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Abstract

Modern applications in engineering and data science are increasingly
based on multidimensional data of exceedingly high volume, variety,
and structural richness. However, standard machine learning algo-
rithms typically scale exponentially with data volume and complex-
ity of cross-modal couplings - the so called curse of dimensionality -
which is prohibitive to the analysis of large-scale, multi-modal and
multi-relational datasets. Given that such data are often e�ciently
represented as multiway arrays or tensors, it is therefore timely and
valuable for the multidisciplinary machine learning and data analytic
communities to review low-rank tensor decompositions and tensor net-
works as emerging tools for dimensionality reduction and large scale
optimization problems. Our particular emphasis is on elucidating that,
by virtue of the underlying low-rank approximations, tensor networks
have the ability to alleviate the curse of dimensionality in a number
of applied areas. In Part 1 of this monograph we provide innovative
solutions to low-rank tensor network decompositions and easy to in-
terpret graphical representations of the mathematical operations on
tensor networks. Such a conceptual insight allows for seamless migra-
tion of ideas from the flat-view matrices to tensor network operations
and vice versa, and provides a platform for further developments, prac-
tical applications, and non-Euclidean extensions. It also permits the
introduction of various tensor network operations without an explicit
notion of mathematical expressions, which may be beneficial for many
research communities that do not directly rely on multilinear algebra.
Our focus is on the Tucker and tensor train (TT) decompositions and
their extensions, and on demonstrating the ability of tensor networks
to provide linearly or even super-linearly (e.g., logarithmically) scalable
solutions, as illustrated in detail in Part 2 of this monograph.
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in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.
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1
Introduction and Motivation

This monograph aims to present a coherent account of ideas and
methodologies related to tensor decompositions (TDs) and tensor net-
works models (TNs). Tensor decompositions (TDs) decompose complex
data tensors of exceedingly high dimensionality into their factor (com-
ponent) tensors and matrices, while tensor networks (TNs) decompose
higher-order tensors into sparsely interconnected small-scale factor ma-
trices and/or low-order core tensors. These low-order core tensors are
called “components”, “blocks”, “factors” or simply “cores”. In this way,
large-scale data can be approximately represented in highly compressed
and distributed formats.

In this monograph, the TDs and TNs are treated in a unified way,
by considering TDs as simple tensor networks or sub-networks; the
terms “tensor decompositions” and “tensor networks” will therefore be
used interchangeably. Tensor networks can be thought of as special
graph structures which break down high-order tensors into a set of
sparsely interconnected low-order core tensors, thus allowing for both
enhanced interpretation and computational advantages. Such an ap-
proach is valuable in many application contexts which require the com-
putation of eigenvalues and the corresponding eigenvectors of extremely
high-dimensional linear or nonlinear operators. These operators typi-
cally describe the coupling between many degrees of freedom within
real-world physical systems; such degrees of freedom are often only
weakly coupled. Indeed, quantum physics provides evidence that cou-
plings between multiple data channels usually do not exist among all
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1.1. Challenges in Big Data Processing 251

the degrees of freedom but mostly locally, whereby “relevant” infor-
mation, of relatively low-dimensionality, is embedded into very large-
dimensional measurements (Verstraete et al., 2008; Schollwöck, 2013;
Orús, 2014; Murg et al., 2015).

Tensor networks o�er a theoretical and computational framework
for the analysis of computationally prohibitive large volumes of data, by
“dissecting” such data into the “relevant” and “irrelevant” information,
both of lower dimensionality. In this way, tensor network representa-
tions often allow for super-compression of datasets as large as 1050

entries, down to the a�ordable levels of 107 or even less entries (Os-
eledets and Tyrtyshnikov, 2009; Dolgov and Khoromskij, 2013; Kazeev
et al., 2013a, 2014; Kressner et al., 2014a; Vervliet et al., 2014; Dolgov
and Khoromskij, 2015; Liao et al., 2015; Bolten et al., 2016).

With the emergence of the big data paradigm, it is therefore both
timely and important to provide the multidisciplinary machine learning
and data analytic communities with a comprehensive overview of tensor
networks, together with an example-rich guidance on their application
in several generic optimization problems for huge-scale structured data.
Our aim is also to unify the terminology, notation, and algorithms for
tensor decompositions and tensor networks which are being developed
not only in machine learning, signal processing, numerical analysis and
scientific computing, but also in quantum physics/chemistry for the
representation of, e.g., quantum many-body systems.

1.1 Challenges in Big Data Processing

The volume and structural complexity of modern datasets are becom-
ing exceedingly high, to the extent which renders standard analysis
methods and algorithms inadequate. Apart from the huge Volume, the
other features which characterize big data include Veracity, Variety
and Velocity (see Figures 1.1(a) and (b)). Each of the “V features”
represents a research challenge in its own right. For example, high vol-
ume implies the need for algorithms that are scalable; high Velocity
requires the processing of big data streams in near real-time; high Ve-
racity calls for robust and predictive algorithms for noisy, incomplete
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and/or inconsistent data; high Variety demands the fusion of di�erent
data types, e.g., continuous, discrete, binary, time series, images, video,
text, probabilistic or multi-view. Some applications give rise to addi-
tional “V challenges”, such as Visualization, Variability and Value. The
Value feature is particularly interesting and refers to the extraction of
high quality and consistent information, from which meaningful and
interpretable results can be obtained.

Owing to the increasingly a�ordable recording devices, extreme-
scale volumes and variety of data are becoming ubiquitous across the
science and engineering disciplines. In the case of multimedia (speech,
video), remote sensing and medical/biological data, the analysis also
requires a paradigm shift in order to e�ciently process massive datasets
within tolerable time (velocity). Such massive datasets may have bil-
lions of entries and are typically represented in the form of huge block
matrices and/or tensors. This has spurred a renewed interest in the
development of matrix/tensor algorithms that are suitable for very
large-scale datasets. We show that tensor networks provide a natural
sparse and distributed representation for big data, and address both es-
tablished and emerging methodologies for tensor-based representations
and optimization. Our particular focus is on low-rank tensor network
representations, which allow for huge data tensors to be approximated
(compressed) by interconnected low-order core tensors.

1.2 Tensor Notations and Graphical Representations

Tensors are multi-dimensional generalizations of matrices. A matrix
(2nd-order tensor) has two modes, rows and columns, while an Nth-
order tensor has N modes (see Figures 1.2–1.7); for example, a 3rd-
order tensor (with three-modes) looks like a cube (see Figure 1.2).
Subtensors are formed when a subset of tensor indices is fixed. Of par-
ticular interest are fibers which are vectors obtained by fixing every
tensor index but one, and matrix slices which are two-dimensional sec-
tions (matrices) of a tensor, obtained by fixing all the tensor indices
but two. It should be noted that block matrices can also be represented
by tensors, as illustrated in Figure 1.3 for 4th-order tensors.
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challenges for big data. (b) A unified framework for the 4V challenges and the
potential applications based on tensor decomposition approaches.
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X i, j, k , and
its subtensors: slices (middle) and fibers (bottom). All fibers are treated as column
vectors.

We adopt the notation whereby tensors (for N 3) are denoted by
bold underlined capital letters, e.g., X RI1 I2 I

N . For simplicity,
we assume that all tensors are real-valued, but it is, of course, possible
to define tensors as complex-valued or over arbitrary fields. Matrices
are denoted by boldface capital letters, e.g., X RI J , and vectors
(1st-order tensors) by boldface lower case letters, e.g., x RJ . For
example, the columns of the matrix A a1, a2, . . . , a

R

RI R are
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Figure 1.3: A block matrix and its representation as a 4th-order tensor, created
by reshaping (or a projection) of blocks in the rows into lateral slices of 3rd-order
tensors.
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Figure 1.4: Graphical representation of multiway array (tensor) data of increasing
structural complexity and “Volume” (see (Olivieri, 2008) for more detail).

the vectors denoted by a
r

RI , while the elements of a matrix (scalars)
are denoted by lowercase letters, e.g., a

ir

A i, r (see Table 1.1).
A specific entry of an Nth-order tensor X RI1 I2 I

N is denoted
by x

i1,i2,...,i

N

X i1, i2, . . . , i
N

R. The order of a tensor is the
number of its “modes”, “ways” or “dimensions”, which can include
space, time, frequency, trials, classes, and dictionaries. The term ‘‘size”
stands for the number of values that an index can take in a particular
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blocks for tensor network diagrams. (b) Tensor network diagrams for matrix-vector
multiplication (top), matrix by matrix multiplication (middle) and contraction of
two tensors (bottom). The order of reading of indices is anti-clockwise, from the left
position.

mode. For example, the tensor X RI1 I2 I

N is of order N and size
I

n

in all modes-n n 1, 2, . . . , N . Lower-case letters e.g, i, j are used
for the subscripts in running indices and capital letters I, J denote the
upper bound of an index, i.e., i 1, 2, . . . , I and j 1, 2, . . . , J . For
a positive integer n, the shorthand notation n denotes the set of
indices 1, 2, . . . , n .
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Table 1.1: Basic matrix/tensor notation and symbols.

X RI1 I2 I

N

Nth-order tensor of size I1 I2 I

N

x

i1,i2,...,i

N

X i1, i2, . . . , i

N

i1, i2, . . . , i

N

th entry of X

x, x, X scalar, vector and matrix

G, S, G

n

, X

n core tensors

� RR R R

Nth-order diagonal core tensor with nonzero
entries ⁄

r

on the main diagonal

A

T, A

1, A transpose, inverse and Moore–Penrose
pseudo-inverse of a matrix A

A a1, a2, . . . , a

R

RI R matrix with R column vectors a

r

RI , with
entries a

ir

A, B, C, A

n

, B

n

, U

n component (factor) matrices

X

n

RI

n

I1 I

n 1I

n 1 I

N

mode-n matricization of X RI1 I

N

X

n

RI1I2 I

n

I

n 1 I

N

mode-(1, . . . , n) matricization of X RI1 I

N

X :, i2, i3, . . . , i

N

RI1 mode-1 fiber of a tensor X obtained by fixing all
indices but one (a vector)

X :, :, i3, . . . , i

N

RI1 I2 slice (matrix) of a tensor X obtained by fixing
all indices but two

X :, :, :, i4, . . . , i

N

subtensor of X, obtained by fixing several in-
dices

R, R1, . . . , R

N

tensor rank R and multilinear rank

, ,

L

,

outer, Khatri–Rao, Kronecker products

Left Kronecker, strong Kronecker products

x vec X vectorization of X

tr trace of a square matrix

diag diagonal matrix
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Table 1.2: Terminology used for tensor networks across the machine learn-
ing/scientific computing and quantum physics/chemistry communities.

Machine Learning Quantum Physics

Nth-order tensor rank-N tensor

high/low-order tensor tensor of high/low dimension

ranks of TNs bond dimensions of TNs

unfolding, matricization grouping of indices

tensorization splitting of indices

core site

variables open (physical) indices

ALS Algorithm one-site DMRG or DMRG1

MALS Algorithm two-site DMRG or DMRG2

column vector x RI 1 ket �

row vector xT R1 I bra �

inner product x, x
xTx

� �

Tensor Train (TT) Matrix Product State (MPS) (with Open
Boundary Conditions (OBC))

Tensor Chain (TC) MPS with Periodic Boundary Conditions
(PBC)

Matrix TT Matrix Product Operators (with OBC)

Hierarchical Tucker (HT) Tree Tensor Network State (TTNS) with
rank-3 tensors
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Notations and terminology used for tensors and tensor networks
di�er across the scientific communities (see Table 1.2); to this end we
employ a unifying notation particularly suitable for machine learning
and signal processing research, which is summarized in Table 1.1.

Even with the above notation conventions, a precise description of
tensors and tensor operations is often tedious and cumbersome, given
the multitude of indices involved. To this end, in this monograph, we
grossly simplify the description of tensors and their mathematical op-
erations through diagrammatic representations borrowed from physics
and quantum chemistry (see (Orús, 2014) and references therein). In
this way, tensors are represented graphically by nodes of any geometri-
cal shapes (e.g., circles, squares, dots), while each outgoing line (“edge”,
“leg”,“arm”) from a node represents the indices of a specific mode (see
Figure 1.5(a)). In our adopted notation, each scalar (zero-order ten-
sor), vector (first-order tensor), matrix (2nd-order tensor), 3rd-order
tensor or higher-order tensor is represented by a circle (or rectangu-
lar), while the order of a tensor is determined by the number of lines
(edges) connected to it. According to this notation, an Nth-order ten-
sor X RI1 I

N is represented by a circle (or any shape) with N

branches each of size I
n

, n 1, 2, . . . , N (see Section 2). An intercon-
nection between two circles designates a contraction of tensors, which
is a summation of products over a common index (see Figure 1.5(b)
and Section 2).

Block tensors, where each entry (e.g., of a matrix or a vector) is an
individual subtensor, can be represented in a similar graphical form,
as illustrated in Figure 1.6. Hierarchical (multilevel block) matrices are
also naturally represented by tensors and vice versa, as illustrated in
Figure 1.7 for 4th-, 5th- and 6th-order tensors. All mathematical oper-
ations on tensors can be therefore equally performed on block matrices.

In this monograph, we make extensive use of tensor network di-
agrams as an intuitive and visual way to e�ciently represent tensor
decompositions. Such graphical notations are of great help in studying
and implementing sophisticated tensor operations. We highlight the
significant advantages of such diagrammatic notations in the descrip-
tion of tensor manipulations, and show that most tensor operations can
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4th-order tensor
. . . =

5th-order tensors
...

...

... ...... = =

6th-order tensor

=

Figure 1.6: Graphical representations and symbols for higher-order block tensors.
Each block represents either a 3rd-order tensor or a 2nd-order tensor. The outer
circle indicates a global structure of the block tensor (e.g. a vector, a matrix, a
3rd-order block tensor), while the inner circle reflects the structure of each element
within the block tensor. For example, in the top diagram a vector of 3rd order
tensors is represented by an outer circle with one edge (a vector) which surrounds
an inner circle with three edges (a 3rd order tensor), so that the whole structure
designates a 4th-order tensor.

be visualized through changes in the architecture of a tensor network
diagram.

1.3 Curse of Dimensionality and Generalized Separation of
Variables for Multivariate Functions

1.3.1 Curse of Dimensionality

The term curse of dimensionality was coined by Bellman (1961) to
indicate that the number of samples needed to estimate an arbitrary
function with a given level of accuracy grows exponentially with the
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Figure 1.7: Hierarchical matrix structures and their symbolic representation as
tensors. (a) A 4th-order tensor representation for a block matrix X RR1I1 R2I2

(a matrix of matrices), which comprises block matrices X
r1,r2 RI1 I2 . (b) A 5th-

order tensor. (c) A 6th-order tensor.

number of variables, that is, with the dimensionality of the function.
In a general context of machine learning and the underlying optimiza-
tion problems, the “curse of dimensionality” may also refer to an ex-
ponentially increasing number of parameters required to describe the
data/system or an extremely large number of degrees of freedom. The
term “curse of dimensionality”, in the context of tensors, refers to the
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phenomenon whereby the number of elements, IN , of an Nth-order ten-
sor of size I I I grows exponentially with the tensor order, N .
Tensor volume can therefore easily become prohibitively big for multi-
way arrays for which the number of dimensions (“ways” or “modes”)
is very high, thus requiring enormous computational and memory re-
sources to process such data. The understanding and handling of the
inherent dependencies among the excessive degrees of freedom create
both di�cult to solve problems and fascinating new opportunities, but
comes at a price of reduced accuracy, owing to the necessity to involve
various approximations.

We show that the curse of dimensionality can be alleviated or even
fully dealt with through tensor network representations; these natu-
rally cater for the excessive volume, veracity and variety of data (see
Figure 1.1) and are supported by e�cient tensor decomposition algo-
rithms which involve relatively simple mathematical operations. An-
other desirable aspect of tensor networks is their relatively small-scale
and low-order core tensors, which act as “building blocks” of tensor
networks. These core tensors are relatively easy to handle and visual-
ize, and enable super-compression of the raw, incomplete, and noisy
huge-scale datasets. This also suggests a solution to a more general
quest for new technologies for processing of exceedingly large datasets
within a�ordable computation times.

To address the curse of dimensionality, this work mostly focuses on
approximative low-rank representations of tensors, the so-called low-
rank tensor approximations (LRTA) or low-rank tensor network de-
compositions.

1.3.2 Separation of Variables and Tensor Formats

A tensor is said to be in a full format when it is represented as an orig-
inal (raw) multidimensional array (Klus and Schütte, 2015), however,
distributed storage and processing of high-order tensors in their full
format is infeasible due to the curse of dimensionality. The sparse for-
mat is a variant of the full tensor format which stores only the nonzero
entries of a tensor, and is used extensively in software tools such as the
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Tensor Toolbox (Bader and Kolda, 2015) and in the sparse grid ap-
proach (Garcke et al., 2001; Bungartz and Griebel, 2004; Hackbusch,
2012).

As already mentioned, the problem of huge dimensionality can be
alleviated through various distributed and compressed tensor network
formats, achieved by low-rank tensor network approximations. The un-
derpinning idea is that by employing tensor networks formats, both
computational costs and storage requirements may be dramatically re-
duced through distributed storage and computing resources. It is im-
portant to note that, except for very special data structures, a tensor
cannot be compressed without incurring some compression error, since
a low-rank tensor representation is only an approximation of the orig-
inal tensor.

The concept of compression of multidimensional large-scale data
by tensor network decompositions can be intuitively explained as fol-
lows. Consider the approximation of an N -variate function f x
f x1, x2, . . . , x

N

by a finite sum of products of individual functions,
each depending on only one or a very few variables (Bebendorf, 2011;
Dolgov, 2014; Cho et al., 2016; Trefethen, 2017). In the simplest sce-
nario, the function f x can be (approximately) represented in the
following separable form

f x1, x2, . . . , x
N

f 1 x1 f 2 x2 f N x
N

. (1.1)

In practice, when an N -variate function f x is discretized into an Nth-
order array, or a tensor, the approximation in (1.1) then corresponds to
the representation by rank-1 tensors, also called elementary tensors (see
Section 2). Observe that with I

n

, n 1, 2, . . . , N denoting the size of
each mode and I max

n

I
n

, the memory requirement to store such a
full tensor is N

n 1 I
n

IN , which grows exponentially with N . On the
other hand, the separable representation in (1.1) is completely defined
by its factors, f n x

n

, n 1, 2, . . . , N), and requires only N

n 1 I
n

IN storage units. If x1, x2, . . . , x
N

are statistically independent random
variables, their joint probability density function is equal to the product
of marginal probabilities, f x f 1 x1 f 2 x2 f N x

N

, in an
exact analogy to outer products of elementary tensors. Unfortunately,
the form of separability in (1.1) is rather rare in practice.
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The concept of tensor networks rests upon generalized (full or par-
tial) separability of the variables of a high dimensional function. This
can be achieved in di�erent tensor formats, including:

• The Canonical Polyadic (CP) format (see Section 3.2), where

f x1, x2, . . . , x
N

R

r 1
f 1

r

x1 f 2
r

x2 f N

r

x
N

, (1.2)

in an exact analogy to (1.1). In a discretized form, the above CP
format can be written as an Nth-order tensor

F
R

r 1
f 1

r

f 2
r

f N

r

RI1 I2 I

N , (1.3)

where f n

r

RI

n denotes a discretized version of the univariate
function f

n

r

x
n

, symbol denotes the outer product, and R is
the tensor rank.

• The Tucker format, given by

f x1, . . . , x
N

R1

r1 1

R

N

r

N

1
g

r1,...,r

N

f 1
r1 x1 f N

r

N

x
N

,

(1.4)
and its distributed tensor network variants (see Section 3.3),

• The Tensor Train (TT) format (see Section 4.1), in the form

f x1, x2, . . . , x
N

R1

r1 1

R2

r2 1

R

N 1

r

N 1 1
f 1

r1 x1 f 2
r1 r2 x2

f N 2
r

N 2 r

N 1 x
N 1 f N

r

N 1 x
N

, (1.5)

with the equivalent compact matrix representation

f x1, x2, . . . , x
N

F 1 x1 F 2 x2 F N x
N

, (1.6)

where F n x
n

RR

n 1 R

n , with R0 R
N

1.

• The Hierarchical Tucker (HT) format (also known as the Hierar-
chical Tensor format) can be expressed via a hierarchy of nested
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separations in the following way. Consider nested nonempty dis-
joint subsets u, v, and t u v 1, 2, . . . , N , then for some
1 N0 N , with u0 1, . . . , N0 and v0 N0 1, . . . , N ,
the HT format can be expressed as

f x1, . . . , x
N

R

u0

r

u0 1

R

v0

r

v0 1
g 12 N

r

u0 ,r

v0
f u0

r

u0
x

u0 f v0
r

v0
x

v0 ,

f t

r

t

x
t

R

u

r

u

1

R

v

r

v

1
g t

r

u

,r

v

,r

t

f u

r

u

x
u

f v

r

v

x
v

,

where x
t

x
i

: i t . See Section 2.2.1 for more detail.
Example. In a particular case for N=4, the HT format can be
expressed by

f x1, x2, x3, x4

R12

r12 1

R34

r34 1
g 1234

r12,r34 f 12
r12 x1, x2 f 34

r34 x3, x4 ,

f 12
r12 x1, x2

R1

r1 1

R2

r2 1
g 12

r1,r2,r12 f 1
r1 x1 f 2

r2 x2 ,

f 34
r34 x3, x4

R3

r3 1

R4

r4 1
g 34

r3,r4,r34 f 3
r3 x3 f 4

r4 x4 .

The Tree Tensor Network States (TTNS) format, which is an ex-
tension of the HT format, can be obtained by generalizing the two
subsets, u, v, into a larger number of disjoint subsets u1, . . . , u

m

,
m 2. In other words, the TTNS can be obtained by more flexi-
ble separations of variables through products of larger numbers of
functions at each hierarchical level (see Section 2.2.1 for graphical
illustrations and more detail).

All the above approximations adopt the form of “sum-of-products” of
single-dimensional functions, a procedure which plays a key role in all
tensor factorizations and decompositions.

Indeed, in many applications based on multivariate functions, very
good approximations are obtained with a surprisingly small number
of factors; this number corresponds to the tensor rank, R, or tensor



266 Introduction and Motivation

network ranks, R1, R2, . . . , R
N

(if the representations are exact and
minimal). However, for some specific cases this approach may fail to
obtain su�ciently good low-rank TN approximations. The concept of
generalized separability has already been explored in numerical meth-
ods for high-dimensional density function equations (Liao et al., 2015;
Trefethen, 2017; Cho et al., 2016) and within a variety of huge-scale
optimization problems (see Part 2 of this monograph).

To illustrate how tensor decompositions address excessive volumes
of data, if all computations are performed on a CP tensor format in
(1.3) and not on the raw Nth-order data tensor itself, then instead of
the original, exponentially growing, data dimensionality of IN , the num-
ber of parameters in a CP representation reduces to NIR, which scales
linearly in the tensor order N and size I (see Table 4.4). For exam-
ple, the discretization of a 5-variate function over 100 sample points on
each axis would yield the di�culty to manage 1005 10, 000, 000, 000
sample points, while a rank-2 CP representation would require only
5 2 100 1000 sample points.

Although the CP format in (1.2) e�ectively bypasses the curse of
dimensionality, the CP approximation may involve numerical problems
for very high-order tensors, which in addition to the intrinsic unclose-
ness of the CP format (i.e., di�culty to arrive at a canonical format),
the corresponding algorithms for CP decompositions are often ill-posed
(de Silva and Lim, 2008). As a remedy, greedy approaches may be
considered which, for enhanced stability, perform consecutive rank-1
corrections (Lim and Comon, 2010). On the other hand, many e�cient
and stable algorithms exist for the more flexible Tucker format in (1.4),
however, this format is not practical for tensor orders N 5 because
the number of entries of both the original data tensor and the core
tensor (expressed in (1.4) by elements g

r1,r2,...,r

N

) scales exponentially
in the tensor order N (curse of dimensionality).

In contrast to CP decomposition algorithms, TT tensor network for-
mats in (1.5) exhibit both very good numerical properties and the abil-
ity to control the error of approximation, so that a desired accuracy of
approximation is obtained relatively easily. The main advantage of the
TT format over the CP decomposition is the ability to provide stable
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quasi-optimal rank reduction, achieved through, for example, truncated
singular value decompositions (tSVD) or adaptive cross-approximation
(Oseledets and Tyrtyshnikov, 2010; Bebendorf, 2011; Khoromskij and
Veit, 2016). This makes the TT format one of the most stable and
simple approaches to separate latent variables in a sophisticated way,
while the associated TT decomposition algorithms provide full control
over low-rank TN approximations1. In this monograph, we therefore
make extensive use of the TT format for low-rank TN approximations
and employ the TT toolbox software for e�cient implementations (Os-
eledets et al., 2012). The TT format will also serve as a basic prototype
for high-order tensor representations, while we also consider the Hier-
archical Tucker (HT) and the Tree Tensor Network States (TTNS) for-
mats (having more general tree-like structures) whenever advantageous
in applications.

Furthermore, we address in depth the concept of tensorization of
structured vectors and matrices to convert a wide class of huge-scale op-
timization problems into much smaller-scale interconnected optimiza-
tion sub-problems which can be solved by existing optimization meth-
ods (see Part 2 of this monograph).

The tensor network optimization framework is therefore performed
through the two main steps:

• Tensorization of data vectors and matrices into a high-order ten-
sor, followed by a distributed approximate representation of a
cost function in a specific low-rank tensor network format.

• Execution of all computations and analysis in tensor network for-
mats (i.e., using only core tensors) that scale linearly, or even
sub-linearly (quantized tensor networks), in the tensor order N .
This yields both the reduced computational complexity and dis-
tributed memory requirements.

1Although similar approaches have been known in quantum physics for a long
time, their rigorous mathematical analysis is still a work in progress (see (Oseledets,
2011; Orús, 2014) and references therein).
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1.4 Advantages of Multiway Analysis via Tensor Networks

In this monograph, we focus on two main challenges in huge-scale data
analysis which are addressed by tensor networks: (i) an approximate
representation of a specific cost (objective) function by a tensor net-
work while maintaining the desired accuracy of approximation, and (ii)
the extraction of physically meaningful latent variables from data in a
su�ciently accurate and computationally a�ordable way. The benefits
of multiway (tensor) analysis methods for large-scale datasets then in-
clude:

• Ability to perform all mathematical operations in tractable tensor
network formats;

• Simultaneous and flexible distributed representations of both the
structurally rich data and complex optimization tasks;

• E�cient compressed formats of large multidimensional data
achieved via tensorization and low-rank tensor decompositions
into low-order factor matrices and/or core tensors;

• Ability to operate with noisy and missing data by virtue of numer-
ical stability and robustness to noise of low-rank tensor/matrix
approximation algorithms;

• A flexible framework which naturally incorporates various diver-
sities and constraints, thus seamlessly extending the standard,
flat view, Component Analysis (2-way CA) methods to multiway
component analysis;

• Possibility to analyze linked (coupled) blocks of large-scale ma-
trices and tensors in order to separate common/correlated from
independent/uncorrelated components in the observed raw data;

• Graphical representations of tensor networks allow us to express
mathematical operations on tensors (e.g., tensor contractions and
reshaping) in a simple and intuitive way, and without the explicit
use of complex mathematical expressions.
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In that sense, this monograph both reviews current research in this
area and complements optimisation methods, such as the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011).

Tensor decompositions (TDs) have been already adopted in widely
diverse disciplines, including psychometrics, chemometrics, biometric,
quantum physics/information, quantum chemistry, signal and image
processing, machine learning, and brain science (Smilde et al., 2004;
Tao et al., 2007; Kroonenberg, 2008; Kolda and Bader, 2009; Hack-
busch, 2012; Favier and de Almeida, 2014; Cichocki et al., 2009, 2015b).
This is largely due to their advantages in the analysis of data that ex-
hibit not only large volume but also very high variety (see Figure 1.1),
as in the case in bio- and neuroinformatics and in computational neu-
roscience, where various forms of data collection include sparse tabular
structures and graphs or hyper-graphs.

Moreover, tensor networks have the ability to e�ciently parame-
terize, through structured compact representations, very general high-
dimensional spaces which arise in modern applications (Kressner et al.,
2014b; Cichocki, 2014; Zhang et al., 2015; Corona et al., 2015; Litsarev
and Oseledets, 2016; Khoromskij and Veit, 2016; Benner et al., 2016).
Tensor networks also naturally account for intrinsic multidimensional
and distributed patterns present in data, and thus provide the oppor-
tunity to develop very sophisticated models for capturing multiple in-
teractions and couplings in data – these are more physically insightful
and interpretable than standard pair-wise interactions.

1.5 Scope and Objectives

Review and tutorial papers (Kolda and Bader, 2009; Lu et al., 2011;
Grasedyck et al., 2013; Cichocki et al., 2015b; de Almeida et al., 2015;
Sidiropoulos et al., 2016; Papalexakis et al., 2016; Bachmayr et al.,
2016) and books (Smilde et al., 2004; Kroonenberg, 2008; Cichocki
et al., 2009; Hackbusch, 2012) dealing with TDs and TNs already exist,
however, they typically focus on standard models, with no explicit links
to very large-scale data processing topics or connections to a wide class
of optimization problems. The aim of this monograph is therefore to
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extend beyond the standard Tucker and CP tensor decompositions,
and to demonstrate the perspective of TNs in extremely large-scale
data analytics, together with their role as a mathematical backbone
in the discovery of hidden structures in prohibitively large-scale data.
Indeed, we show that TN models provide a framework for the analysis
of linked (coupled) blocks of tensors with millions and even billions of
non-zero entries.

We also demonstrate that TNs provide natural extensions of 2-
way (matrix) Component Analysis (2-way CA) methods to multi-way
component analysis (MWCA), which deals with the extraction of de-
sired components from multidimensional and multimodal data. This
paradigm shift requires new models and associated algorithms capable
of identifying core relations among the di�erent tensor modes, while
guaranteeing linear/sub-linear scaling with the size of datasets2.

Furthermore, we review tensor decompositions and the associated
algorithms for very large-scale linear/multilinear dimensionality reduc-
tion problems. The related optimization problems often involve struc-
tured matrices and vectors with over a billion entries (see (Grasedyck
et al., 2013; Dolgov, 2014; Garreis and Ulbrich, 2016) and references
therein). In particular, we focus on Symmetric Eigenvalue Decomposi-
tion (EVD/PCA) and Generalized Eigenvalue Decomposition (GEVD)
(Dolgov et al., 2014; Kressner et al., 2014a; Kressner and Uschmajew,
2016), SVD (Lee and Cichocki, 2015), solutions of overdetermined and
undetermined systems of linear algebraic equations (Oseledets and Dol-
gov, 2012; Dolgov and Savostyanov, 2014), the Moore–Penrose pseudo-
inverse of structured matrices (Lee and Cichocki, 2016b), and Lasso
problems (Lee and Cichocki, 2016a). Tensor networks for extremely
large-scale multi-block (multi-view) data are also discussed, especially
TN models for orthogonal Canonical Correlation Analysis (CCA) and
related Partial Least Squares (PLS) problems. For convenience, all
these problems are reformulated as constrained optimization problems

2Usually, we assume that huge-scale problems operate on at least 107 parameters.
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which are then, by virtue of low-rank tensor networks reduced to man-
ageable lower-scale optimization sub-problems. The enhanced tractabil-
ity and scalability is achieved through tensor network contractions and
other tensor network transformations.

The methods and approaches discussed in this work can be con-
sidered a both an alternative and complementary to other emerging
methods for huge-scale optimization problems like random coordinate
descent (RCD) scheme (Nesterov, 2012; Richtárik and Taká�, 2016),
sub-gradient methods (Nesterov, 2014), alternating direction method
of multipliers (ADMM) (Boyd et al., 2011), and proximal gradient de-
scent methods (Parikh and Boyd, 2014) (see also (Cevher et al., 2014;
Hong et al., 2016) and references therein).

This monograph systematically introduces TN models and the as-
sociated algorithms for TNs/TDs and illustrates many potential appli-
cations of TDs/TNS. The dimensionality reduction and optimization
frameworks (see Part 2 of this monograph) are considered in detail,
and we also illustrate the use of TNs in other challenging problems
for huge-scale datasets which can be solved using the tensor network
approach, including anomaly detection, tensor completion, compressed
sensing, clustering, and classification.



2
Tensor Operations and Tensor Network

Diagrams

Tensor operations benefit from the power of multilinear algebra which
is structurally much richer than linear algebra, and even some basic
properties, such as the rank, have a more complex meaning. We next
introduce the background on fundamental mathematical operations in
multilinear algebra, a prerequisite for the understanding of higher-order
tensor decompositions. A unified account of both the definitions and
properties of tensor network operations is provided, including the outer,
multi-linear, Kronecker, and Khatri–Rao products. For clarity, graphi-
cal illustrations are provided, together with an example rich guidance
for tensor network operations and their properties. To avoid any con-
fusion that may arise given the numerous options on tensor reshap-
ing, both mathematical operations and their properties are expressed
directly in their native multilinear contexts, supported by graphical
visualizations.

2.1 Basic Multilinear Operations

The following symbols are used for most common tensor multiplica-
tions: for the Kronecker product, for the Khatri–Rao product,

for the Hadamard (componentwise) product, for the outer
product and

n

for the mode-n product. Basic tensor operations
are summarized in Table 2.1, and illustrated in Figures 2.1–2.13.

272
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Table 2.1: Basic tensor/matrix operations.

C A n B
Mode-n product of a tensor A RI1 I2 I

N

and a matrix B RJ I
n yields a ten-

sor C RI1 I
n 1 J I

n 1 I
N ,

with entries c i1,...,i
n 1, j, i

n 1,...,i
N

I
n

i
n

1

ai1,...,i
n

,...,i
N

bj, i
n

C JG; B 1 , . . . , B N K
Multilinear (Tucker) product of a core tensor,
G, and factor matrices B n , which gives

C G
1

B 1

2

B 2

N B N

C A ¯ n b

Mode-n product of a tensor A RI1 I
N

and vector b RI
n yields a ten-

sor C RI1 I
n 1 I

n 1 I
N ,

with entries c i1,...,i
n 1,i

n 1,...,i
N

I
n

i
n

1

ai1,...,i
n 1,i

n

,i
n 1,...,i

N

bi
n

C A 1

N B A 1 B

Mode- N, 1 contracted product of tensors
A RI1 I2 I

N and B RJ1 J2 J
M ,

with IN J
1

, yields a tensor
C RI1 I

N 1 J2 J
M with entries

ci1,...,i
N 1,j2,...,j

M

I
N

i
N

1

ai1,...,i
N

bi
N

,j2,...,j
M

C A B
Outer product of tensors A RI1 I2 I

N

and B RJ1 J2 J
M yields an N M th-

order tensor C, with entries c i1,...,i
N

, j1,...,j
M

ai1,...,i
N

bj1,...,j
M

X a b c RI J K Outer product of vectors a, b and c forms a
rank-1 tensor, X, with entries xijk ai bj ck

C A L B
(Left) Kronecker product of tensors A
RI1 I2 I

N and B RJ1 J2 J
N yields

a tensor C RI1J1 I
N

J
N , with entries

c i1j1,...,i
N

j
N

ai1,...,i
N

bj1,...,j
N

C A L B
(Left) Khatri–Rao product of matrices A
a

1

, . . . , aJ RI J and B b
1

, . . . , bJ

RK J yields a matrix C RIK J , with
columns cj aj L bj RIK
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Matricization

Vectorization

Tensorization

Tensor
Data

Tensorization

Vectorization

...

...
=

=
=

=

Figure 2.1: Tensor reshaping operations: Matricization, vectorization and ten-
sorization. Matricization refers to converting a tensor into a matrix, vectorization to
converting a tensor or a matrix into a vector, while tensorization refers to converting
a vector, a matrix or a low-order tensor into a higher-order tensor.

We refer to (Kolda and Bader, 2009; Cichocki et al., 2009; Lee and
Cichocki, 2016c) for more detail regarding the basic notations and
tensor operations. For convenience, general operations, such as vec
or diag , are defined similarly to the MATLAB syntax.

Multi–indices: By a multi-index i i1i2 i
N

we refer to an index
which takes all possible combinations of values of indices, i1, i2, . . . , i

N

,
for i

n

1, 2, . . . , I
n

, n 1, 2, . . . , N and in a specific order. Multi–
indices can be defined using two di�erent conventions (Dolgov and
Savostyanov, 2014):

1. Little-endian convention (reverse lexicographic ordering)

i1i2 i
N

i1 i2 1 I1 i3 1 I1I2 i
N

1 I1 I
N 1.

2. Big-endian (colexicographic ordering)

i1i2 i
N

i
N

i
N 1 1 I

N

i
N 2 1 I

N

I
N 1

i1 1 I2 I
N

.
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The little-endian convention is used, for example, in Fortran and
MATLAB, while the big-endian convention is used in C language.
Given the complex and non-commutative nature of tensors, the basic
definitions, such as the matricization, vectorization and the Kronecker
product, should be consistent with the chosen convention1. In this
monograph, unless otherwise stated, we will use little-endian notation.

Matricization. The matricization operator, also known as the
unfolding or flattening, reorders the elements of a tensor into a matrix
(see Figure 2.2). Such a matrix is re-indexed according to the choice
of multi-index described above, and the following two fundamental
matricizations are used extensively.

The mode-n matricization. For a fixed index n 1, 2, . . . , N , the
mode-n matricization of an Nth-order tensor, X RI1 I

N , is defined
as the (“short” and “wide”) matrix

X
n

RI

n

I1I2 I

n 1I

n 1 I

N , (2.1)

with I
n

rows and I1I2 I
n 1I

n 1 I
N

columns, the entries of which
are

X
n

i

n

,i1 i

n 1i

n 1 i

N

x
i1,i2,...,i

N

.

Note that the columns of a mode-n matricization, X
n

, of a tensor X
are the mode-n fibers of X.

The mode- n canonical matricization. For a fixed index n

1, 2, . . . , N , the mode- 1, 2, . . . , n matricization, or simply mode-n
canonical matricization, of a tensor X RI1 I

N is defined as the
matrix

X
n

RI1I2 I

n

I

n 1 I

N , (2.2)
with I1I2 I

n

rows and I
n 1 I

N

columns, and the entries

X
n

i1i2 i

n

, i

n 1 i

N

x
i1,i2,...,i

N

.

1 Note that using the colexicographic ordering, the vectorization of an outer
product of two vectors, a and b, yields their Kronecker product, that is, vec a b
a b, while using the reverse lexicographic ordering, for the same operation, we need
to use the Left Kronecker product, vec a b b a a

L

b.
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Figure 2.2: Matricization (flattening, unfolding) used in tensor reshaping. (a)
Mode-1, mode-2, and mode-3 matricizations of a 3rd-order tensor, from the top
to the bottom panel. (b) Tensor network diagram for the mode-n matricization
of an Nth-order tensor, A RI1 I2 I

N , into a short and wide matrix, A
n

RI

n

I1 I

n 1I

n 1 I

N . (c) Mode- 1, 2, . . . , n th (canonical) matricization of an Nth-
order tensor, A, into a matrix A

n

A
i1 i

n

; i

n 1 i

N

RI1I2 I

n

I

n 1 I

N .
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Vector

x∊ 8K

Matrix

X∊ 4K×2

3rd-order tensor

X ∊
2K×2×2

3

4th-order tensor

X ∊RK×2×2×2
4 IRIRIRI

Figure 2.3: Tensorization of a vector into a matrix, 3rd-order tensor and 4th-order
tensor.

The matricization operator in the MATLAB notation (reverse lexico-
graphic) is given by

X
n

reshape X, I1I2 I
n

, I
n 1 I

N

. (2.3)

As special cases we immediately have (see Figure 2.2)

X 1 X 1 , X
N 1 XT

N

, X
N

vec X . (2.4)

The tensorization of a vector or a matrix can be considered as a
reverse process to the vectorization or matricization (see Figures 2.1
and 2.3).

Kronecker, strong Kronecker, and Khatri–Rao products of
matrices and tensors. For an I J matrix A and a K L matrix B,
the standard (Right) Kronecker product, A B, and the Left Kronecker
product, A

L

B, are the following IK JL matrices

A B
a1,1B a1,J

B
... . . . ...

a
I,1B a

I,J

B
, A

L

B
Ab1,1 Ab1,L

... . . . ...
Ab

K,1 Ab
K,L

.

Observe that A
L

B B A, so that the Left Kronecker product
will be used in most cases in this monograph as it is consistent with
the little-endian notation.



278 Tensor Operations and Tensor Network Architectures

A
B

 =

C = A B

A11 A12 A13

A21 A22 A23

B11 B12

B21 B22

B31 B32

A11 B
+A12
+A13

L 11
BL 21
BL 31

A21 B
+A22
+A23

L 11
BL 21
BL 31

A11 B
+A12
+A13

L 12
BL 22
BL 32

A21 B
+A22
+A23

L 12
BL 22
BL 32

Figure 2.4: Illustration of the strong Kronecker product of two block matrices, A
A

r1,r2 RR1I1 R2J1 and B B
r2,r3 RR2I2 R3J2 , which is defined as a block

matrix C A B RR1I1I2 R3J1J2 , with the blocks C
r1,r3

R2
r2 1 A

r1,r2 L

B
r2,r3 RI1I2 J1J2 , for r1 1, . . . , R1, r2 1, . . . , R2 and r3 1, . . . , R3.

Using Left Kronecker product, the strong Kronecker product of two
block matrices, A RR1I R2J and B RR2K R3L, given by

A
A1,1 A1,R2

... . . . ...
A

R1,1 A
R1,R2

, B
B1,1 B1,R3

... . . . ...
B

R2,1 B
R2,R3

,

can be defined as a block matrix (see Figure 2.4 for a graphical illus-
tration)

C A B RR1IK R3JL, (2.5)

with blocks C
r1,r3

R2
r2 1 A

r1,r2 L

B
r2,r3 RIK JL, where

A
r1,r2 RI J and B

r2,r3 RK L are the blocks of matrices within
A and B, respectively (de Launey and Seberry, 1994; Kazeev et al.,
2013a,b). Note that the strong Kronecker product is similar to the
standard block matrix multiplication, but performed using Kronecker
products of the blocks instead of the standard matrix-matrix prod-
ucts. The above definitions of Kronecker products can be naturally
extended to tensors (Phan et al., 2012) (see Table 2.1), as shown below.

The Kronecker product of tensors. The (Left) Kronecker product
of two Nth-order tensors, A RI1 I2 I

N and B RJ1 J2 J

N ,
yields a tensor C A

L

B RI1J1 I

N

J

N of the same order
but enlarged in size, with entries c

i1j1,...,i

N

j

N

a
i1,...,i

N

b
j1,...,j

N

as
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I1

I2

I3

I4 J1

J3

J4

J2

A B

K I  J1 1 1 K I  J4 4 4

K I  J2 2 2 K I  J3 3 3

Figure 2.5: The left Kronecker product of two 4th-order tensors, A and B,
yields a 4th-order tensor, C A

L

B RI1J1 I4J4 , with entries c

k1,k2,k3,k4
a

i1,...,i4 b

j1,...,j4 , where k

n

i

n

j

n

(n 1, 2, 3, 4). Note that the order of tensor C is
the same as the order of A and B, but the size in every mode within C is a product
of the respective sizes of A and B.

illustrated in Figure 2.5.

The mode-n Khatri–Rao product of tensors. The Mode-n
Khatri–Rao product of two Nth-order tensors, A RI1 I2 I

n

I

N

and B RJ1 J2 J

n

J

N , for which I
n

J
n

, yields a tensor
C A

n

B RI1J1 I

n 1J

n 1 I

n

I

n 1J

n 1 I

N

J

N , with subten-
sors C :, . . . :, i

n

, :, . . . , : A :, . . . :, i
n

, :, . . . , : B :, . . . :, i
n

, :, . . . , : .

The mode-2 and mode-1 Khatri–Rao product of matrices.
The above definition simplifies to the standard Khatri–Rao (mode-
2) product of two matrices, A a1, a2, . . . , a

R

RI R and B
b1, b2, . . . , b

R

RJ R, or in other words a “column-wise Kronecker
product”. Therefore, the standard Right and Left Khatri–Rao products
for matrices are respectively given by2

A B a1 b1, a2 b2, . . . , a
R

b
R

RIJ R, (2.6)
A

L

B a1 L

b1, a2 L

b2, . . . , a
R L

b
R

RIJ R. (2.7)

2For simplicity, the mode 2 subindex is usually neglected, i.e., A 2 B A B.
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Analogously, the mode-1 Khatri–Rao product of two matrices A
RI R and B RI Q, is defined as

A 1 B
A 1, : B 1, :

...
A I, : B I, :

RI RQ. (2.8)

Direct sum of tensors. A direct sum of Nth-order tensors
A RI1 I

N and B RJ1 J

N yields a tensor C A B
R I1 J1 I

N

J

N , with entries C k1, . . . , k
N

A k1, . . . , k
N

if 1 k
n

I
n

, n, C k1, . . . , k
N

B k1 I1, . . . , k
N

I
N

if
I

n

k
n

I
n

J
n

, n, and C k1, . . . , k
N

0, otherwise (see
Figure 2.6(a)).

Partial (mode-n) direct sum of tensors. A partial direct sum of
tensors A RI1 I

N and B RJ1 J

N , with I
n

J
n

, yields a ten-
sor C A

n

B R I1 J1 I

n 1 J

n 1 I

n

I

n 1 J

n 1 I

N

J

N ,
where C :, . . . , :, i

n

, :, . . . , : A :, . . . , :, i
n

, :, . . . , : B :, . . . , :, i
n

, :
, . . . , : , as illustrated in Figure 2.6(b).

Concatenation of Nth-order tensors. A concatenation along
mode-n of tensors A RI1 I

N and B RJ1 J

N , for
which I

m

J
m

, m n yields a tensor C A
n

B
RI1 I

n 1 I

n

J

n

I

n 1 I

N , with subtensors C i1, . . . , i
n 1, :

, i
n 1, . . . , i

N

A i1, . . . , i
n 1, :, i

n 1, . . . , i
N

B i1, . . . , i
n 1, :

, i
n 1, . . . , i

N

, as illustrated in Figure 2.6(c). For a concatenation of
two tensors of suitable dimensions along mode-n, we will use equivalent
notations C A

n

B A
n

B.

3D Convolution. For simplicity, consider two 3rd-order tensors
A RI1 I2 I3 and B RJ1 J2 J3 . Their 3D Convolution yields
a tensor C A B R I1 J1 1 I2 J2 1 I3 J3 1 , with entries
C k1, k2, k3

j1 j2 j3 B j1, j2, j3 A k1 j1, k2 j2, k3 j3 as
illustrated in Figure 2.7 and Figure 2.8.

Partial (mode-n) Convolution. For simplicity, consider two 3rd-
order tensors A RI1 I2 I3 and B RJ1 J2 J3 . Their mode-2 (partial)
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(b)

(a) I3

I1

I2 J1

J

J

3

2

A
B

A B ∈ R(    +    )   I1 J1 ×(    +     )   ×(    +     )   I3 J3I2 J2

(c)
A B1 A B2

A B
3

A B1 A B2 A B3

I2 = J2

I3 = J3

I3 = J3

I1 = J1

I2 = J2

I3

I1

I2

J

J

3

2

A

A

B B

BJ3
I3

I1 = J1

B

A A

B B
I2 J2 I2 = J2 I2 J2

I3

I1
J1

I1

J1

I3 = J3

I1=J1

I1

J1 A A

I

Figure 2.6: Illustration of the direct sum, partial direct sum and concatenation
operators of two 3rd-order tensors. (a) Direct sum. (b) Partial (mode-1, mode-2,
and mode-3) direct sum. (c) Concatenations along mode-1,2,3.
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* =

A B

C

1 2 3 4

0 3 2 1

5 0 1 4

3 1 0 2

0 -1 0

-1 4 -1

0 -1 0

3 4

2 1

5 0 1 4

3 1 0 2

3 4

1

4

3 1 0 2

0 -1 0

-1

0

1 2

0

0

0

0 0

4 -1

-1 0
0 3

0 -1 0
1 2 3

2

5 0 1
-1

0

0
4 -1

-1 0

3

3

3 1 0 2

0 -1 0
1 2 3

2

5 0 1
-1

0

0
4 -1

-1 0

3

4

1

4

1･4+2･(-1)=2

2･(-1)+3･4+2･(-1)=8
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0 -1 -2 -3
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12 -4

-3 6 1 -4
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4 -2

-2 0

2

8

0

Figure 2.7: Illustration of the 2D convolution operator, performed through a
sliding window operation along both the horizontal and vertical index.
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A B C
I3

I1

I2

* =

J3I3+ -1

J1I1+ -1

* =

Reduction
(summation)

2 3 3
6 2 4
4 2 5

4 0 3
2 3 5
2 1 2

0 3 2
2 3 1
1 0 5

0 -1 0
-1 5 -1
0 -1 0

-2 -1 0
-1 1 1
0 1 2

0 -1 0
-1 4 -1
0 -1 0

0 -3 0
-610 -4
0 -2 0

-8 0 0
-2 3 5
0 1 4

0 -3 0
-2 12 -1
0 -1 0

J3

J1
J2

( )

( )
3

J2I2+ -1( )

Hadamard product

Σ

Figure 2.8: Illustration of the 3D convolution operator, performed through a
sliding window operation along all three indices.

convolution yields a tensor C A 2 B RI1J1 I2 J2 1 I3J3 , the
subtensors (vectors) of which are C k1, :, k3 A i1, :, i3 B j1, :
, j3 RI2 J2 1, where k1 i1j1, and k3 i3j3.

Outer product. The central operator in tensor analysis is the outer
or tensor product, which for the tensors A RI1 I

N and B
RJ1 J

M gives the tensor C A B RI1 I

N

J1 J

M with
entries c

i1,...,i

N

,j1,...,j

M

a
i1,...,i

N

b
j1,...,j

M

.
Note that for 1st-order tensors (vectors), the tensor product reduces

to the standard outer product of two nonzero vectors, a RI and
b RJ , which yields a rank-1 matrix, X a b abT RI J .
The outer product of three nonzero vectors, a RI , b RJ and
c RK , gives a 3rd-order rank-1 tensor (called pure or elementary
tensor), X a b c RI J K , with entries x

ijk

a
i

b
j

c
k

.
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Rank-1 tensor. A tensor, X RI1 I2 I

N , is said to be of rank-1 if it
can be expressed exactly as the outer product, X b 1 b 2 b N

of nonzero vectors, b n RI

n , with the tensor entries given by
x

i1,i2,...,i

N

b
1

i1 b
2

i2 b
N

i

N

.

Kruskal tensor, CP decomposition. For further discussion, it is
important to highlight that any tensor can be expressed as a finite sum
of rank-1 tensors, in the form

X
R

r 1
b 1

r

b 2
r

b N

r

R

r 1

N

n 1
b n

r

, b n

r

RI

n , (2.9)

which is exactly the form of the Kruskal tensor, illustrated in Figure
2.9, also known under the names of CANDECOMP/PARAFAC,
Canonical Polyadic Decomposition (CPD), or simply the CP decom-
position in (1.2). We will use the acronyms CP and CPD.

Tensor rank. The tensor rank, also called the CP rank, is a natural
extension of the matrix rank and is defined as a minimum number, R,
of rank-1 terms in an exact CP decomposition of the form in (2.9).

Although the CP decomposition has already found many practical
applications, its limiting theoretical property is that the best rank-R
approximation of a given data tensor may not exist (see de Silva
and Lim (2008) for more detail). However, a rank-R tensor can be
approximated arbitrarily well by a sequence of tensors for which the
CP ranks are strictly less than R. For these reasons, the concept
of border rank was proposed (Bini, 1985), which is defined as the
minimum number of rank-1 tensors which provides the approximation
of a given tensor with an arbitrary accuracy.

Symmetric tensor decomposition. A symmetric tensor (sometimes
called a super-symmetric tensor) is invariant to the permutations of its
indices. A symmetric tensor of Nth-order has equal sizes, I

n

I, n, in
all its modes, and the same value of entries for every permutation of its
indices. For example, for vectors b n b RI , n, the rank-1 tensor,
constructed by N outer products, N

n 1b n b b b RI I I ,
is symmetric. Moreover, every symmetric tensor can be expressed as a
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I1

I4

I3
I2

X
=

I1

I2

I3

I4

(1)
rb (2)

rb

(3)
rb

(4)
rb

=1

R

r

Figure 2.9: The CP decomposition for a 4th-order tensor X of rank R. Observe
that the rank-1 subtensors are formed through the outer products of the vectors
b 1

r

, . . . , b 4
r

, r 1, . . . , R.

linear combination of such symmetric rank-1 tensors through the so-
called symmetric CP decomposition, given by

X
R

r 1
⁄

r

b
r

b
r

b
r

, b
r

RI , (2.10)

where ⁄
r

R are the scaling parameters for the unit length vectors b
r

,
while the symmetric tensor rank is the minimal number R of rank-1
tensors that is necessary for its exact representation.

Multilinear products. The mode-n (multilinear) product, also called
the tensor-times-matrix product (TTM), of a tensor, A RI1 I

N ,
and a matrix, B RJ I

n , gives the tensor

C A
n

B RI1 I

n 1 J I

n 1 I

N , (2.11)

with entries

c
i1,i2,...,i

n 1,j,i

n 1,...,i

N

I

n

i

n

1
a

i1,i2,...,i

N

b
j,i

n

. (2.12)

From (2.12) and Figure 2.10, the equivalent matrix form is
C

n

BA
n

, which allows us to employ established fast matrix-by-
vector and matrix-by-matrix multiplications when dealing with very
large-scale tensors. E�cient and optimized algorithms for TTM are,
however, still emerging (Li et al., 2015; Ballard et al., 2015a,b).

Full multilinear (Tucker) product. A full multilinear product, also
called the Tucker product, of an Nth-order tensor, G RR1 R2 R

N ,
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(a)
...

...
B

C(1)

I2
I1

I3I2I1

J
J

J

I1

2 3I II3

A

C B

I1

J

...

...

A1 A2 AI3

BA1 BA2 BAI3

C=A× B1 C =B A(1) (1)

A(1)

(b)

IN
A B

InI1
I2

...

... J J

B
In

A ( )n

1 1 1n- n+ NI I I I

nC A B
( ) ( )n nC B A

Figure 2.10: Illustration of the multilinear mode-n product, also known as the
TTM (Tensor-Times-Matrix) product, performed in the tensor format (left) and
the matrix format (right). (a) Mode-1 product of a 3rd-order tensor, A RI1 I2 I3 ,
and a factor (component) matrix, B RJ I1 , yields a tensor C A 1 B
RJ I2 I3 . This is equivalent to a simple matrix multiplication formula, C 1
BA 1 . (b) Graphical representation of a mode-n product of an Nth-order tensor,
A RI1 I2 I

N , and a factor matrix, B RJ I

n .

and a set of N factor matrices, B n RI

n

R

n for n 1, 2, . . . , N ,
performs the multiplications in all the modes and can be compactly
written as (see Figure 2.11(b))

C G 1 B 1
2 B 2

N

B N (2.13)
JG; B 1 , B 2 , . . . , B N K RI1 I2 I

N .

Observe that this format corresponds to the Tucker decomposition
(Tucker, 1964, 1966; Kolda and Bader, 2009) (see Section 3.3).

Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A RI1 I

N , and a
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vector, b RI

n (tensor-times-vector, TTV) yields a tensor

C A¯
n

b RI1 I

n 1 I

n 1 I

N , (2.14)

with entries

c
i1,...,i

n 1,i

n 1,...,i

N

I

n

i

n

1
a

i1,...,i

n 1,i

n

,i

n 1,...,i

N

b
i

n

. (2.15)

Note that the mode-n multiplication of a tensor by a matrix does not
change the tensor order, while the multiplication of a tensor by vectors
reduces its order, with the mode n removed (see Figure 2.11).

Multilinear products of tensors by matrices or vectors play a
key role in deterministic methods for the reshaping of tensors and
dimensionality reduction, as well as in probabilistic methods for
randomization/sketching procedures and in random projections of
tensors into matrices or vectors. In other words, we can also perform
reshaping of a tensor through random projections that change its
entries, dimensionality or size of modes, and/or the tensor order. This
is achieved by multiplying a tensor by random matrices or vectors,
transformations which preserve its basic properties. (Sun et al., 2006;
Drineas and Mahoney, 2007; Lu et al., 2011; Li and Monga, 2012;
Pham and Pagh, 2013; Wang et al., 2015; Kuleshov et al., 2015; Sorber
et al., 2016) (see Section 3.5 for more detail).

Tensor contractions. Tensor contraction is a fundamental and the
most important operation in tensor networks, and can be considered
a higher-dimensional analogue of matrix multiplication, inner product,
and outer product.

In a way similar to the mode-n multilinear product3, the mode- m

n

product (tensor contraction) of two tensors, A RI1 I2 I

N and B
RJ1 J2 J

M , with common modes, I
n

J
m

, yields an N M 2 -
order tensor, C RI1 I

n 1 I

n 1 I

N

J1 J

m 1 J

m 1 J

M , in
the form (see Figure 2.12(a))

C A m

n

B, (2.16)
3In the literature, sometimes the symbol

n

is replaced by
n

.
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=
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R1

R2 R3
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R1

R2 R3

R4
R1

R2

R4

R4
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G

G

G

G

G

(b) (c)

R1
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R4
B
(1) R5

B
(5)

B
(4)

B
(3)B

(2)

I1

I2
I3

I4

I5

R3
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R4
R1

R2

R3

b3

b2

b1 G

Figure 2.11: Multilinear tensor products in a compact tensor network notation.
(a) Transforming and/or compressing a 4th-order tensor, G RR1 R2 R3 R4 , into a
scalar, vector, matrix and 3rd-order tensor, by multilinear products of the tensor and
vectors. Note that a mode-n multiplication of a tensor by a matrix does not change
the order of a tensor, while a multiplication of a tensor by a vector reduces its order
by one. For example, a multilinear product of a 4th-order tensor and four vectors (top
diagram) yields a scalar. (b) Multilinear product of a tensor, G RR1 R2 R5 , and
five factor (component) matrices, B n RI

n

R

n (n 1, 2, . . . , 5), yields the tensor
C G 1B 1

2B 2
3B 3

4B 4
5B 5 RI1 I2 I5 . This corresponds to the

Tucker format. (c) Multilinear product of a 4th-order tensor, G RR1 R2 R3 R4 ,
and three vectors, b

n

RR

n

n 1, 2, 3 , yields the vector c G ¯ 1b1 ¯ 2b2 ¯ 3b3
RR4 .
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I1
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I J3 2=
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A BI Jn m=I1
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I2

I3

I1

J1
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Figure 2.12: Examples of contractions of two tensors. (a) Multilinear product of
two tensors is denoted by A m

n

B. (b) Inner product of two 3rd-order tensors
yields a scalar c A, B A 1,2,3

1,2,3 B A ¯ B
i1,i2,i3

a

i1,i2,i3 b

i1,i2,i3 .
(c) Tensor contraction of two 4th-order tensors, along mode-3 in A and mode-
2 in B, yields a 6th-order tensor, C A 2

3 B RI1 I2 I4 J1 J3 J4 , with
entries c

i1,i2,i4,j1,j3,j4
i3

a

i1,i2,i3,i4 b

j1,i3,j3,j4 . (d) Tensor contraction of two
5th-order tensors along the modes 3, 4, 5 in A and 1, 2, 3 in B yields a 4th-order
tensor, C A 1,2,3

5,4,3 B RI1 I2 J4 J5 .

for which the entries are computed as

c
i1, ..., i

n 1, i

n 1, ...,i

N

, j1, ..., j

m 1, j

m 1, ..., j

M

I

n

i

n

1
a

i1,...,i

n 1, i

n

, i

n 1, ..., i

N

b
j1, ..., j

m 1, i

n

, j

m 1, ..., j

M

. (2.17)

This operation is referred to as a contraction of two tensors in single
common mode.

Tensors can be contracted in several modes or even in all modes, as
illustrated in Figure 2.12. For convenience of presentation, the super-
or sub-index, e.g., m, n, will be omitted in a few special cases. For
example, the multilinear product of the tensors, A RI1 I2 I

N and
B RJ1 J2 J

M , with common modes, I
N

J1, can be written as

C A 1
N

B A 1 B A B RI1 I2 I

N 1 J2 J

M , (2.18)
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for which the entries

c
i1,i2,...,i

N 1,j2,j3,...,j

M

I

N

i

N

1
a

i1,i2,...,i

N

b
i

N

,j2,...,j

M

.

In this notation, the multiplications of matrices and vectors can be
written as, A 1

2 B A 1 B AB, A 2
2 B ABT, A 1,2

1,2 B
A¯B A, B , and A 1

2 x A 1 x Ax.
Note that tensor contractions are, in general not associative or com-

mutative, since when contracting more than two tensors, the order has
to be precisely specified (defined), for example, A b

a

B d

c

C for b c.
It is also important to note that a matrix-by-vector product,

y Ax RI1 I

N , with A RI1 I

N

J1 J

N and x RJ1 J

N , can be ex-
pressed in a tensorized form via the contraction operator as Y A¯X,
where the symbol ¯ denotes the contraction of all modes of the tensor
X (see Section 4.5).

Unlike the matrix-by-matrix multiplications for which several
e�cient parallel schemes have been developed, the number of e�cient
algorithms for tensor contractions is rather limited. In practice, due to
the high computational complexity of tensor contractions, especially
for tensor networks with loops, this operation is often performed
approximately (Lubasch et al., 2014; Di Napoli et al., 2014; Pfeifer
et al., 2014; Kao et al., 2015).

Tensor trace. Consider a tensor with partial self-contraction modes,
where the outer (or open) indices represent physical modes of the ten-
sor, while the inner indices indicate its contraction modes. The Tensor
Trace operator performs the summation of all inner indices of the ten-
sor (Gu et al., 2009). For example, a tensor A of size R I R has
two inner indices, modes 1 and 3 of size R, and one open mode of size
I. Its tensor trace yields a vector of length I, given by

a Tr A
r

A r, :, r ,

the elements of which are the traces of its lateral slices A
i

RR R

i 1, 2, . . . , I , that is, (see bottom of Figure 2.13)

a tr A1 , . . . , tr A
i

, . . . , tr A
I

T. (2.19)
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I A

A1

A2

A3

A4

I
R =

tr( )Ac

A1A2A3A4)

A

I

tr(c

aiii
=

a
R

I J

I I

K

Ax y

AX X

tr(Ay x  )   x AyT T

tr(X AX)T

[a1 a2, ,..., aI ]
T

ai r
A(r,i,r)

1

Figure 2.13: Tensor network notation for the traces of matrices (panels 1-
4 from the top), and a (partial) tensor trace (tensor self-contraction) of a 3rd-
order tensor (bottom panel). Note that graphical representations of the trace
of matrices intuitively explain the permutation property of trace operator, e.g.,
tr A1A2A3A4 tr A3A4A1A2 .

A tensor can have more than one pair of inner indices, e.g., the tensor
A of size R I S S I R has two pairs of inner indices, modes 1
and 6, modes 3 and 4, and two open modes (2 and 5). The tensor trace
of A therefore returns a matrix of size I I defined as

Tr A
r s

A r, :, s, s, :, r .

A variant of Tensor Trace (Lee and Cichocki, 2016c) for the
case of the partial tensor self-contraction considers a tensor A
RR I1 I2 I

N

R and yields a reduced-order tensor A Tr A
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I1 I2 I3 I4 I5 I6
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I4

I5 I6

I7 I8 I9

I7 I8

I9

MPS

PEPS

TTNS

I1 I2 I3
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Figure 2.14: Illustration of the decomposition of a 9th-order tensor, X
RI1 I2 I9 , into di�erent forms of tensor networks (TNs). In general, the ob-
jective is to decompose a very high-order tensor into sparsely (weakly) connected
low-order and small size tensors, typically 3rd-order and 4th-order tensors called
cores. Top: The Tensor Chain (TC) model, which is equivalent to the Matrix Prod-
uct State (MPS) with periodic boundary conditions (PBC). Middle: The Projected
Entangled-Pair States (PEPS), also with PBC. Bottom: The Tree Tensor Network
State (TTNS).

RI1 I2 I

N , with entries

A i1, i2, . . . , i
N

R

r 1
A r, i1, i2, . . . , i

N

, r , (2.20)

Conversions of tensors to scalars, vectors, matrices or tensors with re-
shaped modes and/or reduced orders are illustrated in Figures 2.11–
2.13.

2.2 Graphical Representation of Fundamental Tensor Net-
works

Tensor networks (TNs) represent a higher-order tensor as a set of
sparsely interconnected lower-order tensors (see Figure 2.14), and
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in this way provide computational and storage benefits. The lines
(branches, edges) connecting core tensors correspond to the contracted
modes while their weights (or numbers of branches) represent the rank
of a tensor network4, whereas the lines which do not connect core ten-
sors correspond to the “external” physical variables (modes, indices)
within the data tensor. In other words, the number of free (dangling)
edges (with weights larger than one) determines the order of a data
tensor under consideration, while set of weights of internal branches
represents the TN rank.

2.2.1 Hierarchical Tucker (HT) and Tree Tensor Network State
(TTNS) Models

Hierarchical Tucker (HT) decompositions (also called hierarchical ten-
sor representation) have been introduced in (Hackbusch and Kühn,
2009) and also independently in (Grasedyck, 2010), see also (Hack-
busch, 2012; Lubich et al., 2013; Uschmajew and Vandereycken, 2013;
Kressner and Tobler, 2014; Bachmayr et al., 2016) and references
therein5. Generally, the HT decomposition requires splitting the set
of modes of a tensor in a hierarchical way, which results in a binary
tree containing a subset of modes at each branch (called a dimension
tree); examples of binary trees are given in Figures 2.15, 2.16 and 2.17.
In tensor networks based on binary trees, all the cores are of order of
three or less. Observe that the HT model does not contain any cycles
(loops), i.e., no edges connecting a node with itself. The splitting op-
eration of the set of modes of the original data tensor by binary tree
edges is performed through a suitable matricization.

Choice of dimension tree. The dimension tree within the HT
format is chosen a priori and defines the topology of the HT decompo-
sition. Intuitively, the dimension tree specifies which groups of modes

4Strictly speaking, the minimum set of internal indices R1, R2, R3, . . . is called
the rank (bond dimensions) of a specific tensor network.

5The HT model was developed independently, from a di�erent perspective, in
the chemistry community under the name MultiLayer Multi-Configurational Time-
Dependent Hartree method (ML-MCTDH) (Wang and Thoss, 2003). Furthermore,
the PARATREE model, developed independently for signal processing applications
(Salmi et al., 2009), is quite similar to the HT model (Grasedyck, 2010).
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Figure 2.15: The standard Tucker decomposition of an 8th-order tensor into a core
tensor (red circle) and eight factor matrices (green circles), and its transformation
into an equivalent Hierarchical Tucker (HT) model using interconnected smaller size
3rd-order core tensors and the same factor matrices.

are “separated” from other groups of modes, so that a sequential HT
decomposition can be performed via a (truncated) SVD applied to a
suitably matricized tensor. One of the simplest and most straightfor-
ward choices of a dimension tree is the linear and unbalanced tree,
which gives rise to the tensor-train (TT) decomposition, discussed in
detail in Section 2.2.2 and Section 4 (Oseledets, 2011; Oseledets and
Tyrtyshnikov, 2009).

Using mathematical formalism, a dimension tree is a binary tree
T

N

, N 1, which satisfies that

(i) all nodes t T
N

are non-empty subsets of {1, 2,. . . , N},

(ii) the set t
root

1, 2, . . . , N is the root node of T
N

, and

(iii) each non-leaf node has two children u, v T
N

such that t is a
disjoint union t u v.

The HT model is illustrated through the following Example.

Example. Suppose that the dimension tree T7 is given, which gives
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Figure 2.16: Examples of HT/TT models (formats) for distributed Tucker de-
compositions with 3rd-order cores, for di�erent orders of data tensors. Green circles
denote factor matrices (which can be absorbed by core tensors), while red circles
indicate cores. Observe that the representations are not unique.

the HT decomposition illustrated in Figure 2.17. The HT decomposi-
tion of a tensor X RI1 I7 with given set of integers R

t t T7 can


