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Frequency Response of Digital Filters

• Frequency response of digital Filter: H(eθ) = |H(eθ)|e−φ(θ)

– continuous function of θ with period 2π ⇒ H(eθ) = H[e(θ+m2π)]

• |H(eθ)| is the called the Magnitude function.

→ Magnitude functions are even functions ⇒ |H(eθ)| = |H(e−θ)|

• φ(θ) is called the Phase (lag) angle, φ(θ) , ∠H(eθ).

→ Phase functions are odd functions ⇒ φ(θ) = −φ(−θ)

• More convenient to use the magnitude squared and group delay
functions than |H(eθ)| and φ(θ).

– Magnitude squared function: |H(eθ)|2 = H(z)H(z−1)
∣

∣

z=eθ

– It is assumed that H(z) has real coefficients only.

– Group delay function τ(θ) = dφ(θ)
dθ . Measure of the delay of the filter

response.
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Digital Filter Frequency Response: Poles & Zeros

• Complex zeros zk and poles pk

occur in conjugate pairs.

• If zk = a is a real zero/pole
of |H(eθ)|2 ⇒ z−1

k = a−1 is
also a real zero/pole.

• If zk = rke
θ is a

zero/pole of |H(eθ)|2 ⇒
rke

−θ, ( 1
rk

)eθ and ( 1
rk

)e−θ

are also zeros/poles.

Occurs in pairs

Occurs with even multiplicity

with even multiplicity
Occurs in conjugate pairs

Occurs in quadruples

z−plane

2

2

−2

−2

ℑ{z}

ℜ{z}
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Digital Filters: Transfer Functions

• The problem of finding the transfer function of a filter is the problem of
universal function approximation. This is usually solved by involving
some basis functions (Fourier, Chebyshev, ...). In our case, the basis
functions will be polynomials or rational functions in z (or z−1.

• Finite Impulse Response (FIR) filter: Digital filter characterised by
transfer functions in the form of a polynomial

H(z) = a0 + a1z
−1 + · · · + zmz−M

• Infinite Impulse Response (IIR) filter: characterised by transfer
functions in the form of a rational function

H(z) =

M
P

i=0
aiz

−i

N
P

j=0
bjz−j

= A(z−1)
B(z−1)
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Digital Filters: Transfer Functions Properties

• FIR filters are stable and causal.

• IIR filters are:

– Stable if all the poles of H(z) are within the unit circle
– Causal if bL is the first non-zero coefficient in the denominator (i.e.

b0 = b1 = · · · = bL−1 = 0 and a0 = a1 = · · · = aL−1 = 0 .

• Causal filters are normally assumed, hence IIR filters are commonly
written as:

H(z) =

M
P

i=0
aiz

−i

1+
N
P

j=1
bjz−j

= A(z−1)
B(z−1)

, b0 = 1

• We would ideally like to design filters with linear phase in the
passband - what about the phase in the stopband?
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Digital Filters: Magnitude and Phase Characteristics
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Phase Characteristics

Band−pass Filter All−pass Filter

Band−reject Filter

High−pass Filter

Low−pass Filter

θ rad2π

|H(eθ)|

π-π-2π

θ rad2π

|H(eθ)|

π-π-2π

-2π -π π

|H(eθ)|

2π θ rad

θ rad2π

|H(eθ)|

π-π-2π -2π -π π

|H(eθ)|

2π θ rad

-2π π 2π 3π-π

φ(θ)

θ rad
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Design of All-pass Digital Filters

• An all-pass filter is an IIR filter with a constant magnitude function for
all digital frequency values.

• For a transfer function H(z) to represent an all-pass filter is that for
every pole pk = rke

jθ, there is a corresponding zero zk = 1
rk

ejθ. The
poles and zeros will occur in conjugate pairs if θk 6= 0 or π.

• A digital filter H(z) obtained by cascade connection of multiple all-pass
filters H1(z),H2(z) · · ·HN(z) sections is itself an all-pass filter, and can
be represented by

H(z) = H1(z)H2(z) · · ·HN(z)

◦ So why do we need all-pass filters? They are phase-selective (as
opposed to frequency selective) and are extremely useful in the
design of DSP systems.
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First order All-pass Digital Filter

• A typical first-order section of an all-pass digital filter has a transfer
function

H1(z) =
z−1 − a

1 − az−1
(1)

where a is real and to be stable, we must have |a| < 1.

a

Unit Circle

Re[z]

Im[z]

1/a

Figure 1: Pole-zero pattern of first order all-pass digital filter.
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First- and Second-Order All-pass Digital Filter

◦ The magnitude function is unity for all frequencies, as given by

|H1(e
jθ)|2 =

∣

∣

e−jθ − a

1 − ae−jθ

∣

∣

2
=

∣

∣

cos θ − a − j sin θ

1 − a cos θ + aj sin θ

∣

∣

2
=

1 − 2a cos θ + a2

1 − 2a cos θ + a2
= 1

◦ A typical second-order section of an all-pass digital filter

H2(z) =
1 − ( 2

rk
) cos θkz

−1 + ( 1
r2
k
)z−2

1 − 2rk cos θz−1 + r2
kz

−2
=

[1 − ( 1
rk

)z−1ejθ][1 − ( 1
rk

)z−1e−jθ]

[1 − rkz−1ejθ][1 − rkz−1e−jθ]

⊛ The poles are at p1,2 = rke
±jθk and the zeros at z1,2 = 1

rk
e±jθk

◦ For filter to be stable, |rk| < 1.
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First- and Second-Order All-pass Digital Filter

X −θ

θ

r

1

Im[z]

Unit Circle

Re[z]

1/rX

Figure 2: Pole-zero pattern of a second order all-pass digital filter.
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First order All-pass Digital Filter

The magnitude function is given by

|H2(e
jθ)|2 = |

ejθ − ( 1
rk

)ejθk

ejθ − rkejθk
|2|

ejθ − ( 1
rk

)e−jθk

ejθ − rke−jθk
|2 (2)

where |
ejθ−( 1

rk
)ejθk

ejθ−rkejθk
|2 = |

ejθ−( 1
rk

)e−jθk

ejθ−rke−jθk
|2 = r−2

k

Hence
|H2(e

jθ)|2 = r−4
k = c (3)

where c is a constant, implying that it represents an all-pass filter.
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Design of FIR Digital Filter

The transfer function of FIR digital filter is in the form of

H(z) =

N−1
X

n=0

h(n)z
−n

(4)

where the impulse response is of length N .

The filter will have linear phase response if the FIR digital filter satisfies

h(n) = h(N − 1 − n) (5)
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Design of FIR Digital Filter

for n = 0, 1, . . . , (N/2) − 1 if N is even, and for n = 0, 1, . . . , (N − 1)/2 if N is

odd. Indeed if N is odd, then (4) and (5) give

H(e
jθ

) =
N−1
X

n=0

h(n)e
−jnθ

=

N−3
2

X

n=0

[h(n)e−jnθ + h(N − 1 − n)e−j(N−1−n)θ] + h
`N − 1

2

´

e−j
˘

n−[
(N−1)

2 ]
¯

θ

=

N−3
2

X

n=0

h(n)[e−jnθ + e−j(N−1−n)θ] + h
`N − 1

2

´

e−j
˘

n−[
(N−1)

2 ]
¯

θ
(6)

= e
−j[(N−1)/2]θ˘

h(
N − 1

2
) +

N−3
2

X

n=0

h(n)[e
−j

˘

n−[
(N−1)

2 ]
¯

θ
+ e

j
˘

n−[
(N−1)

2 ]
¯

θ
]
¯

= e
−j[(N−1)/2]θ˘

h(
N − 1

2
) +

N−3
2

X

n=0

2h(n) cos [(n −
N − 1

2
)θ]

¯

(7)
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Design of FIR Digital Filter

In similar way, (4) and (5), for even values of N , give

H(ejθ) = e−j[(N−1)/2]θ˘

(N
2 −1)
X

n=0

2h(n) cos [(n −
N − 1

2
)θ]

¯

(8)

In both cases, the phase φ(θ) of the FIR digital filter is given by

φ(θ) =
N − 1

2
θ (9)

which is linear for π < θ ≤ π.

The group delay function is

τ(θ) = φ
′
(θ) =

N − 1

2
(10)

which is constant for π < θ ≤ π.
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Constraints on zero-phase FIR filters

The zero locations of FIR filter are restricted to meet certain symmetry requirements due

to constraints imposed by (5). To see this, (4) is written as

H(z) = z
−(N−1)

N−1
X

n=0

h(n)z
N−n−1

Let m = N − n − 1 be a new dummy variable, then (12) can be written as

H(z) = z−(N−1)
N−1
X

n=0

h(N − m − 1)zm

= z
−(N−1)

N−1
X

n=0

h(m)(z
−1

)
−m

(11)

= z
−(N−1)

H(z
−1

)

This means that zeros of H(z) are the zeros of H(z−1) except, perhaps, for the zeros at

origin.
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Symmetry properties of digital FIR filters

• If zi = a is a real zero of H(z), then z−1
i = a−1 is also a zero of H(z).

Unit Circle

a 1/a

Im[z]

Re[z]
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Symmetry properties of digital FIR filters

• If zi = ejθi is a zero of H(z), where θi 6= 0 and θi 6= π, then z−1
i = zi = e−jθi is

also a zero of H(z).

Unit Circle

Im[z]

Re[z]
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Symmetry properties of digital FIR filters

• If zi = rie
jθi is a zero of H(z), where ri 6= 1, θi 6= 0 and θi 6= π, then

zi = rie
−jθi and z−1

i = 1
ri

e−jθi and z−1
i = 1

ri
ejθi are also zeros of H(z).

Re[z]

Unit Circle

Im[z]

θi

θi
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Frequency sampling method

An FIR filter has equivalent DFT representation, given by

eH(k) =

N−1
X

n=0

h(n)e
[−

j2πnk
N

]
(12)

where eH(k) is actually the uniformly spaced N-point sample sequence of the

frequency response of the digital filter. As a consequence, the impulse response

sequence h(n) and transfer function H(z) are given by

h(n) =
1

N

N−1
X

k=0

eH(k)e
[
j2πnk

N
]

(13)

and

H(z) =
1

N

N−1
X

k=0

eH(k)
1 − z−N

1 − z−1e[
j2πk

N
]

(14)

where equation (14) is the key to the design of FIR digital filter.
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Example

Design a low-pass digital filter whose magnitude characteristics are shown in Figure. Find

an appropriate transfer function via a 16-point frequency sampling method.

k151050

0

1

Hd(e
jθ), H̃(k)

2π θπ

Hd(e
jθ)

Solution: In this case, the DFT sequence is given by
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Example

eH(0) = eH(1) = eH(15) = 1

eH(k) = 0 for k = 2, 3, 4, . . . , 14 (15)

By using (14), the desired transfer function can be found

H(z) =
1

16

ˆ

15
X

k=0

(1 − z−16) eH(k)

1 − z−1e
jkπ
8

˜

=
1 − z−16

16

ˆ 1

1 − z−1e
j0π
4

+
1

1 − z−1e
jπ
8

+
1

1 − z−1e
j15π

8

˜

(16)

=
1 − z−16

16

ˆ 1

1 − z−1
+

2(1 − z−1 cos(π/8))

1 − 2z−1 cos(π/8) + z−2

˜

It can be be shown that the frequency response of (17) will be equal to the specifications

of (15) at the sampling frequencies θ = kπ
8 for k = 0, 1, 2, . . . , 15.
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The Windowing Method

• The Fourier series expansion of the frequency response of a digital filter, H(ejθ), is

given by

H(e
jθ

) =

∞
X

n=−∞

h(n)e
−jθn

(17)

where

h(n) =
1

2π

Z π

n=−π

H(e
jθ

)e
jθn

(18)

where h(n) is the impulse response of the digital filter.

• While the infinite series in (17) can be truncated to obtain the digital filter, the Gibbs

phenomenon states that the truncation will cause overshoots and ripples in the

desired frequency response.

• In the method of windowing, a finite weighting sequence w(n), called windows, is

used to obtain the finite impulse response hD(n), where

hD(n) = h(n)w(n)

where w(n) is w(n) = 0 for n > N and n < 0.
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The Windowing Method

• Given the desired frequency response H(ejθ), which may be obtained by
the frequency sampling method.

• Find the associated impulse response sequence h(n) from 17 or by
inverse z-transform of H(z), where H(z) is obtained from H(ejθ) by
replacing ejθ with z.

• Employ an appropriate window function w(n) to modify the sequence
h(n) to obtain the FIR digital filter’s impulse response sequence
hD(n) = h(n)w(n).

The windowing method has the effect of smoothing out the ripples and
overshoots in the original frequency response as shown in the figure for a
simple window function
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The Windowing Method

1
|H(ejθ)|

π
θ rad

1

π

|H(ejθ)|

θ rad

w(n) = 1 + cos
2πn

N
for 0 ≤ n ≤ N − 1

= 0 otherwise (19)
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The Windowing Method: Some common window

functions

• Rectangular Window

w(n) = 1 for 0 ≤ n ≤ N − 1

= 0 otherwise (20)

• Bartlett Window or Triangular Window

w(n) =
2n

N − 1
for 0 ≤ n ≤ (N − 1)/2

= 2 −
2n

N − 1
for (N − 2)/2 ≤ n ≤ N − 1 (21)

= 0 elsewhere

where N is even.
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The Windowing Method: Some common window

functions

• Hann Window

w(n) =
1

2

[

1 − cos
2πn

N − 1

]

for 0 ≤ n ≤ N − 1

= 0 elsewhere (22)

• Hamming Window

w(n) = 0.54 − 0.46 cos
[ 2πn

N − 1

]

for 0 ≤ n ≤ N − 1

= 0 elsewhere (23)
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The Windowing Method: Some common window

functions

• Blackman Window

w(n) = 0.42 − 0.5 cos
[ 2πn

N − 1

]

+ 0.008 cos
[ 4πn

N − 1

]

for 0 ≤ n ≤ N − 1

= 0 elsewhere (24)

• Kaiser Window

w(n) =
I0

[

wa

√

(

N−1
2

)2
−

(

n − N−1
2

)2]

I0

[

wa

(

N−1
2

)] for 0 ≤ n ≤ N − 1

= 0 elsewhere (25)

where I0(.) is a modified zeroth order Bassel function of the first kind
and wa is a window shaper parameter.
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Two Sinusoids in WGN:- Hamming window

x[n] = 0.1 sin(n ∗ 0.2π + Φ1) + sin(n ∗ 0.3π + Φ2) + w[n] N = 128

Hamming window w[n] = 0.54 − 0.46 cos
(

2π
n

N

)
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The Modified Periodogram

The periodogram of a process that is windowed with a general window
w[n] is called a modified periodogram and is given by:-

P̂M(ω) =
1

NU

∣

∣

∣

∣

∣

∞
∑

n=−∞

x[n]w[n]e−nω

∣

∣

∣

∣

∣

2

where N is the window length and U = 1
N

∑N−1
n=0 |w[n]|2 is a constant,

and is defined so that P̂M(ω) is asymptotically unbiased.

In Matlab:-

xw=x(n1:n2).*w/norm(w);

Pm=N * periodogram(xw);

where, for different windows

w=hanning(N); w=bartlett(N);w=blackman(n);
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“Cosine–type windows”

Idea:- suppress sidelobes, perhaps sacrify the width of mainlobe

• Hann window

w = 0.5 * (1 - cos(2*pi*(0:m-1)’/(n-1)));

• Hamming window

w = (54 - 46*cos(2*pi*(0:m-1)’/(n-1)))/100;

• Blackman window

w = (42 - 50*cos(2*pi*(0:m-1)/(n-1)) +

+ 8*cos(4*pi*(0:m-1)/(n-1)))’/100;
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Standard Window Functions:- Properties

Triangular window Hamming window

Hann window Blackman window
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Some Comments on FIR digital Filter

• Unlike IIR filters, FIR filters can be designed to have linear phase
characteristics.

• FIR filters are always stable.

• FIR filters are, however, computationally more expensive than IIR filters
and hence are called for to perform tasks not possible/or not practical
by IIR filters such as linear phase, and multirate filters.
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