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Abstract

A novel ‘delay vector variance’ (DVV) method for detecting the presence of determinism and nonlinearity in a time series
is introduced. The method is based upon the examination of local predictability of a signal. Additionally, it spans the complete
range of local linear models due to the standardisation to the distribution of pairwise distances between delay vectors. This
provides consistent and easy-to-interpret diagrams, which convey information about the nature of a time series. In order to
gain further insight into the technique, a DVV scatter diagram is introduced, which plots the DVV curve against that for
a globally linear model (surrogate data). This way, the deviation from the bisector line represents a qualitative measure of
nonlinearity, which can be used additionally for constructing a quantitative measure for statistical testing. The proposed
method is compared to existing methods on synthetic, as well as standard real-world signals, and is shown to provide more
consistent results overall, compared to other, established nonlinearity analysis methods.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the predictability of a time series has received ample attention in the signal processing community,
since it is a necessary (yet insufficient) condition for indicating the presence of deterministic chaos. However, since
many nonlinearity analysis techniques rest upon chaos theory, determinism and nonlinearity have been confounded
in a single analysis, and, subsequently, methods analysingonly determinism in a time series are not widespread.

To this cause, the methods introduced by Kaplan[4] and Kennel et al.[6], both rest upon the examination
of this predictability of a time series. Furthermore, Kaplan’sδ–ε method has been used in combination with the
surrogate data strategy for examining the linear or nonlinear nature of a time series[5]. However, a unified analysis
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of the predictability and the degree of nonlinearity remains an open issue. It is natural to ask, for instance, whether
predictability implies the presence of nonlinearities. Therefore, there is a need for a comprehensive study to provide
further insight into this question.

We propose a novel analysis method, the ‘delay vector variance’ (DVV) method, which follows an approach
similar to Kaplan’s, namely that of characterising a time series based upon its predictability, and comparing the
result to those obtained for linearised versions of the signal (surrogates). Due to the standardisation within the
algorithm, the method is robust to the presence of noise, and further allows for both an easy-to-interpret qualitative
visualisation, and a quantification of the analysis results. To further illustrate the benefits of the proposed approach,
we investigate the similarities and differences between the proposed approach and that described in[4], and perform
a comparative study including other widespread nonlinearity analysis methods.

2. Nonlinearity methods

Several established nonlinearity analysis methods, which are briefly described in this section, are based on the
time-delay embedding representation of a time series,X = {x(k)|k = 1, . . . , N}, i.e., based upon a set ofN delay
vectors (DVs) of a given embedding dimensionm, denoted byx(k) = [xk−m, . . . , xk−1], a vector containingm
consecutive time samples. Every DVx(k) has a correspondingtarget, namely the following sample,xk.

Nonlinearity analyses can be performed by computing a test statistic for the original time series and for its 99
so-called ‘surrogates’ (using a one-tailed rank test, this allows for a statistical test at the level of 0.01). These are
realisations of a composite null hypothesis, namely that the time series is generated from a linear and stationary
process driven by a Gaussian white noise input, the output of which is amplitude transformed by a zero-memory
observation function. Many methods exist for the generation of such surrogate time series (for an overview, see[11]).
We have opted for the iterative amplitude adjusted Fourier transform (iAAFT) method, which yields time series with
amplitude spectra identical to that of the original time series, and approximately identical signal distributions.1 In the
sequel, we briefly tackle several key issues on time series characterisation, such as deterministic versus stochastic,
and linear versus nonlinear behaviour.

2.1. Deterministic versus stochastic plots

The method introduced by Casdagli[3] examines the (robust) average prediction errorE(n) for local linear
models of a given embedding dimensionm. The degree of locality is controlled by the number of nearest DVs (in
the Euclidean sense in them-dimensional space),n, that are used for estimating the model parameters. The complete
set of DVs is divided into a test set,Vtest, and a training setVtrain. For every DVx(k) in the test set, a subsetΩk is
generated by grouping then DVs in the training set that are nearest tox(k). The prediction error,E(n), is computed
as the mean (robust) prediction error overVtest, namely

E(n) = 〈|xk − x̂k|〉x(k)∈Vtest, (1)

wherex̂k is the output generated by a linear model, when provided withx(k) as its input, andxk the target forx(k).
The model parameters are determined using the setΩk (Ωk ⊂ Vtrain, thusx(k) /∈ Ωk). The mean prediction error
E(n) is then computed as a function of the degree of locality (numbern of DVs in the setsΩk). The resulting plots,
representingE as a function of the number of nearest neighboursn, are referred to as ‘DVS plots’. The number of
DVs in the setsΩk yielding the lowest mean prediction error,nopt, i.e., the position of the minimum in the DVS

1 We apply the end-to-end compensation to alleviate the bias towards a flatter amplitude spectrum (for a detailed discussion, see[7,11]).
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plot, is used as an indicator of the nature of the time series under examination. A minimum on the left-hand side
(near the ‘local linear extreme’) indicates a deterministic nature, and a minimum on the right-hand side (near the
‘global linear extreme’) indicates a linear and stochastic nature. Minima occurring in between the two extremes,
for increasing values ofnopt, correspond to gradually fitting ‘more linear’ and ‘more stochastic’ models, and are an
indication of nonlinearity[3]. However, the DVS method does not allow for a quantitative analysis.

2.2. Traditional nonlinearity metrics

To undertake the performance comparison between the proposed DVV method and other nonlinearity analysis
methods, we have implemented two traditional measures of nonlinearity, which have also been used in[9], namely
the third-order autocovariance (C3):

tC3(τ) = 〈xkxk−τxk−2τ〉, (2)

and a measure of the deviation due to time reversibility (REV):

tREV(τ) = 〈(xk − xk−τ)
3〉, (3)

whereτ is a time lag for which simplicity and convenient comparison is set to unity in all simulations. In combination
with the surrogate data strategy, both measures yield two-tailed tests for nonlinearity.

2.3. The δ–ε method

The method proposed by Kaplan[4] was initially used for examining the degree of predictability of a time series
without constructing its model, assuming a continuous function that maps the DVs onto their corresponding targets.
The analysis can be summarised as follows:

• The pairwise (Euclidean) distances between DVsx(i) andx(j) are computed and denoted byδi,j. The distance
between corresponding targets is denoted byεi,j.

• Theε-values are averaged, conditional toδ, i.e.,ε(r) = ε̄j,k, for r ≤ δj,k < r + �r, where�r denotes the width
of the ‘bins’ used for averagingεj,k.

• The smallest value forε(r) is denoted byE = limr→0 ε(r), and is a measure for the predictability of the time
series.

Thus, the heuristic for determiningE is theY -intercept of the linear regression of theNδ (δ, ε)-pairs with smallest
δ. This value can be used as a test statistic for a left-tailed nonlinearity test using surrogate data.2 In our simulations,
we have setNδ = 500.

3. Proposed method

We introduce a novel analysis of a time series which examines the predictability of a time series by virtue of the
observation of the variability of the targets. The approach is somewhat related to the false nearest neighbours[6]
and theδ–ε methods described earlier.

For a given embedding dimensionm, the mean target variance,σ∗2, is computed over all setsΩk. A setΩk is
generated by grouping those DVs that are within a certain distance tox(k), which is varied in a manner standardised

2 A Matlab implementation of theδ–ε method and the test statistic is publicly available fromhttp://www.macalester.edu/∼kaplan/Software/.

http://www.macalester.edu/kaplan/Software/
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with respect to the distribution of pairwise distances between DVs. This way, the threshold scales automatically
with the embedding dimensionm, as well as with the dynamical range of the time series at hand, and thus, the
complete range of pairwise distances is examined.3 The proposed DVV method can be summarised as follows for
a given embedding dimensionm:

• The mean,µd , and standard deviation,σd , are computed over all pairwise distances between DVs,‖x(i) − x(j)‖
(i �= j).

• The setsΩk are generated such thatΩk = {x(i)| ‖x(k) − x(i)‖ ≤ τd}, i.e., sets which consist of all DVs that lie
closer tox(k) than a certain distanceτd , taken from the interval [min{0, µd −ndσd}; µd +ndσd ], e.g., uniformly
spaced, wherend is a parameter controlling the span over which to perform the DVV analysis.

• For every setΩk, the variance of the corresponding targets,σ2
k , is computed. The average over all setsΩk,

normalised by the variance of the time series,σ2
x , yields the measure of unpredictability,σ∗2:

σ∗2 = (1/N)
∑N

k=1 σ2
k

σ2
x

. (4)

We only consider a variance measurementvalid, if the setΩk contains at least 30 DVs.

As a result of the standardisation of the distance axis, the resulting ‘DVV plots’ are easy-to-interpret. The presence
of a strong deterministic component will lead to small target variances for small spans. At the extreme right, the
DVV plots smoothly converge to unity, since for maximum spans,all DVs belong to the same set, and the variance
of the targets is equal to the variance of the time series. If this is not the case, the span parameter,nd , should be
increased.

In the following step, the linear or nonlinear nature of the time series is examined by performing DVV analyses on
both the original and a number of surrogate time series, using the optimal embedding dimension of the original time
series. Due to the standardisation of the distance axis, these plots can be conveniently combined in ascatter diagram,
where the horizontal axis corresponds to the DVV plot of the original time series, and the vertical to that of the
surrogate time series. If the surrogate time series yield DVV plots similar to that of the original time series, the ‘DVV
scatter diagram’ coincides with the bisector line, and the original time series is likely to be linear. The deviation from
the bisector line is, thus, an indication of nonlinearity, and can be quantified by the root mean square error (RMSE)
between theσ∗2’s of the original time series and theσ∗2’s averaged over the DVV plots of the surrogate time series
(note that while computing this average, as well as with computing the RMSE, only the valid measurements are
taken into account). In this way, a single test statistic is obtained, and traditional (right-tailed) surrogate testing can
be performed (the deviation from the average is computed for the original, and surrogate time series).

4. Simulations

To verify the proposed analysis, a number of time series are generated, for which we can control the predictability
and the degree of nonlinearity.

4.1. Signals

A unit-variance deterministic signal (sum of three sine waves, scaled to unit variance) is contaminated with
uniformly distributed white noise with standard deviationσn. After standardising to unit variance, the resulting

3 For computational reasons, we restrict the analysis by computing the pairwise distances between a subset of 500 DVs and the complete set
of DVs, selected by subsampling the DVs. Note that this is not equivalent to subsampling the time series.
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signal,nk, is passed through a second-order nonlinear nonlinear system, described by

xk = arctan(γnlCTx(k)) + 1
2nk,

whereγnl controls the degree of nonlinearity,C = [0.2, −0.5], andx(k) are DVs of embedding dimensionm = 2.
This is a benchmark nonlinear system referred to as model II in[8]. In this way, the predictability is influenced byσn,
whereas the degree of nonlinearity is controlled byγnl. In total, we generate nine time series, withσn ∈ {0, 0.25, 0.5}
andγnl ∈ {0, 0.5, 1.0}. We refer this set of signals as the ‘tile’ set, since, in a way, it tiles the space mentioned in
[10], formed by a deterministic/stochastic and a linear/nonlinear axis.

The algorithms are further tested on five time series that have been used for benchmarking in[1]: Model 1
(deterministic chaotic), Model 2 (generalised autoregressive conditional heteroscedastic, or GARCH process),
Model 3 (nonlinear moving average, NLMA process), Model 4 (autoregressive conditional heteroscedastic, ARCH
process) and Model 5 (autoregressive moving average, ARMA model), each of which consist of 2000 samples. Thus,
only the Model 5 series is linear (for a more detailed description, see[1]). Finally, to complete the comparison, we
include four standard time series which have been analysed frequently in the context of nonlinearity, namely the
Sunspots series (280 samples), the Laser data from the Santa Fe Competition (1000 samples), the first coordinate
of a realisation of the Lorenz series (1000 samples), and a realisation of a Hénon series (1000 samples).

4.2. Nonlinearity analyses

For the tile set, we used an embedding dimension ofm = 2, and all analyses for the benchmark set were performed
with m = 3. For the standard time series, we arbitrarily setm to 2. This convenience did not influence the generality
of our results. The results of the rank tests for the tile set are shown inTable 1(significant rejections at the level
of 0.1 of the null hypothesis, i.e., an underlying Gaussian linear stochastic model, the output of which is amplitude
transformed, are shown in italics). Note that the DVS method is not included in this table, since it does not allow
for a quantitative analysis. In the absence of noise (σn = 0), only theδ–ε and DVV method detected nonlinearities
for slopesγnl exceeding 1.5. When noise was added to the driving signals, the time reversal metric (REV) was able
to detect the nonlinear nature for high slopes, but theδ–ε method failed. The third-order cumulant (C3) was unable
to detect nonlinearities in this type of signals. Only the DVV method consistently detected nonlinear behaviour for
γnl ≥ 2, for all noise levels.

Table 1
Results of the rank tests for the tile seta

γnl σn δ–ε REV C3 DVV

0.0 0.0 99 38 31 22
1.5 0.0 6 59 45 100
2.0 0.0 2 73 54 100
2.5 0.0 2 52 65 100

0.0 0.5 56 81 36 52
1.5 0.5 73 82 52 98
2.0 0.5 94 100 54 100
2.5 0.5 95 87 43 100

0.0 1.0 52 82 34 28
1.5 1.0 52 89 57 82
2.0 1.0 11 24 71 100
2.5 1.0 76 41 38 100

a Significant rejections of the null hypothesis at the level of 0.1 are given in italics.
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Fig. 1. DVS results for the tile set. The degree of nonlinearity increases from left to right, the noise level from top to bottom.

The results for the DVS and the DVV analyses are shown visually inFigs. 1 and 2, respectively. The degree
of nonlinearity,γnl, increases from left to right, and the noise level,σn, increases from top to bottom. The DVS
plots inFig. 1show that, asγnl increases, the error discrepancy between the best local linear model and the global
linear model becomes larger, indicating, indeed, a higher degree of nonlinearity. In the DVV scatter diagrams
(Fig. 2), the effect of increasing nonlinearity as described above, corresponds to a stronger deviation from the
bisector line (dashed line). The effect of increasingσn in the DVS plots is a higher error value at the optimal
degree of locality. The span on the horizontal axes of the DVV scatter diagrams becomes smaller asσn increases.
Both methods are in agreement and show a gradual change as a function of the degree of nonlinearity and the
noise level. Thus, for instance in the first columns of the tile figures, the lowest error increases (Fig. 1), and the
horizontal range spanned by the DVV scatter diagrams decreases (Fig. 2) from top to bottom, i.e., for increasing
noise levels. Conversely, considering the first line in the tile figures, from left to right, i.e., for increasing degrees
of nonlinearity, the minimum becomes more pronounced inFig. 1, and the deviation from the bisector line grows
stronger inFig. 2.
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Fig. 2. DVV results for the tile set. The degree of nonlinearity increases from left to right, the noise level from top to bottom. The error bars
indicate one standard deviation from the mean ofσ∗2.

The results for the remaining time series are shown inTable 2. Since the DVS plots do not allow for a quantitative
analysis, they are shown inFigs. 3 and 4for the benchmark and standard sets, respectively. The corresponding
DVV scatter diagrams are visualised inFigs. 5 and 6for comparison. It is clear that the different methods yield
different results. All methods detect nonlinearities in the Hénon and Model 4 time series, and theδ–ε, DVV and
DVS methods consistently detect nonlinearities for all other chaotic series (Laser, Lorenz and Model 1). Nonlinear
behaviour is detected in the Sunspots time series by DVS and REV. The DVV method is the only one that rejects the
null hypothesis for all nonlinear signals described in[1] (Models 1–4).4 None of the methods detect nonlinearities
in the linear time series, Model 5.

4 Note that in[1], theδ–ε method also rejects the linearity hypothesis for Model 2, whereas in our simulations, the null hypothesis is accepted,
albeit marginally so. This can be due to our choice of the time lagτ, which has been optimised for in[1], but has been set to unity in all our
simulations, or to a different approach to the estimation ofE.
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Table 2
Results of the rank tests for the standard and benchmark time seriesa

Signal δ–ε REV C3 DVV

Model 1 3 1 13 100
Model 2 12 97 84 100
Model 3 8 73 100 100
Model 4 1 97 100 100
Model 5 57 41 32 16
Sunspots 30 100 8 43
Laser 1 45 1 100
Lorenz 1 1 19 100
Hénon 1 1 100 100

a Significant rejections of the null hypothesis at the level of 0.1 are given in italics.

Fig. 3. DVS plots of the five benchmarks signals used in[1].

Fig. 4. DVS plots of the four standard signals.
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Fig. 5. DVV scatter diagrams of the five benchmarks signals used in[1].

Fig. 6. DVV scatter diagrams of four standard signals.

5. Discussion

We have introduced a novel nonlinearity analysis technique, the DVV method, which examines the local pre-
dictability of a time series, givenm previous samples. It is related to the false nearest neighbour approach[6] and
the δ–ε technique[4]. A comparison has been made between the proposed DVV method and several established
nonlinearity analysis techniques, namely the ‘deterministic versus stochastic’ (DVS) plots, a time reversal (REV)
technique, a third-order cumulant (C3) technique, and theδ–ε method. All the methods except the DVS plots com-
pute a test statistic on the original time series and on 99 surrogates, which implement a composite null hypothesis of
a linear, stationary and Gaussian process, the output of which is amplitude transformed by a zero-memory nonlinear-
ity. The DVS plot yields a single plot, the position of the local minimum of which reflects the degree of nonlinearity
that is present in the time series.

In order to gain further insight, we have generated a set of synthetic time series by gradually increasing the
degree of nonlinearity and the noise level. This way, a space formed by the degree of nonlinearity and the degree of



176 T. Gautama et al. / Physica D 190 (2004) 167–176

determinism in a time series is tiled, and the performance of the different analysis methods can be systematically
examined. Each of the 12 time series in the set is driven by a stationary, Gaussian process. Thus, rejections of the
null hypothesis can be attributed to the presence of nonlinearities. Only the proposed DVV and the DVS method
consistently detect nonlinearities when present in the time series in our simulations.5 Furthermore, analysis results
have been compared for the benchmark time series described in[1], which consist of four nonlinear and one linear
time series, showing that the DVV method is able to reject the linearity hypothesis for these four types of nonlinearity
as well, whereas the other methods fail to detect the nonlinearities is one or more of these four time series, albeit
that theδ–ε method only marginally fails to reject one of the nonlinear cases. A final comparison has been made of
the results for four time series, which have been frequently addressed in the context of nonlinearity analysis, namely
the Sunspots, Laser, Lorenz and Hénon map time series. The DVS method indicates the presence of nonlinearity in
all four of these time series andδ–ε, REV and DVV in only three.

Overall, we have found that the proposed DVV method yields more consistent results compared to the other
methods, and that the results are straightforward to interpret. We have restricted our analyses to a convenient choice
of the time lag,τ, in all simulations, and, in the case of the DVS andδ–ε method, the embedding dimension,m, has
been arbitrarily chosen. For the standard time series, we have also determinedm using Cao’s method[2], yielding
m = 12, 9, 7, 6 for the Sunspots, Laser, Lorenz and Hénon series. The results for the DVV method remained the
same, but theδ–ε method failed on the Lorenz series. A proper choice of these parameters can greatly influence
analysis results, but is by no means evident. Therefore, the relative insensitivity of the DVV method to the parameter
choice is a desirable property for a robust analysis method.
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