never added
to input directly, but occupies a disjointed noise space. Similarly to EEMD, the
output of ensemble NA-MEMD may not strictly conform to the definition of an
IMF since an ensemble average of multiple IMFs may not satisfy the conditions
of an IMF. However, the benefits gained by taking multiple noise realizations, in
terms of accurate TF representation and reduced mode mixing, normally outweigh
this drawback.

The equivalent impulse response of NA-MEMD is next established by using a
discrete version of the Dirac impulse:

Sl — 1 forn=0 <
= 0 forn #1. ®)

Note that since the operation of EMD requires the existence of a sufficient
number of extrema in a signal, finding its impulse response is hard given only one
maximum in d[n]. Through NA-MEMD, the required extrema are introduced via
the noise subspace, to initiate the EMD algorithm.

In Fig. 1, the impulse response of the NA-MEMD algorithm is shown for the
input data length of K = 256, [ = 2 dimensional noise subspace and N = 100 inde-
pendent realizations of WGN. Specifically, the original Dirac impulse function is
shown (first row) along with the first five? ensemble-averaged IMFs. Notice the simi-
larity of these IMF's with those obtained by the wavelet analysis or EEMD approach
[Flandrin and Goncalves (2004)]. Observe that the averaged IMFs have the same
shape for each index m suggesting a self-similar structure observed previously

dThe noise channels and their respective decompositions are not shown here for easy visualization.
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Decomposition of Dirac Impulse through ensemble NA-MEMD
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Fig. 1. Decomposition of a discrete-time Dirac impulse via the NA-MEMD algorithm.

for EMD and MEMD-based decompositions [Flandrin et al. (2005); Rehman and
Mandic (2011)].

3.2.3. Mode-alignment and quasi-dyadic filter bank property

The filter bank property of MEMD in the case of WGN is well established [Rehman
and Mandic (2011)]. Moreover, MEMD has also been shown to align common oscil-
latory modes from an input data; Fig. 2 shows the magnitude of cross correlations
calculated between normalised IMFs of two channels of the input bivariate WGN
of length L = 1000, averaged over N = 1000 realisations, with bivariate EMD
(left) outperforming standard EMD applied channel-wise (right). The normalisa-
tion of IMFs was performed independently on each channel. The cross-correlation
estimates T (m,m’) were calculated for IMFs obtained from MEMD and standard
EMD:

Y7 (m,m’)
T(m Z\/T7mm'f7( m')| ®)
where
K
O m,m') = 22 3" e (R)ed (k) (10)
k=1

and ¢/, (k) is the mth IMF corresponding to the jth noise ensemble.
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MEMD mode alignment for WGN EMD mode alignment for WGN
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Fig. 2. The magnitudes of cross correlations calculated between normalised IMFs of two channels
of the input bivariate WGN obtained from: (a) BEMD and (b) standard univariate EMD channel-

wise.

Figure 2(a) shows that owing to the filter bank structure of MEMD, a sig-
nificant overlapping of the spectra of corresponding (same-indexed) IMFs from
multiple channels is observed, resulting in cross-correlation estimates having com-
paratively larger values along the diagonal (m = m'). In the EMD-based decom-
position, however, significant values of the cross-correlation estimates are observed
off-diagonal (m # m'), indicating miss-aligned IMFs (and spectral leakage), as
visible in Fig. 2(b).

Benefiting from the mode-alignment within MEMD, NA-MEMD can be used to
reduce the mode-mixing in standard EMD. Indeed, by enforcing the quasi-dyadic
filter bank structure on input data through the noise channels, spectra from different
IMFs are expected to be more localized in the frequency domain, thus, reducing
the mode-mixing problem.

Figures 3 and 4 show the ability of noise-aided (M)EMD algorithms to reduce
mode-mixing in univariate EMD. In Fig. 3, the EMD based decomposition of a
synthetic signal comprising of three different tones is shown: two low-frequency
tones (0.23 Hz and 1.0 Hz) were summed together along with a high-frequency sinu-
soid (2 Hz) added between samples 1,000 and 1,650. In the noise sub-space within
MEMD, two noise channels, [ = 2, were used corresponding to the SNR of 17 dB,
and N = 200 independent noise ensembles were employed. The number of direc-
tions used in MEMD® were V' = 64 and the parameters of the stopping criterion
used in both EMD and MEMD were [0q = 0.05, o2 = 0.5, « = 0.05]. For EEMD,
the number of noise realizations were taken as 1,000 with signal-to-noise channel
power ratio of 7dB.

¢The simulations were performed in Matlab using the MEMD toolbox provided at: http: //www.
commsp.ee.ic.ac.uk/~mandic/research/emd.htm.
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EMD Decomposition
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Fig. 3.  Advantages of NA-MEMD in reducing mode-mixing. IMFs of a synthetic signal obtained
by applying (a) standard EMD, (b) EEMD, and (c¢) NA-MEMD.
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Fig. 4. Advantages of NA-MEMD in reducing mode-mixing. IMFs of a synthetic signal obtained
by applying (a) standard EMD, (b) EEMD, and (¢) NA-MEMD.
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The resulting signal and its standard EMD based decomposition is shown in
Fig. 3(a). Mode-mixing is evident in ¢; and co which contains multiple modes
(scales). The IMFs from EEMD and NA-MEMD applied to the resulting trivariate
signal (original data and two noise channels) are shown in Figs. 3(b) and 3(c)
respectively. Observe that the IMFs are now free from mode-mixing, as all the
tones are decomposed as separate IMFs (¢4, ¢5, and ¢g in EEMD and ¢3, ¢4, and
¢5 in NA-MEMD).

Similarly, Fig. 4 shows the decompositions of a different synthetic signal obtained
from EMD (a), EEMD (b), and NA-MEMD (c). The input signal consists of a
2 Hz sinewave corrupted by an intermittent interference between samples 400—600.
Ideally, a perfectly localized sinewave should occupy a single IMF, as it satisfies
the IMF conditions, however, for the case of EMD, mode mixing occurred in ¢;
and c3. On the other hand, the noise-assisted EEMD and NA-MEMD were able to
perfectly localize the single-scale sinewave. For NA-MEMD, [ = 2 additional noise
channels were used to create a trivariate signal, with the signal-to-noise channel
power ratio of 17dB. For EEMD, the number of noise realizations were taken as
1,000 with signal-to-noise channel power ratio of 7 dB.

4. NA-MEMD Versus EEMD

Unlike EEMD, in NA-MEMD noise is not added directly to the input signal. Instead
it is kept in separate channels of a multivariate signal and processed directly using
MEMD. This way, the output decomposition has no additive noise artifacts, same
number of IMF's are guaranteed for each data channel, and similar oscillatory modes
are located in same-indexed IMFs, a property not possible to achieve using the
standard EMD and EEMD. Moreover, since NA-MEMD is based on multivariate
EMD, it can handle both univariate and multivariate signals, whereas EEMD), by
design, can only cater for univariate signals.

In the following, a comparison of the completeness of the two methods is inves-
tigated, with the amount of residual noise in the reconstructed signal and their
sensitivity to input noise power used as the performance metric.

4.1. Residual noise and sensitivity to noise power

Residual noise in EEMD is prominent because it is added directly to the signal in
order to enforce the dyadic filter bank structure. This compromises the completeness
of the method for a finite noise ensemble, albeit its effects can be reduced by
increasing the number of noise ensembles N, in accordance with (3). On the other
hand, in NA-MEMD), noise does not directly interfere with the original signal as the
noise subspace occupies separate channels to those containing original data, that
is, the signal and noise subspaces do not overlap.

Figure 5 verifies these properties for the synthetic signals shown in Figs. 3 and 4.
In Fig. 5, the average power of the error signal is plotted as a function of a ratio
between the noise and the signal power, evaluated for the signals from Fig. 3(dashed)
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Error vs Noise Power for EEMD x 10" Error vs Noise Power for NA-MEMD
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Fig. 5. Sensitivity to added noise power of EEMD and NA-MEMD. Plots represent the average
power of the error signal as a function of the noise to signal power in the case of (a) EEMD and
(b) NA-MEMD, for the input signals shown in Fig. 3 (dashed line) and Fig. 4 (thick line).

and Fig. 4(thick), using both EEMD (a) and NA-MEMD (b). In the case of EEMD,
as expected, the power of the error signal, which is an indicator of residual noise
level, increased with the added noise power. On the other hand, residual noise levels
in the reconstructed signal, in the case of NA-MEMD, remained relatively stable
with an increase in the input noise power. The power of added noise relative to
the input signal power is an important factor in both EEMD and NA-MEMD since
it affects the extent to which a quasi-dyadic filter bank structure is imposed on
input data. In EEMD, this issue is more critical since noise is added directly to
the signal.

Also observe from Fig. 5 that the power of reconstruction error function cor-
responding to NA-MEMD had significantly smaller values as compared to that of
EEMD (note the difference in the ranges of y-axis in the two subfigures), because
of negligible residual noise in the case of NA-MEMD. The error function in EEMD
had larger values due to high levels of residual noise caused by directly adding noise
to the input signal.

In the simulations, within EEMD, N = 1000 realizations of WGN were used
and the noise power was varied in the range of 0.01-1 (1-100% of the original data
power), whereas, for NA-MEMD, | = 2 WGN channels were added with the same
noise power as was used in EEMD. The number of direction vectors used in MEMD
was V = 64.

4.2. Effect of the number of noise channels in NA-MEMD
on residual noise

Another important aspect of NA-MEMD is how the number of noise channels [
affects the residual noise levels. In the simulations presented in this paper, we used
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<102 Reconstruction error vs channel size for NA-MEMD
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Fig. 6. Power of the reconstruction error signal, obtained using NA-MEMD, plotted as a function
of number of WGN channels, [, for the input signals in Fig. 3 (dashed line) and Fig. 4 (thick line).

[ = 2, however there is no limit on the number of noise channels. To give an empir-
ical estimate of the dependence of NA-MEMD on the number of noise channels,
simulations were performed on the signals, shown in Figs. 3 and 4, by varying the
number of noise channels [ and calculating the power of the reconstruction error.f
The results in Fig. 6 show that the reconstructed error is negligible, even for larger
[, ensuring the completeness of NA-MEMD.

5. Applications in EEG Signal Processing

Many EEG applications estimate signals belonging to different frequency bands;
for instance, voluntary limb movements cause changes in the mu and beta rhythms
observed in the central region of the brain, which need to be effectively isolated
for advanced BCI applications [Pfurtscheller et al. (1997)]. The EMD-based algo-
rithms, being data-driven, are highly suitable for nonstationary data and, thus, are
a natural choice for their analysis. Mode-mixing, however, presents a major obstacle
to the accurate data analysis, as it prevents the EEG frequency bands from being
localized.

We next present simulation results obtained by applying NA-MEMD to real
world multichannel EEG signals, together with a comparative analysis of stan-
dard univariate EMD and EEMD applied channel-wise to the EEG data. The two
classes of EEG signals considered were: steady SSVEP responses and motor imagery
EEG data. The EEG data sets are multivariate and for such data the NA-MEMD
method, by design, was expected to perform better than the univariate EMD and

fIn the simulation, the noise power in the two channels was kept at 0.05, N = 200 noise ensembles
were employed, and the number of direction vectors used in MEMD algorithm were V = 64.
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EEMD algorithms applied channel-wise. In addition to direct multi-channel data
processing, we also applied the NA-MEMD algorithm to single-channel EEG data
and compared its performance against the standard EMD algorithms.

For comparative analysis between standard EMD, EEMD, and NA-MEMD, to
reflect mode-mixing issues, we plotted the power spectra of corresponding IMF's;
clear separability and less overlapping of IMFs (corresponding to different EEG
bands) in the spectrum would mean less mode-mixing and, hence, improved fre-
quency localization and better overall performance. In the simulations, we chose
two-dimensional noise subspace, | = 2, with each channel having a noise power
of 0.05; all EEG data channels were first normalized to have a unit variance. The
number of directions used in the MEMD algorithm was V' = 64 and the parameters
of the stopping criterion used were [o07 = 0.075, o2 = 0.75, « = 0.075].

5.1. SSVEP data processing

Electroencephalogram (EEG), the most convenient means to measure neurophysio-
logical activity due to its noninvasive nature and affordable recording equipment, is
commonly used to record SSVEP. Since the SSVEP data exhibits electrical activity
at the same (and multiples of) frequency of the visual stimulus, it is natural to
apply EMD-based methods to accurately extract the modes corresponding to the
applied stimulus.

In the simulations, we considered 7 EEG channels from the subject who was pre-
sented with a visual blinking signal at 15 Hz. We first applied NA-MEMD (directly)
and EMD (channel-wise) on such 7-channel input data, and the results are shown
respectively in Figs. 7(a) and 7(b). It can be noticed that applying EMD separately
on each EEG channel resulted in the mode-mixing and mode-misalignment in the
corresponding IMF's, as evidenced by the overlapping of spectra of different IMF's
from multiple input channels. Specifically, both IMF4 and IMF5 contributed to the
mode corresponding to visual stimulus at 15 Hz. Moreover, spectra of IMF5 and
IMF6 from different channels overlap, resulting in further mode-mixing. On the
other hand, application of NA-MEMD to the same data set resulted in IMFs which
were aligned in frequency, each containing only a single temporal mode, as shown
in Fig. 7(b), where the IMF6 contains the 15 Hz SSVEP response.

Next, both EMD and NA-MEMD were applied to single-channel SSVEP data
to illustrate the advantages in computing univariate EMD via NA-MEMD. A trend
similar to the above was observed as the IMF spectra obtained from NA-MEMD
revealed very little mode-mixing, as shown in Fig. 7(d) (a single IMF for 15Hz
SSVEP response), while the EMD-based spectrum shown in Fig. 7(¢) shows mode-
mixing in IMF5 and IMF6 for the same component. As a result, the IMF5 which
corresponds to the 15 Hz visual stimulus had comparatively less power than the cor-
responding IMF from NA-MEMD. The time plots for the decomposition of a single
channel SSVEP data by EMD and NA-MEMD are shown in Figs. 8(a) and 8(b)
respectively; in the EMD-based decomposition, the mode-mixing is evident in IMF4
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multivariate (7-channel) and a single channel SSVEP EEG data. The effects of noise amplitudes
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Fig. 8. Waveforms for single-channel decomposition of SSVEP EEG data, using (a) EMD and (b)
NA-MEMD. Observe the mode-mixing in IMF4 and IMF5 in EMD-based time plots, as identified
by boxes labelled as A, B, C, and D. IMFs obtained from NA-MEMD, on the other hand, contain
a single mode only and, thus, are free from mode-mixing.

and IMF5, particularly at locations highlighted in dashed rectangular boxes, while
all the components (IMFs) of NA-MEMD contained only a single mode, free from
mode-mixing.

As mentioned earlier, choosing suitable amplitudes for the [ noise channels is
a prerequisite for the successful operation of NA-MEMD. In Figs. 7(e) and 7(f),
we show two cases in which comparatively lower (0.5% of the input noise power)
and higher (25% of the input noise power) noise levels were used in NA-MEMD
for a single-channel SSVEP data. Employing lower noise levels tends to reduce the
power of the mode corresponding to the visual stimulus (IMF5), a trend similar to
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that observed in the case of standard EMD (see Fig. 7(c)); this was expected as
standard EMD can be considered as a special case of NA-MEMD for infinitesimally
small input noise levels. For higher noise amplitudes, mode-mixing is clearly visible
in the mode corresponding to the visual stimulus, as shown in Fig. 7(f). This can be
attributed to the loss of data-driven nature of NA-MEMD due to excessive input
noise power.

5.2. Motor imagery data processing

Motor imagery tasks refer to the imagination of a motor action without any actual
movement of limbs. They have clear practical significance in EEG-based BCI appli-
cations; for instance, EEG data from imaginary mental tasks can be used to control
a mechanical device through brain-machine interface. The neurophysiological basis
for motor imagery BCI are the so-called mu (8-12Hz) and beta rhythms (18-
25Hz) [McFarland et al. (2000)], which have been observed in the central region
of the brain, using EEG, when subjects plan and execute hand or finger move-
ments [Pfurtscheller and da Silva (1999)]. The so observed changes to the mu and
beta rhythms have been extracted using the EMD method for the classification of
bistable perception [Wang et al. (2008)]. In this section, we illustrate the ability of
NA-MEMD to obtain enhanced localization of the frequency information in motor
imagery EEG data and compare the results with those obtained from standard
EMD and EEMD methods.

The BCI Competition IV Dataset I was used for the following analysis®; it
was recorded from four healthy subjects using 59 electrodes sampled at 1,000 Hz
[Blankertz et al. (2007)]. Each subject selected two motor imagery tasks among
three: left hand, right hand, and foot (both feet). Subjects performed a total of 200
trials. In each trial, the subject imagined one of the two possible tasks (one task per
trial) for a duration of 4s. Out of the available 59 EEG channels, 11 were selected
for analysis: “FC3”, “FC4”, “Cz”, “C3”, “C4”, “C5”, “C6”, “T7”, “T8”, “CCP3”
and “CCP4”, since the motor imagery response is primarily associated with the
central area of the brain [Pfurtscheller and da Silva (1999)].

The data was processed using the EMD, EEMD, and NA-MEMD algorithms and
the average power spectra of relevant IMF's ¢;(t)—c4(t) are plotted in Fig. 9 for the
two subjects; the averaging was performed over all 200 trials on each subject. The
power spectrum plots were used to gauge the performance of NA-MEMD, relative
to standard EMD and EEMD methods, with regards to the localization of differ-
ent frequency rhythms (mu and beta). Clear separability (accurate localization) of
the modes corresponding to mu and beta rhythms would facilitate the accurate
classification of motor imagery tasks through feature extraction algorithms."

8The data set and its complete detail are available for downloading at: http://www.bbci.de/
competition/iv/.

b1t is not our purpose here to report the improvement in the final classification of EEG-based
motor imagery tasks achieved via NA-MEMD; that work is currently under process.
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Figure 9 compares the average frequency distributions at the IMF level using
standard EMD, EEMD, and NA-MEMD. Notice that IMFs obtained from EEMD
and NA-MEMD were more localized in frequency, and that greater separation exists
between their IMF frequency distributions. This indicates a greater consistency in
the pattern of extracted EEG components between trials, and that these compo-
nents have been better separated. In particular, the mu and beta rhythms exhibit
clear separation using NA-MEMD, contained in the IMF's ¢o(t) and ¢3(t). Using the
univariate EEMD, these two different rhythms were extracted erroneously within
a single IMF component, cs(t), illustrating poorer separability compared to the
multichannel NA-MEMD algorithm. Observe that the different frequency ranges
corresponding to the IMFs of NA-MEMD were also more consistently distributed
across the subjects than those obtained from EMD and EEMD.

6. Discussion

We have shown that the improvements offered by NA-MEMD, in terms of reduced
residual noise in the output, lower sensitivity to added noise power and enhanced
frequency localization, make it a viable alternative to both EMD and EEMD when
processing real world EEG data. It should be mentioned that the noise-assisted
methods, including both EEMD and NA-MEMD, are expected to be useful for
signals in which the dyadic filter bank decomposition may be relevant. That is, if the
desired signal resides in multiple dyadic sub-bands, then choosing the noise-assisted
methods for decomposition may even “spread” the desired signal across multiple
IMFs, resulting in unwanted mode-mixing. In those cases, enforcing a dyadic filter
bank structure on the input signal may reduce the inherent data-driven ability of
EMD-based algorithms. For instance, the sharpness of the NA-MEMD filter due to
its quasi-dyadic filter bank nature has been found to strip the harmonics off from
the intrinsic nonlinear waves, such as the Duffing waves. However, in most cases,
this problem can be remedied by an additional rectification step of combining two
components into a single component. For the same reason, it has been observed that
the performance of NA-MEMD deteriorates with an increase in the noise power,
above 10% relative to the original signal (See Fig. 7(f)). Our analysis suggests that
the optimal noise levels for NA-MEMD are in the range of 2-10% of the input data
power (variance).

We also encountered instances where NA-MEMD did not offer improvement
or even performed worse than the standard EMD approach; for instance, in the
classical case of two-tone signals, that is, signals containing sum of two sinusoids.
Such signals consist of pure oscillatory components which are already IMFs within
standard EMD, by its very design. Adding noise channels to such data, as in the
NA-MEMD method, makes it hard for the algorithm to accurately extract the
pure oscillatory components. A similar trend is expected in the case of multivariate
signals consisting of pure rotational components. However, most real world signals,
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such as EEG data rarely exhibit pure oscillations or rotations and are, thus, a
perfect match for NA-MEMD, as shown in Sec. 5.

7. Conclusions

We have advocated the usefulness of calculating EMD using NA-MEMD. The
method has been shown to be flexible and to yield physically meaningful compo-
nents of the decomposition, whereby the power of added noise controls the operation
of the algorithm. The mode-alignment and the filter bank property of NA-MEMD
have been illustrated through examples, and the equivalent impulse response of
the algorithm has also been given. Illustrative examples and performance evalua-
tions have been provided to demonstrate the usefulness of the NA-MEMD method
in comparison with the standard EEMD method, in terms of frequency localiza-
tion, noise interference, and mode-mixing. Finally, the advantage of NA-MEMD
has been demonstrated in the extraction and localization of frequency signatures
in applications related to BCI based on EEG recordings.

It should be pointed out that in many applications the multivariate signal pro-
cessing approach is highly desirable and of crucial importance. For instance, EEG
data is inherently multivariate and exhibits significant coupling between its differ-
ent channels. To obtain physically meaningful interpretation from such data sets,
it is therefore desirable to decompose all the variables observed into the same num-
ber of IMF components of comparable scales. In such cases, the application of
NA-MEMD yields great advantages over the univariate EMD and EEMD methods
applied channel-wise.

Appendix A. Low-Discrepancy Hammersley Sequences and
MEMD Algorithm

The discrepancy can be seen as a measure of irregularity of the distribution, or
in other words, a quantitative measure for the deviation from the uniform distri-
bution. This is important in quasi-Monte Carlo methods which are used to gen-
erate well-conditioned deterministic point sets for solving numerical integration
problems.

The discrepancy Dk (B; P) of a point set P containing K points, consisting of
T1,%2,...,rx € I where I is the closed s-dimensional unit cube, is given by

A(B; P)

Dk (B; P) = sup — % As(B)|, (A1)

BeB

where B is a family of Lebesgue-measurable subsets of I, and A(B; P) is the number
of elements of the set x1,xs,...,xx € I, in B. The resulting value of D is always
between 0 < D (B; P) < 1.
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The error analysis of the quasi-Monte Carlo integration shows that the error
bounds are small for point sets with low discrepancy measure. This leads to an
informal definition of the low-discrepancy sequences, as those having lower value of
DK (B, P)

A positive integer n > 0, can be represented in base b using

L1
n= Z aj(n)b’. (A.2)
§=0
For an integer b > 2, a radical inverse function ¢; in base b can then be defined as
L—1 ‘
op(n) = Z aj(n)b=7~1 foralln > 0. (A.3)
=0

The van der Corput sequence in base b is the sequence 1, xo,...,x;_1 with z, =
¢p(n) for all n > 0.

Let s > 1 be the given dimension and by, ...,bs be arbitrary coprime integers
> 2. Then the Halton sequence in the bases by, ..., bs can be defined as the sequence
X1,X2,... with

Xn = (¢, (n)y ..., b (n)) for all m > 0. (A4)

Let b1, ...,bs—1 be the coprime positive integers > 2. For a given value of s and
K, the multi-dimensional Hammersley set of size K is defined as

Xn = (%7¢b1(n)7"'7¢6371(n)> fOI"I’L:O,..~7K_1~ (A5)

Algorithm 3: Multivariate EMD

1: Choose a suitable point set for sampling an (p — 1)-sphere;

2: Calculate a projection, denoted by gg, (¢), of the input signal s(¢) along the direc-
tion vector X, , for all v (the whole set of direction vectors), giving gg, (£)}V_,
as the set of projections;

3: Find the time instants {tj }¥_, corresponding to the maxima of the set of
projected signals gg, (t)}V_1;

4: Interpolate [t} ,s(t} )] to obtain multivariate envelope curves eg, (t)}}_;

5: For a set of V direction vectors, the mean m(t) of the envelope curves is calcu-

lated as:

1 14
m(t) = D _ e, (t). (A.6)
v=1

6: Extract “detail” d(t) using d(t) = s(t) — m(¢). If d(¢) fulfills the stoppage
criterion for a multivariate IMF, apply the above procedure to s(t) — d(t),
otherwise apply it to d(¢).
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To generate the uniform samples on a general n-sphere, a linear mapping to
(n— 1) angular coordinates is first performed, and then the direction vectors based
on these coordinates are generated.

Consider a sequence of p-dimensional vectors s(t) = {s1(t), s2(t),...,sp(t)},
representing a multivariate signal with p channels, and the symbol x4, =
{z¥, 25, ... ,x;} denoting a set of v = 1,2,...,V direction vectors along the direc-

tions given by angles 6y = {6,,,0.,,...,0,,_ ,} in R?. Then, the steps for obtaining
signal decomposition via MEMD are summarized in Algorithm 3.
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