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ABSTRACT
A novel framework for the factorisation of complex-valued
data is derived using recent developments in complex statis-
tics. Unlike existing factorisation tools the algorithms can
cater for noncircularity of the input - a necessary feature in
applications for modelling real-world data. It is furthermore
shown how the framework can be constrained to incorporate
nonnegativity, helping generate results which allow a more re-
alistic interpretation. Simulations illustrate the usefulness and
enhanced accuracy for modelling synthetic data and a mixture
of acoustic stimuli.

Index Terms— complex matrix factorisation, widely lin-
ear model, nonnegativity

1. INTRODUCTION

Matrix factorisation is a data-driven tool which decomposes
an input matrix to reflect some underlying data structure.
When combined with constraints such as sparsity or non-
negativity the operation yields a decomposition model with
improved physical interpretability compared to, for example,
PCA or ICA [1] and has great appeal in computer vision [2]
and acoustic scene analysis [3].

Standard acoustic analysis considers only real valued
power spectra, recently however, the benefits of including
phase information has been emphasized (for example in
speech perception and detection [4, 5, 6]), highlighting the
need for robust and physically meaningful complex matrix
factorisation (CMF) algorithms. Recent work has, for in-
stance, combined the concept of nonnegative constraints with
CMF by obtaining factors for input magnitude and phase
information separately [7]. However, it is clearly desirable to
process phase and amplitude information simultaneously to
cater for cross-dynamics in the real and imaginary parts of the
input. Additionally, following results in widely linear adap-
tive signal processing [8, 9, 10], standard CMF algorithms
appear limited in scope as they are optimal only for sig-
nals with rotation invariant probability distributions (circular
data).

Real-world signals are almost invariably noncircular, and
their second order statistical properties need to be considered
within the framework of so-called augmented complex statis-
tics and based on the widely linear model. To this end, we
propose a general model termed augmented complex matrix

factorisation (ACMF), capable of dealing with all available
second order information in the data, contained in both the
covariance and pseudocovariance. Theoretical justification is
also given for the flexibility of the model to impose practi-
cal constraints. It is shown for instance how the model can
be modified to force one of the decomposition matrices to be
real-valued, yielding an algorithm termed real-complex ma-
trix factorisation (RCMF). In this way, it facilitates the appli-
cation of nonnegativity constraints in C and also caters for the
improperness of complex-valued sources.

Simulations illustrate the benefits of applying a widely
linear model in a real-world setting. The general augmented
framework is used to model a mixture of acoustic sources and,
in contrast to standard CMF, allows an accurate estimation of
the noncircular mixing arrangement - crucial in analysis.

2. COMPLEX MATRIX FACTORISATION
Existing complex matrix factorisation algorithms represent a
straightforward extension of the real-valued algorithm. Given
a complex-valued data matrix, Y ∈ C

I×T , complex matrix
factorisation (CMF) operates by finding two complex matri-
ces A ∈ CI×J and X ∈ CJ×T where J ≤ min(I, T ) such
that Y is factorised as well as possible, that is

Y = AX + E (1)
where E ∈ C

I×T denotes an approximation error. Matrix
factorisation can be achieved by minimising the following
cost function

JCMF =
1

2
tr(Y − AX)H(Y − AX) = (2)

1

2
tr(YH

Y − (AX)H
Y − Y

H
AX + (AX)H(AX))

where tr(·) denotes the trace operator and (·)H the Hermi-
tian transpose operator. A standard approach is to perform
alternating minimisation with respect to matrices A and X,
each time optimising one set of parameters while keeping
the other one fixed; this is known as the Alternating Least
Squares (ALS) approach [11]. The stationary points for each
matrix-wise optimisation procedure can be found by equating
the gradient components, ∇AJCMF and ∇XJCMF, to zero.

As the cost function in (2) is a real function of complex
variables, the complex gradients with respect to A and X can
be defined based on the conjugate gradient and CR calculus1,

1For more details concerning CR calculus, see [10, 12].

4072978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



that is

∇AJCMF =
∂JCMF

∂A∗
and ∇XJCMF =

∂JCMF

∂X∗
. (3)

This way, gradient evaluation with respect to A gives

∂

∂A∗
tr((AX)H

Y) = YX
H (4)

∂

∂A∗
tr((AX)H

AX) = AXX
H (5)

whereas the gradients for the other terms in (2) are zero. Fi-
nally, the complex gradient with respect to A is given by

∇AJCMF = −YX
H + AXX

H (6)

In a similar fashion, it can be shown that the gradient with
respect to X is given by

∇XJCMF = −A
H
Y + A

H
AX (7)

Setting the gradients in (6) and (7) to zero, the complex
ALS updates become

A ← [YX
H(XX

H)−1]

X ← [(AH
A)−1

A
H
Y]

(8)

3. CIRCULARITY
For a complex random variable z, the covariance matrix is
given by Czz = E[zzH ] and is normally used in second-order
statistical signal processing. However, it has been shown [8,
9, 10] that complex statistics are not a straightforward ex-
tension of real-valued statistics and to cater fully for all the
second-order statistical information of z it is necessary also
to consider the so-called pseudo-covariance matrix given by
Pzz = E[zzT ].

Consider a random variable z = zr + jzi. Its pseudo-
covariance is given by E[zzT ] = E[z2

r ]− E[z2
i ] + 2jE[zrzi]

and vanishes for uncorrelated real and imaginary parts of
equal variances. Signals for which the pseudo-covariance
is zero are called second-order circular or proper. In prac-
tice however, due to short observation windows, anisotropic
noises, unequal powers of data channels and reflections, it is
only natural to assume and E[zzT ] �= 0. To cater for noncir-
cularity, work [8, 9] has proposed a widely linear framework
in which the signal model is based on the augmented form
of the complex variable given by ẑ = [zT ; zH ]T . Then, the
augmented covariance matrix Cẑẑ is given by

Cẑẑ =

[
z

z
∗

]
[zH

z
T ] =

[
Czz Pzz

C∗
zz

P∗
zz

]
(9)

where (·)∗ denotes the complex conjugate, and contains in-
formation from both the covariance and pseudo-covariance
matrices. Augmented statistics have been employed success-
fully in, for example, the design of adaptive filters [10] where
it was shown that using a widely linear model given by

y = a
T
z + b

T
z
∗, (10)

it is possible to cater for general complex processes (both
second-order circular and noncircular).

4. AUGMENTED CMF
A problem with standard complex matrix factorisation is that
it makes no provision for noncircularity. To that end, we pro-
pose augmented complex matrix factorisation (ACMF) which
operates within a widely linear framework. Given a complex-
valued data matrix, Y ∈ C

I×T , ACMF calculates three fac-
tor matrices A ∈ CI×J , B ∈ CI×J and X ∈ CJ×T where
J ≤ min(I, T ) such that Y is factorised as well as possible
by the widely linear model, that is

Y = AX + BX
∗ + E (11)

Then, factorisation is performed by minimizing

JACMF =
1

2
tr(Y − AX − BX

∗)H(Y − AX − BX
∗) =

1

2
tr(YH

Y−X
H
A

H
Y−X

T
B

H
Y−Y

H
AX+X

H
A

H
AX

+X
T
B

H
AX−Y

H
BX

∗+X
H
A

H
BX

∗+X
T
B

H
BX

∗)
(12)

Applying similar analysis to before, it is straightforward to
show that the gradient with respect to the factor A is given by

∇AJACMF = −YX
H + AXX

H + BX
∗
X

H (13)

and that the gradient with respect to B is given by

∇BJACMF = −YX
T + AXX

T + BX
∗
X

T (14)

Evaluation of the gradient with respect to X gives the non-
zero terms

∂

∂X∗
tr(XH

A
H
Y) = A

H
Y

∂

∂X∗
tr(XH

A
H
AX) = A

H
AX

∂

∂X∗
tr(YH

BX
∗) = B

T
Y

∗

∂

∂X∗
tr(XH

A
H
BX

∗) = (AH
B + (AH

B)T )X∗ (15)

Their combination yields

∇XJACMF = (16)

−(AH
Y+B

T
Y

∗)+A
H(AX+BX

∗)+B
T(B∗

X+A
∗
X

∗)

which can be expressed in a compact form as

∇XJACMF = −([AH
B

T ]Ŷ) + [AH
B

T ]CX̂ (17)

where

C =

[
A B

B
∗

A
∗

]
, Ŷ =

[
Y

Y
∗

]
, X̂ =

[
X

X
∗

]
Finally, setting the gradients in (13), (14) and (17) to zero, the
augmented complex ALS updates are given by

A ← [(YX
H − BX

∗
X

H)(XX
H)−1]

B ← [(YX
T − AXX

T )(X∗
X

T )−1]

X̂ ← [(CH
C)−1

C
H
Ŷ]

(18)
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5. REAL-COMPLEX MATRIX FACTORISATION
Most practical applications of matrix factorisation are based
on prior knowledge of the factors, such as their nonnegativity.
Since this assumption is not possible to implement in the com-
plex domain directly, we propose a modification of the widely
linear framework that supports nonnegativity by constraining
the general ACMF model given in (11) such that A = B, that
is

Y = AX+AX
∗+E = A(X+X

∗)+E = AX�+E (19)

where X� = 2�{X} and real-valued. The factorisation ma-
trices, A ∈ CI×J and X� ∈ RJ×T where J ≤ min(I, T ),
are now obtained by minimising

JRCMF =
1

2
tr(Y−AX−AX

∗)H(Y−AX−AX
∗) (20)

with the respective gradients

∇XJRCMF = − A
H
Y − A

T
Y

∗ + A
H
AX + A

T
A

∗
X

+ (AH
A + (AH

A)T )X∗

=−(AH
Y+A

T
Y

∗) + A
H
A(X+X

∗)

+ A
T
A

∗(X+X
∗)

= − Â
H
Ŷ + Â

H
ÂX� (21)

where Â = [A;A∗], and

∇AJRCMF =YX
H + AXX

H + AX
∗
X

H

− YX
T + AXX

T + AX
∗
X

T

= − YX
T
� + AX�X

T
� (22)

Setting the gradients in (21) and (22) equal to zero gives
the ALS updates for the real-complex matrix factorisation
(RCMF) in the form

A ← [YX�
T (X�X�

T )−1]

X� ← [(ÂH
Â)−1

Â
H
Ŷ]

(23)

As X� is real-valued and A can be written as |A|ejφ,
where φ is a I × J matrix that contains the phase informa-
tion of A, nonnegative constraints can now be placed on X�,
together with normalisation and sparsity constraints on both
X� and on |A|.

6. EXPERIMENTS

Simulations were first conducted on synthetic data to illustrate
the benefits of using ACMF and RCMF for improper complex
sources. In the second set of simulations, the convenience of
using ACMF for modelling acoustic mixtures is shown.

6.1. Synthetic Data
The performances of CMF, ACMF and RCMF were com-
pared for factorising complex constellations, a typical com-
munications scenario. An example of a circular constellation
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(a) Factorisation performance for cir-
cular arrangement
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(b) Factorisation performance for
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Fig. 1. Factorisation performances for complex constellations
using CMF, ACMF and RCMF

arrangement contains the elements [1+j, 1−j,−1+j,−1−j]
and a noncircular one contains the elements [1 + j,−1 − j].
For each of these two arrangements a 100 × 100 matrix was
created containing constellation values selected in a random
fashion. With the constellation matrix as an input, Y, the
CMF, ACMF and RCMF algorithms were applied to obtain
factorisations for different values of λ. The parameter λ con-
trols the dimensions of the factorisation matrices for the algo-
rithms as J = 2λ for ACMF, J = 3λ for CMF and J = 4λ

for RCMF. This ensures an equal number of factorisation el-
ements and a fair performance comparison.

The error rates, that is the percentage of constellation
points estimated incorrectly after synthesis of the input, are
shown respectively in Fig. 1(a) and Fig. 1(b) for the circu-
lar and noncircular constellation arrangements. Conforming
with the analysis, in the case of the circular constellation the
performances of the algorithms were equivalent, while in the
case of the noncircular constellation the performances of the
ACMF and RCMF algorithms outperformed CMF.

6.2. Modelling Acoustic Mixtures
Two speakers were placed approximately 30cm apart, facing
a line of 16 microphones2, with each speaker playing a sin-
gle sound stimulus only. Stimulus A was a sinusoid of fre-
quency 441Hz and stimulus B was a sinusoid of frequency
1764Hz. Thus the pair of speakers can be regarded as a single
complex source, with A and B as its real and imaginary parts
respectively. To obtain a suitable complex representation for
the recordings3, each neighbouring pair of microphones were
treated as the real and imaginary parts of a single complex ob-
servation, thus giving 8 complex observations which formed
the rows of the observation matrix Y.

Both the ACMF and CMF algorithms were used to fac-
torise Y with J equal to the number of sources (J = 1) to ob-
tain physically meaningful results. To mitigate for the prob-
lem of uniqueness associated with matrix factorisation4, the
algorithms were combined with an additional sparsity con-

2The distance between each microphone was 3cm and the distance be-
tween the microphone line and the speakers was approximately 40cm.

3Recordings were made at a sampling frequency of 44100Hz.
4Several local minima exist for the cost functions of both CMF and

ACMF.
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straint. The ‘correct’ source estimates were those therefore
which maximised

Jsparsity = −
∑

i

log(1 + P�(X)(i)) −
∑

i

log(1 + P�(X)(i))

where P�(X) and P�(X) denote respectively the power spectra
for the real and imaginary parts of the estimated source matrix
X.

Both algorithms were capable of estimating the underly-
ing source (acoustic stimuli). The estimate using ACMF
(XACMF) is shown in Fig. 2 where the real and imagi-
nary parts reflect stimuli A and B respectively. Given
that the estimate for the source was correct using both the
CMF and ACMF algorithms, the synthesised observations
(that is YCMF = ACMFXCMF in the case of CMF and
YACMF = AACMFXACMF + BACMFX

∗
ACMF in the case of

ACMF) were compared with the original observation Y to
illustrate their performance in modelling the source mixture.
It was found that CMF could not synthesise Y accurately,
indicating an inadequate mixing model. This is evident, for
example, in Fig. 3 which shows the observation of the fifth
microphone in the top panel, or the real part of the third
complex observation (real part of row 3 of matrix Y), and
the corresponding synthesis using CMF and ACMF in the
middle and lower panels. Note the increase in accuracy using
the ACMF model. This result is consistent with synthesised
estimates for all other rows in Y.
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Fig. 2. Real and imaginary parts of source estimate (sound
stimuli at 441Hz and 1764Hz) using ACMF (XACMF)
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Fig. 3. Real part of the third row of the observation matrix
(top) and its synthesised estimate using CMF (middle) and
ACMF (bottom)

7. CONCLUSIONS

Two novel complex-valued factorisation algorithms that op-
erate within the widely linear framework have been presented
which, in the role of blind source separation, provide a more
robust model when the mixing arrangement is noncircular.
For insight, one of the algorithms constrains one of the factors
to be real-valued allowing nonnegative constraints to enhance
the uniqueness of the operation and to help generate more
physically meaningful results.
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