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Abstract

The complex domain provides a natural processing framework for a large class of sig-

nals encountered in communications, radar, biomedical engineering and renewable

energy. Statistical signal processing in C has traditionally been viewed as a straight-

forward extension of the corresponding algorithms in the real domain R, however,

recent developments in augmented complex statistics show that, in general, this leads

to under-modelling. This direct treatment of complex-valued signals has led to ad-

vances in so called widely linear modelling and the introduction of a generalised

framework for the differentiability of both analytic and non-analytic complex and

quaternion functions. In this thesis, supervised and blind complex adaptive algo-

rithms capable of processing the generality of complex and quaternion signals (both

circular and noncircular) in both noise-free and noisy environments are developed;

their usefulness in real-world applications is demonstrated through case studies.

The focus of this thesis is on the use of augmented statistics and widely linear mod-

elling. The standard complex least mean square (CLMS) algorithm is extended to

perform optimally for the generality of complex-valued signals, and is shown to out-

perform the CLMS algorithm. Next, extraction of latent complex-valued signals from

large mixtures is addressed. This is achieved by developing several classes of com-

plex blind source extraction algorithms based on fundamental signal properties such

as smoothness, predictability and degree of Gaussianity, with the analysis of the ex-

istence and uniqueness of the solutions also provided. These algorithms are shown

to facilitate real-time applications, such as those in brain computer interfacing (BCI).

Due to their modified cost functions and the widely linear mixing model, this class of

algorithms perform well in both noise-free and noisy environments. Next, based on a

widely linear quaternion model, the FastICA algorithm is extended to the quaternion

domain to provide separation of the generality of quaternion signals. The enhanced

performances of the widely linear algorithms are illustrated in renewable energy and

biomedical applications, in particular, for the prediction of wind profiles and extrac-

tion of artifacts from EEG recordings.
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Chapter 1

Introduction

1.1 Signal processing in R

Adaptive signal processing has been at the centre of statistical signal processing re-

search for the past five decades, and has found a wide range of applications, including

channel equalisation in communications, beamforming, biomedical applications such

as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG)

and radar [1]. While digital filters with fixed coefficients are only optimal for static

scenarios, adaptive filters require no assumptions on the signal generating mecha-

nism, and operate in nonstationary environments [2]. In addition, the increase in the

processing power along with lower cost and lower power consumption requirements

of digital processors, have allowed for the investigation of more ambitious and com-

putationally complex problems.

Adaptive signal processing algorithms can be divided into two distinctive categories:

supervised and unsupervised (blind). The presence of training signals in supervised

algorithms results in more straightforward methods for adaptive filtering, whereby

the operation is governed by the training signal. Blind algorithms process the out-

put without the knowledge of the system, teaching inputs, or both. Such a scenario

results in a more challenging problem where it is required to make certain prior as-

sumptions on the input signal or system. The design of both supervised and blind

signal processing algorithms relies on the choice of a suitable statistical signal model

(architecture) as a prerequisite prior to the development of mathematical optimisation

methods (algorithms).

Supervised adaptive algorithms based on the Wiener and Kalman filters have been

extensively studied in the real domain R. The Least Mean Square (LMS) algorithm,

introduced in the 1960s by Widrow and Hoff, is the most well-known and used in

practice supervised adaptive algorithm in R, and much research has been dedicated
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to the analysis of LMS and enhancement of its performance. This includes the class

of variable step-size LMS algorithms proposed by Benveniste, Mathews, and Ang and

Farhang-Boroujeny, which aim to adapt the LMS step-size in a ‘linear’ fashion to make

it suitable for time varying and nonstationary conditions [3]. The Generalised Nor-

malised Gradient Descent (GNGD) algorithm [4, 5, 6] adapts the learning rate in a

‘nonlinear’ manner; it is based on normalised LMS (NLMS) and avoids spurious solu-

tions due to small signal magnitudes by adapting the regularisation parameter. While

both strategies equip LMS with an adaptive step-size, the GNGD algorithm is more

powerful, due to its nonlinear step-size update and also provides improved stabil-

ity [4].

A hybrid filter, based on a combination of two adaptive sub-filters, was addressed

in [7], whereby by virtue of the convex mixing parameter this collaborative structure

provides enhanced performance. By selecting sub-filters whose natures complement

one another, such a hybrid filter then outperforms the individual adaptive sub-filters.

This results in, for example, fast convergence and always stable steady-state perfor-

mance. Hybrid filters have also been utilised for collaborative adaptive filtering sce-

narios, and the online tracking of signal modality [8, 9], the so obtained information on

the signal modality can then be used as prior knowledge to further processing units.

Blind signal processing algorithms have gained much attention in the past two decades,

resulting in a wide range of algorithms with application in biomedical and commu-

nications fields [10, 11]. In their most fundamental form, the aim is to estimate un-

known source signals from an array of observed signals, without knowledge of the

mixing system or signal generation. Alternatively, under the umbrella of blind source

separation (BSS), where possible such algorithms employ physically meaningful as-

sumptions on the system and latent signals, in order to enhance performance.

A typical assumption on the mixing system is that the output signals are linear mix-

tures of the unknown input sources, with further assumption of the statistical inde-

pendence of the latent sources, leading to Independent Component Analysis (ICA) [12].

While this assumption may not be realistic for real-world scenarios, for example, for

correlated source signals due to reverberation, it is applicable to certain scenarios

where some prior knowledge about the sources is available, such as in the estimation

of biomedical signals originating from different organs, such as the mixture of electri-

cal activity from brain functions (EEG) and electrocardiogram (ECG) signals from the

heart. Likewise, it is common for the observed signals to be a mixture of two physical

entities, such as mother and fetal ECG [13].

An insight into the unknown sources or mixing system allows for modelling more

complex scenarios encountered in real-world problems. Blind source separation of

signals with post-nonlinear mixing was addressed in [14] and further generalised

in [15], for the separation of latent sources from a post-nonlinear mixture with an
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ill-conditioned mixing matrix. Likewise, blind source separation in noisy environ-

ments has been studied in [16]. Two noise models were discussed in [12], where noise

was considered either additive for each observed mixture (output) and termed sen-

sor noise, or it was additive for the source signals prior to being mixed by the system,

called source noise. The case of additive sensor noise was considered in [17], modelled

as an additive white Gaussian noise, and removed through a bias removal method.

Another assumption in BSS is that of underdetermined mixtures; in the standard

model the number of observed mixtures is considered equal to (or greater than) the

source signals, while in a practical situation, the exact number of sources may be un-

known or change in time. In the case of an underdetermined mixture, the number of

sources is greater than the observed mixtures, which results in a mixing matrix which

is not linearly invertible. To overcome this problem, various algebraic techniques and

assumptions have been introduced. This includes the use of canonical decomposi-

tion [18], parallel factor analysis (PARAFAC) [19] and prior assumptions on the source

characteristic function [20].

One of the concepts employed by real-valued BSS methodologies is to exploit the de-

gree of Gaussianity of the source signals as a signal fingerprint. This is justified by the

central limit theorem, where the observed mixture of signals has a more Gaussian dis-

tribution that the original source signals. Thus, based on the discussed assumptions,

it is possible to estimate a set of sources that are independent, while being maximally

non-Gausssian. This can be achieved using a higher order statistic, typically based

on kurtosis as a measure of non-Gaussianity, and by maximising (or minimising) the

kurtosis of the estimated sources.

As the kurtosis is sensitive to outliers, an information theoretic approach based on the

utilisation of the negentropy function is a more general and robust approach to the

use of kurtosis [12]. The negentropy function is a normalised variant of an entropy

measure, such that it is zero for a Gaussian random variable and non-zero for random

variables with non-Gaussian distributions. As knowledge of the negentropy function

is generally not available, it is estimated using suitably chosen nonlinearities. This

principle is utilised in the FastICA algorithm, which maximises the negentropy of the

estimated sources using a fast converging fixed-point like Newton method [21, 22].

The simple offline Fourth Order Blind Identification (FOBI) algorithm [23] estimates

sources by obtaining the inverse of the mixing matrix, called demixing matrix, using

the eigenvalue decomposition (EVD) of a weighted covariance matrix. As the eigen-

values of the weighted covariance matrix are formed by the fourth order moments

of the source signals, the performance of the algorithm is limited to only separating

sources with distinct kurtosis values. The tensorial approach of the offline Joint Ap-

proximate Diagonalisation of Eigenmatrices (JADE) [24] method is a generalisation of

FOBI, which utilises the EVD of the fourth order cumulant tensor. Due to the com-
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plexity associated with the calculation of the EVD, the algorithm is only suitable for

problems with small number of sources.

The class of algorithms for the estimation of sources using maximum likelihood (ML)

rely on the estimation of the source probability density function (pdf). It is possible

to utilise density estimates by using a pair of nonlinearities that encompass densities

of both sub- and super-Gaussian random variables, however, the drawback is that the

correct estimator has to be used in the algorithm. The ML based algorithm was in-

troduced in [25] and the gradient adaptive ML based algorithm of Bell and Sejnowski

based on the infomax principle in [26]. A modified algorithm was addressed in [27], a

derivation based on the natural gradient (relative gradient) was discussed in [28, 29]

and a fixed-point like (FastICA) variant of the algorithm is given in [12]. The nat-

ural gradient variant of the algorithm avoids matrix inversion calculations at each

iteration of the gradient update, while the FastICA variant allows for faster conver-

gence and the use of a fixed density estimator. Generalisation of the ML approach and

maximisation of negentropy is based on the minimisation of the mutual information,

or statistical dependence, of the estimated sources. Thus, the previously mentioned

methods also operate on the basis of minimising the mutual information. For instance,

the algorithm in [30] introduces a natural gradient based algorithm that minimises the

Kullback-Liebler divergence, which is equivalent to minimising the mutual informa-

tion.

The task of separating latent sources may be performed simultaneously in parallel,

or, one-by-one in a deflationary manner. The option of choosing either method is de-

pendent on the problem and the choice of algorithm. For example, while algorithms

based on the maximisation of negentropy allow for both simultaneous and deflation-

ary separation of sources, those based on the ML approach or direct linear algebraic

manipulation only allow for simultaneous separation of sources [12]. This may not be

desirable in problems with high dimensionality, or when only a few of the sources are

required. Procedures pertaining to the estimation of a subset of sources are termed

blind source extraction (BSE) algorithms. While source extraction using standard al-

gorithms such as FastICA can be performed in a deflationary manner, it may be de-

sirable to extract sources based on a certain fundamental signal property. This leads

to lower computational complexity and the possibility to remove the need for pre- or

post-processing.

Algorithms for blind source extraction of real-valued sources utilise both second- and

higher-order statistical properties of signals to discriminate between the sources. Al-

gorithms based on higher order statistics achieve this by minimising cost functions

based typically on the skewness [31] and kurtosis (and generalised kurtosis) [10, 32,

33, 34]. Alternatively, the predictability of the sources (arising from their temporal

structure) leads to another class of algorithms which minimise cost functions based
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Figure 1.1 Adaptive algorithm in interference cancelling mode, acting as an adaptive notch
filter

on the mean square prediction error (MSPE) [10, 35, 36].

1.2 Signal processing in C

Signals encountered in the complex domain C can be divided into two groups: those

complex by design, and those made complex by convenience of representation. For

instance, signals encountered in the communications field (e.g. QPSK) and signals

obtained from an fMRI procedure are considered complex by design (complex by na-

ture), while a complex wind signal is represented by convenience of representation by

combining its speed and direction into a complex vector. Also, as a preliminary stage

in beamforming problems, a phasor is created using a phase-quadrature demodulator,

which is also complex [37]. Finally, consider the methodology presented in [38] for the

removal of power line noise in ECG type applications. For enhanced performance, the

input of an adaptive filter in the noise cancellation configuration (see Figure 1.1) is first

phase shifted by π/2 radians and then coupled with its original version to effectively

form a complex signal.

A complex signal can be represented by its real and imaginary, or phase and ampli-

tude components. The adaptive processing of complex-valued signals can then be per-

formed using three different approaches. Firstly, the real and imaginary components

(or phase and amplitude) are considered as dual univariate signals and processed sep-

arately. Secondly, the two components can be considered as a real-valued bivariate

signal and processed using a suitable real-valued two-dimensional algorithm. Alter-

natively, it would be natural to consider the signal directly in the complex domain C

and process it by utilising algorithms designed directly for complex-valued signals.

An early example of such an approach is the extension of the LMS algorithm to the

complex domain (CLMS) by Widrow et al. in 1975 [39]. More recently, the Least Mean

Phase-Least Mean Square (LMP-LMS) algorithm [40] was introduced for the simulta-

neous processing of both the signal magnitude and phase. This is especially useful

for scenarios occurring in communications where the phase and not the magnitude
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of the signal is the information carrier. The LMP-LMS algorithm minimises the mean

square error in both the signal magnitude and phase, however, it suffers from reduced

performance for signals with small magnitudes.

In the field of unsupervised signal processing, Bingham and Hyvärinen extended the

FastICA algorithm to the complex domain (c-FastICA) in [41]. Likewise, Anemüller

et al. proposed the use of a complex ICA algorithm based on the ML approach [42].

The algorithm operates in the frequency domain and was designed for the processing

of EEG signals. In their work, the authors consider the recorded EEG signal as a

spatio-temporal mixture and propose the creation of complex EEG signals using the

Fast Fourier Transform (FFT). However, the use of the FFT results in the processing

of signals in piecewise stationary blocks, and online processing of signals may not be

possible. In addition, the FFT acts as a smoothing filter and in effect flattens the true

spectrum.

Traditionally, complex algorithms were considered as simple extensions of the estab-

lished corresponding algorithms in the real domain. In particular, statistical modelling

of complex-valued random vectors was taken as straightforward extensions from R.

For example, the covariance E{xxT } in R would be transformed to E{zzH} in C,

where only the change from the transposition operator (·)T to the conjugate transpose

(Hermitian) operator (·)H was considered necessary. In this manner, the distribution

of a complex-valued random vector is, either implicitly or explicitly, symmetric (or

circular) within the complex domain. This assumption implies the independence of

the real and imaginary signal components, which is not correct for the generality of

complex-valued signals. Thus, the aforementioned complex-valued algorithms are

only optimal for a subset of complex signals, those with a circularly symmetric distri-

bution.

A generalised statistical framework in C for signal processing applications was intro-

duced in the 1990s. Fundamental work by Picinbono, Neeser and Massey addressed

the concept of complex circularity, second-order statistics of complex random vari-

ables and widely linear modelling of complex signals. A complex-valued random

variable is considered circular if it has a rotation invariant distribution, and is other-

wise known as noncircular [43]; this concept forming the building block for the consid-

eration of complex statistics. The second-order statistics of complex-valued random

vectors was addressed in [44] and [45], where it was shown that the covariance matrix

does not sufficiently model the statistics and it is necessary to introduce the pseudo-

covariance matrix to fully capture the relation between the real and imaginary compo-

nents of random vectors. Thus both the covariance and pseudo-covariance matrices

are required in order to model the complete second-order information available within

the signal. In the case of second-order circular (also called proper) complex random

variables, the pseudo-covariance matrix vanishes, which coincides with the assump-
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tion of traditional algorithms in C. However, for the case of second-order noncircular

(or improper) random variables, the pseudo-covariance matrix is non-zero.

Based on this understanding, the widely linear model of complex-valued signals is

introduced in [46] which incorporates information in both the covariance and pseudo-

covariance matrices. It is shown that the standard linear model is only sufficient for

modelling ‘proper’ signals, whereas an optimal model for ‘improper’ signals is pro-

vided by a widely linear model. Brief discussion on the extension of these methods to

higher order statistics in given in [47]. The fundamental results of complex statistics

were recently revisited by Schreier and Scharf in [48] and [49], in particular, the no-

tion of augmented complex statistics is mentioned in [48], reflecting the construction

of matrices ccomprising both the covariance and pseudo-covariance matrices. This is

not performed ad hoc, and is a result of the isomorphism (duality) between the real

and complex domains, which was first discussed by van den Bos [50, 51]. Treatment

of statistics in C from the point of view of augmented random vectors also allows for

insight into the duality between the second-order statistics in C and its counterpart in

R2 for bivariate real-valued signals.

The duality between the real and complex domain was first exploited by van den Bos

in [51] to provide a generalisation of the complex Gaussian distribution. Based on

the traditional treatment of complex statistics, the complex Gaussian distribution was

explicitly described for circular signals [52]. Thus, the generalised complex Gaussian

distribution is suitable for modelling both circular and noncircular Gaussian proba-

bility distributions and the traditional complex Gaussian distribution is shown to be

a special case.

The duality of the two domains is also exploited by the same author in [50], where

he addresses the Taylor Series Expansion (TSE) of complex functions. The importance

of his work is twofold. First, it provides a generalised TSE of complex functions and

introduces a generalised Newton optimisation method for complex functions. Second,

by considering the mapping between a complex value and its bivariate form, van den

Bos subtly introduces the concept of duality between the two domains as well as a

methodology for establishing the duality for analysis of complex functions. Another

fundamental result in the treatment of functions in C is given by Brandwood in [53],

where the gradient of functions of a complex variable are shown to be in the direction

of the conjugate of the variable.

This result, along with the concept of duality, was thoroughly investigated and unified

within the CR calculus framework by Kreutz-Delgado in [54], and provides a com-

prehensive reference to the treatment of functions of complex-valued variables. The

so called CR calculus framework (also known as Wirtinger calculus [55]) allows for

the treatment of functions of complex variable directly in the complex domain. This is

particularly important for typical real-valued cost functions encountered in signal pro-
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cessing problems. As such functions are non-analytic, the standard Cauchy-Riemann

results are not applicable and it is customary to perform derivations individually on

the real and imaginary components of the function. However, the CR calculus allows

for the consideration of both analytic and non-analytic functions in a unified manner,

and greatly simplifies the differentiation and analysis of complex functions.

The advantages offered by augmented complex statistics are just being exploited in

supervised learning. In particular, the extensions of real-valued recurrent neural net-

work structures [56] to those in the complex domain based on widely linear mod-

els have been recently designed. This has led to the introduction of the augmented

complex real-time recurrent learning (ACRTRL) algorithm [57] and the augmented

complex-valued extended Kalman filter (ACEKF) for complex recurrent neural net-

works [58]. These algorithms were shown to outperform their standard complex

counterparts for the generality of complex-valued signals. The performance of com-

plex recurrent neural networks were compared for the task of wind profile prediction

using a dual univariate model and a complex model in [59, 60], where the complex

representation of wind resulted in better performance when predicted using a trained

CRTRL algorithm. In comparison, the ACRTRL algorithm achieved a better prediction

performance, highlighting the associated benefits of considering augmented complex

statistics [57]. Finally, the widely linear affine projection algorithm (WL-APA) and

widely linear IIR filters have been demonstrated to be suitable for processing the gen-

erality of real-world data [61, 62]. In brief, the difference between these algorithms and

standard complex supervised algorithms lies in the complete second-order statistical

modelling of signals due to the use of augmented complex statistics; a comprehensive

discussion is given in [63].

It is important to note that in earlier research in nonlinear complex signal processing

problems, split-complex nonlinear functions were considered [64, 65, 66]. A split-

complex nonlinearity allows for a bounded and non-analytic function operating sep-

arately on the real and imaginary components of the input. However, these functions

are not true complex functions and do not provide adequate modelling of complex

nonlinearities. A split-complex function assumes that the real and imaginary compo-

nents of the complex-valued input signal are independent thus preserving the phase.

In [67, 68], the use of fully-complex nonlinearities was discussed. A fully-complex

nonlinearity is bounded almost everywhere, is analytic and allows for the transfor-

mation of both the phase and amplitude of the input.

Recent research in blind signal processing has also resulted in the introduction and

extension of standard BSS methodologies to the complex domain. In comparison to

earlier work in complex BSS, designed for circular complex-valued sources, recent

algorithms have generalised assumptions relating to latent sources and have thus cre-

ated enhanced algorithms for blind separation in C. In addition, the use of the CR
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calculus has allowed for the analysis and derivation of algorithms directly in the com-

plex domain.

The identifiability and separability of complex sources was addressed by Eriksson

and Koivunen in [69]. A particularly interesting result from their work shows that

unlike the real domain, the number of complex Gaussian sources which can be re-

solved is not limited, however, the Gaussian sources should have distributions with

unique degrees of circularity. The authors also introduce the strong uncorrelating

transform (SUT), which allows for the simultaneous diagonalisation of the covariance

and pseudo-covariance matrix. Based on the Takagi factorisation [70], this provides a

valuable tool for both the analysis and design of complex BSS algorithms. The SUT

method was utilised by Douglas to introduce a FastICA implementation based on

kurtosis and the diagonalisation of both the covariance and pseudo-covariance matri-

ces [71]. A generalised uncorrelating transform (GUT), based on generalised estima-

tors of the covariance and pseudo-covariance matrices, was used to perform ICA on

latent complex-valued sources using direct matrix calculation [72]. A generalisation of

the FOBI algorithm using generalised covariance matrix estimators was also proposed

by Ollila et al. in [73].

In [74], Novey and Adalı extend blind separation using negentropy maximisation to

the complex domain. In their work they use fully-complex nonlinearities in the esti-

mation of the negentropy function. Gradient adaptive and Newton based algorithms

using the definition of complex kurtosis were introduced in [75]. An ML approach for

complex ICA using the natural gradient was outlined in [76] and its stability analysis

presented in [77]. In this work, fully-complex nonlinear functions were used for the

approximation of the source density function. In addition, the use of CR calculus was

emphasised, and was shown to simplify the task of derivation of the gradient descent

algorithm and its use in the analysis of the second order TSE of the update algorithm.

While the standard complex FastICA [41] assumes circular sources, the algorithm was

generalised for the processing of both complex circular and noncircular source signals

in [78] and termed the noncircular (or generalised) complex FastICA (nc-FastICA).

Performance of these algorithms in the estimation and separation of the generality of

complex-valued sources demonstrated enhanced performance in comparison to stan-

dard BSS algorithms.

1.3 Motivation and aims

The focus of this work is on the extension of supervised and blind signal processing

algorithms to higher dimensional spaces, and in particular to the complex domain

C and the quaternion domain H. As augmented complex statistics is maturing and
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the use of CR calculus is becoming a standard tool for the analysis of functions in C,

practical learning algorithms are only just being introduced for both supervised and

blind signal processing of noncircular signals.

This thesis introduces several contributions to supervised and blind adaptive signal

processing of noncircular signals:

◦ The standard complex LMS algorithm, introduced over 35 years ago, was mod-

elled using a simplified statistical model. It is thus important to provide an

enhancement of the algorithm and generalise it so as to cater for both complex

circular and noncircular signals. As a workhorse of adaptive signal processing,

it is anticipated that a generalised variant of the algorithm will become a de facto

standard adaptive complex algorithm based on the Wiener filter.

◦ The topic of complex blind source extraction based on fundamental signal prop-

erties is addressed. While it is possible to extract signals based on a deflation-

ary method using recently introduced BSS algorithms, with prior knowledge of

the desired signals, algorithms can be designed that selectively extract source

signals. Such targeted algorithms are suitable in real-world applications where

certain knowledge of the desired sources is available. For example in EEG con-

ditioning, certain information on the properties of the pure EEG and aritfact

signals is available. Therefore, real-time removal of artifacts based on their fun-

damental properties can aid in tasks such as brain computer interfacing (BCI).

In this thesis, a class of algorithms capable of extracting desired complex-valued

sources based on the signal predictability, smoothness and degree of Gaussian-

ity are introduced, providing the capability of online treatment directly in the

complex domain. These signal properties are statistically modelled using aug-

mented complex statistics, and the algorithms are derived directly in C using

the CR calculus.

◦ It is important to design algorithms that are applicable in real-world, and this

thesis provides solutions that demonstrate the applicability of the introduced

algorithms to a variety of problems such as wind prediction and EEG condition-

ing. The focus has been on the usefulness of signals made complex by conve-

nience of representations, and on the design of algorithms capable of processing

complex-valued signals in real-time and directly in the time domain.

◦ Another aim of this work is to expand the analytical framework of complex sig-

nal processing, and thus, provide the expansion of the CR calculus to functions

of a complex matrix variable and the convergence analysis of the generalised

complex FastICA algorithm.
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◦ Finally, the statistical and analytical framework in this work is not limited to

the complex domain, the extensions to the three-dimensional quaternion space

H are explored. Signal processing in the quaternion domain is quickly becom-

ing an active area of research, and thus it is timely to consider the applica-

tion of current findings to the quaternion domain; this includes the proposed

quaternion BSE and quaternion FastICA algorithms, both suitable for noncircu-

lar quaternion-valued signals.

1.4 Organisation of thesis

This thesis is organised as follows. In Chapter 2, augmented complex statistics is

introduced, forming the statistical framework for the rest of the work in this thesis.

Second-order statistics of complex sources is introduced using the duality of the com-

plex and real domains, and the complex kurtosis and a measure of noncircularity are

discussed. After a brief discussion of complex-valued noise, the widely linear model

is introduced and a comparison with the standard linear model is provided. Chap-

ter 3 introduces the augmented (widely linear) complex least mean square (ACLMS)

algorithm, and its derivation using CR calculus is provided. The applicability of the

algorithm in wind profile prediction and hybrid filtering is explored.

Chapter 4 introduces a prediction based complex BSE algorithm by exploiting the tem-

poral structure of the latent sources. The algorithm is derived based on a modified cost

function and is capable of extracting sources from mixtures in noisy environments. In

Chapter 5, a class of complex BSE algorithms based on the degree of Gaussianity of

sources, and capable of extraction of sources in noisy and noise free environments, is

introduces. The chapter provides a study on real-time EEG artifact extraction using

the proposed algorithm. Chapter 6 introduces a fast converging algorithm based on

the generalised complex FastICA, capable of extracting smooth complex sources. The

concept of smoothness in C is discussed and the application of the algorithm in EEG

conditioning is given. Chapter 7 introduces a novel quaternion FastICA algorithm for

the processing of the generality of quaternion sources. A preliminary study of quater-

nion algebra, statistics and calculus is provided and the application of the algorithm

in the separation of EEG signals is demonstrated. Chapter 8 provides conclusions and

directions for future work.

Several key concepts relevant to this work are provided in the appendices. Appendix A

complements the discussion on augmented complex statistics and introduces the com-

plex generalised Gaussian distribution, while Appendix B provides an overview of

the CR calculus framework for functions of complex vector variables. Appendix C

extends this discussion to functions of complex matrix variables and provides several
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application examples. Appendix D gives an overview of the complex FastICA and

the generalised complex FastICA algorithms and discusses the convergence of the

generalised complex FastICA algorithm using three distinct approaches. Appendix E

introduces a novel quaternion BSE algorithm, performing extraction of proper and

improper quaternion sources by exploiting the temporal structure of quaternion sig-

nals.



Chapter 2

Background Theory: Augmented

Complex Statistics and Widely

Linear Modelling

2.1 Complex circularity and second-order statistics

2.1.1 Complex circularity

Consider the complex random vector

z = ℜ{z}+ ℑ{z} = zr + zi ∈ CN , (2.1)

where ℜ{z} = zr and ℑ{z} = zi are respectively its real and imaginary components,

 =
√
−1 and N is the number of elements of z. In defining its statistical properties,

the random vector z is called symmetric [73] if it has the same probability distribution

as −z. A more restricted version of this definition is circular symmetry [43], whereby z

and eϕz have the same probability distribution for all angles ϕ ∈ R, or intuitively, the

distribution of complex circular z is said to be rotation invariant. Conversely, a ran-

dom vector which does not satisfy this condition is called complex noncircular. His-

torically, this definition has roots in past literature pertaining to the study of Gaussian

distributions in the complex domain.

Considering the simple case of a scalar complex circular random variable z = dze
θz ,

its probability density function (pdf) can be written in terms of its magnitude dz and

phase θz , taken as independent random variables with pdf’s pD(dz) and pΘ(θz) which

is uniformly distributed in [0, 2π]. Thus [43],

pZ(z) = pD,Θ(dz, θz) =
1

2π
pD(dz). (2.2)
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Figure 2.1 Scatter plots of circular and noncircular complex Gaussian random variables.

Figure 2.1 depicts the scatter plots of both circular and noncircular Gaussian distri-

butions, where visual inspection confirms the nature of the circularity of the two dis-

tributions. The significance of complex circularity on the definition of second-order

statistics in C is considered next.

2.1.2 The R2 interpretation of complex statistics

The pdf and statistical properties of z are given by the joint pdf of its components,

such that pZ(z) = pZr,Zi
(zr, zi) [44, 43]. This definition can be seen from the fact the

standard probability distribution definition in R is not mathematically meaningful1 in

C. Its expected value is then given by

E{z} = E{zr}+ E{zi} (2.3)

and for a zero-mean random vector, the relationship between its real and imaginary

components are given by the four covariance matrices

Czrzr = E{zrzTr } Czrzi = E{zrzTi }
Czizr = E{zizTr } Czizi = E{zizTi }, (2.4)

where Czizr = CTzrzi . A more compact representation is provided by considering the

composite vector zR = [zTr zTi ]
T , where the covariance matrices in (2.4) are represented

1For a real-valued random variable x, the cumulative distribution function FX is defined as FX =
P (X ≤ x). The C domain is not ordered and inequality relations such as ‘<’ and ‘>’ are thus not defined.
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by [44, 45, 48]

CRzz = E

{[
zr

zi

] [
zTr zTi

]}
= E{zRzRT }

=

[
Czrzr Czrzi
Czizr Czizi

]
∈ R2N×2N . (2.5)

2.1.3 Augmented complex statistics

While defining the second-order statistics of a complex random vector z in terms of

a pair of real-valued random vectors (zr and zi) allows for its statistical analysis, it

would be more appropriate to alternatively consider the statistical relationship di-

rectly in C. To this end, complex random vectors can be modelled directly in the

complex domain, by establishing the duality with its bivariate real alternative in R2.

The transformation2

JN =

[
I I

I −I

]
(2.6)

establishes this duality, where JN is a square block matrix of size 2N × 2N and I is

the identity matrix of size N × N . To keep the notation simple, wherever clear, the

subscript N is omitted from the definition. The duality between the two domains is

then established as3

za ,

[
z

z∗

]
= JzR =

[
I I

I −I

][
zr

zi

]
(2.7)

where za is referred to as an augmented random vector4. Note that the pdf of the

complex random vector can also be formally written as pZ,Z∗(z, z∗) = pZa(za) =

pZr,Zi
(zr, zi).

An alternative view in support of the augmented representation of z simply notes

that both z and its conjugate z∗ are necessary to express the real and imaginary com-

ponents, that is

zr =
1

2
(z+ z∗) zi =

1

2
(z− z∗). (2.8)

2Alternatively, by using the scaling factor 1√
2

in the definition in (2.6), the matrix JN can be defined
as a unitary matrix [48].

3The inverse of this mapping can be easily calculated as J−1
N = 1

2
JH
N providing the mapping from

C2N to R2N .

4The transformation JN was used in earlier work by van den Bos [50, 51], and was formalised in [48]
by Schreier and Scharf.
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Thus, the augmented representation is required to fully model the second-order statis-

tical information within the complex domain, in an equivalent manner to (2.4) or (2.5)

given by the real bivariate random vector.

The augmented covariance matrix Cazz is then given by [48]

Cazz = E

{[
z

z∗

] [
zH zT

]}

=

[
Czz Pzz
P∗
zz C∗zz

]
, (2.9)

where the covariance Czz and pseudo-covariance Pzz matrices are defined as [44, 45]

Czz = E{zzH} = Czrzr + Czizi + (CTzrzi − Czrzi)
Pzz = E{zzT } = Czrzr − Czizi + (CTzrzi + Czrzi). (2.10)

Based on the established duality with R2, the augmented covariance matrix (2.9) pro-

vides an equivalent representation of the second-order statistical information avail-

able within the real and imaginary components, given by (2.5), directly within C. The

mapping and inverse mapping between the two covariance matrices are given by [51]

Cazz = JCRzzJH

CRzz =
1

4
JHCazzJ (2.11)

which can be calculated based on the transformation defined in (2.6). The considera-

tion of the pseudo-covariance in addition to the covariance is referred to as augmented

complex statistics.

2.1.4 The covariance and pseudo-covariance

Having established the augmented statistics in C, the two matrices C and P are con-

sidered. In the literature, P is referred to as the relation matrix [45] or complementary

covariance matrix [48] as well as the pseudo-covariance matrix [44]. The covariance

matrix is complex, Hermitian and positive semi-definite, while the pseudo-covariance

is complex and symmetric [45].

The standard covariance can be seen as the correlation of z and itself, while the pseudo-

covariance measures the correlation between z and its conjugate z∗ [48]. A complex

random vector with a vanishing pseudo-covariance is termed second order circular or

proper [43, 44], that is, Pzz = 0, or otherwise termed improper. The augmented co-

variance matrix Cazz in Equation (2.9) for a proper complex random vector is then a

block-diagonal matrix. In general, the term circular refers to a signal with rotation
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invariant probability distribution, while properness (also, propriety or second order

circularity) specifically refers to the second order statistical properties.

Likewise, using the bivariate representation of z and based on Equation (2.10), a com-

plex random vector is proper if [44]

Czrzr = Czizi and Czrzi = −CTzrzi , (2.12)

that is, the real and imaginary parts of each component zn of z possess equal power

and are uncorrelated. The complex covariance and pseudo-covariance matrices in

Equation (2.10) are then simplified as

Czz = Czrzr − Czrzi
Pzz = 0. (2.13)

Note the following on the skew-symmetric structure of Czrzi owing to the properness

of z. Its main diagonal containing the covariances of the real and imaginary part of

the nth component are uncorrelated and zero, E{zr,nzi,n} = 0, while the off-diagonal

cross-covariance elements pertaining to the nth and mth components, E{zr,nzi,m},
are not necessarily zero. Therefore, while the covariance C is a standard complex

covariance, the pseudo-covariance P accounts for the correlation between the real and

imaginary components.

Rearranging the terms in Equation (2.10) and representing the covariance matrices

in (2.4) in terms of the covariance C and pseudo-covariance P, gives [44, 45]

Czrzr =
1

2
ℜ{Czz + Pzz} Czrzi = −

1

2
ℑ{Czz − Pzz}

Czizr =
1

2
ℑ{Czz + Pzz} Czizi =

1

2
ℜ{Czz − Pzz}. (2.14)

Irrespective of the properness of z, the elements zn, n = {1, . . . , N} of the random

vector z are uncorrelated if all four real-valued covariance matrices are diagonal ma-

trices. Alternatively, based on (2.14) the complex covariance and pseudo-covariance

matrices Czz and Pzz are diagonal matrices [44, 69].

An uncorrelated covariance matrix in R is achieved by using a whitening matrix.

However, in C, based on the above definition of uncorrelated random vectors, it is

necessary to diagonalise both covariance and pseudo-covariance matrices. This is

accomplished by using the procedure known as the strong uncorrelating transform

(SUT) [69] and based on Takagi’s factorisation [70], a special form of the singular value

decomposition (SVD). In this manner, the covariance matrix C is diagonalised with di-

agonal elements with unit variance (whitened), while the pseudo-covariance matrix

P is diagonalised with the diagonal elements being its singular values and termed the

circularity coefficients [69] or canonical correlations [79].
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Thus for a random vector with uncorrelated components, the diagonal elements of the

covariance matrix form the standard complex variance and are denoted by

σ2
zn = E{znz∗n} = E{|zn|2} (2.15)

and the diagonal elements of the pseudo-covariance matrix form the pseudo-variance,

denoted by

τ2zn = E{znzn} = E{z2n}. (2.16)

Note that while the variance σ2
zn is real-valued, the pseudo-variance τ2zn is normally

complex-valued [72].

For completeness and based on the discussion so far on second-order circularity, a

complex generalised Gaussian distribution (GGD) capable of modelling the pdf of

both sub- and super-Gaussian circular and noncircular random vectors is provided in

Appendix A. As a special case, the complex Gaussian distribution is studied and its

properties discussed.

2.1.5 A measure of second-order circularity

The degree of noncircularity can be quantified by the circularity measure r, defined

in [80] as the magnitude of the circularity quotient ρ(z) = reθ , τ2z /σ
2
z , where

r = |ρ(z)| = |τ
2
z |
σ2
z

, r ∈ [0, 1] (2.17)

measures the degree of noncircularity in the complex signal5, with the circularity angle

θ = arg
(
ρ(z)

)
indicating orientation of the distribution. Note that for a purely circular

signal, r = 0, with θ not providing additional information about the distribution.

This circularity measure can also be graphically interpreted using an ellipse (centred in

the complex plane) of eccentricity ǫ and orientation α, such that r = ǫ2 and θ = 2α [80,

Theorem1]. For ǫ = 0, the shape becomes a circle, which also indicates a circular signal

with r = 0, while for the extreme case of ǫ = 1, corresponding to a highly noncircular

signal with r = 1, the ellipse becomes elongated with a maximal major axis and minor

axis of length zero. Note that the pseudo-variance of a general complex Gaussian

distribution is then related to the elliptic shape by τ2 = ǫ2e2θ [72].

5Other measures of noncircularity are also defined and may be used. A similar measure to (2.17) and
given by 1− r was defined in [81]. In [79], measures bounded between [0, 1] and based on the canonical
correlations are defined. The authors in [82] define the same measure as in Equation (2.17), albeit with
different terminology. Finally, an unbounded measure in [1,∞] based on the ratio of the standard de-
viations of the real and imaginary components of the complex random variable was introduced in [78].
While the mentioned measures are quite similar, the simplicity of (2.17) and the embedded information
within the circularity quotient ρ(z), makes it a suitable noncircularity measure in this work.
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2.1.6 Spectral interpretation of second-order circularity

A discrete complex random process z(k) is termed wide sense stationary [47] if it has

constant mean, and its covariance Czz(k1, k2) = E{z(k1)z(k2)∗} is a function of the

delay δ = k1− k2. In this definition, no assumption is made on the pseudo-covariance

Pzz(k1, k2) = E{z(k1)z(k2)} of the random process. However, the more restricted

definition second-order stationarity [47] imposes that both the covariance and pseudo-

covariance are functions of the delay δ. Thus, for a second-order stationary random

process6

Czz(δ) = E{z(k)z∗(k − δ)}
Pzz(δ) = E{z(k)z(k − δ)}. (2.18)

Then, the augmented covariance matrix of a complex random process z(k) is given by

Cazz(δ) = E

{[
z(k)

z∗(k)

] [
zH(k − δ) zT (k − δ)

]}

=

[
Czz(δ) Pzz(δ)
P∗
zz(δ) C∗zz(δ)

]
. (2.19)

The transformation of this matrix to the frequency domain gives the augmented spec-

tral matrix [47, 48]

Saz (ω) =
[
Sz(ω) S̆z(ω)
S̆∗z(−ω) Sz(−ω)

]
, (2.20)

with the Fourier transforms of the covariance and pseudo-covariance matrices defined

respectively as Sz(ω) and S̆z(ω), that is

Sz(ω) = F
(
Czz(δ)

)
= F

(
E{z(k)zH(k − δ)}

)

S̆z(ω) = F
(
Pzz(δ)

)
= F

(
E{z(k)zT (k − δ)}

)
(2.21)

where F(·) denotes the Fourier transform operator. For a proper complex random

process, the augmented spectral matrix is block diagonal, with vanishing pseudo-

spectral components, S̆z(ω) = 0.

While the power spectrum provides information on the distribution of signal power

over a frequency range, the magnitude of the pseudo-spectrum characterises the second-

order circularity of the random variable in the frequency domain. The augmented

spectral matrix in (2.20) is positive semi-definite which results in the condition [47]

|S̆z(ω)|2 ≤ Sz(ω) · Sz(−ω). (2.22)

6Note that the terminology used by the authors in [48] defines wide sense stationarity as the re-
stricted second-order stationarity given in [47] and in this work in Equation (2.18).
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2.2 Kurtosis of complex random vectors

The definition of kurtosis in the complex domain based on fourth order cumulants is

not a straightforward extension from R. In fact, the placement of the random variable

and its conjugate operator in the definition of the fourth order cumulant produces 16

variations7 for its definition [83, 84]. The most common definition in literature [83] is

considered in this work8.

In the real domain, it is common to use the normalised kurtosis KR(·) instead of

the standard kurtosis kurtR(·), as it allows for the comparison of the degree of non-

Gaussianity of random variables, irrespective of the range of amplitudes. Likewise,

the normalised kurtosis of a complex random variable can be defined as

Kc(z) =
kurtc(z)

(E{|z|2})2

=
E{|z|4}

(E{|z|2})2 −
|E{z2}|2
(E{|z|2})2 − 2 (2.23)

with

kurtc(z) = E{|z|4} − |E{z2}|2 − 2(E{|z|2})2. (2.24)

The first term in (2.23) is the normalised fourth order moment, the second term is the

square of the circularity coefficient r (Equation (2.17)), whereas kurtc(z) in (2.24) is the

real-valued kurtosis of the complex random variable z. Similar to the kurtosis of a

real-valued Gaussian random variable, the value of Kc is zero for both circular and

noncircular complex Gaussian random variables. Furthermore, for continuity, this

measure makes kurtosis values of a sub-Gaussian complex random variable negative

and that of a super-Gaussian complex random variable positive, irrespective of the

degree of noncircularity.

The relation between the kurtosis of the real and imaginary components of a complex

random variable, kurtR(zr) and kurtR(zi) and the kurtosis of the complex random

variable kurtc(z) is given by [85]

kurtR(zr) = kurtR(zi) =

(
3

2 + r2

)
kurtc(z), (2.25)

that is, the complex kurtosis is a scaled version of the kurtosis of its real and imaginary

components. Notice that for a proper random variable (r = 0), the scaling is 1.5, while

for a highly improper random variable (r = 1), the complex kurtosis is equal to the

kurtosis of its real and imaginary components.

7For example, consider the cumulants cum(z(k), z(k+ δ1), z(k+ δ2), z(k+ δ3)) and cum(z(k), z(k+
δ1), z(k + δ2), z

∗(k + δ3)).

8That is, the cumulant cum(z(k), z∗(k + δ1), z(k + δ2), z
∗(k + δ3)) which results in a real-valued

measure of complex kurtosis.
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2.3 Complex-valued noise

It is important to notice that the treatment of a noise vector v(k) in C is different to

that in the real domain [47]. While in R only the variance σ2
v of the noise signal is

of concern, in C it is necessary to also consider the pseudo-variance τ2v , in order to

completely model the noise. White noise can be differentiated in the following cases.

i) Circular white noise, is considered white in terms of its diagonal covariance matrix,

whereas the pseudo-covariance matrix vanishes, that is

Cvv(δ) = σ2
vI, Pvv(δ) = 0, δ = 0 (2.26)

In other words, the real and imaginary part of the complex noise v(k) = vr(k) +

vi(k) are of equal power and uncorrelated, and as E{v(k)vT (k)} = E{vr(k)v
T
r (k)}−

E{vi(k)v
T
i (k)} = 0, the pseudo-covariance matrix of the second-order circular

noise vanishes. In the frequency domain, the covariance spectrum Sv(ω) (also

power spectrum, or PSD) of the circular white noise is flat, while the pseudo-

covariance spectrum S̆v(ω) (or pPSD) is zero.

ii) Noncircular doubly white noise, is assumed white for both the covariance and pseudo-

covariance matrices, where the distributions and power levels of the real and

imaginary components may be different, such that

Cvv(δ) = σ2
vI, Pvv(δ) = τ2v I, δ = 0, σ2

v 6= τ2v . (2.27)

In this case, the power spectrum is flat across all frequencies, while the pseudo-

spectrum is non-zero. As the noise becomes more noncircular (r → 1), the pseudo-

spectrum approaches its upper-bound defined in (2.22) where for highly noncir-

cular noise (r ≈ 1), the magnitudes of the pPSD and PSD are similar.

For a scalar complex white noise signal v(k), the relations between the correlation

and pseudo-correlation and the respective spectra are given by

C(δ) = E{v(k)v∗(k − δ)} = δ0σ
2
v

F−→ S(ω) = |σ2
v |

P(δ) = E{v(k)v(k − δ)} = δ0τ
2
v

F−→ S̆(ω) = |τ2v |, (2.28)

where δ0 is the Kronecker delta function. Then the bound can be expressed as

|τ2v | ≤ σ2
v , (2.29)

that is, the magnitude of the noise pseudo-variance cannot exceed the noise power.

Examples of circular white Gaussian and Laplacian noise with unit variance are illus-

trated in the left hand column of Fig. 2.2(a), whereas the right hand column demon-

strates two examples of noncircular white noise, with the top-right plot showing a
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noncircular Gaussian noise signal with circularity measure r = 0.81 with unit vari-

ance and pseudo-variance τ2v = −0.38 + 0.71, and the bottom-right plot illustrating

the scatter plot of noncircular Laplacian noise with circularity measure r = 0.81 with

unit variance and pseudo-variance of 0.45 − 0.66. Also note that in Figure 2.2(a)

the value of the kurtosis9 is approximately zero for both the circular and noncircular

Gaussian noise signals, whereas the kurtosis values for the circular and noncircular

super-Gaussian noise signals follow the real-valued convention and are positive val-

ued.

Figure 2.2(b) depicts the PSD and pPSD of circular (r = 0) white and noncircular dou-

bly white Gaussian noise for the respective circularity measures r = {0.64, 1}. Observe

that the pseudo-spectrum is zero for the circular noise, while it has a magnitude10 of

|τ2v | = 0.64 for the noise with r = 0.64, and reaches it upper-bound of 1 in the third

realisation where the noise is highly noncircular (r = 1). For the Gaussian noise, the

spectrum S(ω) = 1 and the pseudo-spectrum S̆(ω) = |τ2v | = |ǫ2e2θ| = |ǫ2| = r = 1,

across all frequencies, thus indicating that by increasing the eccentricity of the ellipse

(degree of noncircularity), the magnitude of the pPSD approaches its maximum value

of 1.

2.4 Widely linear modelling

Consider the minimum mean square error (MSE) estimator of a complex signal y in

terms of a complex valued observation vector x, given by the conditional expectation

ŷ = E{y|x}. The MSE estimator of the real and imaginary components of the signal

y(k) are given by

ŷr = E{yr|xr,xi}
ŷi = E{yi|xr,xi} (2.30)

and ŷ is then expressed as

ŷ = ŷr + ŷi

= E{yr|xr,xi}+ E{yi|xr,xi}. (2.31)

By using the relation (2.8), Equation (2.31) can be equivalently written as

ŷ = E{yr|x,x∗}+ E{yi|x,x∗}, (2.32)

9The kurtosis values in Figure 2.2(a) are estimated based on 5000 samples and are not the true kur-
tosis value.

10Recall from Section 2.1.5 the relationship between the pseudo-variance τ2
v , elliptic eccentricity ǫ and

circularity measure r of a complex Gaussian random variable, given by τ2
v = ǫ2e2θ = re2θ .
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(a) Scatter plots of complex white noise realisations. Top row: circular
Gaussian noise (left) and noncircular Gaussian noise (r = 0.81) (right).
Bottom row: circular Laplacian noise (left) and noncircular Laplacian noise
(r = 0.81) (right). The circularity measure r is defined in (2.17). The kurto-
sis values Kc are given for each case.
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Figure 2.2 Illustration of doubly white circular and noncircular complex-valued noises.
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demonstrating that the estimator of y is found in terms of the observation x and its

conjugate x∗. Thus, the solution is written as the widely linear (WL) model [46, 47]

ŷWL = hTx+ gTx∗ (2.33)

= waTxa (2.34)

where h and g are coefficient vectors. The WL model can also be expressed using aug-

mented vectors wa = [hT gT ]T and xa = [xT xH ]T , which provides a more compact

representation.

Note the contrast to the standard complex linear model11,

ŷL = hHx (2.35)

which is sub-optimal in the minimum mean square error for noncircular complex-

valued signals. This can be shown by considering the minimum MSE of the widely

linear approach E{|eWL|2} = E{|y− ŷWL|2}. Utilising the compact form of ŷ in Equa-

tion (2.34), the Wiener-Hopf equations are solved by

wa = Ca−1

xx pŷ,xa (2.36)

where pŷ,xa = E{ŷ∗xa} , [cT1 cT2 ]
T is the cross-correlation between ŷ and the aug-

mented observation vector xa. The coefficient vectors h and g can be obtained12 by

using the Cholesky block factorisation of Ca−1

xx , as given in [45], and simplifying (2.36)

to obtain

h =
(
C − PC∗−1P∗

)−1(
c1 − PC∗

−1
c∗2
)

g =
(
C∗ − P∗C−1P

)−1(
c∗2 − P∗C−1c2

)
(2.37)

where the subscripts have been omitted for clarity. The widely linear MSE is then

given by [46]

E{|eWL|2} = E{yy∗} − hT c1 − gT c∗2. (2.38)

However, by considering the linear model (2.35), the coefficient vector obtaining the

minimum MSE is given by

h = C−1c1 (2.39)

11Both yL = hTx and yL = hHx are correct yielding the same output and the mutually conjugate
coefficient vectors. The latter form is more common and the former was used in the original CLMS
paper [39]. This also applies to the definition of the widely linear model in (2.33).

12Alternatively, the authors in [46] use the orthogonality principle to obtain this result.
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and the linear MSE 13

E{|eL|2} = E{yy∗} − cH1 C−1c1. (2.40)

Comparison of the widely linear MSE (2.38) and the linear MSE (2.40) results in the

magnitude difference ∆MSE quantified as [46]

∆MSE =
(
c∗2 − P∗C−1c1

)H(C∗ − P∗C−1P
)(
c∗2 − P∗C−1c1

)
, (2.41)

where the value ∆MSE ≥ 0 and equals zero when c∗2 −P∗C−1c1 = 0. Thus the widely

linear model (2.33) yields a smaller magnitude MSE compared to a linear model (2.35).

The MSE difference ∆MSE = 0 only for a second-order circular signal y and observa-

tion x, such that Pxx = 0 and cross-correlation c2 = 0 [46].

Based on the above results, observe that the linear model is sub-optimal for the gen-

erality of complex-valued signals, and can be seen as a special case of the WL model

suitable for only second-order circular signals. While the utilisation of a WL model

may not appear intuitive at first, the preceding discussions on second-order circular-

ity and augmented statistics along with the comparison of the MSE of the two models

demonstrate its usefulness as a de facto standard for linear estimation in C.

13The linear MSE can be in fact seen as a straightforward extension of the Wiener-Hopf solution from
the real domain.





Chapter 3

The Widely Linear Complex Least

Mean Square Algorithm

3.1 Introduction

The Least Mean Square (LMS) [1] algorithm is a workhorse of adaptive signal pro-

cessing in R. Direct processing of a complex-valued signal using the LMS algorithm

results in a dual univariate approach, whereby the real and imaginary components of

the input signal are processed separately. However, the cross-information contained

in the real and imaginary components would not be modelled, leading to inadequate

performance. Alternatively, bivariate algorithms operating in R, such as the dual

channel LMS [86], allow for the consideration of the available cross-information.

A natural extension of the real-valued LMS algorithm for the adaptive filtering di-

rectly in the field of complex numbers C was the Complex LMS (CLMS), introduced

by Widrow et al. in 1975 [39]. This algorithm benefits from the robustness and stability

of the LMS and enables simultaneous filtering of the real and imaginary components

of complex-valued data and accounts for second-order cross-information between the

channels. The algorithm was originally designed to cater for cases where a complex

output was desired, such as the adaptive filtering of high frequency narrowband sig-

nals in the frequency domain [39]. However, the algorithm can also be utilised for pro-

cessing signals made complex by convenience of representation, such as wind vectors,

as discussed in [59].

The CLMS algorithm has been derived as a straightforward extension from the real

domain, and under the assumption of circular signals and noises. In this chapter an

improved CLMS algorithm is introduced, derived based on the concept of augmented

complex statistics and widely linear modelling [47, 46], leading to an optimal algo-

rithm for the generality of signals in C. Based on this principle, the Widely Linear
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LMS was introduced in the communications field for use in a direct-sequence code di-

vision multiple access (DS–CDMA) receiver [87, 88]. It was shown that the algorithm

has a lower complexity, while having an equally good performance to standard linear

algorithms.

Recently, the augmented Complex Extended Kalman filter (ACEKF) and augmented

Complex Real-Time Recurrent Learning (ACRTRL) were introduced, benefiting from

augmented complex statistics and widely linear modelling [89, 57]. Both ACEKF and

ACRTRL were derived for general adaptive filtering architectures (recurrent neural

networks (RNN)). Although a widely linear CLMS can be seen as a degenerate version

of ACRTRL1, given the number of applications based on CLMS, there is a need to

derive a widely linear CLMS directly for a complex-valued FIR filter.

In this chapter, the derivation of the widely linear LMS algorithm, or augmented

CLMS (ACLMS), is provided in an adaptive prediction context, and illustrates the im-

provement in the performance of this algorithm as compared to the standard CLMS

algorithm in an adaptive prediction setting for general complex signals. The deriva-

tion of the algorithm is provided using the CR calculus framework where both the

derivation directly in C and also based on the real and imaginary components in R

are presented, highlighting the simplicity of the analysis framework. The application

focus is on the forecasting of wind profile, an important problem in renewable energy.

In the second part of this chapter, hybrid filtering based on a pair of linear (CLMS) and

widely linear (ACLMS) algorithms is introduced, and its application in prediction and

signal modality tracking is discussed.

3.2 The Augmented CLMS algorithm

The original CLMS algorithm was derived by considering the complex output

yL = hH(k)x(k), (3.1)

which as discussed in Chapter 2 is a linear model optimal only for proper complex

signals. A more general algorithm can be designed by considering the augmented

statistics. Then, the output y(k) of an FIR filter can be written as a widely linear pro-

cess (see Section 2.4), given by2

y(k) = hT (k)x(k) + gT (k)x∗(k) (3.2)

1Since a finite impulse response (FIR) filter can be derived from an RNN by removing the nonlinear-
ity, feedback, and all but one neuron.

2Note that the lack of conjugation on the weight vectors h and g in Equation (3.2) does not affect
the performance of the algorithm. Both forms are correct and result in the same output. The use of
conjugation is more common and the use of only the transpose was noted in the original CLMS paper [39]
using the linear model.
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where h(k) and g(k) are complex-valued adaptive weight vectors, x(k) is the filter

input vector, and the weights are updated by minimising the cost function

J (h,g) = E{|e(k)|2} = E{e(k)e∗(k)} = E{|d(k)− y(k)|2} (3.3)

where e(k) is the output error and d(k) is the desired signal, and k is the discrete time

index.

Derivation of the optimisation algorithm can be performed twofold. The standard

derivation method consists of the calculation of the gradients by considering the deriva-

tive of J with respect to the real and imaginary components of the weight vectors h

and g. Alternatively, the CR calculus (Wirtinger calculus) framework [55, 53, 54] fa-

cilitates a simpler derivation method by considering the cost function J as a function

of the conjugate coordinates of the weight vectors, that is (h,g,h∗,g∗), allowing for

the calculation of the derivatives directly in C. A brief description of CR calculus is

provided in Appendix B.

Thus, in order to demonstrate the usefulness of CR calculus in comparison to the

standard Cauchy-Riemann derivation method, two derivation methods are provided.

3.2.1 Derivation based on the real and imaginary components

Using the stochastic gradient based adaptation3, for the update of the weight vectors

gives

h(k + 1) = h(k)− µh∇J
∣∣∣
h=h(k)

(3.4)

g(k + 1) = g(k)− µg∇J
∣∣∣
g=g(k)

(3.5)

and

∇J
∣∣∣
h=h(k)

=
1

2

(
∂J

∂hr,n(k)
+ 

∂J
∂hi,n(k)

)
(3.6)

∇J
∣∣∣
g=g(k)

=
1

2

(
∂J

∂gr,n(k)
+ 

∂J
∂gi,n(k)

)
(3.7)

In this setting, µh and µg are the step-sizes, (·)r and (·)i denote respectively the real and

imaginary parts of a complex number and the subscript n denotes the nth element of

the weight vector. Since the input to the filter is complex, the error e(k) is also complex

3In this and all following chapters, stochastic gradient assumptions are made in the derivation of
algorithms.
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and therefore the gradients from (3.6) and (3.7) should be evaluated as

∂J
∂hr,n(k)

=

(
e(k)

∂e∗(k)

∂hr,n(k)
+ e∗(k)

∂e(k)

∂hr,n(k)

)
(3.8)

∂J
∂hi,n(k)

=

(
e(k)

∂e∗(k)

∂hi,n(k)
+ e∗(k)

∂e(k)

∂hi,n(k)

)
(3.9)

∂J
∂gr,n(k)

=

(
e(k)

∂e∗(k)

∂gr,n(k)
+ e∗(k)

∂e(k)

∂gr,n(k)

)
(3.10)

∂J
∂gi,n(k)

=

(
e(k)

∂e∗(k)

∂gi,n(k)
+ e∗(k)

∂e(k)

∂gi,n(k)

)
(3.11)

Rewriting (3.3) in terms of its real and imaginary parts and substituting in (3.8)–(3.11)

yields

∇J
∣∣∣
h=h(k)

= −e(k)x∗(k) (3.12)

∇J
∣∣∣
g=g(k)

= −e(k)x(k) (3.13)

The weight update equations (3.4) and (3.5) are now given as

h(k + 1) = h(k) + µhe(k)x
∗(k) (3.14)

g(k + 1) = g(k) + µge(k)x(k) (3.15)

In order to consolidate (3.14)–(3.15) into a compact vector form, the augmented weight

vector wa(k) is defined as

wa(k) = [hT (k) gT (k)]T (3.16)

to give the augmented weight update

wa(k + 1) = wa(k) + µea(k)xa∗(k) (3.17)

where

ea(k) = d(k)− xaT (k)wa(k)︸ ︷︷ ︸
y(k)

, (3.18)

xa(k) = [xT (k) xH(k)]T , (3.19)

and µ = µh = µg.

3.2.2 Derivation using the CR calculus

The stochastic gradient updates of the two weight vectors of the WL filter using a

steepest descent adaptation are given by

h(k + 1) = h(k)− µh∇h∗J (3.20)

g(k + 1) = g(k)− µg∇g∗J . (3.21)
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Recall that the direction of steepest descent is given by the R∗–derivative for both up-

date equations4. By using CR calculus and the chain rule (given in Equations (B.13d)–

(B.13e)), can be then simply calculated as

∇h∗J = −e(k)x∗(k)

∇g∗J = −e(k)x(k)

and substituted in (3.20) and (3.21) to form the complete update equations for the

ACLMS algorithm

h(k + 1) = h(k) + µhe(k)x
∗(k) (3.22)

g(k + 1) = g(k) + µge(k)x(k). (3.23)

By making use of an equivalent representation it is also possible to consider the com-

plex vectors as ‘augmented’ vectors, given by the pair of the complex vector and its

complex conjugate, to obtain

wa(k + 1) = wa(k) + µea(k)xa∗(k) (3.24)

where µ = µh = µg, wa(k) = [hT (k) gT (k)]T is the augmented coefficient vector,

xa(k) = [xT (k) xH(k)]T is the augmented input vector and ea(k) = d(k)−xaT (k)wa(k)

is a complex scalar value measuring the distance of the output of the predictor to the

desired signal.

This concludes the derivation of the augmented CLMS (ACLMS) algorithm. Both

methods result in the same formulation for the ACLMS algorithm. However, it can be

seen that derivation of the algorithm directly in C using the CR calculus, results in a

simpler and more intuitive way to derive complex valued algorithms. Also note that

the derivation using the Cauchy-Riemann equations is equivalent to the calculation of

the R∗–derivative based on the real and imaginary components, as shown in the right

hand side of relation (B.7).

For second-order circular signals, the ACLMS algorithm reduces to the standard CLMS

algorithm

h(k + 1) = h(k) + µhe(k)x
∗(k), (3.25)

where g = 0 in Equation (3.23). As discussed in Section 2.4, this results from the

fact that the mean square error difference between the widely linear model and lin-

ear model is zero when modelling circular sources. Therefore, the standard CLMS

algorithm can be considered a special case of the ACLMS algorithm, suitable for the

processing of proper complex signals.

4See Appendix B
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Recently, a study on the ACLMS and dual channel LMS established the duality be-

tween the complex algorithm with its bivariate counterpart [90]. It was shown that

for the same input and output, the two algorithms have the same dynamics. Anal-

ysis of the covariance matrices of the input signal of both algorithms shows that the

eigenvalues of the augmented covariance matrix are twice the eigenvalues of the bi-

variate covariance matrix. Thus, based on the relation of the eigenvalues with the

modes of convergence, it was concluded that for the same step-size and given the

same final misadjustment, the ACLMS algorithm converges twice as fast as the dual

channel LMS. This analysis is generalised in Appendix C where the duality of the

block ACLMS (b-ACLMS) and block dual channel real-valued LMS (b-DCRLMS) is

addressed.

3.3 Performance of the ACLMS algorithm

The advantage of the ACLMS algorithm over the standard CLMS is in the utilisation

of the full second order statistical information available within the signal, achieved

through WL modelling. For circular signals, where the pseudo-covariance is zero, it is

anticipated that both algorithms will perform well, while ACLMS is expected to out-

perform the CLMS when applied to noncircular (improper) data. To demonstrate this,

benchmark complex autoregressive AR(4) process and Ikeda map signal [91] were

used, followed by real-world complex-valued wind signals.

The performance was assessed based on the prediction gain Rp given by [92]

Rp = 10 log10

(
σ2
x

σ̂2
e

)
(3.26)

where σ2
x denotes the variance of the input signal x(k), whereas σ̂2

e denotes the es-

timated variance of the forward prediction error {e(k)}, where e(k) = d(k) − y(k)

defined in Section 3.2.

3.3.1 Prediction of complex-valued autoregressive signal

In the first experiment, a synthesised stable and circular complex-valued AR(4) pro-

cess is used, given by

x(k) = 1.79x(k − 1)− 1.85x(k − 2) + 1.27x(k − 3)− 0.41x(k − 4) + n(k) (3.27)

where n(k) = nr(k) + ni(k) is a complex circular white Gaussian noise of zero mean

and unit variance, where the real and imaginary parts are independent real white

Gaussian sequences with σ2
n = σ2

nr
+ σ2

ni
= 1.
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Figure 3.1 The input and predicted signals obtained by using the CLMS (dash) and ACLMS
(solid) algorithms.

The adaptive filter with N = 10 taps was trained using 1000 samples of the input x(k),

the step-size µ = 0.01 was kept constant for both the algorithms. The obtained predic-

tion gains were Rp,CLMS = 3.22 dB and Rp,ACLMS = 3.99 dB. Figure 3.1 demonstrates

the convergence of the predicted signal to the original, which has been zoomed in for

better clarity. The quantitative performances of both algorithms were adequate, with

similar values of Rp. This was expected, since the AR(4) signal is circular and there is

no information available in the pseudo-covariance matrix to facilitate the performance

of the ACLMS. Table 3.1(a) summarises the performance results.

3.3.2 Prediction of complex-valued Ikeda map

In this simulation, prediction of an Ikeda map using the ACLMS and CLMS algo-

rithms is investigated. The Ikeda map is expressed as

u(k) = 1 + α
(
u(k − 1) cos

(
t(k − 1)

)
− v(k) sin

(
t(k − 1)

))

v(k) = α
(
u(k − 1) sin

(
t(k − 1)

)
+ v(k − 1) cos

(
t(k − 1)

))

t(k − 1) = 0.4− 6

1 + u2(k − 1) + v2(k − 1)
, (3.28)

where the parameter α affects the behaviour of the generated process, and has a typ-

ical value of α = 0.8. Figure 3.2 demonstrates the Ikeda map used for this simu-

lation, where the input x(k) = u(k) + v(k). Observe that the complex signal x(k)
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Figure 3.2 Scatter plot of the Ikeda map given in Equation (3.28) with α = 0.8.

Table 3.1 Performance of the ACLMS and CLMS algorithms for prediction of benchmark
and real-world signals

(a) Prediction gain (dB) for proper and
improper benchmark signals

AR(4) Ikeda map

CLMS 3.22 2.13
ACLMS 3.99 3.51

(b) Prediction gain (dB) for the Low, Medium and High wind regions and according to window size

Wind region

Low Medium High

wF r ACLMS CLMS r ACLMS CLMS r ACLMS CLMS

1 0.52 2.53 1.85 0.28 5.32 4.43 0.65 6.68 6.35
2 0.53 2.77 2.02 0.29 5.76 4.74 0.67 8.62 7.80

10 0.57 3.76 2.72 0.32 7.37 5.96 0.75 13.51 11.80
20 0.59 4.51 3.03 0.35 8.32 6.76 0.80 15.07 13.00
60 0.64 5.21 2.88 0.43 9.63 7.69 0.86 16.53 14.30

is improper, with a noncircularity measure r = 0.3418, defined in (2.17). The linear

and widely linear adaptive filters were trained with 1000 samples of x(k) and with

the step-size µ = 0.02. The prediction gain obtained using the ACLMS algorithm

was Rp,ACLMS = 3.51 dB, while the performance of the CLMS algorithm measured

Rp,CLMS = 2.13 dB, demonstrating that the widely linear algorithm better modelled

the complex improper signal. For comparison, these results are also presented in Ta-

ble 3.1(a).
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Wind direction

Figure 3.3 Wind vector representation

3.3.3 Prediction of complex-valued wind using ACLMS

Wind field was measured using an ultrasonic anemometer5 over a period of 24 hours

sampled at 50Hz. A moving average filter was used to reduce the effects of high

frequency noise; the signal was then resampled at 1Hz. The window size wF of the

moving average filter varied according to

wF = {1, 2, 10, 20, 60}, (3.29)

where the window size is given in seconds.

The wind speed reading were taken in the north–south (VN ) and east–west (VE) direc-

tion, which was used to create the complex wind signal V = v eϕ, as

v =
√
V 2
E + V 2

N , ϕ = arctan

(
VN

VE

)
(3.30)

where v is the wind speed, and ϕ is the wind direction (see Figure 3.3).

Based on the modulus of the complex wind data dynamics, changes in the wind in-

tensity were identified and labelled as regions high, medium and low, as shown on

Figure 3.4. To investigate the advantage of WL modelling for such intermittent and

improper complex data, 5000 samples were taken from each region to train CLMS and

ACLMS adaptive predictors for one step ahead prediction, with simulations results

shown in Figure 3.5 and summarised in Table 3.1(b).

As the wind signals become smoother and less noisy by increasing the window size,

they also become more improper, as seen by the increase in the value of the noncircu-

larity measure r. This is also reflected in Figure 3.5, where the performance of both

algorithms improves with the increase in wF , however, the ACLMS outperforms the

standard CLMS in all wind regions due to its widely linear modelling of the wind

signals.

5Recorded in an urban environment at the Institute of Industrial Science, University of Tokyo, Japan.
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Figure 3.4 Complex wind signal magnitude. Three wind speed regions have been identified
as low, medium and high.

It is evident that the ACLMS algorithm has provided better predictions compared to

the CLMS algorithm in all the three considered regions. The best prediction was ob-

tained for the high region where the wind speed had strongest variations, giving a

maximum prediction gain of 16.20 dB. Figure 3.6 shows the original and predicted

signals from the medium region after 5000 iterations. It is seen that the ACLMS algo-

rithm was able to track the dynamics of the input better and outperformed the CLMS

algorithm.

Complex-valued wind is a noncircular signal, and thus the use of augmented statis-

tics helped to extract the full second order statistical information available within the

data. The results of the ACLMS prediction clearly indicate the benefits of using aug-

mented statistics for noncircular complex-valued data, resulting in better prediction

performance.

3.4 Hybrid filtering using linear and widely linear algorithms

A hybrid adaptive filter is designed as a combination of two (or more) independent

adaptive filters, such that the combined (hybrid) filter has an improved performance

over the two sub-filters [7]. The improvement in the output y(k) of the hybrid filter

in the prediction setting, shown in Figure 3.7, is achieved by considering the convex
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combination of the filter outputs y1(k) and y2(k), given by

y(k) = λ(k)y1(k) +
(
1− λ(k)

)
y2(k), (3.31)

where λ(k) is the mixing parameter. Intuitively, since a convex combination of two

points a and b is defined as λa+ (1− λ)b, λ ∈ [0, 1] (shown in Figure 3.8), the value of

λ can be adapted to indicate which of the sub-filters is better suited to the nature of the

input. This is contrast to a mixed-norm algorithm which uses a convex combination

of suitable cost functions, rather than outputs [93].

For instance, consider the combination of adaptive sub-filters containing an algorithm

with low steady-state error and one with fast initial convergence. The resultant hy-

brid filter inherits the initial fast convergence properties of the first sub-filter, and the

stable steady-state performance of the second sub-filter. Such a combination using

the LMS and Generalised Normalised Gradient Descent (GNGD) [4] algorithms was

introduced in [94].

While hybrid filtering was originally conceived to enhance the performance of adap-

tive filters, it has recently found application in signal modality characterisation. This

is achieved using a collaborative signal processing approach revealing changes in the

nature of real-world data (degree of sparsity, or nonlinearity) and is very important

in online applications [95]. By tracking the modality of a signal in real-time, it can be

possible to, for example, provide prior knowledge to a blind algorithm. In such appli-

cations, the output y(k) of the hybrid filter is not of interest, and the mixing parameter

λ is instead used to track the changes in the signal modality.

Characterisation of the nature of complex-valued signals has been addressed by con-

sidering the degree of nonlinearity and circularity of complex-valued signals using

complex adaptive algorithms [96, 97, 98, 9]. The degree of nonlinearity is measured

by utilising a hybrid filter with a pair of nonlinear and linear algorithms. Likewise,

the signal circularity is indicated by using a pair of nonlinear adaptive algorithms with

split- and fully-complex activation functions6. Thus, it is possible to track signals with

high degree of correlation between the real and imaginary components (noncircular)

and those with a smaller degree or lack of correlation (circular).

In this section, a hybrid filter consisting of a pair of linear and widely linear adap-

tive algorithms is considered. The optimisation algorithm for the mixing parameter λ

is derived, and benchmark simulations using autoregressive and Ikeda map are pre-

sented. It is shown that the hybrid filter has better performance than either sub-filter,

6A split-complex activation function ΦS(z) , f(zr) + f(zi), f : R 7→ R, while a fully-complex
activation function ΦF (z) , g(zr+ zi), g : C 7→ C [65, 64, 99]. A split-complex activation function is not
a true complex nonlinearity, and its use is only appropriate when the real and imaginary components
are not correlated.
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Figure 3.7 Hybrid filter with input x(k), consisting of two sub-filters.
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Figure 3.8 Convex combination of two points a and b.

while the mixing parameter can be interpreted as an indicator of the nature of the

second-order circularity of the input signal.

3.4.1 Adaptation of the mixing parameter

The cost function for the hybrid filter is based on the output error power, given by

JH(λ) = E{|e(k)|2} = E{e(k)e∗(k)} = E{|d(k)− y(k)|2} (3.32)

where e(k) is the output error of the hybrid filter, d(k) is the desired prediction signal

and y(k) is defined in (3.31). Recall that as the input x(k) and desired signal d(k) are

complex-valued, the error e(k) is also complex-valued, while the mixing parameter is

real-valued.

The cost function (3.32) is minimised by updating the mixing parameter λ via a gradi-

ent descent type algorithm such as the LMS. Thus, the update for λ is written as

λ(k + 1) = λ(k)− µλ∇λJH(k), (3.33)
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where µλ is the step-size. Although λ is real-valued, it is possible to utilise the CR

calculus framework to derive the update as

∇λJH(k) =
∂e(k)

∂λ(k)
e∗(k) + e(k)

∂e∗(k)

∂λ(k)

= −
(
y1(k)− y2(k)

)
e∗(k)−

(
y∗1(k)− y∗2(k)

)
e(k)

= −2ℜ
{(

y1(k)− y2(k)
)∗
e(k)

}
(3.34)

and (3.33) is then expressed as

λ(k + 1) = λ(k) + µλ2ℜ
{(

y1(k)− y2(k)
)∗
e(k)

}
. (3.35)

3.4.2 Performance of the hybrid filter

The performance of the hybrid filter in the prediction of benchmark complex-valued

signals is considered. For this task, the values of the sub-filter outputs y1(k) and y2(k)

are respectively updated using the standard linear CLMS (‘Filter 1’) and widely linear

ACLMS (‘Filter 2’) algorithms. The coefficients vectors of the two sub-filters are then

updated using the algorithms given in (3.25) and (3.24). Given this configuration, both

the CLMS and ACLMS algorithms are suitable for the processing of complex proper

signals (λ→ 0.5), while only the ACLMS algorithm provides an optimal model for the

prediction of improper signals (λ→ 0). The simulations below confirm this theoretical

observation.

In the first simulation, 5000 samples of a complex proper AR(4) signal, given in (3.27),

were processed using one step ahead prediction. Each sub-filter had N = 10 taps and

the step-size of the CLMS and ACLMS algorithms were respectively set as µCLMS =

µACLMS = 0.05, while µλ = 2 and the mixing parameter was initialised7 as λ(0) = 1.

The variation in λ(k) is shown in Figure 3.9 and the performance, measured using

the prediction gain Rp defined in (3.26), is summarised in Table 3.2. It is seen that

both algorithms had a similar performance with Rp,CLMS = 4.61 dB and Rp,ACLMS =

4.27 dB, while the combined performance, given by the hybrid filter, had a prediction

gain of Rp,Hybrid = 5.08 dB.

With λ(0) = 1, the hybrid filter output was initially determined entirely by the CLMS

algorithm. However, it is seen that the value first converged to λ = 0.2 after 200

samples which corresponds to the ACLMS algorithm, and then to an approximate

value of λ = 0.6, that is, the output of either algorithm was acceptable and the output

y(k) was the average of the two. This also indicates that the AR(4) signal was proper.

In the second simulation, 5000 samples taken from an Ikeda map (see Equation (3.28))

are used to train the hybrid filter with N = 10 taps and step-sizes µCLMS = µACLMS =

7It is also plausible to choose λ(0) = 0.5.
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Figure 3.9 Variation of the mixing parameter λ(k) for AR(4) signal and Ikeda map.

Table 3.2 Performance of the hybrid filter for prediction of AR(4) signal and Ikeda map,
measured using the prediction gain (dB)

AR(4) Ikeda map

CLMS 4.6107 2.5287
ACLMS 4.2649 4.6047
Hybrid 5.0768 4.6220

0.02, µλ = 0.5 and λ(0) = 1. The value of the predication gain of the algorithms,

given in Table 3.2, shows that the hybrid filter had better performance that either sub-

filter. The variation in λ(k) also indicates the improper nature of the Ikeda map, where

λ(k) converged to an approximate value of 0.1 and the widely linear modelling of the

ACLMS algorithm resulted in a smaller mean square error value.

3.5 Summary

By utilising recent advances in complex statistics, namely widely linear modelling,

the standard complex LMS algorithm has been extended for the processing of the

generality of complex-valued signals. In comparison to the CLMS algorithm which is

based on a linear model, the introduced algorithm, the augmented complex LMS, is

based on a widely linear model and is capable of capturing the complete second-order

information available within the signal. It is seen that the CLMS algorithm is a special

case of the ACLMS algorithm, suitable for processing proper signals. Derivation of the
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algorithm has been provided based on the CR calculus framework, demonstrating its

convenience for signal processing optimisation problems in the complex domain.

Simulations have illustrated the performance of the algorithm for the prediction of

proper and improper complex signals, where the CLMS and ACLMS had similar per-

formance for second-order circular data, while the ACLMS algorithm outperformed

the standard CLMS algorithm on the prediction of improper data. Furthermore, the

application of the algorithm in the prediction of real-world wind data has been demon-

strated, where it outperformed the standard CLMS algorithm for the regimes with

different wind magnitude intensities.

In the second part of this chapter, the application of linear and widely linear algo-

rithms in the design of hybrid filters has been addressed. It has been shown that the

convex combination of the linear CLMS and widely linear ACLMS algorithms result

in an enhanced performance compared to either algorithm separately. The applica-

bility of the hybrid filter for the online tracking of the signal circularity has also been

discussed.



Chapter 4

Complex Blind Source Extraction

from Noisy Mixtures using Second

Order Statistics

4.1 Introduction

Blind source separation methods based on the temporal structure of the sources have

been extensively investigated [100, 101]. Methods relying on higher-order statistics

attempt to find a suitable demixing matrix such that in comparison to the observed

mixtures, the estimated sources are as non-Gaussian as possible; this follows from the

central limit theorem. In contrast, methods based on second-order statistics utilise

the autocovariance to find a suitable demixing matrix, such that the current and de-

layed cross-covariances between the estimated sources are zero. The AMUSE al-

gorithm [100] achieves this by considering a single time lag, while the SOBI algo-

rithm [101] generalises this method by taking several time lags, and by minimising

the off-diagonal entries of the covariance matrices.

In large mixtures where only a few sources are of interest, this concept can be used

to devise blind source extraction algorithms. Blind extraction of sources based on the

fundamental property of predictability was previously explored in the real domain

in [102] and [10]. The predictability, described by second-order statistics, allows for

the extraction of desired signals based on their temporal structure. This is achieved by

assuming sources with temporal correlation, and thus modelling the extracted signals

as an autoregressive (AR) model. Then, by minimising the squared prediction error at

the output of an adaptive linear finite impulse response (FIR) predictor, sources per-

taining to different degrees of predictability can be extracted. The uniqueness of the
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temporal structure of the sources defines the success of the algorithm [10], in contrast

to methods utilising the non-Gaussianity of the sources [12].

Blind adaptive and batch algorithms for prediction based on single and multiple time

lags were described in [10]. In [35] a prediction-based BSE algorithm with an adap-

tive step-size was introduced, wherein comparison to a fixed step-size algorithm it

resulted in better extraction performance for nonstationary signals and mixtures with

a time-varying mixing matrix.

While sources with a unique temporal structure give different prediction errors, changes

in the signal magnitude through mixing result in changes in their power levels and

thus the values of the prediction errors can vary. The normalised MSPE was thus

proposed as an alternative extraction criterion, in order to remove the ambiguity as-

sociated with the error power levels [103]. A modified version of this cost function

was subsequently used to extract source signals from noisy mixtures based on their

temporal features [104, 105]. This was achieved by removing the bias on the cost func-

tion due to additive noise.

The consideration of BSE algorithms based on the predictability of complex-valued

sources is not a trivial extension of the results in the real domain. In considering the

temporal structure of signals in C, it is necessary to utilise a widely linear AR signal

model so as to capture both the autocovariance and pseudo-autocovariance within

the sources. Therefore a class of algorithms for the blind extraction of the generality

of complex-valued sources from both noise-free and noisy mixtures is introduced. Al-

gorithms based on prewhitened mixtures are also derived, and are shown to provide

simpler solutions. By considering a general complex doubly white noise model, these

algorithms are designed so as to successfully extract sources from noisy mixtures con-

taining both circular and noncircular additive noise.

4.2 Complex BSE of noise-free and noisy mixtures

4.2.1 The normalised mean square prediction error

The observed mixture vector x(k) ∈ CN at time index k is observed from the linear

mixture of the complex sources s(k) ∈ CNs as

x(k) = As(k) + v(k) (4.1)

where A ∈ CN×Ns is the mixing matrix and v(k) ∈ CN denotes the additive noise.

Here, it is assumed that the number of observations equals that of the sources; the

next section shows how the overdetermined case can be used for the estimation of the

second-order statistics of the noise v(k).
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The sources s(k) are assumed to be stationary and spatially uncorrelated with unit

variance and zero mean, with no assumptions regarding their second-order circularity.

For a lag δ, the covariance Css and pseudo-covariance Pss can be formulated as

Css(δ) = E{s(k)sH(k − δ)} = diag
(
σ2
1(δ), . . . , σ

2
Ns

(δ)
)

Pss(δ) = E{s(k)sT (k − δ)} = diag
(
τ21 (δ), . . . , τ

2
Ns

(δ)
)
. (4.2)

Figure 4.1 shows the blind extraction architecture for complex signals, based on the

minimisation of the MSPE. For the observation vector x(k), the extracted signal y(k)

is formed as

y(k) = wHx(k). (4.3)

The aim of the demixing process is to find a demixing vector w such that uH =

wHA = [0, . . . , un, . . . , 0] and thus extract only a single source with the smallest MSPE.

The prediction error is given by

e(k) = y(k)− yWL(k) (4.4)

where yWL(k) denotes the output of the prediction filter and given by,

yWL(k) = hT (k)y(k) + gT (k)y∗(k) (4.5)

where h(k) and g(k) are the coefficient vectors of length M , and y(k) is a delayed

version of the extracted signal given by y(k) = [y(k − 1), . . . , y(k −M)]T . The length

M of the filter affects the performance of the predictor, such that sources with rapid

variations can be extracted using a short tap length, while smoother sources require

a much larger tap length [35]. By updating the coefficient vectors adaptively, it is

possible to introduce the largest relative difference in the MSPE as a criterion1 for

extraction [103].

The MSPE E{|e(k)|2} can then be calculated as

E{|e(k)|2} = E{e(k)e∗(k)}
= wHAĈssAHw + ℜ{wHAP̂ssATw∗} (4.6)

where

Ĉss = Css(0)− 2ℜ
{ M∑

m=1

h∗m(k)Css(m)
}

+

M∑

m,ℓ=1

[
hm(k)h∗ℓ (k) + g∗m(k)gℓ(k)

]
Css(ℓ−m)

1It is also possible to assign fixed values to the coefficient vectors h and g, however, this results in
poorer performance.
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Figure 4.1 The complex BSE algorithm using a widely linear predictor

and

P̂ss = −2
M∑

m=1

g∗m(k)Pss(m) + 2
M∑

m,ℓ=1

hm(k)g∗ℓ (k)Pss(ℓ−m).

The operatorℜ{·} denotes the real part of a complex quantity. Observe that the predic-

tion error is a function of both the covariance and pseudo-covariance of the sources,

and, as the sources are assumed uncorrelated, Ĉss and P̂ss are diagonal matrices, with

the value of the nth element corresponding to the error of the nth source, sn(k). De-

noting this value by en(k), the MSPE relating to sn(k) is given as

E{|en(k)|2} = E
{
|sn(k)− hT (k)sn(k)|2

− 2ℜ{(sn(k)− hT (k)sn(k))(g
H(k)sn(k))}

+|gH(k)sn(k)|2
}

(4.7)

where sn(k) = [sn(k − 1), . . . , sn(k −M)]T . Due to the vanishing pseudo-covariance

(Pss = 0) of complex circular sources, the expressions for MSPE in (4.6) and that given

in (4.7) for the nth source simplify, and are only functions of the covariance matrix.

A complete derivation of the extraction based on MSPE as the extraction criterion is

given in Appendix 4.A at the end of this chapter.

4.2.2 Noise-free complex BSE

4.2.2.1 The cost function

The algorithms derived for complex BSE of noise-free mixtures are based on a cost

function that minimises the normalised MSPE. As described in [103], the variation in

the magnitude of source signals results in an ambiguity of the power levels and so al-

gorithms based on the minimisation of the MSPE cannot effectively extract a source of

interest. This can be seen by considering (4.6) and noticing that changes in the values

of Ĉss and P̂ss can be effectively absorbed into the mixing matrix, thus enabling the
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minimisation independent of the source power levels. This way, by using the MSPE,

this ambiguity is removed as different signals exhibit different degrees of normalised

predictability, despite the time-varying power levels.

Following [103], the normalised MSPE cost function is given by

J1(w,h,g) =
E{|e(k)|2}
E{|y(k)|2} (4.8)

where J1 ∈ R and is a function of the demixing vector and the coefficient vectors. In

the noise-free case, the alternating optimisation problem for the demixing vector can

be expressed as

wopt = arg max
||w||2=1

J1(w,h,g) (4.9)

where the norm of w is constrained to unity, and uH
opt = wH

optA has only a single

non-zero value with unit magnitude that corresponds to the source with the smallest

normalised MSPE. This can be illustrated by observing the cost function (4.8), and its

components (4.6),

E{|y(k)|2} = wHCxx(0)w
= wHACss(0)AHw +wHCvv(0)w (4.10)

and noting that the sources have unit variance and noise variance is zero. The cost

function (4.8) then becomes

J1(w,h,g) =
uH Ĉssu+ ℜ{uHP̂ssu∗}

uHu
(4.11)

Consider a new variable ŭ = u/||u||, and the associated cost function

J1(w,h,g) = ŭH Ĉssŭ+ ℜ{ŭHP̂ssŭ∗} (4.12)

where ŭH ŭ = 1. With this constraint, the minimum of (4.12) is a vector ŭopt with a

single non-zero element with arbitrary phase and unit magnitude, at a position corre-

sponding to the smallest combination of the diagonal elements of Ĉss and ℜ{P̂ss}. In

the case of circular sources, this argument simplifies, so that only the smallest diag-

onal element of Ĉss is considered. This solution is similar for uopt, with only a single

non-zero value. Likewise, the optimal value of the demixing vector can be recovered

as wopt = AH#uopt where the symbol (·)# denotes the matrix pseudo-inverse. As

described in [104], if a value wopt exists such that u and hence ŭ respectively assume

their optimal value uopt and ŭopt, then the cost function of (4.8) can be successfully

minimised with respect to w.
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4.2.2.2 Algorithms for the noise-free case

A gradient descent approach is used to update the values of the demixing vector w

and the coefficient vectors h and g. As mentioned earlier, the value of the demixing

vector is constrained to unit norm, and is normalised after each update. The complex

gradients are thus calculated as

∇w∗J1 =
[
e∗(k)x̂h(k)− e(k)x̂g(k)−

σ2
e(k)

σ2
y(k)

y∗(k)x(k)
] 1

σ2
y(k)

∇h∗J1 =
−1

σ2
y(k)

e(k)y∗(k)

∇g∗J1 =
−1

σ2
y(k)

e(k)y(k) (4.13)

where

x̂h(k) , x(k)−
M∑

m=1

hm(k)x(k −m)

x̂g(k) ,
M∑

m=1

g∗m(k)x(k −m)

and the MSPE σ2
e(k) and variance of the extracted signal σ2

y(k) are estimated by an

online moving average relation [10]

σ2
e(k) = βeσ

2
e(k − 1) + (1− βe)|e(k)|2

σ2
y(k) = βyσ

2
y(k − 1) + (1− βy)|y(k)|2 (4.14)

with βe and βy the corresponding forgetting factors for the MSPE and signal power.

The update algorithm (P-cBSE) of the demixing vector w for the noise-free case and

the filter coefficient updates are given by

w(k + 1) = w(k)− µ
[
e∗(k)x̂h(k)− e(k)x̂g(k)−

σ2
e(k)

σ2
y(k)

y∗(k)x(k)
] 1

σ2
y(k)

(4.15a)

w(k + 1)← w(k + 1)

||w(k + 1)||2
h(k + 1) = h(k) + µh

1

σ2
y(k)

e(k)y∗(k), (4.15b)

g(k + 1) = g(k) + µg
1

σ2
y(k)

e(k)y(k). (4.15c)

From the expressions for gradients∇h∗J1 and∇g∗J1 in (4.13), the update equations (4.15b)

and (4.15c) can be combined to form a normalised ACLMS type adaptation [106]. Re-

call that for circular sources, the pseudo-covariance matrix vanishes; thus a standard

complex linear predictor (say based on CLMS) can be used. However, this case is al-

ready incorporated within the WL predictor as e.g. the conjugate part of the ACLMS
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weight vector vanishes for circular data (g = 0), demonstrating the flexibility of the

proposed approach.

One way to remove the effects of source power ambiguity is to prewhiten the ob-

servation vector x(k), so as to make power levels of the output (extracted) signals

constant. This also helps to orthogonalise an ill-conditioned mixing matrix, how-

ever, performing prewhitening for an online algorithm is not convenient. Denoting

the prewhitening matrix V = D−1/2E, where D a diagonal matrix containing the

eigenvalues of Cxx(0) and E an orthogonal matrix whose columns are the eigenvec-

tors of Cxx(0), the covariance matrix Cx̆x̆(0) = VCxxVH = I; the symbol x̆(k) denotes

a prewhitened observation vector. From (4.10) and the constraint on the norm of w,

E{|y(k)|2} = wHw = 1, the cost function in (4.8) can be simplified to

∇w∗J1 =
[
e∗(k)x̂h(k)− e(k)x̂g(k)

]

∇h∗J1 = −e(k)y∗(k)

∇g∗J1 = −e(k)y(k). (4.16)

Thus, the resulting coefficient updates

w(k + 1) = w(k)− µ
[
e∗(k)x̂h(k)− e(k)x̂g(k)

]
(4.17a)

h(k + 1) = h(k) + µhe(k)y
∗(k) (4.17b)

g(k + 1) = g(k) + µhe(k)y(k) (4.17c)

are simpler than those in (4.15a)–(4.15c) and the coefficients of the WL predictor in

(4.17b)–(4.17c) are updated using the ACLMS algorithm.

4.2.3 Noisy complex BSE

4.2.3.1 The cost function

The algorithms described above do not account for the effect of the additive noise

v(k) and thus underperform for the extraction of sources from noisy mixtures. By

modifying the cost function, it is possible to derive a new class of algorithms for the

extraction of complex sources from noisy mixtures. The modified cost function de-

scribed in [104] which employs a normalised MSPE type cost function, can be used to

remove the effect of noise from the MSPE and output variance.

Taking a closer look at the covariance and pseudo-covariance of the observation vector

with additive noise,

Cxx(δ) = ACss(δ)AH + Cvv(δ)
Pxx(δ) = APss(δ)AT + Pvv(δ) (4.18)
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it is noted that the MSPE can be divided into two parts e2s and e2v, where the first term

is related to the MSPE relevant to the sources (4.6) and the second term pertains to

that of the noise, and so E{|e(k)|2} = e2s + e2v. The expression for e2v is derived in

Appendix 4.A at the end of this chapter. The cost function for the noisy BSE thus

becomes

J2(w,h,g) =
E{|e(k)|2} − e2v

E{|y(k)|2} −wHCvv(0)w
(4.19)

=
E{|e(k)|2} − c1σ

2
v −ℜ{c2τ2vwHw∗}

E{|y(k)|2} − σ2
v

where the signal variance is given in (4.10). The existence of a solution to the min-

imisation of the cost function can be addressed similarly to the noiseless case. By

removing the effect of noise from J2, the resultant cost function is expanded exactly

as in (4.11) and a similar argument can be used for the analysis.

4.2.3.2 Algorithms for the noisy case

The cost function (4.19) is minimised using steepest descent and the coefficient vectors

w,h and g are updated via an online algorithm, similarly to the noise-free case. The

corresponding gradients are calculated as

∇w∗J2 =
1

σ2
y(k)− σ2

v

[
e∗(k)x̂h(k)− e(k)x̂g(k)−ℜ{c2τ2v }w∗(k)

− σ2
e(k)− c1σ

2
v −ℜ{c2τ2vwH(k)w∗(k)}
σ2
y(k)− σ2

v

y∗(k)x(k)

]

∇h∗J2 =
−1

σ2
y(k)− σ2

v

(
e(k)y∗(k) + σ2

vh(k)
)

∇g∗J2 =
−1

σ2
y(k)− σ2

v

(
e(k)y(k) + σ2

vg(k) + ℜ{wHw∗τ2v }h(k)
)

(4.20)

where

c1 = 1 + hH(k)h(k) + gH(k)g(k)

c2 = 2gH(k)h(k)

and the demixing vector w(k + 1) is normalised after each update, so that

w(k + 1)← w(k + 1)

||w(k + 1)||2
.

It is apparent from (4.20) that the estimation of the noise variance and pseudo-variance

is necessary for the operation of this BSE method as discussed in the next section.

Finally note that for a circular white additive noise, the pseudo-variance τ2v is zero

and thus the terms related to the pseudo-covariance in (4.20) vanish.
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The coefficient updates for BSE of noisy mixtures are given by

w(k + 1) = w(k)

− µ

σ2
y(k)− σ2

v

[
e∗(k)x̂h(k)− e(k)x̂g(k)−ℜ{c2τ2v }w∗(k)

− σ2
e(k)− c1σ

2
v −ℜ{c2τ2vwH(k)w∗(k)}
σ2
y(k)− σ2

v

y∗(k)x(k)

]
(4.21a)

h(k + 1) = h(k) + µh
1

σ2
y(k)− σ2

v

(
e(k)y∗(k) + σ2

vh(k)
)

(4.21b)

g(k + 1) = g(k) + µg
1

σ2
y(k)− σ2

v

(
e(k)y(k) + σ2

vg(k) + ℜ{wHw∗τ2v }h(k)
)

(4.21c)

The case of the prewhitened observation vector x̆ is next considered, where the vari-

ance of the extracted signal is constant and the resulting algorithms are somewhat

simpler. The prewhitened covariance and pseudo-covariance are now given as

Cx̆x̆(0) = ĂCss(0)ĂH + C̆vv(0) = I

Px̆x̆(0) = ĂPss(0)ĂT + P̆vv(0) (4.22)

with Ă = VA, C̆vv(0) = VCvv(0)VH and P̆vv(0) = VPvv(0)VT . It is possible to

use a strong uncorrelating transform (SUT) [69] to whiten the covariance matrix and

diagonalise the pseudo-covariance such that Px̆x̆(0) = Λ contains non-negative real

values. In the case of circular signals, the SUT simplifies to a standard whitening

operation.

This way, the term e2v can be expanded as

e2v = wH ˆ̆Cvvw + ℜ{wH ˆ̆Pvvw
∗} (4.23)

and the variance of the extracted signal

E{|y(k)|2} = wHCx̆x̆(0)w
= wHĂCss(0)ĂHw +wH C̆vv(0)w
= wHw = 1. (4.24)

The cost function (4.19) can thus be rewritten as

J2 =
E{|e(k)|2} −wH ˆ̆Cvvw + ℜ{wH ˆ̆Pvvw

∗}
E{|y(k)|2} −wH C̆vv(0)w

=
E{|e(k)|2} − c1w

H ˆ̆Cvv(0)w + ℜ{c2wH ˆ̆Pvv(0)w
∗}

wHw −wH C̆vv(0)w
= E{|e(k)|2} − c1E{|y(k)|2} − ℜ{c2τ2vwHVVTw∗}+ 1 (4.25)
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where the demixing vector is normalised as

w(k + 1)← w(k + 1)√
wH(k + 1)[I− C̆vv(0)]w(k + 1)

. (4.26)

This normalisation allows for the denominator in (4.25) to become unity. The gradients

within the updates of the online algorithms for noisy BSE can be calculated as

∇w∗J2 = e∗(k)x̂h(k)− e(k)x̂g(k)−ℜ{c2τ2v }VTVw∗(k)− c1y
∗(k)x(k)

∇h∗J2 = −e(k)y∗(k)

∇g∗J2 = −
(
e(k)y(k) + ℜ{τ2vwHVVTw∗}h(k)

)
(4.27)

to form the final online update for the BSE of prewhitened noisy mixtures, with the

update algorithm for the demixing vector and the update equations for the filter coef-

ficient vectors given by

w(k + 1) = w(k)− µe∗(k)x̂h(k)− e(k)x̂g(k)

−ℜ{c2τ2v }VTVw∗(k)− c1y
∗(k)x(k) (4.28a)

h(k + 1) = h(k) + µhe(k)y
∗(k) (4.28b)

g(k + 1) = g(k) + µg

(
e(k)y(k) + ℜ{τ2vwHVVTw∗}h(k)

)
(4.28c)

4.2.4 Remark on the estimation of noise variance and pseudo-variance

The adaptive algorithms derived in the previous section require estimation of the

noise variance and pseudo-variance for their operation. As mentioned in Chapter 2,

the noise is considered to have a constant variance σ2
v and pseudo-variance τ2v so that

Cvv = σ2
vI andPvv = τ2v I. Furthermore, two variants of complex noise were discussed:

circular white noise and doubly white noise. One possible method for the estimation

of the variance of circular white noise is by means of a subspace method [1] and can be

intuitively extended for the estimation of the pseudo-variance of doubly white noise,

as detailed below.

Consider the number of observations larger than that of the sources (N > Ns); it is

then possible to estimate the noise variance and pseudo-variance, based on

Cxx = ACssAH + Cvv = Θ+ σ2
vI

Pxx = APssAT + Pvv = Ξ+ τ2v I. (4.29)

where Θ = ACssAH and Ξ = APssAT . For both cases, by assuming that the matrix

A is of full column rank, Rank(A) = Ns, and that s is non-singular, then Rank(Θ) =

Rank(Ξ) = Ns and so the (N −Ns) smallest eigenvalues of Θ and Ξ are zero. Hence,

the (N −Ns) smallest eigenvalues of Cxx and Pxx are respectively equal to σ2
v and τ2v .
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Table 4.1 Source properties for noise-free extraction experiments

Source distribution circ. measure (r) norm. MSPE

s1(k) Super-Gaussian 0.03 1.45
s2(k) Sub-Gaussian 1.00 1.69
s3(k) Super-Gaussian 1.00 1.34
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Figure 4.2 Scatter plots of the complex sources s1(k), s2(k) and s3(k) whose properties are
described in Table 4.1. The scatter plot of the extracted signal y(k), corresponding to the source
s3(k), is given in the bottom right plot.

4.3 Simulations and discussion

4.3.1 Performance analysis for synthetic data

The performances of the proposed algorithms were analysed using sources with dif-

ferent degrees of noncircularity and for different probability distributions, and in var-

ious simulation settings comprising both noise-free and noisy mixtures.

Performances of the algorithms were measured using the Performance Index (PI) [10],

which for u = AHw = [u1, . . . , uM ] is given as

PI = 10 log10

(
1

M

(
M∑

i=1

|ui|2
max{|u1|2, . . . , |uM |2}

− 1

))
. (4.30)

and indicates the closeness of u to having only a single non-zero element. The values

of the step-sizes µ, µh and µg were set empirically, the mixing matrix A was generated
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Figure 4.3 Learning curves for extraction of complex sources from noise-free mixtures using
algorithm (4.15a)–(4.15c), based on WL predictor (solid line) and linear predictor (broken line).
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Figure 4.4 Normalised absolute values of the sources s1(k), s2(k) and s3(k), whose proper-
ties are described in Table 4.1. The extracted source y(k), shown in the bottom plot, is obtained
from a noise-free mixture using algorithm (4.15a)–(4.15c).
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Figure 4.5 Extraction of complex sources from a noise-free prewhitened mixture using
algorithm (4.17a)–(4.17c), based on a WL predictor.

randomly and in all experiments the forgetting factors βe = βy = 0.975. The additive

noise v(k) had a Gaussian distribution in two variants of proper white (r = 0) and

doubly white improper (r = 0.93). Its variance and pseudo-variance were estimated

using the subspace method (4.29).

In the first set of experiments, Ns = 3 sources with 5000 samples were generated

(Figure 4.2) and subsequently mixed to form a noise-free mixture. The sources were

mixed using a 3 × 3 mixing matrix and the resultant observation vector was input to

the adaptive algorithm of (4.15a) with a step-size of µ = 5 × 10−3 chosen empirically.

The coefficients of the WL predictor were updated using (4.15b) and (4.15c) with filter

length M = 20 and µh = µg = 10−5. The resultant learning curve shown in Figure 4.3

was averaged over 100 trials with the initial demixng vector chosen randomly. The

source properties are shown in Table 4.1, which also include the circularity measure

and the value of the normalised MSPE corresponding to the source (4.7).

The algorithm was able to extract the source with the smallest normalised MSPE, with

the PI reaching a value of -22 dB at steady-state after 2000 samples (Figure 4.3). The

normalised absolute values of the sources si(k), i = 1, 2, 3 and y(k) are shown in Fig-

ure 4.4, illustrating that the desired source s3(k), with the smallest MSPE, was ex-

tracted successfully. Figure 4.2 shows the scatter plots of the three sources and the

extracted signal. The scatter plot of the extracted signal y(k) is a scaled and rotated

version of s3(k) due to the ambiguity problem of BSS.

Next, for the same setting, the resulting mixture was prewhitened and extraction was

performed using the algorithm (4.17a)–(4.17c). The resulting learning curve shown in
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Figure 4.5 exhibits slow convergence with an average steady-state value of -19 dB after

4000 samples. The step-size parameters were set to µ = 5× 10−3 and µh = µg = 10−4.

For comparison, the performance of the algorithm (4.15a)–(4.15c) is demonstrated,

which uses a standard linear predictor for the extraction of the complex sources. The

extraction of the noncircular sources (whose properties are given in Table 4.1) is per-

formed using the same mixing matrix as in the previous experiments. This is straight-

forward by assuming the conjugate part of the coefficient vector of the WL predictor

in (4.15b)–(4.15c) g = 0 and updating only the coefficient vector h, as shown in Sec-

tion 4.2. As shown in the analysis, the linear predictor is not suited for modelling

the full second-order information and did not provide satisfactory extraction (as seen

from Figure 4.3), and reaching an average PI of only -6.5 dB as opposed to -22 dB for

the WL case using the ACLMS.

In the next set of experiments, the performances of the proposed algorithms for the

noisy case were investigated. A new set of three complex source signals were gen-

erated with 5000 samples, their properties are described in Table 4.2, and the 4 × 3

mixing matrix was generated randomly. Circular white Gaussian noise with variance

σ2
v = 0.1 was added to the mixture to create the observed noisy mixture. The algo-

rithm given in (4.21a) was used to minimise the cost function and extract the source

with the smallest normalised MSPE. The values of the widely linear predictor coef-

ficient vectors were updated via (4.21b) and (4.21c), with filter length M = 20 and

step-size values µ = 5 × 10−3 and µh = µg = 10−3. The learning curve in Figure 4.6

demonstrates the performance of the algorithm, reaching steady-state after 2000 sam-

ples and with an average PI of -30 dB, indicating a successful extraction of the source

s3(k).

The effect of doubly white noncircular Gaussian noise with circularity measure ξ = 5

is investigated, while keeping the source and mixing matrix values unchanged. The

noise variance was σ2
v = 0.1 and the estimated pseudo-variance of the noise was

τ2v = −0.0894 − 0.0002 (using the subspace method (4.29)). The learning curve in

Figure 4.7 indicating the algorithm (4.21a)–(4.21c) converging to a solution in around

1500 samples and with an average steady-state value of -21 dB, for the step-sizes

µ = 5 × 10−3 and µh = µg = 10−5. For comparison, the learning curve using the

algorithm (4.15a)–(4.15c) is also included illustrating the inability to extract the de-

sired source from the noisy noncircular mixture. Finally, the input was prewhitened

and sources extracted based on (4.28a) for the update of the demixing vector, and us-

ing (4.28b) and (4.28c) for the update of the coefficient vectors, to produce the learning

curve in Figure 4.8. In this scenario, the step-size parameters were chosen as µ = 10−4

and µh = µg = 10−6, leading to slow convergence.
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Figure 4.6 Extraction of complex sources from a noisy mixture with additive circular white
Gaussian noise, using algorithm (4.21a)–(4.21c) with a WL predictor.
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Figure 4.7 Extraction of complex sources from a noisy mixture with additive doubly white
noncircular Gaussian noise using algorithm (4.21a)–(4.21c) (solid line) and algorithm (4.15a)–
(4.15c) (broken line), with a WL predictor.
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Table 4.2 Source properties for noisy extraction experiments

Source distribution circ. measure (r) norm. MSPE

s1(k) Super-Gaussian 0.02 2.81
s2(k) Sub-Gaussian 1.00 2.83
s3(k) Super-Gaussian 1.00 2.80
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Figure 4.8 Extraction of complex sources from a prewhitened noisy mixture with additive
doubly white noncircular Gaussian noise, using algorithm (4.28a)–(4.28c) with a WL predictor.

4.3.2 EEG artifact extraction

Next, the usefulness of the proposed complex BSE scheme on the extraction of eye

muscle activity (electrooculogram–EOG) from real-world EEG recordings is demon-

strated. In real-time brain computer interfaces (BCI) it is desirable to identify and

remove such artifacts from the contaminated EEG [107].

In the experiment, EEG signals used were from the electrodes Fp1, Fp2, C5, C6, O1,

O2 with the ground electrode placed at Cz, as shown in Figure 4.9. In addition, EOG

activity was also recorded from vEOG and hEOG channels, to provide a reference

for the performance assessment of the extraction2. Data were sampled at 512 Hz and

recorded for 30 seconds. Notice that the effects of the artifacts diminish with the dis-

tance from the eyes, being most pronounced for the frontal electrodes Fp1 and Fp2

2As there is no knowledge of the mixing matrix, comparison of power spectra of the original and
extracted EOG is used to validate the performance of the proposed complex BSE algorithms.
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Figure 4.9 EEG channels used in the experiment (according to the 10-20 system)

(Figure 4.10(a)).

Pairing spatially symmetric electrodes to form complex signals facilitates the use of

cross-information, and simultaneous modelling of the amplitude-phase relationships.

Thus, pairs of symmetric electrodes were combined to form three temporal complex

EEG signals given by

x1(k) = Fp1(k) +  Fp2(k)

x2(k) = C5(k) +  C6(k)

x3(k) = O1(k) +  O2(k), (4.31)

and x = [x1(k), x2(k), x3(k)]
T .

First, the algorithm in (4.15a)–(4.15c) was used to remove EOG, using the step-size

µ = 5×10−3, with filter length M = 70 and step-sizes µh = µg = 10−4 for the standard

and conjugate coefficients of ACLMS. The estimated EOG artifact was represented by

the real component of the extracted signal, ℜ{y(k)}, as illustrated in Figure 4.10(b), in

both the time and frequency domain (the normalised power spectrum). The original

vEOG signal is included for reference, confirming a successful extraction of the EOG

artifact from EEG.

4.4 Summary

The blind source extraction of complex signals from both noise-free and noisy mix-

tures has been addressed. The normalised MSPE, measured at the output of a widely

linear predictor, has been utilised as a criterion to extract sources based on their de-

gree of predictability. The effectiveness of the widely linear model in this context has
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Figure 4.10 Extraction of the EOG artifact due to eye movement from EEG data, using
algorithm (4.15a)–(4.15c).
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been demonstrated, verifying that the proposed approach is suitable for both second-

order circular (proper) and noncircular (improper) signals, and for general doubly

white additive complex noises (improper). For circular sources, the proposed BSE ap-

proach (P-cBSE) has been shown to perform as good as standard approaches, whereas

for noncircular sources it has been shown to exhibit theoretical and practical advan-

tages over the existing methods. The performance of the proposed algorithm has been

illustrated by simulations in noise-free and noisy conditions. In addition, the applica-

tion of the proposed method has been demonstrated in the extraction of artifacts from

corrupted EEG signals directly in the time domain.

4.A Derivation of the Mean Square Prediction Error

The error at the output of the WL predictor, e(k) can be written as

e(k) = y(k)− yWL(k)

= y(k)− hT (k)y(k)− gT (k)y∗(k)

= wH
(
x(k)−

M∑

m=1

hm(k)x(k −m)
)

︸ ︷︷ ︸
,x̄h(k)

−wT
M∑

m=1

gm(k)x∗(k −m)

︸ ︷︷ ︸
,x̄g(k)

= wH x̄h(k)−wT x̄g(k) (4.32)

and, the MSPE can be expanded as

E{|e(k)|2} =

E
{(

wH x̄h(k)−wT x̄g(k)
)(
x̄H
h (k)w − x̄H

g (k)w∗
)}

= wHE1w −wHE2w
∗ −wTE3w +wTE4w

∗ (4.33)

where

E1 = E{x̄h(k)x̄
H
h (k)}, E2 = E{x̄h(k)x̄

H
g (k)}

E3 = E{x̄g(k)x̄
H
h (k)}, E4 = E{x̄g(k)x̄

H
g (k)}.

Recall that the observation x(k) = As(k) + v(k), so the MSPE can be divided into

terms relating to the source (denoted by e2s) and those relating to the noise (denoted

by e2v), giving E{|e(k)|2} = e2s + e2v. Assuming a noise-free case, that is, e2v = 0, the
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values of Ei, i = {1, 2, 3, 4} can be expressed as

E1 = Css(0)−
M∑

m=1

hm(k)Css(−m)−
M∑

m=1

h∗m(k)Css(m)

+
M∑

m,ℓ=1

hm(k)h∗ℓ (k)Css(ℓ−m) (4.34)

E2 =
M∑

m=1

g∗m(k)Pss(m)−
M∑

m,ℓ=1

hm(k)g∗ℓ (k)Pss(ℓ−m) (4.35)

E3 =

M∑

m=1

gm(k)P∗
ss(m)−

M∑

m,ℓ=1

h∗m(k)gℓ(k)P∗
ss(ℓ−m) (4.36)

E4 =

M∑

m,ℓ=1

g∗m(k)gℓ(k)Css(ℓ−m). (4.37)

Since E3 = EH
2 and z + z∗ = 2ℜ{z}, equations (4.34)–(4.37) can be simplified and

substituted in (4.33) to produce the final result E{|e(k)|2} = e2s , as given in (4.6).

To derive the MSPE relating to the nth source, notice that the sources are assumed

uncorrelated and so the covariance and pseudo-covariance matrices are diagonal. It

is then straightforward to express the nth diagonal element of (4.34)–(4.37) to pro-

duce (4.7).

In the noisy case, the values of Ei pertaining to e2v (denoted by Ei,v) can be evaluated

in a similar fashion to that in (4.34)–(4.37), noticing that Cvv(δ) = Pvv(δ) = 0 for δ 6= 0.

Thus,

E1,v = Cvv(0) +
M∑

m=1

hm(k)h∗m(k)Cvv(0) (4.38)

E2,v = −
M∑

m=1

hm(k)g∗m(k)Pvv(0) (4.39)

E3,v = −
M∑

m=1

h∗m(k)gm(k)Pvv(0) (4.40)

E4,v =

M∑

m=1

gm(k)g∗m(k)Cvv(0) (4.41)

which when substituted in (4.33) and simplified results in

e2v = wH Ĉvvw + ℜ{wHP̂vvw∗} (4.42)
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and

Ĉvv = [1 + hH(k)h(k) + gH(k)g(k)]σ2
vI (4.43)

P̂vv =




2gH(k)h(k)τ2v I, v(k) for doubly white

0, v(k) for circular white
(4.44)

where Ĉvv and P̂vv are written in their vector form.





Chapter 5

Kurtosis Based Blind Source

Extraction of Complex Noncircular

Signals

5.1 Introduction

The maximisation of non-Gaussianity is an established optimisation paradigm in blind

source separation, and in particular in Independent Component Analysis (ICA). This

rests upon the central limit theorem, as an observed mixture of several independent

random processes has a more Gaussian distribution than the individual distributions

of the original [12]. This opens the possibility to recover sources based on their de-

gree of non-Gaussianity. This has led to the introduction of information theoretic ap-

proaches based on the maximisation of negentropy [12, 108], defined as a non-negative

measure of entropy normalised such that it is zero for a Gaussian random variable.

It is common to approximate the negentropy function of a given distribution using

some suitable nonlinearities. In the real domain, a simple nonlinear approximation is

the kurtosis1, the fourth order moment of a random variable, which provides a simple

yet effective means to model the degree of Gaussianity within a signal, measuring the

deviation from a Gaussian distribution. The kurtosis of a Gaussian random variable is

zero, while sub- and super-Gaussian signals have respectively negative and positive

kurtosis values. The design of suitable cost functions based on the kurtosis measure

can thus allow for the estimation of the latent sources from the observed mixture.

The online nature of gradient decent optimisation for kurtosis based algorithms al-

lows for the sequential estimation of sources, which, can also be viewed as blind

1The nonlinear function G(y) = y4 is an approximation of the negentropy function based on the
kurtosis measure.
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source extraction. Alternatively, optimisation of kurtosis based cost functions based

on the Newton method leads to the class of fixed-point like algorithms [21, 12], such

as the FastICA algorithm using kurtosis. These algorithms have the advantage of

fast convergence, and allow for the sequential or simultaneous separation of sources.

However, their offline batch mode of operation does not make them suitable for real-

time applications.

The kurtosis measure is sensitive to outliers, and to this end the scale invariant nor-

malised kurtosis measure, was introduced to reduce the effect of outliers, while pro-

viding a uniform measure for the comparison of various signals. The algorithm in [109]

also known as the KuicNet algorithm, utilises a normalised kurtosis cost function,

however, it is not stable in the separation of sub-Gaussian sources [10]. The kurtosis

based blind source extraction algorithm proposed in [34], uses a cost function based

on the normalised kurtosis, and is capable of extracting real-valued desired sources

from a noisy mixture.

In the complex domain, kurtosis can be defined in various forms, however, the most

common one is based on a real-valued measure which follows the definition in R and

is zero for complex Gaussian random variables and negative or positive for sub- and

super-Gaussian random variables; see Section 2.2. In the past few years, extension of

kurtosis-based BSS algorithms to the complex domain has been considered. The orig-

inal complex FastICA algorithm by Bingham and Hyvärinen [41], assumed circular

sources and was designed for the estimation of the negentropy function using gen-

eralised nonlinearities. The assumption of the properness of sources allows for the

simplification of the kurtosis definition C (see Equation (2.24)) and results in a sim-

ple nonlinearity, however this limits the optimal scope of the algorithm to the class of

proper complex sources.

In [71], Douglas introduced a fixed-point kurtosis based algorithm with prewhitening

using the strong uncorrelating transform (SUT) [69] to diagonalise both covariance

and pseudo-covariance matrices. The authors in [75] investigated kurtosis-based al-

gorithms for separation of complex-valued sources using both gradient and Newton

method optimisation. The algorithms of [71] and [75] were designed for the general-

ity of complex-valued sources and thus outperformed the complex FastICA algorithm

of [41] with the kurtosis-based nonlinearity.

The above mentioned algorithms provide kurtosis based methodologies for the sepa-

ration of sources in C, however, they do not consider the blind extraction of complex-

valued sources in the presence of additive noise. Furthermore, the performance of

such BSE algorithms in real-time applications has not been assessed. To this end, in

this chapter, a new class of complex BSE algorithms based on the degree of kurtosis,

and in the presence of complex-valued additive noise is explored. This provides an

extension of the methodology presented in [34] to the generality of complex signals,
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Figure 5.1 The noisy mixture model, and BSE architecture.

both complex circular and noncircular. A modified cost function is also proposed so

as to cater for blind extraction from noisy mixtures. The performance is first assessed

through benchmark simulations using various synthetic sources. Extensive studies

on the extraction of artifacts from electroencephalograph (EEG) signals demonstrate

the usefulness of the algorithm, and are supported by performance studies using both

qualitative and quantitative metrics.

5.2 BSE of Complex Noisy Mixtures

The diagram in Figure 5.1 shows the complex BSE architecture, where at time instant

k, the observed signal x(k) ∈ CN is given by a linear mixture

x(k) = As(k) + v(k) (5.1)

where s(k) ∈ CNs is the vector of latent sources, A ∈ CN×Ns is the mixing matrix, and

v(k) ∈ CN is the vector of additive doubly white Gaussian noise (noncircular). The

sources are assumed to be independent and of zero mean and distinct kurtosis values,

while no assumptions are made about the source circularity. When v(k) = 0, that is,

in a noise-free environment, the number of mixtures is assumed to be equal to that

of the sources, however, in the case of noisy mixtures, an overdetermined mixture is

necessary so as to estimate the second-order statistics of noise parameters.

The adaptive gradient descent algorithm at the extraction stage adapts the parame-

ters of the demixing vector w such that the source signal with the largest (smallest)

kurtosis,

y(k) = wHx(k)

= wHA︸ ︷︷ ︸
,uH

s(k) +wHv(k) (5.2)

is first extracted. The variance of y(k) can be written in an expanded form as

E{|y(k)|2} = uHCss(0)u+wHCvv(0)w
= uHu+ σ2

vw
Hw (5.3)
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where the differences in the diagonal elements of Css(0) are absorbed into the mixing

matrix A to achieve an identity matrix, and the noise covariance matrix Cvv(0) = σ2
vI

(due to the whiteness assumption).

In the same spirit, the normalised kurtosis of the extracted signal y(k) can be written

as

Kc(y) =

Ns∑

n=1

Kc(u
∗
nsn) +

N∑

n=1

Kc(w
∗
nvn)︸ ︷︷ ︸

=0

=

Ns∑

n=1

|un|4E{|sn|4} − 2|un|4(E{|sn|2})2 − |un|4|E{s2n}|2

=

Ns∑

n=1

|un|4Kc(sn) (5.4)

thus having zero value for Gaussian noise. In a vectorised form, this is equivalent to

Kc(y) = ûHKc(s)û (5.5)

where

û = [u21, . . . , u
2
Ns

]

Kc(s) = diag
(
Kc(s1), . . . ,Kc(sNs)

)
. (5.6)

The next stage within the proposed BSE scheme is the deflation process which aims to

remove the extracted source y(k) from the mixture x(k), such that

x(k)← x(k)− w̆y(k) (5.7)

where the deflation weight coefficient vector w̆ is updated using an adaptive gradient

descent algorithm detailed later in this section. In principle, for y(k) being an estimate

of one of the original sources, say sn(k), the ideal deflation weight vector should be

equal to the nth column of the mixing matrix A, such that the effect of this particular

source is removed from the mixture. Finally, a threshold can be set on the deflation

process, so that extraction is continued until some or all the required sources have

been successfully extracted [110].

5.2.1 Cost function

The cost function employed for the extraction of general complex sources from noisy

mixtures is given by

J (w) = −β kurtc
(
y(k)

)
(
E{|y(k)|2} −wHCvv(0)w

)2 . (5.8)
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Note that J ∈ R, represents a modified version of the normalised kurtosis defined

in (2.23) and is a generalisation of the methodology presented in [34]. The numera-

tor of the cost function represents the kurtosis of the complex extracted signal, while

the denominator is the square of the extracted signal power where the contributions

due to noise is removed. Collectively, this forms the modified normalised kurtosis

of the extracted signal minus the contributions from the noise. By using the modi-

fied normalised kurtosis instead of the standard complex kurtosis, extraction of signal

with different dynamic ranges can be performed in a uniform scale, and avoid the

use of a prewhitening stage. As illustrated in (5.3), the variance of y(k) contains the

noise variance σ2
v , thus allowing us to remove the effect of noise from (5.8) such that

only contributions from the latent sources are accounted for. Also note that while

the noise variance σ2
v is present in the cost function (5.8), its pseudo-covariance τ2v is

not present, suggesting that the complex domain BSE based on kurtosis is unaffected

by the pseudo-spectral effects of the additive noise; this is further elaborated in Sec-

tion 5.3.

In the cost function (5.8), the parameter β dictates the order of extraction where for

i) β = 1, the order of extraction is from the high to low degree of non-Gaussianity

(super-Gaussian sources are extracted first),

ii) β = −1, the order of extraction is from low to high degree of non-Gaussianity

(sub-Gaussian sources are extracted first).

The optimisation of J with respect to w can thus be stated as

wopt = arg min
‖w‖22=1

J (w) (5.9)

where the norm of the demixing vector is constrained to unity to avoid very small

coefficient values.

Rewriting and simplifying (5.8) in terms of (5.3) and (5.6) results in

J (w) = − ûH |Kc(s)|û
(uHu)2

= −úH |Kc(s)|ú (5.10)

where

úH ,
ûH

uHu
=

ûH

‖u‖22
. (5.11)

Notice that ‖ú‖22 =
‖û‖22

(‖u‖22)
2 ≤ 1 and is equal to unity only if one of the components in

the vector u is non-zero. Given the constraint on ‖ú‖, the solution to the optimisation

of (5.10) is a vector úopt of unit norm such that uopt has a single non-zero component

at a position corresponding to the diagonal element in Kc(s) having the largest mag-

nitude. For this to be valid, a demixing vector assumes the form wopt = AH#uopt,

where the symbol (·)# denotes the matrix pseudo-inverse operator [34].
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5.2.2 Adaptive algorithm for extraction

Optimisation of (5.8) is performed using an adaptive gradient descent algorithm which

updates the values of w so as to maximise the modified normalised kurtosis and thus

minimise the cost function J (w). Based on CR calculus and Brandwood’s result2 (see

Appendix 2), the gradient is thus expressed as

∇w∗J =
β x(k)

(m2(y)− σ2
v)

3

(
y∗(k)

(
m4(y)− 2m2

2(y)− |p2(y)|2
)

+
(
m2(y)− σ2

v

)(
− y(k)y∗2(k) + 2m2(y)y

∗(k) + p∗2(y)y(k)
))

= φ
(
y(k)

)
x(k) (5.12)

where the symbol φ
(
y(k)

)
is used for simplification and mℓ(y) and pℓ(y) are respec-

tively the ℓ-th moment and pseudo-moment at time instant k (the time index dropped),

estimated using the moving average estimators

mℓ

(
y(k)

)
= (1− α)mℓ

(
y(k − 1)

)
+ α|y(k)|ℓ, ℓ = {2, 4}

pℓ
(
y(k)

)
= (1− α)pℓ

(
y(k − 1)

)
+ α

(
y(k)

)ℓ
, ℓ = 2 (5.13)

where α ∈ [0, 1] is the forgetting factor.

The kurtosis based BSE update algorithm (K-cBSE) for the demixing vector is thus

given by

w(k + 1) = w(k)− µφ
(
y(k)

)
x(k), (5.14)

or in an expanded form as

w(k + 1) = w(k)− µβ
(
m2(y)− σ2

v

)3
(
y∗(k)

(
m4(y)− 2m2

2(y)− |p2(y)|2
)

+
(
m2(y)− σ2

v

)(
− y(k)y∗2(k) + 2m2(y)y

∗(k) + p∗2(y)y(k)
))

x(k), (5.15)

where µ is the small positive step-size.

To preserve the unit norm property, the demixing vector is normalised at each itera-

tion, that is

w(k + 1)← w(k + 1)

‖w(k + 1)‖2
. (5.16)

Notice that in extracting circular sources, the moment pℓ vanishes, further simplifying

the algorithm. Moreover, as mentioned earlier, the cost function and thus the gradient

descent algorithm are not dependent on the pseudo-variance of the noise, τ2v . The esti-

mation of the noise variance can be performed using a subspace method, as described

in [111], see Section 4.2.4.

2Recall that the conjugate gradient ∂J
∂w∗

corresponds to the maximum change of the gradient.
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5.2.3 Modifications to the update algorithm

In order to enhance the performance of the online gradient descent algorithm, adap-

tive step-size update algorithms are considered, and in particular, the complex-valued

variable step-size (VSS) algorithm [3] and the complex-valued generalised normalised

gradient descent (GNGD) type algorithm [4] are used.

By adapting the step-size of the algorithm at each iteration, it is possible to automat-

ically adjust the speed of convergence of the algorithm without employing empirical

values for the step-size. Thus, the algorithm will have a larger step-size when the K-

cBSE algorithm is far from the solution of the optimisation problem (5.9), while the

step-size becomes smaller when the the algorithm is closer to the solution. As a re-

sult, the algorithm has a faster convergence compared to one with a fixed step-size.

However, the VSS algorithm is not suitable for use in a nonstationary and noisy envi-

ronments, where the update in the step-size does not aid the algorithm.

The GNGD algorithm is distinguished from the VSS algorithm as it adjusts the reg-

ularisation parameter in a normalised algorithm. While in a standard normalised al-

gorithm, a small input magnitude can lead to unstability in the algorithm, the GNGD

algorithm adapts the regularisation parameter to ensure robust performance for sig-

nals of small magnitude.

At each iteration k, the VSS algorithm minimises the cost function J in (5.8) with

respect to µ(k − 1) to provide the update of the step-size, given as

µ(k) = µ(k − 1)− η∇µJ
∣∣
µ=µ(k−1)

∇µJ = ∇w∗J · ∂w∗(k)

∂µ(k − 1)

ψ(k) = γψ(k − 1)−∇w∗J
∣∣
w∗=w∗(k−1)

(5.17)

where ψ(k) , ∂w∗(k)
∂µ(k−1) ≈

∂w∗(k)
∂µ(k) and η and γ are step-sizes.

The GNGD-type algorithm is based on a normalised version of (5.15), given by

w(k + 1) = w(k)− µ

|φ
(
y(k)

)
|2 · ‖x(k)‖22 + ǫ(k)

φ
(
y(k)

)
x(k) (5.18)

where ǫ(k) is an adaptive regularisation parameter and φ
(
y(k)

)
is defined in Equa-

tion (5.12). The gradient adaptive regularisation parameter is then given by

ǫ(k + 1) = ǫ(k)− ρµ
ℜ
{
φ
(
y(k)

)
xT (k)φ∗

(
y(k − 1)

)
x∗(k − 1)

}
(
|φ
(
y(k − 1)

)
· ‖x(k − 1)‖22 + ǫ(k − 1)

)2 (5.19)

where ρ is a step-size. The derivation of the algorithm is given in Appendix 5.A at the

end of this chapter.
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5.2.4 Adaptive algorithm for deflation

The deflation procedure insures that after each extraction stage, the estimated source

is removed from all the mixture vectors, so that the next source with maximum (mini-

mum) kurtosis can be extracted. This can be achieved based on the cost function [110]

Jd(w̆) = ‖xn+1(k)‖2 = xH
n+1(k)xn+1(k) (5.20)

which is minimised with respect to the deflation weight coefficient w̆. The notation

xn(k) denotes the mixture at the nth extraction stage, which is given by vectors

xn+1(k) = xn(k)− w̆(k)yn(k). (5.21)

Given an invertible mixing matrix A, the vector w̆ is ideally equal to a column of

A−1, which corresponds to the nth extracted source yn(k). The gradient can thus be

calculated as

∇w̆∗Jd =
∂Jd
∂x∗

n+1

· ∂x
∗
n+1

∂w̆∗
= −y∗n(k)xn+1(k) (5.22)

and the online algorithm for BSE then becomes

w̆(k + 1) = w̆(k) + µdy
∗
n(k)xn+1(k), (5.23)

with µd a step-size. The drawback of this method is that any errors in the deflation

process will propagate and affect the extraction and deflation of subsequent stages.

It is therefore important that the step-size parameter is set appropriately for each nth

deflation stage to ensure successful removal of the extracted source yn(k).

In the design of complex adaptive algorithms, it is common to utilise a widely linear

model to ensure that the algorithm is capable of processing the generality of complex

signals [63]. In the case of the update for the deflation weight coefficient (5.23), how-

ever, a linear model is considered as the original BSS mixing model (4.1) is strictly

linear and thus a widely linear deflation model is not required.

5.3 Simulations and Discussions

The extraction of synthetic sources from noise-free and noisy mixtures, with various

degrees of complex noncircular noise levels are considered. The performance for the

synthetic data were measured using the Performance Index (PI) [10] given by Equa-

tion (4.30).

For each synthetic experiment, the results were produced through averaging 100 inde-

pendent trials. The mixing matrix A was generated randomly as a full rank complex
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matrix and the demixing vector was initialised randomly. The values of the extrac-

tion and deflation step-size µ and µd were set empirically, and the forgetting factor α

in (5.13) was set as 0.975. The complex additive Gaussian noise was both of circular

white with circularity measure r = 0 and noncircular doubly white with r = 0.93, with

r defined in Equation (2.17). The real-world sources were the electroencephalogram

data corrupted by power line noise and electrooculogram artifacts.

5.3.1 Benchmark Simulation 1: Synthetic sources

In the first set of simulations, a noise-free mixture of 3 complex sources with various

degrees of circularity and N = 5000 samples were generated and mixed using a 3× 3

mixing matrix. These signals are illustrated in Figure 5.2 and their properties listed in

Table 5.1(a). Extraction was performed in order from highest to lowest kurtosis, hence

the value of β = 1 in (5.8).

In the first experiment, the performance of the algorithm (5.15) using the adaptive

step-size methods was compared in the extraction of the first source with the value of

µ set to 0.01 and the initial demixing vector set randomly and fixed for all consecutive

extraction steps. It can be seen from the performance curves in Figure 5.3 that the best

performance was achieved using the GNGD method with a PI of approximately -45 dB

at the steady-state. The performance curve resulting from the normalised method

indicates successful extraction with a PI of around -25 dB. The performance of the

algorithm using the standard step-size and VSS were comparable, with a PI of around

-20 dB. In the following simulations, the GNGD based K-cBSE algorithm is utilised.

In the next set of simulations, the extraction of all the three sources (Figure 5.2) was

considered. The value of µ was set respectively to 0.01, 0.008 and 10−5 for the consec-

utive extraction stages. As shown in Figure 5.4, the algorithm successfully extracted

all the three sources, as indicated by a PI of less than -20 dB at the steady-state for the

extraction iteration i = {1, 2, 3}, converging to steady-state after 2500 samples in the

first extraction stage (i = 1) and around 1000 samples in the second and third extrac-

tion stage (i = {2, 3}). The decreasing PI value at each consecutive extraction stage

can be attributed to the unavoidable errors accumulated in the deflation.

The scatter plot of the three estimated sources y1(k), y2(k) and y3(k) are illustrated in

Figure 5.2. The normalised kurtosis of the estimated sources were respectively calcu-

lated as Kc(y1) = 11.84,Kc(y2) = 1.36 and Kc(y3) = −2.00 corresponding to those

of the original sources, given in Table 5.1(a); the scale and rotation ambiguities of the

source estimates are also visible.
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Figure 5.2 Scatter plot of the complex-valued sources s1(k), s2(k) and s3(k), with the sig-
nal properties described in Table 5.1(a) (left hand column). Scatter plot of estimated sources
y1(k), y2(k) and y3(k), extracted according to a decreasing order of kurtosis (β = 1) (right hand
column).

0 1000 2000 3000 4000 5000
−60

−50

−40

−30

−20

−10

0

sample number

P
e

rf
o

rm
a

n
c
e

 i
n

d
e

x
 (

d
B

)

 

 

VSS

GNGD

Standard

Normalised

Figure 5.3 Comparison of the effect of step-size adaptation on the performance of algo-
rithm (5.15) for the extraction of a single source.
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Figure 5.4 Extraction of complex circular and noncircular sources from a noise-free mixture
based on kurtosis.

5.3.2 Benchmark Simulation 2: Communication sources

The extraction of BPSK, QPSK and 16-QAM sources is demonstrated next, illustrated

in Figure 5.5, from a noise-free mixture; the source properties are given in Table 5.1(b).

The BSPK source is noncircular, while the QPSK and 16-QAM sources are second-

order circular. The value of β = −1, such that source with the smallest kurtosis is

extracted first (BSPK), followed on to the least sub-Gaussian (16-QAM). The number

of samples generated was N = 5000 and the value of µ was chosen empirically and

set respectively to 0.95, 2 and 0.1 for each iteration i = {1, 2, 3} of the extraction stage.

The algorithm had a very fast convergence in extracting the source signals (see Fig-

ure 5.6) in the desired order. The scatter plots of the extracted sources are given

in Figure 5.5 with the respective normalised kurtosis values calculated as Kc(y1) =

−2.00,Kc(y2) = 1.00 and Kc(y3) = −0.67 which are in close proximity to the true

kurtosis values in Table 5.1(b).

5.3.3 Benchmark Simulation 3: Noisy mixture

In the next experiment, the extraction of complex-valued sources from a noisy mix-

ture was considered. Three sources of 5000 samples were considered (see Table 5.1(c),

Figure 5.7) and were mixed using a randomly generated 4 × 3 mixing matrix A to

allow for the estimation of the noise variance and pseudo-variance. The additive
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Figure 5.6 Extraction of communication sources (properties given in Table 5.1(b)) in a noise-
free environment.
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noise was doubly white Gaussian noise with variance σ2
v = 0.1 and pseudo-variance

τ2v = 0.0924 + 0.0011, estimated using the subspace method described in Section 5.2.

The sources were extracted in an increasing order of kurtosis (β = −1) with the step-

size µ = 0.5.

The scatter plot of the first estimated source with the smallest kurtosis, y1(k) is illus-

trated in Figure 5.7 with a calculated normalised kurtosis of Kc(y1) = −1.80, which

is within a 10% range of the true value, given in Table 5.1(c). The Performance Index,

shown in Figure 5.8, demonstrates a fast convergence to a value of around -40 dB in

approximately 1000 samples, and continuing a steady convergence to -50 dB by 5000

samples.

It was shown in Section 5.2 that the performance of the algorithm (5.15) was not af-

fected by the degree of circularity of the additive noise, such that doubly white noise

is treated in a similar manner to circular white noise, where the pseudo-covariance

vanishes. This was explored experimentally by systematically analysing the effect of

various noise levels on the BSE algorithm (5.15). The circularity measure r was var-

ied from a value of r = 0 (circular) to a value of r = 1 (highly noncircular), while

the signal-to-noise ratio (SNR) was adjusted from a near-zero noise SNR of 50 dB to a

high noise environment with SNR value of -10 dB. The initial values were generated

randomly and PI was averaged over 100 trials. Figure 5.9 illustrates the performance

curve for the different variations in the noise properties, and confirms that while the

performance is dependent on the SNR value, it does not vary with changes in the de-

gree of noise noncircularity. In addition, the algorithm had an acceptable performance

in the extraction of sources (PI < -20 dB) when the SNR was above 1 dB.

5.4 EEG artifact extraction

In order to obtain useful information from EEG data in real-time, it is often necessary

to perform post-processing to remove artifacts such as line noise and biological arti-

facts including those pertaining to eye movement, captured in the form of electroocu-

logram (EOG) and facial muscle activity represented as electromyogram (EMG). Re-

moval of the effect of such signals from the contaminated EEG has been subject of

study in previous years, with several methodologies introduced that attempt to ac-

complish this utilising both online and offline algorithms [112, 113, 114, 115, 116, 117,

118]. While offline algorithms are suitable for processing the recorded EEG data in

clinical applications, it is necessary to utilise online algorithms for real-time applica-

tions such as those encountered in brain computer interface (BCI) scenarios.

In [118] the authors propose an online algorithm whereby the recorded EEG signals

are transformed to the wavelet domain and the EOG contaminants are removed using



102 Chapter 5. Kurtosis based Complex Blind Source Extraction

Table 5.1 Source properties for Benchmark simulations

(a) Source properties for noise-free extraction Benchmark Simulation 1

Source Distribution Kurtosis circ. measure (r)

s1(k) Super-Gaussian 1.36 0.04
s2(k) Super-Gaussian 11.89 1.00
s3(k) Sub-Gaussian -2.00 1.00

(b) Properties of the BPSK, QPSK and 16-QAM sources used in Benchmark Simu-
lation 2

Source Type Distribution Kurtosis circ. measure (r)

s1(k) BSPK Sub-Gaussian -2.00 1.00
s2(k) QPSK Sub-Gaussian -1.00 0.00
s3(k) 16-QAM Sub-Gaussian -0.68 0.00

(c) Source properties for noisy extraction in Benchmark Simulation 3

Source Distribution Kurtosis circ. measure (r)

s1(k) Sub-Gaussian -1.9985 1.0000
s2(k) Super-Gaussian 19.1167 0.9988
s3(k) Super-Gaussian 1.5426 0.0147
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Figure 5.7 Scatter plots of the original sources s1(k), s2(k) and s3(k). The scatter diagram
of the first estimated source y1(k) is shown in the bottom-right plot.
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Figure 5.8 Extraction of a complex-valued source from a noisy mixture, with the source
properties given in Table 5.1(c).
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Figure 5.9 Comparison of the performance of algorithm (5.15) with respect to changes in
the SNR and the degree of noise circularity.
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an adaptive recursive least squares (RLS) algorithm, before transforming the signal

back to the time domain. Simulations demonstrate good performance from the algo-

rithm, however, it would be advantageous to perform all the necessary processing in

the time domain, as this way the signals are retained in their original form and less

computation is required. Another wavelet domain approach to biological signal ex-

traction was employed in [119] in order to extract the fetal electrocardiogram from a

noisy mixture.

In its basic form, ICA can be applied to the contaminated EEG recording and the arti-

facts removed through visual inspection. As detailed in [112], an ICA algorithm sep-

arates the recorded EEG mixture into its original sources as independent components

(ICs), with artifact sources identified and removed. In semi-automatic [116] and au-

tomatic [114] artifact removal methodologies, several classifications (markers) based

on the statistical characteristics of the ICs are considered that allow for the detection

of artifacts in the contaminated EEG. These are then compared against thresholds that

determine the rejection of particular components.

In these methods, both the kurtosis and entropy of independent components have

been utilised to identify and remove the artifacts. While the EEG mixtures typically

have near-zero kurtosis values, artifacts such as EOG exhibit peaky distributions with

highly positive kurtosis values [114], while periodic power line noise has a highly

negative kurtosis value. This has been used as the main discrimination in defining

classifications based on the the fourth order moment.

5.4.1 Data acquisition and method

The aim is to remove artifacts as independent sources extracted from the recorded

EEG mixture directly in the time domain. To this end, the contaminated EEG signals

were paired as the real and imaginary components of a complex signal and processed

using the architecture described in Section 5.2.

In this manner, the full cross-statistical information between the corresponding elec-

trodes and the resultant recorded EEG is maintained, while allowing for the simul-

taneous processing of both channels. Further iterations of the extraction process can

then be used to obtain the individual pure EEG signals, or even, pipelined to a further

post-processing stage, which would then extract the EEG signals based on a desired

fundamental property, such as predictability.

The electrodes were placed according to the 10-20 system (Figure 5.10), and sampled

at 256 Hz for 30 seconds. The EEG activity was recorded from electrodes placed at po-

sitions Fp1, Fp2, C3, C4, O1, O2 with the ground placed at Cz, while the EOG activity

was recorded from the vEOG and hEOG channels with electrodes placed above and

on the side of the left eye socket.
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Three studies were performed with the aim to remove the artifacts simultaneously.

While the rejection of the power line noise artifact is feasible by passing the recorded

EEG signals through a notch filter, this solution also leads to the removal of useful

information around the 50 Hz range pertaining to the EEG signals, in particular those

within the gamma band (25 Hz-100 Hz).

It would therefore be desirable to automatically extract the line noise artifact along

with the biological artifact from the corrupted EEG signals. In the first study the re-

moval of EOG artifacts (‘EYEBLINK’ set) is considered, the second study focused on

eye muscle artifacts from rolling the eyes (‘EYEROLL’ set), whereas the third study

addressed the removal of muscle activity from raising the eyebrow (‘EYEBROW’ set).

In all the studies, the temporal signals from each channel pair were combined to form

three complex EEG channels, given by

x1(k) = Fp1(k) +  Fp2(k)

x2(k) = C3(k) +  C4(k)

x3(k) = O1(k) +  O2(k). (5.24)

This construction of the complex EEG signals allows for the simultaneous processing

of the amplitude and phase information using the K-cBSE algorithm (5.15). Note that

the EOG channels were not part of the mixtures considered. They are only used to

assess the performance of the proposed BSE algorithm in the extraction of the EOG

artifacts.

5.4.2 Performance measures

As no knowledge of the mixing process is available, the Performance Index (4.30)

is not applicable for this case and thus several alternative quantitative and qualitative

measures were used for the evaluation of the algorithm performance. These are briefly

discussed below.

1. Quantitative metrics

a) Kurtosis: The kurtosis values Kc of the complex extracted signals indicate the

success of the algorithm in extracting super-Gaussian or sub-Gaussian artifact

in a specified order. In addition, the magnitude of the kurtosis KR of the real

and imaginary components of the extracted sources are used to automatically

select desired components. In this manner, components with negative kurtosis

are labelled as power line noise, those with large positive kurtosis values are

chosen as biological artifacts, while components belonging to EEG sources have

a near-Gaussian distribution and have kurtosis values close to zero.
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b) Power spectra Correlation: In a similar manner to [115], the correlation coefficient3

between the magnitudes of the power spectra of the complex-valued recorded

artifact (e.g. EOG) and extracted sources, and likewise, the correlation coeffi-

cient between the pseudo-power spectra of the complex-valued recorded arti-

fact and the extracted sources is calculated.

This measure indicates the degree of similarity between the extracted and orig-

inally recorded artifact, and can be used to automatically select the extracted

source pertaining to the biological artifact, while also quantifying the degree of

performance of the extraction algorithm.

2. Qualitative metrics

a) Hilbert-Huang Time-Frequency Analysis: By employing time-frequency (T-F) anal-

ysis using the Hilbert-Huang (H-H) transform [120, 121], the extraction perfor-

mance can be qualitatively assessed through comparison of the frequency com-

ponents of the mixture and extracted source during the recording session. Also,

the T-F analysis of the extracted artifacts will demonstrate the corresponding

frequency components and their changes over time, making it possible to assess

the quality of the extraction procedure over the recording time.

In comparison to Fourier transform based T-F analysis, such as the Short-Time

Fourier Transform, the H-H transform results in much more detailed spectro-

gram for a given resolution. The intrinsic mode functions (IMFs) required by

the H-H transform were obtained using a multivariate empirical mode decom-

position (MEMD) algorithm [122], where the real and imaginary component of

the complex-valued signals were taken as a single multivariate signal and pro-

cessed simultaneously. It was observed that this resulted in a spectrogram with

better resolution than those obtained through the separate processing of the in-

dividual components using the standard EMD algorithm.

b) Power Spectral Distribution: The power and pseudo-power spectra of the complex-

valued extracted artifacts were compared to those belonging to the complex-

valued recorded artifact. In addition, the pseudo-spectrum demonstrates the

quality of the proposed method in extracting noncircular sources by observing

the magnitude of both spectra4 and noting relation (2.22). Recall that the power

spectrum Syn and pseudo-power spectrum S̆yn of extracted signal yn(k) are re-

3Recall that the correlation coefficient ̺xy between two random variables x and y is given by ̺xy =
σx,y/σxσy , where σx and σx are the standard deviations, and σx,y is the cross-covariance of x and y.

4It is also possible to consider the cross-spectrum of the recorded and extracted sources [123].
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Cz C4
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Figure 5.10 Placement of the EEG electrodes on the scalp according to the recording 10-20
system.

spectively given by

Syn = F
(
Cynyn(δ)

)
= F

(
E{yn(k)y∗n(k − δ)}

)

S̆yn = F
(
Pynyn(δ)

)
= F

(
E{yn(k)yn(k − δ)}

)
. (5.25)

Also see Equation (2.18) and discussion in Section 2.1.6.

5.4.3 Case Study 1 – EOG extraction

The ‘EYEBLINK’ dataset contained the EEG recordings contaminated with eye blink

artifact as well as line noise. The recorded EEG and EOG signals are plotted in Fig-

ure 5.11(a), where the effect of the EOG activity is pronounced in the frontal lobe (Fp1

and Fp2 channels), with the effect diminishing with an increase in the distance of the

electrodes to the eyes. The effect of the line noise is also visible on the occipital O1 and

O2 channels.

The H-H T-F spectrogram (Fig 5.11(b)) describes the frequency changes of the ensem-

ble average of the 6 EEG channels over the recording period. In correspondence with

the time plot, the EOG artifacts are visible (with a duration of around 1 seconds); con-

stant frequency components are seen around the 50 Hz range due to the line noise.

Note that due to the low sampling rate of the recording device, the 50 Hz frequency

component is not well defined in the T-F analysis and results in scattering of frequency

components between 40 Hz-60 Hz.

The complex EEG signals formed using (5.24) were processed using the K-cBSE algo-

rithm with the value of µ = {5, 0.09} and β = {−1, 1} for the consecutive iterations
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and α = 0.975. The choice of value for β ensures that the line noise is initially ex-

tracted, followed by the EOG components in the second iteration. The normalised

kurtosis values of the original real-valued EEG signals and the extracted EEG signals

are given in Tables 5.2 and 5.3.

The order of the extracted complex signals were as expected, with the first extracted

source y1(k) (line noise) being sub-Gaussian and y2(k) (EOG) super-Gaussian. The

imaginary component of y1(k) had the smallest kurtosis, and was automatically cho-

sen as the extracted line noise source, while the near zero kurtosis of the real com-

ponent ℜ{y1(k)} indicates an EEG source. Also, both components of the second ex-

tracted source, having a high kurtosis value, were considered as the extracted EOG

sources. Figure 5.11(c) shows the T-F plots of the imaginary components of the first

extracted signal y1(k) where the presence of the power line artifact is seen, while in

Figure 5.11(d) the T-F plot of the real and imaginary components of y2(k) is shown

where the frequency components of the EOG artifacts are seen.

The power spectrum and pseudo-power spectrum of the complex EOG signal is next

considered, constructed in a similar manner to that in (5.24); the extracted sources

y1(k) and y2(k) are depicted in Figure 5.11(e). Notice that the distribution of power

SEOG and pseudo-power S̆EOG is concentrated respectively in the frequency range (0-

5) Hz and 50 Hz. The spectrum Sy and pseudo-spectrum S̆y of the first extracted

source can be seen to contain around 0 dB of power for a frequency of 50 Hz, while

having an average power of -40 dB in the (0-5) Hz frequency range.

These results can also be seen by comparing the frequency components of the recorded

EEG mixture and extracted artifactual sources around the 50 Hz range, shown in Fig-

ure 5.11(f). While the presence of the power line artifact is evident in all recorded chan-

nels, after the extraction procedure the 50 Hz frequency component is only present in

ℑ{y1(k)}. Likewise, the spectra of y2(k) illustrate the diminished effect of the line

noise source with a power of -20 dB, while retaining the frequency components of the

EOG in the low frequency range. To quantify the observed results, the correlation coef-

ficient between the recorded EOG’s PSD and pPSD and those of the extracted sources

were calculated [115] and presented in Table 5.3. For the extracted source y1(k) these

values were respectively 0.23 and 0.28, whereas for the source y2(k) they were 0.97 and

0.98. The correspondence of the results between the power and pseudo-power spectra

demonstrate the effectiveness of the proposed methodology in extracting artifacts in

the complex domain.
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Table 5.2 Normalised kurtosis values of the recorded EEG/EOG signals in real- and
complex-valued form

Set

Electrode ‘EYEBLINK’ ‘EYEROLL’ ‘EYEBROW’

Fp1 7.75 3.36 7.42
Fp2 6.48 2.26 7.50
C3 -0.29 -0.09 -0.50
C4 1.15 1.25 1.53
O1 -0.26 0.83 -0.60
O2 -0.96 -0.68 -0.95

vEOG 7.75 4.84 10.87
hEOG -0.15 2.39 -0.33

x1(k) 7.03 2.64 6.12
x2(k) 0.10 0.45 -0.01
x3(k) -0.92 -0.46 -0.93

Table 5.3 Normalised kurtosis values of the extracted artifacts, and the correlation coef-
ficient of the power and pseudo-power spectra respectively with the spectra of the recorded
EOG

Spectra corr.

Set Signal Kc KR(ℜ,ℑ) PSD pPSD

‘EYEBLINK’
y1(k) -1.22 -0.09, -1.24 0.23 0.18
y2(k) 7.39 7.51, 5.16 0.97 0.98

‘EYEROLL’
y1(k) -1.17 -1.20, -0.03 0.08 0.18
y2(k) 3.06 3.52, 2.73 0.82 0.82

‘EYEBROW’
y1(k) -1.01 -0.73, -1.13 0.13 0.11
y2(k) 4.51 5.43, 6.38 0.76 0.79
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5.4.4 Case Study 2 – Eye muscle artifact extraction

The ‘EYEROLL’ dataset had contained artifacts from round movement of the eye dur-

ing the recording session with EOG activity from eye blinks, shown in Figure 5.12(a)

and kurtosis values given in Table 5.2.

The resultant electrical activity from the artifacts were recorded using the vEOG and

hEOG channels, with EOG activity seen on the vEOG channel at time instants 5s,

13s, 17s, 23s, 25s and 29s, and eye muscle activity present more clearly on the hEOG

channel with a duration of around 2s. The eye muscle artifact was present in all six

EEG channels, while the EOG artifact is strong on the Frontal lobe electrodes and the

effect of the power line noise is seen more strongly on the central and occipital lobe

electrodes. The H-H T-F analysis of Figure 5.12(b) illustrates the presence of frequency

components up to 10 Hz, as well as scattered frequencies belonging to the 50 Hz power

line noise.

In the extraction procedure, the step-size of the K-cBSE algorithm was µ = {5, 0.2}
and β = {−1, 1}, while α = 0.975. The T-F analysis of the extraction are illustrated

in Figure 5.12(c)–(d), and the kurtosis values of the complex-valued extracted signals

and their real and imaginary components given in Table 5.3.

The real component of the first extracted source, ℜ{y1(k)}, having the smallest kur-

tosis of Kc(ℜ{y1) = −1.20 contained the power line noise artifact. The eye muscle

activity and EOG artifacts were collectively extracted using the real and imaginary

components of the second extracted source y2(k). The five instances of the eye muscle

activity and the EOG can be detected in Figure 5.12(d), while the lack of power line

noise frequency components in the 50 Hz range is visible.

These results were also confirmed based on the power spectra of the recorded arti-

facts and the extracted sources, given in Figure 5.12(e). While the PSD and pPSD of

the complex-valued y1(k) contained the 50 Hz components, these were suppressed to

-40 dB in the spectra of y2(k). The frequency components of the mixture channels and

extracted artifacts in the 50 Hz range also showed that the line noise artifact was suc-

cessfully removed (see Figure 5.12(f)). Conversely, the spectral components pertaining

to the eye muscle and EOG artifacts are present in the PSD and pPSD of y2(k) corre-

sponding to the (0-10) Hz range of the PSD and pPSD of the complex-valued EOG.

The correlation coefficient between the PSD spectra of the complex-valued recorded

EOG channel and extracted source y2(k) is 0.82, while the correlation between the

pPSD spectra was 0.82; these values were respectively 0.08 and 0.18 for y1(k).
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5.4.5 Case Study 3 – EMG extraction

In the ‘EYEBROW’ set, the EEG mixture was heavily contaminated with EMG artifacts

from raising the eyebrows, and are shown in Figure 5.13(a) with kurtosis values given

in Table 5.2.

The EMG signals were recorded using the vEOG and hEOG electrodes, with the effect

more prominent on the vEOG recording. All EEG channels were affected by the arti-

fact, though this is not clearly visible in the occipital lobe channels due to the strong

presence of power line noise. In the T-F domain (Figure 5.13(b)) the EMG frequency

range had a large span containing both low and high frequency components, present

in the duration of the raising of the eyebrows and lasting for around 2s. In addition,

the 50 Hz frequency component cloud reflecting the power line noise can also be seen.

The extraction of the artifacts was performed using the K-cBSE algorithm (5.15) with

step-size µ = {2, 0.2}, β = {−1, 1} and α = 0.975. As shown in Figure 5.13(c) and

Figure 5.13(d), the algorithm successfully extracted the power line noise as the imagi-

nary component of the first extracted signal y1(k) and the EMG signal as the real and

imaginary components of the second extracted signal y2(k). From the T-F plot of y2(k)

in Figure 5.13(d), the complete EMG frequency component range was successfully

extracted, with power line noise frequency components not present.

Considering the power spectra SEMG and pseudo-power spectra S̆EMG in Figure 5.13(e),

the spectral distribution of the power and pseudo-power spectral density were strong

in the (0-10) Hz range with an amplitude of around -10 dB and in the (20-40) Hz range,

though having a much lower value. In addition, a single spike at 50 Hz of amplitude

-10 dB indicates the presence of power line noise. After the extraction, the power line

noise was contained in the spectra of the y1(k) while the (0-10) Hz and (20-40) Hz

frequency components were present in the PSD and pPSD of y2(k).

For the ‘EYEBROW’ set, the spectra correlation coefficients between SEMG and S̆EMG

and those of y1(k) and y2(k) were respectively {0.13, 0.11} and {0.76, 0.80}. Also, the

50 Hz frequency range for the contaminated mixture and the extracted artifacts are

shown in Figure 5.13(f). It can be seen that after the extraction procedure, the 50 Hz

component is contained in ℑ{y1(k)}, while in comparison to the EOG and eye muscle

extracted components from the ‘EYEBLINK’ and ‘EYEROLL’ studies (see Figure 5.11(f)

and Figure 5.12(f)), components ℜ{y2(k)} and ℑ{y2(k)} had a higher power level in

this range, reflecting the wider frequency range of the EMG artifact.
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5.5 Summary

Blind source extraction of the generality of complex-valued signals based on the de-

gree of non-Gaussianity and from noisy mixtures has been addressed. A cost function

based on the normalised kurtosis has been utilised to perform blind extraction, and

the corresponding online algorithm (K-cBSE) has been derived. The existence and

uniqueness of the solutions have been discussed and variable step-size variants of the

algorithm have been addressed.

It has been shown that the algorithm is robust to the degree of noncircularity of the

additive noise and the success of the algorithm over increasing noise levels has been

demonstrated. Simulations in noise-free and noisy environments illustrate the suc-

cessful performance of the algorithm in the extraction of both circular and non-circular

signals, while the extraction of EOG and EMG artifacts from recorded EEG signals in

real-time demonstrate a practical application for the proposed methodology.

5.A Appendix: Update of ǫ(k) for the GNGD-type complex BSE

The gradient descent update for the regularisation parameter ǫ(k) is written as

ǫ(k + 1) = ǫ(k)− ρ∇ǫJ
∣∣
ǫ=ǫ(k−1)

and the gradient derived as follows. Defining the adaptive step-size in (5.18) as

υ(k) ,
µ

|φ
(
y(k)

)
|2 · ‖x(k)‖22 + ǫ(k)

the gradient∇ǫJ is given by

∇ǫJ =
(
∇w∗J

)T · ∂w∗(k)

∂υ(k − 1)
· ∂υ(k − 1)

∂ǫ(k − 1)
(5.26)

where

∂w∗(k)

∂υ(k − 1)
=

∂w∗(k)

∂υ(k − 1)
− φ∗

(
y(k − 1)

)
x∗(k − 1)−

∂φ∗
(
y(k − 1)

)

∂υ(k − 1)
υ(k − 1)x∗(k − 1)

≈ −φ∗
(
y(k − 1)

)
x∗(k − 1)

and only the driving term of the recursion is considered, and

∂υ(k − 1)

∂ǫ(k − 1)
=

−µ
[
|φ
(
y(k − 1)

)
|2 · ‖x(k − 1)‖22 + ǫ(k − 1)

]2 .

While the derivative in (5.26) is calculated according to the CR calculus, ǫ(k) is real-

valued and so only the real component of the R∗–derivative in (5.26) is required. This

leads to the update equation given in (5.19).





Chapter 6

A Fast Algorithm for Blind

Extraction of Smooth Complex

Sources

6.1 Introduction

Smoothness is a fundamental signal property, and can be modelled based on the be-

haviour of gradients of data vectors. Employing smoothness can also aid BSS and BSE

as, for instance, in electroencephalography (EEG), artifacts coming from eye muscles

are smoother than the background EEG. An algorithm for BSE of real-valued smooth

signals in the time-domain was introduced in [124], and an implementation in the fre-

quency domain was recently proposed in [125]. Processing in the time domain has its

merits in retaining the signals in their original form and avoiding extra computations.

In addition, performing the Fourier Transform using a block-based approach results

in the inadvertent smoothing of the data.

A blind extraction algorithm for complex-valued signals in time domain is proposed.

In a manner similar to [124], a fast converging algorithm is introduced by using a

fixed-point type update based on the existing complex FastICA algorithm [41, 78].

Such an extraction algorithm can thus be seen as a constrained version of the com-

plex FastICA algorithm, and as shown in the derivation, it simplifies into the un-

constrained complex FastICA when the smoothness constraint is removed. Original

contributions in this chapter is the use of the Sobolev norm to define smoothness in

the complex domain, where lexicographic ordering is not permitted, as well as the use

of CR calculus for the optimisation solution to the smoothness constraint generalised

complex FastICA.



118 Chapter 6. A Fast Algorithm for Blind Extraction of Smooth Complex Sources

The performance is verified on the removal of artifacts from real-world EEG record-

ings. It is shown that several types of eye movement artifacts can be successfully

removed using the proposed algorithm, thus making it attractive for brain computer

interface (BCI) applications. This has a number of applications, as by removing the

artifact related sources, further processing on the remaining pure EEG signals is made

possible in real-time.

6.2 Smoothness-based Blind Source Extraction

6.2.1 The Concept of Smoothness in C

The mathematical concept of a smooth function is based on differentiability. Consider

the Sobolev space W p,q ⊂ RN defined as the space where the p-th power of a function

f ∈ W p,q together with its first q-th derivatives are integrable [126]. The norm is then

defined as

‖f‖W p,q =

(
q∑

i=0

‖D(i)f‖pp

)1/p

(6.1)

where D(i)f denotes the ith derivative of f . Due to the duality between C and R2 [54],

the above definition can also be adopted for complex-valued functions. The Sobolev

norm for the space W 2,1 is utilised, where only the second power of the function and

its first derivative are considered. Taking an arbitrary upper bound of the ratio be-

tween the Sobolev and Euclidean norms of the function f yields

‖f‖2W 2,1

‖f‖22
=
‖D(1)f‖22
‖f‖22

≤ ρs (6.2)

where ρs is the upper bound of the ratio, also referred to as the smoothness factor. For

a discrete signal z(k), a simplified form is given by

E{|∆z(k)|2} − ρsE{|z(k)|2} ≤ 0 (6.3)

where ∆z(k) = z(k) − z(k − 1); a geometric interpretation is given in Figure 6.1. In a

similar fashion to the real-valued case, Equation (6.3) models a complex-valued signal

with a slow varying temporal profile as a smooth signal. Intuitively, a complex-valued

signal z(k) is smooth if the variance of the difference between consecutive samples is

less than a pre-defined fraction of the variance of the signal itself. This can also be

interpreted as measuring the variation in the gradient of the signal1.

1In C relationships such as ‘>’ and ‘<’ do not apply and it is necessary to resort to the duality
between R2 and C, and to use so called lexicographic ordering.
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|∆z(k)|

z(k) = [zr(k), zi(k)]

z(k − 1) = [zr(k − 1), zi(k − 1)]

∆zr(k)

∆zi(k)

ℑ

ℜ

|z(k)|

Figure 6.1 Geometric interpretation of the smoothness definition given in (6.3)

Notice that the smoothness definition based on the Sobolev norm of W 2,1 is based on

the covariances Czz(0) and Czz(1), that is, the covariances of lag zero and one. This can

be observed by expanding the terms in (6.3) such that

E
{(

z(k)− z(k − 1)
)(
z(k)− z(k − 1)

)∗}− ρsE{z(k)z∗(k)} ≤ 0

E{z(k)z∗(k)}+ E{z(k − 1)z∗(k − 1)}
− 2E{z(k)z∗(k − 1)} − ρsE{z(k)z∗(k)} ≤ 0, (6.4)

and based on the definition in Equation (2.18),

(2− ρs)Czz(0)− 2Czz(1) ≤ 0. (6.5)

Alternatively, consider the definition (6.2) for z(k) = zr(k) + zi(k), expressed in its

dual form zR(k) = [zr(k), zi(k)]
T ∈ R2. Then,

E
{ 〈

∆zR(k),∆zR(k)
〉 }
− ρsE

{ 〈
zR(k), zR(k)

〉 }
≤ 0 (6.6)

E{∆z2r (k)}+ E{∆z2i (k)} − ρs
(
E{z2r (k) + z2i (k)}

)
≤ 0

where the symbol 〈·, ·〉 denotes the inner product.

6.2.2 The BSE Problem

Consider an observation x(k) ∈ CN formed from the linear weighted combination of

latent sources s(k) ∈ CNs , given by

x(k) = As(k) (6.7)

where A ∈ CN×Ns is the mixing matrix, and Ns the number of sources. The sources are

assumed independent and the observation mixture is whitened prior to processing.
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The aim is to find a demixing vector w that will recover one of the sources, given by

y(k) = wHx(k). (6.8)

Following the standard BSS methodology [12, 41], this can be achieved by maximising

the non-Gaussianity of y(k) reflected in the cost function

JN (w,w∗) = E
{
G(|wHx|2)

}
(6.9)

where G is a nonlinearity used to approximate the associated negentropy, and for

generality, JN is expressed using both the coordinates w and w∗.

To ensure that components with certain smoothness characteristics are extracted, fur-

ther constraints are imposed on JN . Based on the definition in (6.3), for the removed

source y(k) given in (4.3), the smoothness measure becomes

JS(w,w∗) = β
(
E{|wH∆x(k)|2} − ρsE{|wHx(k)|2}

)
(6.10)

The constant β = {−1, 1} gives us a degree of freedom in dealing with smooth sources,

for instance β = −1 the extraction of the most non-smooth source will be achieved.

Thus, the optimisation problem of BSE of latent sources based on the smoothness

constraint (S-cBSE) can be stated as

wopt = arg max
‖w‖22=1

JN (w,w∗)

subject to JS(w,w∗) ≤ 0, (6.11)

where after every step, the demixing w is normalised to avoid spurious solutions.

Removing the smoothness constraint in the optimisation problem (6.11) results in

the formulation of the cost function for negentropy based ICA in the complex do-

main [41, 78]. In [41], the authors derive the standard complex FastICA (c-FastICA)

which assumes second-order circular sources. The generalised complex FastICA (nc-

FastICA) algorithm [78] is instead derived for the generality of complex sources. An

overview of the c-FastICA and nc-FastICA algorithms is given in Appendix D, where

the formulation of the two algorithms and discussions on their convergence behaviour

are provided.

The difference in these assumptions is evident in the derivation of the two algorithms

using the augmented Newton method (see Equation (B.31) and (B.32)). The deriva-

tion of the S-cBSE algorithm will also be based on the generalised complex FastICA

algorithm, and is thus capable of processing both proper and improper sources. For

comparison, the derivation of the S-cBSE algorithm with the circularity assumption

(that is, based on the c-FastICA algorithm) is also provided in the Appendix at the

end of this chapter.
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To solve the optimisation problem in (6.11), the method of Lagrangian multipliers is

employed. The extrema of the Lagrangian can be found using the Newton method,

resulting in faster convergence to the solution; this method has been shown to be

stable for a related unconstrained problem in the complex domain [78]; a detailed

proof of the derivation is given in Appendix 6.A at the end of this chapter. The Newton

based optimisation of the Lagrangian is performed as

∆w =

(
Hww∗ −Hw∗w∗H−1

w∗wHww

)−1

·
(
Hw∗w∗H−1

w∗w

∂L
∂w
− ∂L

∂w∗

)

∆λ = ∇λL
w(k + 1)← w(k + 1)/‖w(k + 1)‖2 (6.12)

where L(w,w∗, λ) is the Lagrangian function, λ is the Lagrangian multiplier and the

H matrices are the Hessians of L.

To extract successive smooth (non-smooth) sources, a deflationary orthogonalisation

process using the Gram-Schmidt method is performed after each iteration of the ex-

traction algorithm in (6.12). While this allows for unambiguous extractions, errors in

the extraction and thus deflation process can accumulate, resulting in decreased per-

formance over consecutive extractions2. The deflation procedure for the ith demixing

vector can be compactly written as

wi(k + 1)← wi(k + 1)− W̌W̌Hwi(k + 1) (6.13)

where W̌ = [w1(k + 1), . . . , wi(k + 1)].

6.3 Performance Benchmarking

To illustrate the performance of the proposed algorithm, sub-Gaussian and super-

Gaussian complex-valued sources with different degrees of noncircularity were used.

The smoothness degree of the sources

ρs(z) =
E{|∆z(k)|2}
E{|z(k)|2} (6.14)

was measured using (6.3), while the degree of circularity was assessed using the mea-

sure r given in Equation (2.17) as the ratio of the absolute value of the pseudo-variance

τ2z = E{z2} to the variance σ2
z = E{|z|2} of the source, as described in [80]. Note that

the value r = 0 denotes a second-order circular source, while r = 1 indicates a highly

noncircular source.

2In practical applications, this usually does not pose a pose a problem, as only 1-2 smooth sources
(artifacts) are of interest.



122 Chapter 6. A Fast Algorithm for Blind Extraction of Smooth Complex Sources

The performance of the algorithm was measured using the Performance Index (PI)

expressed in Equation (4.30), where a value of less than -20 dB indicates good perfor-

mance. Four complex-valued sources of 5000 samples were mixed using a randomly

generated 4 × 4 mixing matrix to form the observed mixtures. The magnitude of the

sources are shown in Figure 6.2 and the signal properties given in Table 6.1, where

all sources are highly improper. The mixture was whitened and the latent sources

were extracted using the S-cBSE algorithm (6.12). In the first experiment, the value of

β = 1, ρs = 0.9, λ = 1 and µλ = 0.01. As the signals were synthetically generated, the

value of ρs was chosen based on measurements of the signal smoothness. The non-

linearity G(z) = log cosh(z) ensured that the negentropy of both sub-Gaussian and

super-Gaussian sources were sufficiently approximated for maximisation.

The performance of the S-cBSE algorithm based on the standard complex FastICA,

given in Equation (6.22), is first considered. Figure 6.3 shows the performance of the

algorithm, where the simplified algorithm did not have adequate performance, and

was not suitable for the extraction of improper sources. This is in agreement with

the results in [78], where the non-constrained c-FastICA algorithm did not provide

suitable separation performance.

Figure 6.2 shows the sources which were successfully extracted based on the smooth-

ness criterion. For comparison, the measured smoothness factors for the extracted

sources (denoted by ρ̂s) are given in Table 6.1. Notice that as {ρs(s3), ρs(s1)} ≤ 0.9

it is expected that only sources s3(k) and s1(k) were to be extracted, however, the al-

gorithm also successfully extracted the subsequent sources s2(k) and s1(k). This can

be attributed to the strong non-Gaussianity condition in (6.9), which was sufficient

for successful extraction. The performance index at each iteration (Figure 6.4) shows

that the algorithm achieved convergence with a PI of around -30 dB for the source

estimates y1(k), y2(k) and y4(k) in under 10 iterations, while source estimate y3(k)

achieved a PI of under -35 dB in 19 iterations. Alternatively, expressed in terms of

the signal-to-interference ratio (SIR), the values for the consecutive extractions were

respectively 29.81 dB, 23.23 dB, 21.76 dB and 25.68 dB.

In the next experiment, the objective was to extract the non-smooth sources, for which

β = −1 and ρs = 2. The values of the other parameters were set empirically to λ =

20 and µλ = 1 and the nonlinear function G was kept as before. The sources were

extracted in the order of increasing smoothness, with the performance indices over the

extraction process plotted in Figure 6.4. The PI value for the source estimate y1(k) was

around -30 dB while y2(k) achieved a limit cycle with a varying PI of around -22 dB

to -30 dB. Source estimate y3(k) initially converged but diverged after 3 iterations and

y4(k) only achieved a PI of around -20 dB. While source s4(k) was the only non-smooth

signal according to the value set for ρs, source s2(k) was also successfully extracted

due to the close proximity to the smoothness criterion. However, note that sources
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Table 6.1 Source properties for extraction simulations, ρ̂s is the estimated smoothness mea-
sure.

β = 1 β = −1
Source r ρs ρ̂s ρ̂s

s1(k) 0.9997 0.1154 0.1200 0.0193
s2(k) 0.9865 1.4771 1.4745 1.4782
s3(k) 0.9998 0.0148 0.0150 0.1136
s4(k) 0.9995 2.0214 2.0219 2.0204
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Figure 6.2 Performance of the algorithm (6.12) in the extraction of smooth (β = 1) and
non-smooth (β = −1) sources

s1(k) and s3(k) were not successfully extracted due to the disparity between the values

of ρs(s1) and ρs(s3) to ρs = 2 as set for this experiment. The SIR for the consecutive

extractions were respectively 23.87 dB, 27.45 dB, 3.93 dB and 3.87 dB.

6.4 Artifact Extraction from EEG

The S-cBSE algorithm was next utilised to extract power line noise, biological eye blink

(electrooculogram, EOG), and eye muscle activity (electromyogram, EMG) artifacts,

common in EEG recordings. The aim was to condition the contaminated recordings

so that further processing, such as those in real-time BCI, can be performed. The test
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Figure 6.3 Performance of the S-cBSE algorithm based on the standard complex
FastICA (6.22) for the extraction of smooth (β = 1) sources
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Figure 6.4 Performance of the algorithm (6.12) in the extraction of smooth (β = 1) sources
and non-smooth (β = −1) sources.
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EEG signal was recorded at the Imperial College Smart Environment Lab (SEL), with

the electrodes were placed according to the 10-20 system at positions Fp1, Fp2, C3,

C4, O1, O2 and the ground electrode was placed at Cz. The electrical activity from

the EOG and EMG artifacts were recorded using the vEOG and hEOG channels, with

electrodes placed around the eye. The recording lasted 30s and the data were sampled

at a rate of 256 Hz. In the first study, the participants were asked to blink at random

intervals while looking straight. In the second study, the instructions were to move

the eyes in a vertical motion at random intervals.

The recorded EEG channels were combined into temporal complex-valued mixtures

such that the real and imaginary components comprised symmetric EEG channels. In

this manner, the cross-information due to the phase and magnitude relationship be-

tween pairs of symmetric electrodes was utilised by the extraction algorithm [127].

The complex EEG mixtures x(k) were generated as (see Figure 5.10 for electrode posi-

tions)

x1(k) = Fp1(k) +  Fp2(k)

x2(k) = C3(k) +  C4(k)

x3(k) = O1(k) +  O2(k). (6.15)

In the EOG study, the algorithm (6.12) was used to extract two independent sources,

and was initialised respectively with β1 = 1, β2 = −1, and ρs,1 = 0.01, ρs,2 = 0.9 for

the first and second extraction steps, while the value of λ = 80 and µλ = 1 for both

steps. These values were deduced from prior information about both artifacts; the

periodic power line noise was non-smooth3, while the intermittent EOG activity was

smooth in comparison with the pure EEG data.

The real and imaginary components of the complex-valued extracted signal y(k) rep-

resent the actual real-valued latent sources. After the completion of each extraction

stage, the smoothness of the real and imaginary components were measured, and the

component matching the criterion was removed. The smoothness values for the ex-

tracted signals y1(k) and y2(k), and their respective real and imaginary components

are given in Table 6.2. A qualitative assessment of the extraction was performed by

comparing the power spectrum of the reference biological artifact and the power spec-

trum of the extracted artifacts, such as the EOG shown in the left column of Figure 6.5.

The power spectrum of the raw EOG illustrates the presence of frequencies from 0 Hz-

5 Hz and the power line activity at 50 Hz. The power spectrum ofℑ{y1(k)} shows that

the algorithm successfully extracted the EOG source, while attenuating the 50 Hz fre-

quency. The 50 Hz source was contained within the real component of the second

extracted source ℜ{y2(k)}, as seen from the corresponding power spectrum.

3This can be attributed to the low sampling rate, a limitation of the recording hardware.
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Table 6.2 Smoothness properties for extracted EEG artifacts. The rejected components are
shown in bold font.

Dataset Source ρs ρs(ℜ,ℑ)

‘EOG’
y1(k) 0.0274 0.2706, 0.0085

y2(k) 1.2910 1.3179, 0.8494

‘EMG’
y1(k) 0.7333 0.7748, 0.2323
y2(k) 0.1438 0.0142, 0.1242
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Figure 6.5 Left: Power spectrum of the recorded EOG and the extracted artifacts, Right:
Power spectrum of the EMG due to eye movement and the extracted artifacts.

For the EMG study, the S-cBSE algorithm was initialised such that β1 = −1, β2 = 1 and

ρs,1 = 0.9, ρs,2 = 0.05. The parameters λ1 = 1, λ2 = 10 and µλ = 1 for both extractions

steps. The smoothness factor of the extracted sources and their respective components

are given in Table 6.2, and the power spectrum associated with the recorded eye mus-

cle activity and the extracted components is given in Figure 6.5. Observe that the real

component of y1(k) contained the power line activity, while the real component of

y2(k) represented the EMG activity.

6.5 Summary

An algorithm for complex blind source extraction (S-cBSE) based on a smoothness

criterion has been introduced. The concept of smoothness has been defined for gen-
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eral complex-valued signals and was employed to define a constrained cost function,

based on the maximisation of non-Gaussianity. The fast convergence of the algorithm

is inherited from FastICA, confirmed on benchmark data. Further, an application in

the extraction of power line noise and biological artifacts from contaminated EEG

recordings has been addressed.

6.A Appendix: Derivation of the S-cBSE Algorithm

First, note that due to the whiteness of x(k), the cost JS in (6.10) can be expanded as

JS = wHE{∆x∆xH}w − ρsw
HE{xxH}w

= wH [C∆x∆x − ρsI]︸ ︷︷ ︸
,B

w (6.16)

where B = BH and I is the identity matrix.

To solve the constrained optimisation problem (6.11), consider the Lagrangian func-

tion L(w,w∗, λ) : CN × CN × R 7→ R given by

L(w,w∗, λ) = JN (w,w∗) + λJS(w,w∗) (6.17)

where λ ∈ R is the Lagrange multiplier. For the inequality constraint JS , the Karush-

Kuhn-Tucker conditions are to be considered and satisfied. However, the method

in [124] is used to transform the smoothness inequality constraint into the equality

constraint J́S = max(JS , 0) = 0, resulting in a simpler solution. The Newton method

is then used to find the extrema of the Lagrangian, defined in augmented complex

form as [50] (see Section B.2.2 in Appendix B)

∆wa = −Ha−1

ww

(
∂L

∂wa∗

)
(6.18)

where wa = [wT , wH ]T denotes an augmented complex column vector and Ha
ww is

the augmented Hessian matrix, given by

Ha
ww =

[
Hww∗ Hw∗w∗

Hww Hw∗w

]
(6.19)

Expanding the augmented Newton update and solving for ∆w results in the Newton

step given in (6.12) (see also [54]), where the individual gradient components, calcu-

lated using CR calculus, are given by

∂L
∂w∗

= E{g(|y|2)y∗x}+ λǫβBw

∂L
∂w

=

(
∂L
∂w∗

)∗

, (6.20)
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and the Hessian components are given by

Hw∗w∗ =
∂

∂w∗

(
∂L
∂w∗

)T

= E{g′(|y|2)y∗2xxT } ≈ E{g′(|y|2)y∗2}E{xxT }

Hw∗w =
∂

∂w∗

(
∂L
∂w

)T

= E{g′(|y|2)|y|2 + g(|y|2)}I+ λǫβB

Hww =
(
Hw∗w∗

)∗

Hww∗ =
(
Hw∗w

)∗
, (6.21)

with ǫ =
(
sgn(JS) + 1

)
/2, and g and g′ denote the first and second derivative of

the nonlinearity G. As in [12], for whitened data the approximation E{f(x)xx} ≈
E{f(x)}E{xx} can be used. The value of λ is updated using a gradient ascent method

at each iteration, as given in (6.12). A value of λ = 0, results in the unconstrained prob-

lem, for which the solution given in [78], as a generalised complex FastICA algorithm

(nc-FastICA).

For the calculation of the S-cBSE algorithm based on the standard complex FastICA,

the block off-diagonal elements of Ha
ww in (6.19) are assumed to be zero, and form a

quasi-Newton Hessian matrix4. Notice that the assumption of a quasi-Newton Hes-

sian matrix can equivalently be viewed as the condition of having proper sources

where E{xxT } vanishes. Thus, the corresponding values Hw∗w∗ and Hww in (6.21)

are zero, and the S-cBSE algorithm is simplified as

∆w = −
(
E{g′(|y|2)|y|2 + g(|y|2)}I+ λβBT ǫ

)−1
·
(
E{g(|y|2)yx∗}+ λβBǫw

)
. (6.22)

4Overview of the c-FastICA and nc-FastICA algorithms is given in Appendix D, with the nc-FastICA
algorithm expressed in Equation (D.6) and c-FastICA algorithm is given in Equation (D.7).
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A Fast Independent Component

Analysis Algorithm for Improper

Quaternion Signals

7.1 Introduction

In the previous chapters, supervised and unsupervised adaptive signal processing

algorithms in the complex domain based on augmented complex statistics and the

CR calculus framework have been discussed. It has been shown that the augmented

statistical modelling allows for consideration of general signals in C. For example,

in Chapter 3 comparison of the standard CLMS and augmented CLMS algorithms

demonstrates better prediction of improper complex wind vectors. Likewise, in Chap-

ter 6, the smoothness based complex blind source extraction (S-cBSE) algorithm using

the generalised complex FastICA results in better extraction for the generality of com-

plex sources, when compared to the standard circular complex FastICA. Derivations

of such algorithms were based on real-valued cost functions, and the CR calculus

framework has been shown to provide the flexibility and simplicity to enable their

calculation.

In the same light, it is thus natural to consider the extension of such concepts to

the higher dimensional quaternion domain H. Indeed, there has been recent inter-

est in adaptive signal processing algorithms in the quaternion domain, a natural do-

main for the processing of three- and four-dimensional signals. While modelling in

the complex domain allows for the exhaustive and simultaneous processing of two-

dimensional signals, quaternionic modelling allows for higher dimensional represen-

tations.
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Research on quaternion-valued signal processing is currently in its inception phase

with focus on understanding and addressing problems from a statistical and algorith-

mic point of view. The literature on quaternion-valued signal processing includes the

algebraic [128, 129] as well as statistical approaches [130, 131]. More recent devel-

opments include the analysis of quaternion-valued random variables via augmented

quaternion statistics [132], and the so called HR calculus, a unified framework for the

analysis of non-analytic quaternion functions [133, 134].

These advances have been exploited through widely linear modelling of quaternion

signals, allowing us to incorporate the full second-order information and have led to

the class of widely linear quaternion least mean square (WL-QLMS) algorithms [135].

In nonlinear signal models, both split- and fully-quaternionic nonlinear models have

been successfully implemented [136]. In the study of unsupervised adaptive algo-

rithms, a quaternion ICA algorithm based on likelihood maximisation and the con-

cept of Infomax was proposed by Le Bihan and Buchholz in [137]. In their study, it

was concluded that a fully-quaternion nonlinearity results in a better separation per-

formance.

In this chapter, the scope of the FastICA algorithm is extended by proposing an al-

gorithm suitable for the separation of Q-proper and Q-improper quaternion-valued

signals from an observed linear mixture. This is achieved by means of augmented

quaternion statistics, widely linear modelling and HR calculus, and based on the aug-

mented Newton method, whereby at the cost of additional complexity the complete

statistical properties of the signals is captured and ensure successful separation of

latent sources. The performance of the algorithm using synthetic Q-proper and Q-

improper polytope signals in both deflationary and simultaneous separation scenarios

is studied, and is followed by a real-world case study of electroencephalogram (EEG)

artifact extraction.

7.2 Preliminaries on Quaternion Signals

In this section, a brief overview of algebra and statistics in H is provided. Quaternion

algebra is a non-commutative algebra, while real and complex algebra are commuta-

tive. Also, statistics in H can be seen as a generalisation of the augmented complex

statistics discussed in Chapter 2.

7.2.1 Quaternion algebra

Consider the quaternion variable

q = qa + ıqb + qc + κqd ∈ H (7.1)
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where qa, qb, qc and qd are real-valued scalars, and ı,  and κ are orthogonal unit vec-

tors such that

ı =  = κ =
√
−1

ı = κ κ = ı κı = 

ıκ = ı2 = 2 = κ2 = −1. (7.2)

The number q can also be written in terms of its real (scalar) part ℜ{q} = qa and its

vector part ℑ{q} = ıℑı{q}+ ℑ{q}+ κℑκ{q}, such that

q = ℜ{q}+ ℑ{q}
= ℜ{q}+ ıℑı{q}+ ℑ{q}+ κℑκ{q} (7.3)

Alternatively, by adopting the Cayley-Dickson notation, q can be constructed from a

pair of complex quantities z1 = qa + ıqb and z2 = qc + ıqd, such that q = z1 + z2,

however in this work direct quaternionic notation will be used.

The identities in Equation (7.2) illustrate the non-commutative property of products

in quaternion algebra, whereby q1q2 6= q2q1. This can alternatively be seen directly

from the multiplication of q1 and q2, which after simplification is given by

q1q2 = (q1a + ıq1b + q1c + κq1d)(q2a + ıq2b + q2c + κq2d)

= (q1aq2a − q1bq2b − q1cq2c − q1dq2d)

+ q1aℑ{q2}+ q2aℑ{q1}+ ℑ{q1} × ℑ{q2} (7.4)

where the symbol ‘×’ denotes the vector product. It is then seen that the non-commutativity

of the vector product results in the non-commutativity of the quaternion product.

In the quaternion domain, three self-inverse mappings1 or involutions [138] can be

considered about the ı,  and κ axes,

q
ı = −ıqı = qa + ıqb − qc − κqd

q
 = −q = qa − ıqb + qc − κqd

q
κ = −κqκ = qa − ıqb − qc + κqd (7.5)

which form the bases for augmented quaternion statistics [132]. Intuitively, an involu-

tion represents a rotation along each respective axis, while the conjugate operator (·)∗
forms an involution along all three directions, where

q
∗ = qa − ıqb − qc − κqd. (7.6)

1A self-inverse mapping operator sinv(·) is such that sinv
(

sinv(q)
)

= q.
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The involutions have the property that (q1q2)α = q
α
1 q

α
2 , α = {ı, , κ}, while (q1q2)

∗ =

q
∗
2q

∗
1. Finally, the norm (modulus) of a quaternion variable q is defined by

‖q‖2 =
√

qq∗ =
√
q∗q =

√
q2a + q

2
b + q2c + q

2
d (7.7)

whereby for a vector q in a quaternion Hilbert space [130], the 2-norm is defined as

‖q‖2 =
√

qHq.

7.2.2 Augmented quaternion statistics

For a random vector q = qa + ıqb + qc + κqd ∈ HN , the probability density function

(pdf) is defined in terms of the joint pdf of its scalar and vector components, such

that pQ(q) , pQa,Qb,Qc,Qd
(qa,qb,qc,qd). Its mean is then calculated in terms of each

respective component as

E{q} = E{qa}+ ıE{qb}+ E{qc}+ κE{qd} (7.8)

and the quadrivariate covariance matrix of real-valued component vectors

CRqq = E{qRqRT } ∈ R4N×4N (7.9)

describes the second-order relationship between the respective components of q, where

qR = [qT
a ,q

T
b ,q

T
c ,q

T
d ]

T . Representing the components of CRqq by their equivalent

quaternion counterparts allows for the complete second-order statistical information

to be captured directly in H [132]. This is achieved by considering the relation between

the components of the quaternion variable q and its involutions (7.5), given by

qa =
1

4
(q+ qı + q + qκ), qb =

1

4
(q+ qı − q − qκ)

qc =
1

4
(q− qı + q − qκ), qd =

1

4
(q− qı − q + qκ). (7.10)

In analogy to the complex domain2 where both z and z∗ are used to define the aug-

mented statistics [45, 48], it can be shown that the bases q,qı,q and qκ provide a

suitable means to define the augmented quaternion statistics [132]. This way, the aug-

mented random vector qa = [qT , qıT , qT , qκT ]T is used to define the augmented

covariance matrix

Caqq = E{qaqaH}

=




Cqq Cqı Cq Cqκ

CHqı Cqıqı Cqıq Cqıqκ

CHq Cqqı Cqq Cqqκ

CHqκ Cqκqı Cqκq Cqκqκ



∈ H4N×4N (7.11)

2Recall from Section 2.1.3 that in the complex domain, the real and imaginary components can be
represented in terms of the conjugate coordinates z and z∗ respectively as 1

2
(z+ z∗) and 1

2
(z− z∗).
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Figure 7.1 Scatter plots of Q-proper and Q-improper quaternion Gaussian random vari-
ables.

which describes the complete second-order information available within a quater-

nion random vector. In (7.11), Cqı , Cq , Cqκ are respectively termed the ı-, - and κ-

covariance matrices E{qqαH}, α = {ı, , κ}, while Cqq = E{qqH} is the standard

covariance matrix. The ı-, - and κ-covariance matrices are referred to as the comple-

mentary or pseudo-covariance matrices [48].

The concept of properness (rotation invariant pdf) can be extended from the complex

to the quaternion domain and has been discussed in [130] and [131]. Following the

involution-based augmented bases, a random vector is considered Q-proper (see Fig-

ure 7.1(a)) if it is not correlated with its involutions, or, Cqı = Cq = Cqκ = 0, and all

cross-covariance matrices vanish, and is otherwise termed Q-improper [132]. In the

example scatter plot in Figure 7.1(b), the quaternion random variable is not rotation

invariant, with correlated scalar and vector components. Therefore, for a Q-proper

random vector, the augmented covariance matrix (7.11) has a block-diagonal struc-

ture. More restricted definitions of properness can also be found, whereby one or more

pseudo-covariances are non-zero (C-proper) [131]. This can be intuitively understood

as rotation invariance along one or more of the quaternion axes; Q-properness thus

reflects rotation invariance along all the three imaginary axes.

7.2.3 Widely linear modelling in H

Recall that the solution to the mean square error (MSE) estimator of a real-valued

signal y ∈ R in terms of an observation x, expressed as ŷ = E{y|x}, is given by

ŷ = hTx, where h is a coefficient vector and x the regressor. As a generalisation, the

MSE estimator for a quaternion-valued signal y ∈ H can then be written in terms of
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the MSE estimators of its respective components, given by

ŷa = E{ya|qa, qb, qc, qd}
ŷb = E{yb|qa, qb, qc, qd}
ŷc = E{yc|qa, qb, qc, qd}
ŷd = E{yd|qa, qb, qc, qd}, (7.12)

such that

ŷ = ŷa + ıŷb + ŷc + κŷd

= E{ya|qa, qb, qc, qd}+ ıE{yb|qa, qb, qc, qd}
+ E{yc|qa, qb, qc, qd}+ κE{yd|qa, qb, qc, qd}. (7.13)

Observe that by using the relations (7.10), the MSE estimator of y can be equivalently

written as

ŷ = E{y|q, qı, q, qκ}+ ıE{yı|q, qı, q, qκ}
+ E{y|q, qı, q, qκ}+ κE{yκ|q, qı, q, qκ}, (7.14)

and results in the widely linear estimator [132, 135]

y = hHq+ gHqı + uHq + vHqκ

= waHqa (7.15)

where the augmented weight vector wa = [hT , gT , uT , vT ]T . Thus (7.15) is the op-

timal estimator for the generality of quaternion-valued signals, both proper and im-

proper.

7.2.4 An overview of HR calculus

In signal processing problems, it is common to define a real-valued cost function, typ-

ically the error power. In a similar fashion to the CR calculus framework where a

function is defined based on the conjugate coordinates z and z∗ [55, 54] (also see dis-

cussion in Appendix B), in the context of HR calculus [133], f(q) : HN 7→ R can be

considered as a function of the orthogonal quaternion basis vectors q,qı,q and qκ,

such that

f(q,qı,q,qκ) : HN ×HN ×HN ×HN 7→ R. (7.16)
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Likewise, the duality between a quaternion function f and its real-valued equivalent

g can be expressed as

f(q) = f(q,qı,q,qκ)

= fa(qa,qb,qc,qd) + ıfb(qa,qb,qc,qd)

+ fc(qa,qb,qc,qd) + κfd(qa,qb,qc,qd)

= g(qa,qb,qc,qd) (7.17)

Then, by considering the components of the quaternion variable q and the orthogonal

bases given in (7.10), a relation can be established between the derivatives taken with

respect to the components of the quaternion variable and those taken directly with

respect to the quaternion basis variables, forming a fundamental result of HR calculus.

These relations, know as HR derivatives, are given by [133, 134]

∂f

∂q
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
− 

∂f

∂qc
− κ

∂f

∂qd

)

∂f

∂qı
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
+ 

∂f

∂qc
+ κ

∂f

∂qd

)

∂f

∂q
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
− 

∂f

∂qc
+ κ

∂f

∂qd

)

∂f

∂qκ
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
+ 

∂f

∂qc
− κ

∂f

∂qd

)
. (7.18)

The so called HR∗ derivatives can then readily be written from (7.18) by using the

property
(∂f
∂q

)∗
= ∂f

∂q∗ , where f is a real-valued function. Thus,

∂f

∂q∗
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
+ 

∂f

∂qc
+ κ

∂f

∂qd

)

∂f

∂qı∗
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
− 

∂f

∂qc
− κ

∂f

∂qd

)

∂f

∂q∗
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
+ 

∂f

∂qc
− κ

∂f

∂qd

)

∂f

∂qκ∗
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
− 

∂f

∂qc
+ κ

∂f

∂qd

)
. (7.19)

Similar to the conjugate derivatives property, an involution property is also applicable

to real-valued functions, and is given by
(
∂f

∂q

)α

=
∂f

∂qα
, α = {ı, , κ}. (7.20)

It has been shown that in the quaternion domain, the direction of steepest descent

(maximum rate of change of f(q)) is given by the derivative with respect to q∗, or
∂f
∂q∗ . This can be seen as an extension of Brandwood’s result for functions of complex

variables [53], and it is thus natural to consider this gradient in the optimisation of
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cost functions. Finally, note that while real-valued functions have been considered

in the above discussion, the HR calculus framework can be equally utilised for the

analysis of general quaternion-valued functions. Appendices 7.A and 7.B at the end

of this chapter provide further information on the chain rule and augmented Newton

method in HR calculus.

7.3 The Quaternion FastICA Algorithm

Consider the standard ICA model

x̌ = As (7.21)

whereby the observed mixtures x̌ ∈ HN are a weighted sum of Ns latent sources

s ∈ HNs in a noise-free environment, and the rows of A ∈ HN×Ns form the respec-

tive mixing parameters. While no knowledge of the mixing process is available, the

sources are assumed statistically independent; for convenience they have zero mean

and unit variance and no assumption is made regarding the ı−, − and κ−variances.

The mixing matrix A is assumed square (N = Ns), well-conditioned and invertible.

For a quaternion random vector q ∈ HN , its whitening matrix V is given by

V = Λ−1/2EH , (7.22)

where Λ is the diagonal matrix of right eigenvalues3 and E is the matrix of corre-

sponding eigenvectors of the covariance matrix of q.

To prove this, write the covariance matrix in terms of the quaternion right eigenvalue

decomposition Cqq = E{qqH} = EΛEH [139]. The covariance matrix of the whitened

random vector p = Vq is then expressed as

E{ppH} = VE{qqH}VH

= Λ−1/2EH
(
EΛEH

)
EΛ−1/2 = I (7.23)

where I is the identity matrix. This result will be used for the whitening of the ob-

served mixture x̌ in (7.21).

As a preprocessing step to aid the ICA algorithm, the quaternion mixture x̌ is whitened

such that

E{xxH} = ME{ssH}MH = I (7.24)

3Due to the non-commutativity of the quaternion algebra, left and right scalar multiplications are
different and lead to left and right eigenvalues [139].
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where x = Vx̌ = VAs and M , VA is the new unitary mixing matrix containing

the whitening matrix V, given in (7.22). The aim is to obtain a demixing matrix W

such that WHx is an estimate of the original sources, albeit with a scaling, phase and

permutation ambiguity. Then for the nth source estimate

yn = wH
n x = wH

n Ms = uHs = eξϕsm (7.25)

where wn is the nth column of the demixing matrix W, u is a vector with a single non-

zero value given by eξϕ at the nth entry signifying an arbitrary direction within H, ϕ

is an arbitrary and unknown angle and ξ = (ıqb+qc+κqd)√
q2
b
+q2c+q2

d

is the unit pure quaternion

vector4. Finally, note that by constraining the demixing vector wn to unit norm, the

estimated source yn is of unit variance, that is

E{yny∗n} = wH
n E{xxH}wn = wH

n wn = 1 (7.26)

while the matrix W becomes unitary.

7.3.1 A Newton-update based ICA algorithm

The quaternion FastICA (q-FastICA) algorithm is based on the maximisation of the

negentropy of the separated sources, following from previous implementations of the

FastICA algorithm in the real and complex domains [12, 41, 78]. This is achieved by

utilising an appropriate nonlinear function G(y), so as to make a suitable approxima-

tion of the negentropy function.

In [137], three distinct quaternion nonlinearities were identified whereby the nonlin-

ear operation is split on each component of y (split-quaternion function), on the com-

ponents of the Cayley-Dickson form of y (split-complex function), or applied directly

on y (full-quaternion function). It was also shown that the full-quaternion nonlinear-

ity resulted in the best separation performance. Under the stringent analyticity condi-

tions of the Cauchy-Riemann-Feuter [140] equations, the only analytic function in H

is a constant. As an alternative, local analyticity conditions may be considered in the

calculation of the derivatives [141]. However, this depends on assumptions that may

not be valid for general nonlinear functions. Thus, to avoid problems associated with

the derivation of fully-quaternion nonlinearities, a real-valued smooth and even non-

linearity G : R 7→ R is utilised, while implementing an augmented Newton method

so as to employ the full information available within general Q-improper mixtures.

The q-FastICA cost function is then defined as

J (w,wı,w,wκ) = E
{
G(|wHx|2)

}
(7.27)

4A pure ‘imaginary’ quaternion is referred to as the imaginary or vector part of a quaternion variable.
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where the cost function J is written in terms of the four basis vectors for emphasis on

the equivalent notation. The optimisation problem based on (7.27) can then be stated

as

wopt = arg max
‖w‖22=1

J (w,wı,w,wκ) (7.28)

where the demixing vector is normalised to avoid very small values of w, while keep-

ing the variance of the extracted sources equal to unity.

The solution of this constrained optimisation problem is found through the method of

Lagrangian multipliers and by utilising the Newton method to perform a fast iterative

search to the optimal value wopt. In summary, the quaternion FastICA algorithm for

the estimation of one source is expressed in its augmented form as

wa(k + 1) = wa(k)− (Ha
ww)

−1∇wa∗L
λ(k + 1) = λ(k) + µ∇wa∗L

w(k + 1)← w(k + 1)

‖w(k + 1)‖2
(7.29)

where the augmented demixing vector wa = [w,wı,w,wκ]T , L is the Lagrangian

function and λ is the Lagrange parameter updated via a gradient ascent method with

step-size µ. The vector ∇wa∗L and matrix Ha
ww are respectively the augmented gra-

dient vector and Hessian matrix of the Lagrangian function. The full derivation is

provided in Appendix 7.C at the end of this chapter.

The estimation of multiple sources can be performed one by one through a deflation-

ary procedure, where for the nth estimated source is given by the following Gram-

Schmidt orthogonalisation procedure

wn(k + 1)← wn(k + 1)− W̌W̌Hwn(k + 1)

W̌ =
[
w1(k + 1), . . . ,wn(k + 1)

]
(7.30)

or simultaneously via a symmetric orthogonalisation method

W(k + 1)←
(
W(k + 1)WH(k + 1)

)−1/2
W(k + 1), (7.31)

where the orthogonalisation procedures in the quaternion domain follow from the

already established results.

7.4 Simulations and Discussion

7.4.1 Benchmark simulations

The performance of the algorithm is first assessed through simulations using synthetic

four dimensional signal codes located on the edges of geometric polytopes [142] with
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a varying degree of Q-improperness. To assess the degree of Q-improperness of the

generated sources, a measure based on the ratio of the complementary variances to

the standard variance is defined, expressed as

rq =

∣∣E{qqı∗}
∣∣+
∣∣E{qq∗}

∣∣+
∣∣E{qqκ∗}

∣∣
3E{qq∗} , rq ∈ [0, 1]. (7.32)

This way, a measure of rq = 0 indicates a Q-proper source, while for a highly Q-

improper source rq = 1.

The performance of the quaternion FastICA algorithm using the deflationary orthogo-

nalisation was assessed using the Performance Index (PI) [10], which for uH = wHVA =

[u1, . . . , uN ]H is given as

PI = 10 log10

(
1

N

( N∑

i=1

|ui|2
max{|u1|2, . . . , |uN |2}

− 1
))

(7.33)

and indicates the proximity of u to a vector with a single non-zero element. For the

deflationary approach, a PI of less than -20dB indicates good separation performance.

For the q-FastICA algorithm with symmetric orthogonalisation, the full PI measure

was used, given by

PI = 10 log10

(
1

N

N∑

i=1

( N∑

j=1

|uij |
max{|ui1|, . . . , |uiN |}

− 1
)

+
1

N

N∑

j=1

( N∑

i=1

|uij |
max{|u1j |, . . . , |uNj |}

− 1
))

. (7.34)

where UH = WHVA and uij = (U)ij and a PI less than -10dB signifies good separa-

tion performance.

In the simulations, 5000 samples of four polytope sources were mixed using a ran-

domly generated quaternion-valued 4 × 4 mixing matrix. The observed mixtures

were then whitened and processed using the q-FastICA algorithm (7.29), using the

deflationary and symmetric orthogonalisation.

7.4.1.1 Deflationary orthogonalisation

The scatter plots of the four quaternion sources are shown in Figure 7.2(a) and their

properties are given in Table 7.1(a). Source s1(k) was a cubic polytope, s2(k) and s3(k)

were generated from cyclic groups with two and three points, and s4 was a simplex

with five vertices. The nonlinearity G(y) = log cosh(y), the demixing vector w was

initialised randomly and the step-size of the gradient ascent update µ = 1 and λ = 5.

The scatter plot of the normalised estimated sources are given in Figure 7.2(b) and the
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performance of the q-FastICA algorithm in the separation of each source and at each

iteration stage is shown in Figure 7.2(c).

It can be seen that the algorithm was successful in estimating all the sources, con-

verging to a solution with a performance below the PI threshold of -30 dB in as few

as four iterations. As expected from a deflationary orthogonalisation procedure, the

performance of the algorithm deteriorated after each stage due to the accumulation

of errors, with the final PI value for the first estimated source y1(k) of -39.93dB, while

for y4(k) this value reduced to -26.28dB. Note that due to the symmetry of the signal

codes, rotations of the extracted sources relative to the original source are not visible,

and can only be observed in the scatter plot of y3(k).

7.4.1.2 Symmetric orthogonalisation

In this simulation, the sources were estimated simultaneously using the algorithm (7.29)

and the orthogonalisation procedure (7.31). Table 7.1(b) describes the source proper-

ties; visual scatter plot representations are given in Figure 7.3(a). Sources s1(k) to

s4(k) were respectively generated from cubic, 5 point dicyclic, 2 point cyclic and 3

point cyclic groups, source s3(k) had a high degree of Q-improperness, the value of

rq = 0.3351 for s4(k), and the other two sources were Q-proper.

For performance comparison, the nonlinearity G was chosen as in [41], with G1(y) =

log cosh(y), G2(y) =
√
0.1 + y and G3(y) = log(0.1 + y). The demixing matrix W was

initialised randomly, and the step-sizes µ1 = 1, µ2 = 0.1, µ3 = 0.5 and λ = 5 for the

gradient ascent update algorithm. As shown in Figure 7.3(c), the algorithm success-

fully separated all the four sources by achieving a PI below the -10 dB threshold with

the respective PI values of -17.87 dB, -15.81 dB and -19.49 dB. Figure 7.3(b) depicts

the scatter plots of the normalised estimated sources with nonlinearity G1, note that

sources were estimated in a random order.

7.4.2 EEG artifact extraction

In a practical EEG recording session, each EEG recording channel consists of a super-

position of a pure EEG signal corresponding to the collective neural activity within

the brain, and electrical activity pertaining to distinctive artifacts such as movement

of the head, line noise and eye blinks. In modelling the EEG signal, the artifacts, both

external and biological, are considered statistically independent from the pure EEG

recording [143, 116, 118]. The usefulness of the real-valued FastICA algorithm in the

extraction of eyeblink artifacts was studied in [112].

In the experimental setup, data was sampled at 4.8kHz for 30s from 12 electrodes

placed symmetrically on the scalp according to the 10-20 system, as shown in Fig-
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(a) The scatter plot of the quaternion
sources, properties given in Table 7.1(a).
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Figure 7.2 The performance of the quaternion FastICA algorithm for the separation of four
sources using a deflationary orthogonalisation procedure.
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sources, properties given in Table 7.1(b).
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Figure 7.3 The performance of the quaternion FastICA algorithm for the separation of four
sources using a symmetric orthogonalisation procedure.
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Table 7.1 Source properties for benchmark simulations using the quaternion FastICA algo-
rithm (7.29)

(a) Source properties for benchmark simulation with deflationary ap-
proach

Source polytope Q-improperness measure (rq)

s1(k) Cubic 0.01
s2(k) Cyclic (2 point) 1.00
s3(k) Cyclic (3 point) 0.34
s4(k) 5-Simplex 0.00

(b) Source properties for benchmark simulation with symmetric orthogo-
nalisation approach

Source polytope Q-improperness measure (rq)

s1(k) Cubic 0.01
s2(k) Dicyclic (5 point) 0.01
s3(k) Cyclic (2 point) 1.00
s4(k) Cyclic (3 point) 0.34

ure 7.4, with the reference and ground electrodes placed respectively on the right

earlobe and forehead. The electrodes used were the AF7, AF8, AF3, AF4, ML, MR,

C3, C4, PO7, PO8, PO3 and PO4, where the ML and MR electrodes were placed re-

spectively on the left and right mastoid. In addition, the voltage difference between

the two pairs of electrodes placed above and to the side of the eye sockets measured

the electrooculogram (EOG), that is, the electrical activity due to eye blinks and eye

movement.

The 4-tuple quaternion-valued EEG signals were formed from four symmetric elec-

trodes from the frontal (AF7, AF8, AF3, AF4), central (ML, MR, C3, C4) and occipital

(PO7, PO8, PO3, PO4) regions of the head. The Q-improper quaternion signals were

constructed as

x1(k) = AF8(k) + ı AF4(k) +  AF3(k) + κ AF7(k)

x2(k) = MR(k) + ı C4(k) +  C3(k) + κ ML(k)

x3(k) = PO8(k) + ı PO4(k) +  PO3(k) + κ PO7(k) (7.35)

and the observed EEG mixture at time instant k were then represented by the vector

x = [x1(k), x2(k), x3(k)]
T . The degree of Q-impropropriety of the signals were respec-

tively 0.89, 0.68 and 0.89, according to (7.32). In this scheme, the quaternion FastICA

algorithm (7.29) was first utilised to estimate the source signals, with the step-size

µ = 1 and initial Lagrange parameter λ = 5, while the nonlinearity was chosen as

G(y) = log cosh(y), to provide good overall performance. Next, the estimated source

pertaining to the EOG artifact was selected through examination of the kurtosis values
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Figure 7.4 Placement of the EEG recording electrodes.

of the components of the separated sources. Pure EEG signals typically have near-zero

kurtosis values, while the EOG artifacts have super-Gaussian distributions and thus

large kurtosis values [114], this being attributed to the sparse nature of eye blinks.

A time plot of the original recorded channels and the components of the quaternion-

valued separated sources are depicted respectively in Figure 7.5(a) and Figure 7.5(b).

The occurrence of the eye blinks can be seen at the beginning of the recording, then at

around 7s, 15s and 22s, where the effect of the EOG artifact was more prominent on the

frontal lobe channel, and less severe in the central and occipital channels. By visual in-

spection, the separated EOG artifact can be seen to span the components of the third

extracted source y3(k), that is ℜ{y3(k)},ℑı{y3(k)},ℑ{y3(k)},ℑκ{y3(k)}; this is con-

firmed through comparison of the kurtosis values of each components (Figure 7.5(c)).

While most estimated sources had a near-zero measure of kurtosis, the real and imag-

inary components of y3(k) have, in comparison, very large kurtosis values.

To study the effectiveness of the algorithm in removing the artifact, the components

of y3(k) were reconstructed to form the EOG signal and then compared to the original

combined EOG recording. Figure 7.5(d) depicts both the signals along with the resid-

ual error of the estimation process, having a mean square error of 1.21 × 10−4. Also,

by excluding the components of y3(k) the clean EEG mixture was reconstructed and

a 3s window between 6s–9s for each reconstructed channel is shown in Figure 7.5(e),

where the effect of the EOG present at 7s was diminished in the channels.
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Figure 7.5 Removal of EOG artifact from an EEG recording using the quaternion FastICA
algorithm
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Figure 7.5 Continued

7.5 Summary

An ICA algorithm suitable for the blind separation of both Q-proper and Q-improper

sources has been introduced. The well-known negentropy-based cost function has

been utilised to estimate independent quaternion-valued sources, while an augmented

Newton method implementation has allowed for the extension of the FastICA method-

ology to the quaternion domain. The performance of the quaternion FastICA (q-

FastICA) algorithm in deflationary and simultaneous separation using benchmark

quaternion polytope signals has been discussed, and the algorithm has been shown to

be effective in the removal of ocular artifacts from EEG signals.

7.A Some relevant results from HR calculus

Several results, used in the derivation of the q-FastICA algorithm (7.29) are discussed

here.
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7.A.1 Chain rule in HR calculus

For a quaternion composite function F ◦ G = F (G(q)) : H 7→ H, the chain rule is

expressed as

∂F

∂ξ
=

∂F

∂G

∂G

∂ξ
+

∂F

∂Gı

∂Gı

∂ξ
+

∂F

∂G

∂G

∂ξ
+

∂F

∂Gκ

∂Gκ

∂ξ
(7.36)

and ξ = {q, qı, q, qκ}. To show this, the total differential of F (q̄) can be written as [133,

134]

dF =
∂F

∂q̄
dq̄ +

∂F

∂q̄ı
dq̄ı +

∂F

∂q̄
dq̄ +

∂F

∂q̄κ
dq̄κ (7.37)

where the dummy variable q̄ , G(q). Likewise, the total differential for G(q) is given

by

dG =
∂G

∂q
dq +

∂G

∂qı
dqı +

∂G

∂q
dq +

∂G

∂qκ
(7.38)

By substituting (7.38) into (7.37), and after rearranging the expressions, the total dif-

ferential of F with respect to q is obtained as

dF =

(
∂F

∂G

∂G

∂q
+

∂F

∂Gı

∂Gı

∂q
+

∂F

∂G

∂G

∂q
+

∂F

∂Gκ

∂Gκ

∂q

)
dq

+

(
∂F

∂G

∂G

∂qı
+

∂F

∂Gı

∂Gı

∂qı
+

∂F

∂G

∂G

∂qı
+

∂F

∂Gκ

∂Gκ

∂qı

)
dqı

+

(
∂F

∂G

∂G

∂q
+

∂F

∂Gı

∂Gı

∂q
+

∂F

∂G

∂G

∂q
+

∂F

∂Gκ

∂Gκ

∂q

)
dq

+

(
∂F

∂G

∂G

∂qκ
+

∂F

∂Gı

∂Gı

∂qκ
+

∂F

∂G

∂G

∂qκ
+

∂F

∂Gκ

∂Gκ

∂qκ

)
dqκ (7.39)

where the derivatives ∂F
∂ξ are given by the terms within the brackets, and form the

chain rule. The chain rule for the HR∗ derivatives can be obtained similarly, and the

result of (7.36) can be extended to vector-valued functions to form a generalised chain

rule for the derivatives.

7.B The Augmented quaternion Newton method

The duality between R4 and H allows for the consideration of the relations between

the derivatives in the two domains. This methodology was previously considered

in [50] and resulted in the derivation of the augmented complex Newton method. The

extension of this work to the quaternion domain based on the involution bases was

detailed in [134, 133]. A short summary is presented below.
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For a function f(q) : HN 7→ R, its augmented gradient ∇qa∗f = ∂f
∂qa∗ and Hessian

Ha
qq = ∂

∂qa∗

( ∂f
∂qq∗

)T , where the augmented vector qa = [qT , qıT , qT , qκT ]T . The

augmented Newton update can then be written as

∆qa = −
(
Ha

qq

)−1 · ∇qa∗f, (7.40)

where ∆qa = qa(k + 1)− qa(k) is the change in qa in each consecutive update.

Finally, observe that the elements of the augmented Hessian matrix

Ha
qq =




Hq∗q∗ Hqı∗q∗ Hq∗q∗ Hqκ∗q∗

Hq∗qı∗ Hqı∗qı∗ Hq∗qı∗ Hqκ∗qı∗

Hq∗q∗ Hqı∗q∗ Hq∗q∗ Hqκ∗q∗

Hq∗qκ∗ Hqı∗qκ∗ Hq∗qκ∗ Hqκ∗qκ∗




(7.41)

can be written in terms of its first row by utilising the involution property (7.20) and

noting that
(
(·)α

)β
= (·)γ , α 6= β 6= γ = {ı, , κ}.

7.C Derivation of the augmented q-FastICA update algorithm

7.C.1 First and second derivatives of the cost function J (w)

The first and second derivatives of the q-FastICA cost function given in Equation 7.27

are now derived. For simplicity, the equation is reproduced here, and is given by

J (w,wı,w,wκ) = E
{
G(|wHx|2)

}
= E

{
G(|y|2)

}
. (7.42)

and y = wHx.

First, by using the product rule, the derivatives of the involutions of |y|2 = yy∗ =

|wHx|2 with respect to the conjugate demixing vector w∗ are calculated as

∂yy∗

∂w∗
=

∂y

∂w∗
y∗ + y

∂y∗

∂w∗
= xy∗ − 1

2
yx∗

∂(yy∗)ı

∂w∗
=

∂yı

∂w∗
yı∗ + yı

∂yı∗

∂w∗
=

1

2
yıxı∗

∂(yy∗)

∂w∗
=

∂y

∂w∗
y∗ + y

∂y∗

∂w∗
=

1

2
yx∗

∂(yy∗)κ

∂w∗
=

∂yκ

∂w∗
yκ∗ + yκ

∂yκ∗

∂w∗
=

1

2
yκxκ∗. (7.43)

Then by using the chain rule (7.36) and after simplification the gradients of the cost

function are obtained as

∇w∗J = E{2g(|y|2)xy∗}
∇wı∗J = E{2g(|y|2)xyı∗}
∇w∗J = E{2g(|y|2)xy∗}
∇wκ∗J = E{2g(|y|2)xyκ∗} (7.44)
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where g is the first derivative of G; this result can also be interpreted based on the

involution property (7.20).

After some simplifications and considering the whiteness of x, the second derivatives

of J can then be calculated as

∂

∂w∗

(
∂J
∂w∗

)T

= E{4g′(|y|2)xy∗xT y∗ − g(|y|2)I}

∂

∂wı∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)ı(xT y∗) + g(|y|2)I}

∂

∂w∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)(xT y∗) + g(|y|2)I}

∂

∂wκ∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)κ(xT y∗) + g(|y|2)I}, (7.45)

where g′ is the second derivative of G and the calculations of the remaining deriva-

tives follow from property (7.20). Finally, notice that the non-commutativity of the

quaternion product prohibits further simplification of the derivatives in (7.45).

7.C.2 The augmented Newton update

The Lagrangian function L for the optimisation problem in (7.28) is given by

L(w, λ) = J (w) + λ(wHw − 1)︸ ︷︷ ︸
, c

(7.46)

where λ ∈ R is the Lagrange parameter. The Newton method (7.40) is utilised to find

the extrema of (7.46), where

∂L
∂wa∗

=
∂J
∂wa∗

+
∂c

∂wa∗

∂

∂wa∗

(
∂L

∂wa∗

)T

= Ha
ww +

∂

∂wa∗

(
∂c

∂wa∗

)T

(7.47)

and the augmented gradient and Hessian of J are obtained using (7.44) and (7.45).

The gradients of c are then given by

∂c

∂w∗
= λ(w − 1

2
w∗)

∂c

∂wı∗
=

λ

2
w∗

∂c

∂w∗
=

λ

2
w∗

∂c

∂wκ∗
=

λ

2
w∗ (7.48)



7.C. Derivation of the augmented q-FastICA update algorithm 151

and the Hessian can be calculated from

∂

∂w∗

(
∂c

∂w∗

)T

= −λI

∂

∂wı∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂w∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂wκ∗

(
∂c

∂w∗

)T

= −λ

2
I. (7.49)

By substituting these results in (7.40), the Newton update for the Lagrangian is ob-

tained. Finally, the Lagrange parameter λ is updated using a gradient ascent method,

whereby at each iteration the demixing vector w is first updated via the augmented

Newton method, followed by the update of λ using the current value of w and nor-

malisation of the demixing vector [144], as in (7.29).





Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, a class of algorithms suitable for the processing of the generality of

complex-valued signals has been introduced, analysed and tested in practical appli-

cations. This has been achieved based on a novel statistical model of complex-valued

signals, so called augmented complex statistics. Derivation and analysis of the derived

algorithms have been performed using the CR calculus, which allows for the consider-

ation of non-analytic functions, such as the real-valued error power commonly found

in signal processing problems, that is, without the restrictions due to the standard

Cauchy-Riemann equations.

This work has addressed both supervised and blind complex algorithms and their use-

fulness has been shown through the analysis and simulations on benchmark complex-

valued signals, as well as on real-world signals including complex wind vectors and

EEG signals made complex by convenience of representation.

One of the main aims of this thesis was the development of blind source extraction

algorithms for the estimation of complex-valued sources based on fundamental sig-

nal properties. While recent research in complex domain blind source separation has

resulted in the extension and generalisation of topics and methodologies from the real

domain, the exploitation of fundamental signal properties as a means of signal extrac-

tion has not been widely explored. Therefore, algorithms based on the predictability,

degree of Gaussianity and smoothness of complex-valued signals have been a focus of

this work. The application of these algorithms in noise-free and noisy environments

has been assessed using both qualitative and quantitative measures, and supported

by theoretical analysis.

As a generalisation, the introduced complex domain blind source separation mod-

els have been extended to the higher dimensional quaternion domain. This has been
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achieved based on the recently introduced widely linear quaternion model [132, 145],

effectively demonstrating the generalisation of the complex-valued concepts discussed

in this work.

A summary of the contributions in this thesis is given below.

1. The augmented (widely linear) complex least mean square (ACLMS) algorithm

has been derived based on a widely linear model. Unlike the standard complex

least mean square (CLMS) algorithm which was based on a strictly linear model,

the full second-order statistical model of the signal is captured by the ACLMS

algorithm.

It has been shown that the CLMS algorithm is a special case of the ACLMS al-

gorithm and provides optimal performance for only proper complex signals,

while the ACLMS algorithm is capable of processing both complex proper and

improper signals. The simplicity of the CR calculus framework in the derivation

of the algorithm directly in the complex domain has also been highlighted.

2. A local widely linear prediction based complex blind source extraction (P-cBSE)

algorithm using the temporal structure of complex-valued signals has been in-

troduced. By using a modified cost function, the algorithm extracts sources

based on the normalised mean square prediction error and is capable of extract-

ing desired sources from mixtures with additive complex-valued noise. Both

direct solutions and those requiring prewhitening have been provided, and the

existence and uniqueness of the solutions for both cases have also been consid-

ered. The normalised mean square prediction error is measured at the output

of a widely linear predictor, thus catering for the generality of complex-valued

sources, both circular and noncircular. Simulations have demonstrated the en-

hanced extraction performance of the proposed P-cBSE algorithm, compared to

existing complex extraction algorithms based on a standard linear model.

3. A blind source extraction algorithm based on the kurtosis of complex-valued

signals (K-cBSE algorithm) has been derived. The algorithm is a modified cost

function that is capable of extracting sources with different dynamic ranges. By

removing the bias associated with additive complex-valued noise from the cost

function, the algorithm is shown to be capable of operating in both noisy and

noise-free environments. The existence and uniqueness of the solution have

also been addressed; iÃ§n addition, it has been shown that the algorithm is un-

affected by the degree of circularity of the additive noise. To enhance the per-

formance, variable step-size variants of the algorithm have been derived, and

have been shown to outperform the fixed step-size variants. The application

of the K-cBSE algorithm in real-time removal of artifacts from complex-valued
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EEG mixtures has been demonstrated and verified using both qualitative and

quantitative metrics.

4. The smoothness based complex blind source extraction (S-cBSE) algorithm has

been introduced. The concept of smoothness in the complex domain has been

discussed, and a constrained cost function has been defined based on the max-

imisation of non-Gaussianity and the definition of complex smoothness. By util-

ising the augmented Newton method, the algorithm has been derived based on

a constrained generalised complex FastICA (nc-FastICA) algorithm, thus result-

ing in fast convergence, and ability to extract both complex proper and improper

latent sources. For comparison, the algorithm has also been derived based on the

standard complex FastICA algorithm. Simulations have shown that the S-cBSE

algorithm based on the generalised complex FastICA algorithm is capable of

extracting the desired smooth (or, non-smooth) sources successfully, while the

S-cBSE algorithm using the c-FastICA algorithm results in poor performance.

The S-cBSE algorithm has been successfully utilised for the extraction of power

line noise, eye blinks and eye movements from EEG recordings, demonstrating

its application in real-world problems.

5. A quaternion FastICA (q-FastICA) algorithm has been derived for the separa-

tion of the generality of quaternion-valued sources. Based on recent advance-

ments in augmented quaternion statistics and so called HR calculus, the sta-

tistical and analytical concepts discussed for complex domain signal process-

ing have been extended to the quaternion domain. The q-FastICA algorithm is

based on the maximisation of non-Gaussianity by utilising suitable nonlineari-

ties for the approximations of the negentropy function. The derivation of the al-

gorithm uses the recently introduced HR calculus and employs the augmented

Newton method for quaternion functions. The assessment of the performance

of the algorithm using both quaternion proper and improper four dimensional

polytopes has demonstrated successful source separation, and an application in

separation of pure EEG and arifactual sources support the analysis.

8.2 Future work

The foundation of this work is based on the augmented complex statistics and the CR

calculus framework. The areas for the extension of the work presented in this thesis,

include

1. Complex blind source separation using Canonical Correlation Analysis — Blind source

separation based on the canonical correlation analysis (CCA) approach has been
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previously explored in the real domain, and analytical studies of its performance

have been provided, e.g. in [146, 147]. In the real domain, online blind source

separation using CCA is shown to be closely related to blind source separation

using a linear predictor. In this work, blind source extraction based on the tem-

poral structure of sources and using a widely linear predictor has been proposed,

the P-cBSE algorithm. It is therefore possible to explore the CCA approach in

complex blind source separation and provide a link with the P-cBSE algorithm.

In the real domain, blind source separation using the CCA approach relies on

maximising the correlation of two linear combinations of variables with a joint

distribution. In the complex domain, it is necessary to consider both the corre-

lation and pseudo-correlation of complex-valued linear combinations. In addi-

tion, by using the weighted sum of such linear combinations, the widely linear

predictor is expected to result in optimal second-order performance. Further

work will include analysis of the existence and convergence of the algorithm, as

well as the derivation of cost functions suitable for blind separation from noisy

mixtures.

2. Prediction based quaternion blind source extraction — Blind source separation in

the quaternion domain is currently in its early stages [148], the extension of the

P-cBSE algorithm to the quaternion domain would allow for the extraction of

both quaternion proper and improper sources from both noise-free and noisy

mixtures. Analysis of the mean square prediction error of quaternion signals

can provide insight into the operation of the algorithm, and a quaternion widely

linear predictor can be ultimately utilised for the implementation of an online

extraction algorithm.

A widely linear quaternion predictor based on the LMS algorithm has been re-

cently introduced in [135] and has shown enhanced performance for improper

signals over the standard quaternion predictor, making it suitable for quaternion

blind source extraction based on the temporal structure of the signals. Study of

quaternion-valued noise will also allow for the design of more robust cost func-

tions, such that the resulting algorithms will be capable of extracting sources

from noisy mixtures.

3. Post-nonlinear complex blind source separation — In this work, a linear mixture

model has been considered for complex blind source separation. This assump-

tion can be generalised to consider post-nonlinear mixtures, using complex non-

linear functions. The effect of split- and fully-complex models can be compared,

where it is expected that a fully-complex nonlinear function result in the best

model. A simple extraction method can be based on a nonlinear widely linear

predictor, where the nonlinearity may be estimated in a prior stage.
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Finally, in the real domain, while it is possible to separate latent sources based on

a post-nonlinear model, separation of sources based on a nonlinear model is con-

sidered to result in non-unique solutions [14]. This study can be extended to the

case of complex sources passed through a fully-complex nonlinearity, where it

may be possible to exploit information on the degree of noncircularity of sources

to aid in blind separation from complex nonlinear mixtures.

\





Appendix A

The Complex Generalised Gaussian

Distribution

The generalised Gaussian distribution (GGD) consists of a family of distributions

whose deviation from the standard Gaussian (‘normal’) distribution are determined

via a shape parameter. Variation in the parameters result in a range of distributions

with negative kurtosis (sub-Gaussian distribution), zero kurtosis (Gaussian distribu-

tion) and positive kurtosis (super-Gaussian distribution). The extension of this family

of distributions to the complex domain is provided here. As a special case, the com-

plex Gaussian distribution is introduced and discussed.

Consider a complex random variable z = zr + zi ∈ CN , where the distribution of its

real and imaginary components can be considered as a real-valued multivariate GGD

given by [149, 150]

fZr,Zi
(zr, zi) = fZR(zR) = α exp

(
−
(
γ(zR − µ)TCR−1

zz (zR − µ)
)c) (A.1)

α =
cγ

πNΓ(1c )
(
det(CRzz)

) 1
2

γ =
Γ(2c )

2Γ(1c )

where c is the shape parameter, Γ(·) is the Gamma function, µ is the statistical mean

vector and det(·) denotes the matrix determinant operator. The covariance matrix CRzz
is defined in (2.5) and defines the second-order statistical properties of the distribu-

tion, and

zR =

[
zr

zi

]
=

1

2
JHza ∈ R2N . (A.2)
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By utilising the duality [51] established between C2 and R2 in Section 2.1.3, the multi-

variate GGD can be expressed as

fZr,Zi
(zr, zi) = α exp

(
−
(
γ(

1

2
JHza)H(

1

4
JHCazzJ)−1(

1

2
JHza)

)c) (A.3)

where the relations in Equations (A.2) and (2.11) is used. Noting that 1
2JJ

H = I and

the expressions (2.8) on the relation between the real and imaginary components with

the complex random vector and its conjugate, the distribution is then written as

fZ,Z∗(z, z∗) = α exp
(
−
(
γzaHCa−1

zz za
)c) (A.4)

α =
cγ

(π2 )
NΓ(1c )

(
det(Cazz)

) 1
2

.

This completes the derivation of the complex generalised Gaussian distribution (c-

GGD). Thus, while the distribution in (A.1) provides a valid model for the distribution

of a complex random vector, the derived pdf (A.4) results in a more natural model,

applicable directly in C. The statistical properties of the c-GGD are dictated by the

shape parameter c and the augmented covariance matrix Cazz. For the range of values

0 < c < 1, the distribution is super-Gaussian, for c = 1 it is Gaussian and for c > 1 it is

sub-Gaussian. Likewise, the second-order circularity of the random vector is chosen

by designing1 a suitable augmented covariance matrix Cazz.

A.1 The Complex Gaussian Distribution

A special case of the complex Gaussian distribution is obtained from the c-GGD pdf (A.4)

with shape parameter c = 1. Its pdf is then given by [51]

fZ,Z∗(z, z∗) =
1

πN
(
det(Cazz)

) 1
2

exp
(
− 1

2
zaHCa−1

zz za
)
. (A.5)

It is noteworthy that this result was derived by van den Bos in [51] by considering

the multivariate Gaussian pdf and introducing the transformation matrix J to map

between the real and complex domains.

For further insight, consider the simple case of a scalar random variable z = zr + zi,

where N = 1. After simplification, the pdf (A.5) can be expressed as

fZ,Z∗(z, z∗) =
1

πσzrσzi
√

1− ̺2
exp

(
− (z + z∗)2

4σ2
zr

− ̺
(z2 − z∗2)

2σzrσzi
+

(z − z∗)2

4σ2
zi

)
(A.6)

where σzr and σzi are the standard deviations of the real and imaginary components

and ̺ =
σzr,zi

σzrσzi
is the correlation coefficient. Scatter plots of two Gaussian random

variables with different second-order statistics are illustrated in 2.1.

1In [151], the authors detail the generation of samples with a desired c-GGD.
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Given a proper random variable, the real and imaginary components are uncorrelated

and with equal variance, that is, the correlation coefficient ̺ = 0 and σ2
zr = σ2

zi = σ2
z .

Thus, the pdf of a second-order circular (proper) complex Gaussian random variable

becomes

fZ(z) =
1

πσ2
z

exp

(
− |z|

2

σ2
z

)
, (A.7)

which is only a function of the magnitude of the random variable, and does not de-

pend on its phase. This is the classic definition of the complex Gaussian pdf [52],

which as shown here is actually a restricted case of the complex Gaussian pdf, and

does not account for the generality of complex random variables.

Finally, the entropy of a complex Gaussian random vector z is given by [44]

H(z) ≤ log
(
(πe)N det(Czz)

)
. (A.8)

This result can be similarly obtained by considering the entropy of the multivari-

ate real-valued Gaussian random vector [152] and establishing the complex equiva-

lent (A.8) through the utilisation of the duality between the two domains. An inter-

esting result, presented by Neeser and Massey in [44], show that the entropy H(z)

is maximised for second-order circular (proper) Gaussian random vectors. This can

be seen by noting that the determinant of a general augmented covariance matrix is

smaller than the determinant of the block diagonal augmented covariance matrix of a

proper random vector [48].
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Brief overview of CR calculus

A class of functions, which are of special interest in signals processing optimisation

problems are real valued functions of complex variables, typically encountered as cost

functions based on the error power. However, these functions are non-analytic (non-

differentiable) within the stringent conditions set by the Cauchy-Riemann equations,

and thus a flexible and generalised calculus framework is needed for their study.

To this end, the so called CR calculus framework [55, 54] achieves this aim, and is

briefly introduced here. The framework was originally introduced by Wirtinger [55]

in 1927 and is known as Wirtinger calculus within the German speaking engineering

community. More recently, the technical notes by Kreutz-Delgado [54] provided a

comprehensive overview of the topic, and referred to the framework as CR calculus

due to the dual real and complex perspective of complex functions within this frame-

work.

It is common to consider the function f(z) : CN 7→ R directly as a function of the com-

plex vector variable z, or as a composite function of its real and imaginary components

zr and zi, such that

f(z) = g(zr, zi) = u(zr, zi) + v(zr, zi). (B.1)

Then, the Cauchy-Riemann conditions specify that

∂u

∂zr
=

∂v

∂zi

∂v

∂zr
= − ∂u

∂zi
, (B.2)

which induces strict conditions on the differentiability of f(z). For example, an an-

alytic function such as f1(z) = z2 satisfies this condition and is complex differen-

tiable where f ′
1(z) = ∂u

∂zr
+  ∂v

∂zi
= 2z, while f2(z) = zz∗ = |z|2 does not satisfy

the Cauchy-Riemann equations and in this light is not complex differentiable. The

common method in circumventing this problem is by considering f(z) in terms of its
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composite real-valued function and performing partial derivatives with respect to the

real and imaginary components.

Establishing the duality between the real- and complex-valued derivatives in the CR

calculus framework, results in the calculation of the Taylor Series Expansion (TSE)

in R and C. This is especially important for the formulation of first-order optimisa-

tion methods such as gradient descent, and second-order optimisation based on the

Newton method.

B.1 CR calculus

The function f(z) may alternatively be considered a function of z and z∗, that is

f(z, z∗). Note that although z and z∗ are not truly independent, the introduced method-

ology can be considered as a formalism whereby f is analytic in z and z∗ is considered

fixed, and vice versa f is considered analytic in z∗ while z is a fixed parameter [54]. In

this context, the variables z and z∗ are termed conjugate coordinates, and the represen-

tation in (B.1) may be rewritten as

f(z) = f(z, z∗) = g(zr, zi) = u(zr, zi) + v(zr, zi). (B.3)

The relation between the derivatives of f with respect to the conjugate coordinates

z and z∗, that is ∂f
∂z and ∂f

∂z∗ , and the partial derivatives with respect to the real and

imaginary components zr and zi, given by ∂f
∂zr

and ∂f
∂zi

, was proven in [53]. A different

approach [63] based on the total differential of f is highlighted below.

The total differential of the function f(z) = g(zr, zi) is given by

dg(zr, zi) =
∂g

∂zr
dzr +

∂g

∂zi
dzi. (B.4)

Thus, after algebraic manipulation using the relation (B.3) and noting that based on

the established duality in (2.8), dzr = 1
2(dz + dz∗) and dzi = 1

2(dz − dz∗), the total

differential is given by

dg(zr, zi) =
1

2

( ∂g

∂zr
− 

∂g

∂zi

)
dz+

1

2

( ∂g

∂zr
+ 

∂g

∂zi

)
dz∗, (B.5)

or equivalently

df(z) = df(z, z∗) =
∂f

∂z
dz+

∂f

∂z∗
dz∗. (B.6)

This leads to one of the important results in CR calculus, given by

R–derivative :
∂f

∂z

∣∣∣∣
z∗=const

=
1

2

(
∂f

∂zr
− 

∂f

∂zi

)

R∗–derivative :
∂f

∂z∗

∣∣∣∣
z =const

=
1

2

(
∂f

∂zr
+ 

∂f

∂zi

)
, (B.7)
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where the function f is considered R-analytic, that is, it is differentiable with respect

to zr and zi.

Thus, using the paradigm of conjugate coordinates and the relation (B.7), it is possible

to consider the derivatives of both analytic and non-analytic complex functions. For

an analytic function satisfying the conditions in (B.2), the R-derivatives are simplified

such that

∂f

∂z
=

∂u

∂zr
+ 

∂v

∂zi
= f ′(z)

∂f

∂z∗
= 0. (B.8)

It is thus concluded that the Cauchy-Riemann conditions in (B.2) can be succinctly

written within the CR calculus framework as

∂f

∂z∗
= 0. (B.9)

The elegance of this framework lies in the fact that when applied to analytic functions,

the derivative ∂
∂z∗ vanishes and so equals the standard complex derivative defined

based on the Cauchy-Riemann equations (R–derivative), whereas when applied to

non-analytic functions such as real-valued cost functions, it is equal to the standard

pseudo-gradient (R∗–derivative). Also note that, while the emphasis here is on real-

valued functions, the CR calculus framework is general to complex-valued functions.

Referring to the examples given earlier, consider the non-analytic function f2(z) =

‖z‖22 = zz∗. Then, ∂f2
∂z = z∗ and ∂f2

∂z∗ = z. In contrast, for the analytic function f1(z) =

z2, ∂f1
∂z = 2z and ∂f1

∂z∗ = 0.

Another important result in CR calculus, referred to as Brandwood’s result [53] states

that the direction of steepest descent is given by the derivative with respect to z∗, the

R∗-derivative. This can be shown by using the first order Taylor Series Expansion

(TSE) of f [50]; the magnitude of a small change in the function f is given by

|δf | = 2
∣∣∣ℜ
{( ∂f

∂z∗

)H
δz
}∣∣∣ (B.10)

and the Cauchy-Schwarz Inequality shows that

|δf | ≤ 2
∥∥∥ ∂f

∂z∗

∥∥∥ · ‖δz‖ (B.11)

and so |δf | is maximised when

arccos
〈 ∂F∂z∗ , δz〉
‖ ∂F
∂z∗ ‖ ‖δz‖

= 0, (B.12)

where 〈·, ·〉 is the inner product operator. In other words, the maximum change of the

gradient is in the direction of the conjugate of the weight vector [53, 54].
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B.1.1 Properties of R-derivatives

Several important properties of derivative obtained from CR calculus are stated here [54].

Consider the function f(z) ∈ R, where

∂f∗

∂z∗
=
(∂f
∂z

)∗
(B.13a)

∂f∗

∂z
=
( ∂f

∂z∗

)∗
(B.13b)

df =
∂f

∂z
dz+

∂f

∂z∗
dz∗ Differential rule1 (B.13c)

∂(f ◦ g)
∂z

=
∂f(g)

∂z
=

∂f

∂g

∂g

∂z
+

∂f

∂g∗
∂g∗

∂z
Chain rule (B.13d)

∂(f ◦ g)
∂z∗

=
∂f(g)

∂z∗
=

∂f

∂g

∂g

∂z∗
+

∂f

∂g∗
∂g∗

∂z∗
Chain rule (B.13e)

Note in particular that property (B.13b) only applies to real-valued functions as the

conjugation operator has no effect on the real-valued function f , while the other prop-

erties can be generalised to any complex function.

B.2 Taylor Series Expansion of Real-valued functions of Complex

Variables

The TSE of f(z) : CN 7→ R up to a 2nd order approximation is considered. This is

achieved by considering the function f in three equivalent forms

f(z)←→ f(z, z∗) , f(za)←→ f(zr, zi) , f(zR) (B.14)

and establishing the duality between the derivatives of functions in C2N and R2N ;

this approach was utilised in [50] by van den Bos. In (B.14), the augmented vectors

za = [zT zH ]T ∈ C2N and zR = [zTr zTi ]
T ∈ R2N . In [54], Kreutz-Delgado provided an

alternative and more rigorous approach by first establishing the isomorphism (dual-

ity) between vectors in C2N and R2N , and identifying the Jacobian of the transformation

for the calculation of derivatives. The first and second derivatives for the terms of

the TSE are then readily calculated. The terms of the TSE in CN are then easily found

through expansion of the augmented complex TSE terms.

The transformation between the two augmented spaces is provided by J, given in (2.6)

and

za = JzR (B.15)

zR = J−1za =
1

2
JHza, (B.16)

1See the derivation in (B.4)– (B.6)
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where the inverse mapping J−1 = 1
2J

H . Then, as this coordinate transformation is

linear and one to one, the C2N and R2N spaces may be considered isomorphic [54].

The Jacobian of the transformation from R2N to C2N is given by2

JC =
∂

∂zR
za =

∂

∂zR
JzR = J (B.17)

and the Jacobian of the transformation from C2N to R2N by

JR =
∂

∂za
zR =

∂

∂za
J−1zR = J−1 =

1

2
JH . (B.18)

Therefore, the Jacobian of the transformation JC (or inverse of the Jacobian of the

transformation JR) equals the coordinate transformation J (or inverse coordinate trans-

formation J−1), and thus transformations between partial derivatives in the two spaces

can be established as

∂

∂za
=

1

2

∂

∂zR
JH (B.19)

∂

∂zR
=

∂

∂za
J. (B.20)

The TSE expansion in R2N up to the second term is known to be given by

f(zR +∆zR) = f(zR) +
∂f

∂zR
∆zR +

1

2
∆zR

T
HR

zz∆zR, (B.21)

where HR
zz = ∂

∂zR

(
∂f
∂zR

)T
is the real-valued augmented Hessian matrix.

The first order term in the augmented complex space is calculated as

∂f

∂zR
∆zR =

∂f

∂za
J · J−1za

=
∂f

∂za
∆za, (B.22)

where the relations (B.16) and (B.20) are used. Now consider the augmented complex

Hessian matrix

Ha
zz =

∂

∂za

(
∂f

∂za

)H

=

[
Hzz Hz∗z

Hzz∗ Hz∗z∗

]
, (B.23)

where its equivalence with HR
zz is established as

HR
zz = JHHa

zzJ. (B.24)

Thus, the second-order term of the augmented complex TSE is calculated as

1

2
∆zR

T
HR

zz∆zR =
1

2
∆zaHHa

zz∆za. (B.25)

2Following the convention in [54], derivatives are defined as row vectors in this appendix.
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Thus, using relations (B.14), (B.22) and (B.25) the TSE expansion in C2N (augmented

TSE) up to the second term can be expressed as

f(za +∆za) = f(za) +
∂f

∂za
∆za +

1

2
∆zaHHa

zz∆za. (B.26)

Expansion of the terms in (B.26) results in the TSE expressed directly in CN , which is

given by

f(z+∆z) = f(z) + 2ℜ
{
∂f

∂z
∆z

}
+ ℜ

{
∆zHHzz∆z+∆zHHz∗z∆z∗

}
. (B.27)

It is seen that the complex TSE is not a trivial extension from the TSE in R, and while its

direct derivation from the multivariate form (B.21) is not trivial and requires cumber-

some algebraic manipulation, the augmented TSE provides a straightforward means

for its calculation. Note that the augmented TSE (B.26) also serves as a compact rep-

resentation of the TSE in the complex domain.

Appendix C generalises the discussion of this section and addresses the TSE of real-

valued functions of complex matrix variable.

B.2.1 Eigenvalues of the Augmented Real and Complex Hessian Matrices

Further insight into the structure of the augmented Hessian matrices HR
zz and Ha

zz

may be obtained through analysis of Equation (B.24) [50, 54]. Consider the linear

system

(Ha
zz − λaI)u = 0 (B.28)

with the set of solutions spanning the eigenspace. Using relation (B.24) and noting

that 1
2JJ

H = I, the left-hand side of (B.28) can be rewritten so that

Ha
zz − λaI =

1

4
JHR

zzJ
H − 1

2
λaJJH

=
1

4
J(HR

zz − 2λa
︸︷︷︸
,λR

I)JH . (B.29)

This illustrates that the eigenvalues {λR} of the real-valued Hessian matrix HR
zz are

twice the eigenvalues {λa} of the complex-valued Hessian matrix Ha
zz [50].
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B.2.2 The Augmented Newton Method

Utilising the Taylor Series Expansions (B.21) and (B.26), the formulation for the New-

ton method in the augmented real and complex domains are expressed as

∆zR = −HR−1

zz

(
∂f

∂zR

)T

(B.30)

∆za = −Ha−1

zz

(
∂f

∂za

)H

, (B.31)

and the formulation in CN is obtained through expansion of (B.31), detailed below.

The Equation (B.31) expressed in its expanded form, is given by

[
Hzz Hz∗z

Hzz∗ Hz∗z∗

][
∆z

∆z∗

]
= −




(
∂f
∂z

)H
(

∂f
∂z∗

)H


 . (B.32)

Solving for ∆z∗ and ∆z, and after substitution, we obtain the Newton method in C,

given by

∆z =
(
Hzz −Hz∗zH

−1
z∗z∗Hzz∗

)−1
(
Hz∗zH

−1
z∗z∗

( ∂f

∂z∗

)H
−
(∂f
∂z

)H
)
. (B.33)

It is seen that the derivation of the complex Newton method is not trivial if calculated

directly from (B.27), while the augmented Newton methods provides a simple meth-

ods for its calculation. Also note that the expression for the complex Newton method

is more involved in comparison to its real-valued counterpart. By simplifying the sec-

ond order terms of the TSE and assuming a quasi-Newton method whereby the block

off-diagonals of Ha
zz are zero, the complex Newton method in (B.33) is simplified as

∆z = −H−1
zz

(∂f
∂z

)H
. (B.34)

This, however, results in a sub-optimal optimisation methodology for the generality

of signal processing problems in the complex domain, and its use is limited to the case

of analytic functions where the condition (B.9) is satisfied.





Appendix C

Real-valued Functions of Complex

Matrices

As algorithms based on so called augmented complex statistics are emerging, leading

to more accurate but mathematically involved solutions, revisiting some aspects of

complex calculus is a prerequisite to providing a set of analytic tools to support these

developments. In this direction, for real-valued functions of complex vector variables,

the work by van den Bos [50] has provided a platform for modelling and optimisation

via so called augmented vector spaces, with a thorough overview given in [54], where

the duality between these spaces is explored (also see Appendix B). The application of

these results have been recently utilised in various statistical signal processing fields,

such as adaptive filtering [63].

Complex optimisation problems often involve real-valued functions1 of complex ma-

trices; these are a standard in communications and signal processing problems, such

as in optimisation problems in Multiple-input and Multiple-output (MIMO) systems

and in blind source separation. In this appendix, by complementing the work in [153], [154],

we extend the concept of duality between vectors RN and CN in [54] to the case of

complex matrix spaces, and formalise the equivalence of real-valued functions of com-

plex matrix variables in the standard and augmented spaces up to their second-order

Taylor Series Expansion.

It is shown that this is sufficient for the derivation and analysis of standard gradient-

based learning algorithms. This also helps with the analysis of general signal pro-

cessing algorithms in augmented matrix spaces and allows for simpler closed form

solutions. Applications in Newton optimisation and blind source separation demon-

strate the potential of the introduced complex matrix calculus results. This is followed

1For instance the cost function in complex adaptive filtering is J = e(k)e∗(k) and is a real function
of complex error e(k).
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by a comparison of adaptive algorithms in the real and complex matrix spaces and

demonstrate the trade-offs associated with the algorithms.

C.1 Representations of complex matrices

The complex matrix Z = Zr + Zi ∈ CM×N , with Zr and Zi denoting respectively the

real and imaginary components, can be equivalently described as a matrix ZR in the

real-valued space R2M×2N , given by

ZR =

[
Zr −Zi

Zi Zr

]
∈ R2M×2N , R (C.1)

or as a matrix Za in the complex conjugate-coordinate space2 C2M×2N , given by

Za =

[
Z 0

0 Z∗

]
∈ C2M×2N , C (C.2)

where Za is referred to as the augmented form of the complex matrix Z and 0 is a

zero-valued matrix of size M ×N [54]. This equivalent notation is possible due to the

duality (isomorphism) between the spaces R and C and is formalised by the transfor-

mation between ZR and Za, described by the matrix3

JK =

[
I I

I −I

]
. (C.3)

Matrix JK , introduced in [50] and [54], is a square block matrix of size 2K × 2K and I

is the identity matrix of size K ×K. The inverse of this mapping is given by

J−1
K =

1

2
JH
K (C.4)

and thus matrices ZR and Za are related by

Za =
1

2
JMZRJH

N , ZR =
1

2
JH
MZaJN . (C.5)

Alternatively, the mapping in (C.5) can be written using the vec(·) operator4. In this

manner5,

vec(Za) =
1

2
(J∗

N ⊗ JM ) vec(ZR) = J̆ vec(ZR) (C.6)

vec(ZR) =
1

2
(JT

N ⊗ JH
M ) vec(Za) = J̆−1 vec(Za) (C.7)

2For simplicity, we use the notations R , R2M×2N and C , C2M×2N in the following sections.

3Alternatively, by using the scaling factor 1/
√
2 in the definition in (C.3), the matrix J becomes a

unitary matrix [48].

4The vec operator stacks the columns of a matrix into a single column in a chronological order [153].

5The vec operator and Kronecker product ⊗ are related by vec(RQS) = (ST ⊗R) vec(Q).
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and allows for a simplified and convenient method of describing the coordinate trans-

formation, denoted by J̆ ∈ R4MN×4MN . Note that by using the vectorised variant

using the vec operator, we can treat the matrices as a single column vector, however,

the transformation between the augmented spaces is then dictated by the new trans-

formation matrix J̆, and not the vector coordinate transformation JK given in Equa-

tion (C.3).

Therefore, the Jacobian of the transformation [54] fromR to C is given by

JC =
∂

∂ZR
Za =

∂ vec(Za)

∂ vecT (ZR)
=

1

2
(J∗

N ⊗ JM ) = J̆ (C.8)

and the Jacobian of the transformation from C toR by

JR =
∂

∂Za
ZR =

∂ vec(ZR)

∂ vecT (Za)
=

1

2
(JT

N ⊗ JH
M ) = J̆−1. (C.9)

This illustrates that the Jacobian of the transformation JC in (C.8) is equal to the co-

ordinate transformation J̆, and the Jacobian of the transformation JR in (C.9) is equal

to the inverse transformation J̆−1 [54]. As a result, the partial derivative transforma-

tions6 between the two spaces in the vectorised format are given by

∂ vec(·)
∂ vecT (Za)

=
1

2

∂ vec(·)
∂ vecT (ZR)

(JT
N ⊗ JH

M ) (C.10)

∂ vec(·)
∂ vecT (ZR)

=
1

2

∂ vec(·)
∂ vecT (Za)

(J∗
N ⊗ JM ) (C.11)

and are row vectors of size 1 × 4MN . Note that the partial derivative is defined as a

row operator [54] with the transpose notation ∂ vec(·)
∂ vecT (·)

used to emphasise this fact.

For a real-valued scalar function of vector complex variables f(Z,Z∗) : CM×N ×
CM×N 7→ R, the partial derivative transforms can be simplified to an equivalent

form [154]

∂f

∂Za
=

1

2
JN

∂f

∂ZR
JH
M (C.12)

∂f

∂ZR
=

1

2
JH
N

∂f

∂Za
JM (C.13)

where ∂f
∂Za and ∂f

∂ZR are matrices of size 2N × 2M . The proof for this alternative form

is given in the next section, and follows directly from the first order expansion of

f(Z,Z∗). Also, note that ∂(·)
∂Za and ∂(·)

∂ZR are shorthand notations and are calculated as

∂(·)
∂Za

=

[
∂(·)
∂Z 0

0
∂(·)
∂Z∗

]T
,

∂(·)
∂ZR

=

[
∂(·)
∂Zr

−∂(·)
∂Zi

∂(·)
∂Zi

∂(·)
∂Zr

]T
. (C.14)

6Also termed the cogradient transformations in [54].
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The real-valued scalar function f can be equivalently described in terms of coordinates

in either CM×N ,R and C. Following on [54], the TSE of the function f(ZR) up to the

second term is

f(ZR +∆ZR) = f(ZR) + Tr
( ∂f

∂ZR
∆ZR

)
+

1

2
vecT (∆ZR)HR

ZZ vec(∆ZR) (C.15)

where symbol Tr(·) denotes the matrix trace operator, ∆ZR and ∆Za are of the form

given in (C.1) and (C.2), and HR
ZZ is a real valued Hessian matrix given by

HR
ZZ =

∂

∂ vecT (ZR)
vec

([
∂f

∂ZR

]T)
∈ R4MN×4MN . (C.16)

C.1.1 Duality of First-Order Taylor Series Expansions

Upon rewriting the first-order expansion term in (C.15) in the vectorised format, and

using (C.7) and (C.10), gives

Tr
( ∂f

∂ZR
∆ZR

)
=

∂f

∂ vecT (ZR)
vec(∆ZR)

=
1

2

∂f

∂ vecT (ZR)
(JT

N ⊗ JH
M ) vec(∆Za)

=
∂f

∂ vecT (Za)
vec(∆Za)

= Tr
( ∂f

∂Za
∆Za

)
(C.17)

which is the first-order TSE of f(Za) in C. Furthermore, using the relations (C.5), we

have

Tr
( ∂f

∂ZR
∆ZR

)
= Tr

(1
2

∂f

∂ZR
JH
M (∆Za)JN

)
(C.18)

Tr
( ∂f

∂Za
∆Za

)
= Tr

(1
2

∂f

∂Za
JM (∆ZR)JH

N

)
(C.19)

and due to the duality between R and C, and the equivalence in the first-order terms

in the corresponding TSEs we have7

Tr
( ∂f

∂ZR
∆ZR

)
= Tr

(1
2

∂f

∂Za
JM (∆ZR)JH

N

)

= Tr
(1
2
JH
N

∂f

∂Za
JM (∆ZR)

)
(C.20)

and

Tr
( ∂f

∂Za
∆Za

)
= Tr

(1
2

∂f

∂ZR
JH
M (∆Za)JN

)

= Tr
(1
2
JN

∂f

∂ZR
JH
M (∆Za)

)
. (C.21)

7We also make use of the identity Tr(RQ) = Tr(QR).
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The equivalence of the terms on both sides of relations (C.20) and (C.21) results in the

simplified partial derivative transforms given in (C.12) and (C.13).

Now, to produce the first-order expansion of f(Z) in CM×N , the first-order terms of

f(Za) can be expanded to yield

Tr
( ∂f

∂Za
∆Za

)
= Tr

(( ∂f
∂Z

)T
∆Z+

( ∂f

∂Z∗

)T
∆Z∗

)

= 2ℜ
{
Tr

(( ∂f
∂Z

)T
∆Z

)}
(C.22)

where ∂f
∂Z∗ = ( ∂f∂Z)

∗, as f ∈ R. Also note that the gradient in the direction of steepest

descent is given by ∂f
∂Z∗ [153, 154].

C.1.2 Eigenvalue analysis of Hessian matrices

The relationships between second-order terms in the TSE of a scalar f in the spaces

CM×N ,R and C shall now be established. In addition, by analysing the relationship

between the Hessian matrices in R and C, a relation between the eigenvalues of the

corresponding Hessian matrices is provided.

Observe the relationship between the real Hessian matrix HR
ZZ in (C.16) and the com-

plex Hessian matrix Ha
ZZ, given by8

Ha
ZZ =

∂

∂ vecT (Za)
vec

([
∂f

∂Za

]H)
∈ C4MN×4MN . (C.23)

From (C.16), we have9

HR
ZZ =

∂

∂ vecT (ZR)
vec

([
∂f

∂ZR

]H)

=
∂

∂ vecT (ZR)

{
vec

(
1

2

(
JH
N

∂f

∂Za
JM

)H
)}

=
∂

∂ vecT (Za)

{
1

2
(JT

N ⊗ JH
M ) vec

(
∂f

∂Za

)H
}
1

2
(J∗

N ⊗ JM )

=
1

4
(JT

N ⊗ JH
M )

∂

∂ vecT (Za)
vec

(
∂f

∂Za

)H

(J∗
N ⊗ JM )

=
1

4
(JT

N ⊗ JH
M )Ha

ZZ(J
∗
N ⊗ JM ) (C.24)

8The notation vec([·]T ) is used interchangeably with vec(·)T . Note the difference from vecT (·).
9Notice that since HR

ZZ in (C.16) is real-valued, for convenience the complex conjugate operator is
applied to both sides of (C.16) and hence replace (·)T by (·)H .
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which is the relationship between real and complex Hessian matrices, written in terms

of Ha
ZZ. This relationship can also be expressed in terms of the real Hessian matrix

HR
ZZ by noticing that the two Kronecker product terms are the inverse of one an-

other10. Thus

Ha
ZZ =

1

4
(J∗

N ⊗ JM )HR
ZZ(J

T
N ⊗ JH

M ). (C.25)

The analysis of the eigenvalues of the two Hessian matrices will assist in understand-

ing their duality. Following the approach in [50] and [54], consider the linear system

(Ha
ZZ − λaI)u = 0 ⇒ (Ha

ZZ − λaI) = 0 (C.26)

where the set of solutions spans the eigenspace. Using the relation (C.25) we have

Ha
ZZ − λaI =

1

4
(J∗

N ⊗ JM )HR
ZZ(J

T
N ⊗ JH

M )− λa 1

4
(J∗

N ⊗ JM )(JT
N ⊗ JH

M )

=
1

4
(J∗

N ⊗ JM )
(
HR

ZZ − λaI︸ ︷︷ ︸
⇒λa=λR

)
(JT

N ⊗ JH
M ) (C.27)

where {λa} are the eigenvalues of the complex Hessian matrix. This demonstrates

that for every eigenvalue λa of the complex-valued Hessian matrix Ha
ZZ, there is a

corresponding eigenvalue λR of the real-valued Hessian matrix HR
ZZ, and that these

eigenvalues are equal

λR = λa. (C.28)

C.1.3 Duality of Second-Order Taylor Series Expansions

This section effectively extends the analysis for the vector case presented in [54]. The

second-order expansion term in C is obtained from (C.15) using the relationship (C.24)

such that

1

2
vecT (∆ZR)HR

ZZ vec(∆ZR) =
1

2
vecH(∆ZR)HR

ZZ vec(∆ZR)

=
1

2

(1
2
vecH(∆Za)(J∗

N ⊗ JM )
)
HR

ZZ

(1
2
(JT

N ⊗ JH
M ) vec(∆Za)

)

=
1

2
vecH(∆Za)Ha

ZZ vec(∆Za). (C.29)

10This can be observed from (C.8) and (C.9). Alternatively, the identity (R⊗Q)−1 = R−1 ⊗Q−1 and
(C.4) can be used to obtain the same result, i.e. 1

4
(J∗

N ⊗ JM )(JT
N ⊗ JH

M ) = I.
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The components of the second-order expansions in C can now be written in terms of

matrix Z to derive the second-order expansion in the standard CM×N space, that is

1

2
vecH(∆Za)Ha

ZZ vec(∆Za) =

1

2

(
vecH(∆Z)

∂ vec(∂f/∂Z)∗

∂ vecT (Z)
vec(∆Z) + vecT (∆Z)

∂ vec(∂f/∂Z∗)∗

∂ vecT (Z)
vec(∆Z)

+ vecH(∆Z)
∂ vec(∂f/∂Z)∗

∂ vecT (Z∗)
vec∗(∆Z) + vecT (∆Z)

∂ vec(∂f/∂Z∗)∗

∂ vecT (Z∗)
vec∗(∆Z)

)

= ℜ
{
vecH(∆Z)HZZ vec(∆Z) + vecH(∆Z)HZ∗Z vec∗(∆Z)

}
, (C.30)

where HZZ ,
∂ vec(∂f/∂Z)∗

∂ vecT (Z)
and HZ∗Z ,

∂ vec(∂f/∂Z)∗

∂ vecT (Z∗)
.

To summarise, the expansion of f in R is illustrated in (C.15), whereas the expansion

in C is shown through the isomorphism between the two spaces given in (C.17) and

(C.29), to yield

f(Za +∆Za) = f(Za) + Tr
( ∂f

∂Za
∆Za

)
+

1

2
vecH(∆Za)Ha

ZZ vec(∆Za) (C.31)

Similarly, the TSE of a scalar function of complex matrix variables f in CM×N is given

by (C.22) for the first term, and in (C.30) for the second term, that is

f(Z+∆Z) = f(Z) + 2ℜ
{
Tr

(( ∂f
∂Z

)T
∆Z

)}

+ ℜ
{
vecH(∆Z)HZZ vec(∆Z) + vecH(∆Z)HZ∗Z vec∗(∆Z)

}
(C.32)

C.2 Application examples

To illustrate the potential of the derived results, two case studies are considered: New-

ton optimisation and Blind Source Separation.

C.2.1 Optimisation in the Augmented Matrix Spaces

A classic optimisation application, illustrated in [50], is the minimisation of the real-

valued function f : CN × CN 7→ R using the Newton method. The extension of this

approach to functions of complex matrices f : CM×N × CM×N 7→ R is considered, to

calculate the minima ∂f/∂ZR = 0 and ∂f/∂Za = 0. By taking the derivative of the

second order expansion term of f(ZR) in (C.15), and f(Za), in (C.31), and equating to

zero, we have

HR
ZZ vec(∆ZR) = −

( ∂f

∂ vecT (ZR)

)T
(C.33)

Ha
ZZ vec(∆Za) = −

( ∂f

∂ vecT (Za)

)H
. (C.34)
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The benefit of this formulation is that it allows complex optimisation problems to be

cast in augmented matrix spaces, which when combined with CR calculus, provide a

simpler and easier to understand way of calculating the optimal solution.

C.2.2 Derivative calculation in blind source separation

In the derivation of the complex blind source separation algorithm based on maxi-

mum likelihood, it is necessary to calculate the derivative ∂ log | det(ZR)|
∂Z∗ . The method

provided in [155] requires the introduction of a new symmetric matrix and further

algebraic manipulation. A more straightforward calculation, based on the introduced

framework, gives

log | det(ZR)| = log | det(1
2
JHZaJ)|

= log | det(1
2
JH) det(Za) det(J)|

= log | det(Za)|
= log | det(Z) · det(Z∗)|
= log | det(Z)|+ log | det(Z∗)| (C.35)

and therefore

∂ log | det(ZR)|
∂Z∗

=

[
∂ log | det(Z)|

∂Z
+

∂ log | det(Z∗)|
∂Z

]∗
= Z−H (C.36)

where some fundamental results from linear algebra [70] and matrix derivatives [154]

have been used.

C.3 Adaptive estimation of complex matrix sources

Several cost functions encountered in signal processing research are defined based on

matrix inputs [153]. Here norm-based cost functions J (Z,Z∗) : CN×N × CN×N 7→ R

given by

J (A,A∗) = ‖A‖2F = Tr(AHA) (C.37)

are addressed, where ‖ · ‖F denotes the Frobenius norm. Consider the linear predictor

of U given by

Û = WTZ, (C.38)

with estimation error E = U − Û, input matrix Z and weight matrix W ∈ CN×N ,

and the norm-based cost function J (W,W∗) = ‖E‖2F = Tr(EHE). The optimal value
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of W can be obtained adaptively using a gradient descent method that minimises the

cost function. Thus using CR calculus11.

Wk+1 = Wk − µ∇Wk
J = Wk + µEkZ

∗
k (C.39)

which will be referred to as the block complex least mean square (b-CLMS) algorithm,

where µ is the step-size. Alternatively, by assuming a widely linear model (see Equa-

tion (2.33)) of U based on the input Z and its conjugate Z∗, the output of the widely

linear predictor is

ÛWL = WTZ+VTZ∗ (C.40)

and W and V are the complex N × N weight matrices. The cost function can be

minimised for both matrices to achieve the gradient descent algorithms12

Wk+1 = Wk + ηEkZ
∗
k

Vk+1 = Vk + ηEkZk (C.41)

and η is the step-size. We will refer to (C.41) as the block augmented complex least

mean square (b-ACLMS) algorithm.

Now consider the matrix analog of the dual channel real least mean square (DCRLMS)

algorithm described in [86], with real-valued input/output relation

[
Ŷ1

Ŷ2

]
=

[
H11 H12

H21 H22

]T [
X1

X2

]
(C.42)

where Xi are the real-valued input matrices and Ŷi are the estimated output. The

matrix of weight matrices Hpq ∈ RN×N is updated adaptively as

Hpq,k+1 = Hpq,k + ρEqXp,k, p, q = {1, 2} (C.43)

and Eq,k = Yq,k − Ŷq,k is the estimation error and ρ is the step-size. We will refer to

the update algorithms (C.43) as block DCRLMS (b-DCRLMS).

In order to perform analysis between the update algorithms in CN×N and RN×N , we

will write the linear input relation (C.38) in terms of its real and imaginary compo-

nents Ur and Ui, to obtain

Ûr = WrTZr −WiTZi

Ûi = WiTZr +WrTZi (C.44)

11For clarity and simplicity in the discussion of this section, we will use an alternative notation. Then,
Zk denotes the value of complex-valued variable Z at sample k, while Zr

k and Zi
k respectively refer to

the real and imaginary component of the complex-valued variable Z at sample k.

12See Section 3.2.2 for the derivation of the vector ACLMS algorithm.
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and for the widely linear relation (C.40), we have

Ûr
WL = (Wr +Vr)TZr + (Vi −Wi)TZi (C.45)

Ûi
WL = (Wi +Vi)TZr + (Wr −Vi)TZi. (C.46)

Similarly, the update algorithms can be written in terms of the updates for the real

and imaginary components of the weight matrices. For the b-CLMS algorithm (C.39),

we thus have

Wr
k+1 = Wr

k + µ(Er
kZ

r
k +Ei

kZ
i
k) (C.47)

Wi
k+1 = Wi

k + µ(Ei
kZ

r
k −Er

kZ
i
k), (C.48)

while for the b-ACLMS algorithm (C.41)

Wr
k+1 = Wr

k + η(Er
kZ

r
k +Ei

kZ
i
k) (C.49)

Wi
k+1 = Wi

k + η(Ei
kZ

r
k −Er

kZ
i
k) (C.50)

Vr
k+1 = Vr

k + η(Er
kZ

r
k −Ei

kZ
i
k) (C.51)

Vi
k+1 = Vi

k + η(Ei
kZ

r
k +Er

kZ
i
k). (C.52)

C.3.1 Adaptive Strictly Linear Algorithms

To compare the input/output relation and the dynamics of the b-CLMS and b-DCRLMS

algorithms, for the same inputs from (C.44) and (C.42) we have

X1 = Zr, X2 = Zi (C.53)

and the corresponding errors are defined so that

E1 = Er, E2 = Ei. (C.54)

Thus, for the same outputs Ŷ1 = Ûr and Ŷ2 = Ûi, we have

H11 = Wr H12 = Wi

H21 = −Wi H22 = Wr (C.55)

It is clear that the b-CLMS input/output relation is a constrained version of the b-

DCRLMS, where fixed values are assigned to the Hij matrices.

The dynamic behaviour of the two update algorithms can be readily compared from (C.43)

and (C.47), illustrating that the two algorithms are not equivalent, due to the differ-

ent dynamics of the updates in CN×N and RN×N . Also notice that while the updates

∆Wr
k and ∆Wi

k of the b-CLMS algorithm depend on both the real and imaginary er-

ror components, the b-DCRLMS update ∆Hij is calculated based on only the error
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from one channel. However, by assuming the constraints (C.55) on the weights Hij ,

we can deduce that

∆H11,k = ∆H22,k =
1

2
(E1,kX1,k +E2,kX2,k) =

1

2
∆Wr

k

∆H12,k = −∆H21,k =
1

2
(E2,kX1,k −E1,kX2,k) =

1

2
∆Wi

k (C.56)

and so for as equal step-size ρ = µ, the b-DCRLMS algorithm converges to the optimal

solution two times slower as the b-CLMS algorithm.

C.3.2 Adaptive Widely Linear Algorithms

The input/output relation of the widely linear model (C.40) to the dual channel real-

valued model in (C.42) is now compared. Assuming the same input relations (C.53)

and by matching the output errors (C.54), the component expansions in (C.45)–(C.46)

provide the relation between the corresponding outputs, such that

H11 = (Wr +Vr) H12 = (Wi +Vi)

H21 = (Vi −Wi) H22 = (Wr −Vr) (C.57)

result in the equivalent outputs Ŷ1 = Ur
WL and Ŷ2 = Ui

WL.

The relationship between the dynamics of the b-ACLMS and b-DCRLMS algorithms

through simple algebraic manipulations of (C.49)–(C.52) is established, where for the

same step-size ρ = η the following equivalence is given

∆H11,k = E1,kX1,k =
1

2
(∆Wr

k +∆Vr
k)

∆H12,k = E2,kX1,k =
1

2
(∆Wi

k +∆Vi
k)

∆H21,k = E1,kX2,k =
1

2
(∆Vi

k −∆Wi
k)

∆H22,k = E2,kX2,k =
1

2
(∆Wr

k −∆Vr
k). (C.58)

Therefore, the b-DCRLMS is the real-valued equivalent of the b-ACLMS algorithm,

while having a convergence rate twice as slow as that of its complex counterpart.

However, due to its design based on the optimisation of a widely linear model, the b-

ACLMS is better suited for modelling of complex data as it is optimal for both second

order circular and noncircular signals. Finally, note that these results are in line with

the existing results on adaptive algorithms in RN and C [63].

C.3.3 Computational Complexity of Adaptive Algorithms

To compare the computational complexity of the b-CLMS, b-ACLMS and b-DCRLMS

algorithms, the measurement used was the ‘flop’, defined as the number of floating
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Table C.1 Computational complexity of the real- and complex-valued adaptive algorithms.
The variable N denotes the size of a square matrix.

Algorithm Flops

b-CLMS 2(3N2 + 4N3)
b-ACLMS 4(3N2 + 4N3)

b-DCRLMS 4(2N2 + 2N3)
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Figure C.1 Computational complexity of the b-CLMS, b-ACLMS and b-DCRLMS algo-
rithms

point operations [156]. Table C.3.3 states the number of flops for each adaptive algo-

rithm, where N is the length of a square matrix while Figure C.1 illustrates the increase

in the computational complexity for an increase in the size of the data matrix for the

respective algorithms.

It can be seen that while the computational complexity of the b-CLMS and b-DCRLMS

algorithms are similar, the b-ACLMS algorithm has a higher computational cost for

the same matrix size13. Likewise, for data matrices of size N ≥ 10, the cost of com-

putation becomes an important factor, while for N < 10, the number of flops are

approximately the same across all algorithms and we focus on the performance of

the algorithm. Given the equivalence of the b-ACLMS and b-DCRLMS algorithms,

the implementation of the b-ACLMS is obviously less computationally effective than

that of the b-DCRLMS, while providing a natural processing environment for complex

data.

13The b-DCRLMS algorithm has an additional overhead of O(N2) with 2N2 flops compared to the
b-CLMS algorithm, while the extra computational complexity of the b-ACLMS compared to the b-
DCRLMS is O(N3), that is, 4N2 + 8N3.



Appendix D

Convergence Analysis of the

Generalised Complex FastICA

Algorithm

D.1 Introduction

The FastICA [21] algorithm is one of the most efficient methods for the blind separa-

tion of independent sources due to its use of fixed-point like updates which enable

fast convergence [157]. The algorithm was subsequently extended to the complex

domain by Bingham and Hyvärinen [41], termed the c-FastICA, with the explicit as-

sumption of circularly symmetric distributions of the sources. Another fixed-point

update for the complex ICA, proposed by Douglas [71], is the fixed-point FastICA

algorithm based on the kurtosis cost function and utilising the strong uncorrelating

transform (SUT) [69]; no circularity assumptions are needed as both covariance and

pseudo-covariance matrices are diagonalised using the SUT instead of the conven-

tional whitening of only the covariance matrix.

The more recent variant of the complex FastICA algorithm [78], the nc-FastICA algo-

rithm, is a generalisation of the c-FastICA algorithm [41], which considers the possible

noncircularity of complex sources and has been derived using the CR calculus. The

nc-FastICA algorithm was shown to be stable for circular as well as for non-circular

sources owing to an always positive-definite Hessian of the cost function. This is in

contrast with the c-FastICA algorithm, whose fixed-point like updates are only stable

for circular sources and are not stable for noncircular ones. The local stability analysis

of the cost function in nc-FastICA indicates that for circular sources the solution is a

stable point independent of whether maximising or minimising the cost function. For

noncircular sources however, there is a region of instability whose size depends on
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the deviation from Gaussianity and degree of the noncircularity of the signal, as well

as the nonlinearity used in the cost function. For example, for a kurtosis based cost

function, sub-Gaussian signals used in communications such as the circular QAM and

noncircular BPSK lie close to this region of instability, with the stability compromised

as the signals become more noncircular [158, 78].

The convergence of the real domain FastICA was investigated in [21] and [22] using a

single unit case, where the orthogonalisation was not taken into account. In [159] Dou-

glas also addresses the convergence of the real FastICA algorithm using one source

update, and for a cubic cost function. Erdogan generalises the study of fixed-points

in ICA algorithms in R and provides a proof for the monotonic convergence of fixed-

point ICA algorithms with symmetrical orthogonalisation [160].

While the previous methods consider a single unit update, convergence analysis of

FastICA algorithms can be performed by considering the orthogonalisation applied

at each iteration of the update algorithm; two often used methods are the deflationary

and simultaneous (parallel) orthogonalisation techniques. The deflationary orthogo-

nalisation using the Gram-Schmidt method processes the signals sequentially, and so

the convergence analysis becomes an extension of single unit convergence analyses.

However, source estimation errors in an update stage accumulate and cause subse-

quent source estimates to be noisy [71]. The symmetric orthogonalisation allows for

simultaneous estimation of all the sources and does not suffer from the estimation

error propagation issue of the deflationary method. A complete analysis for the real

FastICA based on the symmetrical orthogonalisation was performed recently by Oja

and Yuan, whereby both single unit convergence and the orthogonalisation approach

were considered [161].

It should be noted that each method has its merits; for example, while the parallel

orthogonalisation method is unaffected by the accumulation of deflation errors, it is

only suitable for the estimation of sources from small-scale mixtures, and will result in

additional overhead for large-scale mixtures when only a subset of latent sources is of

interest. For such applications, the deflationary orthogonalisation technique may be

better suited; for example, in EEG conditioning, shown in Chapter 6, it is necessary to

only estimate and extract one or two artifacts from a large-scale EEG dataset (as many

as 64 channels).

For rigour, convergence of both the nc-FastICA and c-FastICA algorithms is consid-

ered under one umbrella, and will address the convergence utilising three different

approaches. First, an overview of the generalised complex FastICA algorithm and its

special case, the c-FastICA algorithm, is given.

◦ Then, in the first approach, analysis is performed by following the methodology

of [161], where the convergence of the nc-FastICA algorithm with symmetric
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orthogonalisation is considered. The convergence is analysed using a linear al-

gebraic method. While this results in a simple analysis framework, it assumes

initial local convergence.

◦ In the second approach, a second-order approximation using the complex do-

main Taylor Series Expansion, discussed in Appendix B, is used for the conver-

gence analysis. Similar to the previous method, local convergence is assumed.

◦ Finally, an interpretation of the update algorithm as a fixed-point iteration is

given, where its convergence behaviour in the phase-space is also observed.

Here, the convergence is based on the assumptions of fixed-point theory, and

as such, provides for a generalised analysis framework.

D.2 An Overview of ICA in the Complex Domain

The ICA problem in the complex domain assumes latent sources s ∈ CNs , which are

linearly combined through a complex mixing matrix A and are available through the

observed vector x̌, that is

x̌ = As (D.1)

The mixing matrix A ∈ CN×Ns is assumed invertible and the aim is to find a demix-

ing matrix W such that the sources can be estimated from the observed data. For

convenience, a square mixing matrix is assumed, such that Ns = N . The sources

s = [s1, . . . , sNs ]
T are assumed to be non-Gaussian and mutually independent, with

unit variances and zero means. In other words, the covariance matrix E{ssH} = I,

however, no assumptions are made about the circularity of the sources. In the stan-

dard c-FastICA [41], however, the sources were explicitly taken as circular, with a

vanishing pseudo-covariance, that is, E{ssT } = 0.

It is common to initially orthogonalise the data through a whitening transform V,

such that

x = Vx̌ = VAs = Ms (D.2)

The vector of estimated sources y = WHx, and a single source estimate yi is given by

yi = wH
i x = wH

i Ms, i = 1, . . . , Ns (D.3)

where wi is the ith column of W. At the optimal solution, uH
i = wH

i M has a single

non-zero complex component with unit magnitude and an unknown phase. That is

ui = [0, . . . , eϕ, 0, . . . , 0]T (D.4)

and uij , j ∈ [1, N ] is the jth element of column vector ui. This is due to the limi-

tation of ICA, where a source is estimated up to a scaling factor and random order

(permutation).
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D.2.1 The nc-FastICA and c-FastICA Algorithms

To find the optimal values for the demixing vector, a cost function

J (w,w∗) = E{G(|wHx|2)} (D.5)

is represented by its conjugate (augmented) coordinates w and w∗ and is minimised

under the constraint ‖w‖22 = 1, where G : R 7→ R is an even nonlinear function. The

cost function J : CN 7→ R is optimised for both w and its complex conjugate w∗,

that is, based on the CR calculus, where the real valued cost function is regarded as

R-analytic. This approach, which allows for the consideration of noncircular signals,

was used in [78] to derive the weight update of the nc-FastICA algorithm, given by

w̆i = −E{g(|yi|2)y∗i x}+ E{g′(|yi|2)|yi|2 + g(|yi|2)}wi

+ E{xxT }E{g′(|yi|2)y∗
2

i }wi (D.6)

for a single unit wi, and yi = wH
i x. The symbol w̆i denotes the ith single unit update

before being normalised to unit norm. The function g is the derivative of G and g′ is

the derivative of g. Notice that the last term in (D.6) contains the pseudo-covariance

matrix, E{xxT }, which caters for the noncircularity of complex signals. In the case of

circular signals, this term becomes zero, giving the original c-FastICA update:

w̆i = −E{g(|yi|2)y∗i x}+ E{g′(|yi|2)|yi|2 + g(|yi|2)}wi. (D.7)

Orthonormalisation of the updates can be performed by a deflationary or symmetri-

cal orthogonalisation. Using the deflationary method, the independent components

are estimated sequentially, whereas the symmetrical orthogonalisation allows for a

parallel estimation of the independent components, that is

W = (W̆W̆H)−
1
2W̆ = W̆(W̆HW̆)−

1
2 . (D.8)

Stability analyses of these algorithms showed that the fixed-point updates are always

stable for circular sources, whereas for noncircular sources regions of instability [78]

need to be identified.

D.2.2 The Analysis Framework

Extending the approach from [161] to the complex domain, the convergence analysis

framework shall now be introduced.

From (D.2), notice that M = VA is a unitary matrix. As x is whitened, gives

E{xxH} = ME{ssH}MH = I ⇒MMH = I (D.9)
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The source vector s can then be rewritten as

s = M−1x = MHx (D.10)

Define a linear transform

UH = WHM (D.11)

which for a single ith row of UH , denoted as uH
i , is given as1

uH
i = wH

i M (D.12)

Using the above transform, the symmetric orthogonalisation can be redefined by mul-

tiplying both sides of (D.8) by MH from the left, that is

MHW = MHW̆(W̆HMMHW̆)−
1
2 (D.13)

U = Ŭ(ŬHŬ)−
1
2 . (D.14)

The single unit update for the nc-fastICA algorithm (D.6) can also be written in terms

of the transformed vectors ui and s by multiplying both sides by MH from the left to

yield

ŭi = −E{g(|uH
i s|2)(uH

i s)∗s}
+ E{g′(|uH

i s|2)|uH
i s|2 + g(|uH

i s|2)}ui

+ E{ssT g′(|uH
i s|2)(uH

i s)∗
2}u∗

i (D.15)

where the independence assumption [41]

E{xxf(x)} ≈ E{xx}E{f(x)} (D.16)

was used in the third term of (D.15).

D.3 Convergence analysis of the Parallel nc-FastICA based on an

extension of the real domain approach in [161]

This analysis closely follows the convergence analysis in [161], and takes into account

specific properties of the complex domain.

Lemma 1. At convergence, the matrix U, a diagonal matrix with components eϕ, with ϕ an

unknown phase, is the fixed point of (D.14).

1Vector ui is the ith column of U.
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Proof. As only the ith component of uH
i is non-zero, gives

uH
i s = e−ϕsi → |uH

i s| = |e−ϕsi| = |si|, g(|uH
i s|2) = g(|si|2) (D.17)

This way (D.15) is simplified into

ŭi = −E{g(|si|2)eϕs∗i s}
+ E{g′(|si|2)|si|2 + g(|si|2)}ui

+ E{ssT g′(|si|2)e2ϕs∗
2

i }u∗
i (D.18)

Observe that:

i) Following on (D.7), for the c-FastICA algorithm readily yields

ŭi = −E{g(|si|2)eϕs∗i s}+ E{g′(|si|2)|si|2 + g(|si|2)}ui (D.19)

The ith component in the first term of (D.19) (resp. (D.18)) is−E{g(|si|2)|si|2eϕ}
and all other components are zero because the function g depends on si and so

E{sisjg(|si|2)} = 0, j 6= i.

By simplifying (D.19) further, gives

ŭi = qiui, qi 6= 0, qi ∈ R (D.20)

where

qi = −E{g(|si|2)|si|2}+ E{g′(|si|2)|si|2 + g(|si|2)} (D.21)

To comprise updates for all sources, equation (D.20) can be expanded as

Ŭ = DU (D.22)

where D = diag(q1, . . . , qN ) is a diagonal matrix.

ii) For the nc-FastICA algorithm, the last term in (D.18) can be simplified into

E{ssT g′(|si|2)s∗
2

i }︸ ︷︷ ︸
C̃

ui (D.23)

A further insight shows that the c̃jk = (C̃)jk, that is the component of row j and

column k (or jkth component) of C̃ can be written as

c̃jk = E{sjskg′(|si|2)s∗
2

i } (D.24)

For k = i, we have

c̃ji = E{sjsig′(|si|2)s∗
2

i }
= E{sjs∗i g′(|si|2)|si|2︸ ︷︷ ︸

ri

}

=

{
0 , j 6= i

ri , j = i

= c̃ij (D.25)
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As the sources are assumed independent, the approximation (D.16) is used, and

since the pseudo-covariance matrix is complex symmetric, the elements c̃jk =

c̃kj [45]. The matrix C̃ can then be written as

C̃ =




c̃11 · · · · · · · · · 0 · · · · · · c̃1N
...

. . .
...

. . .
...

... 0
...

0 · · · · · · 0 ri 0 · · · 0
...

. . . 0
. . .

...
...

...
...

c̃N1 · · · · · · · · · 0 · · · · · · c̃NN




(D.26)

and the expression (D.23) becomes

C̃ui = riui (D.27)

Substitute (D.27) in (D.18) to obtain

ŭi = qiui + riui

= diui , di = qi + ri 6= 0 , di ∈ R (D.28)

where qi is defined as in (D.21). By considering all ŭi in (D.28), this yields

Ŭ = DU (D.29)

and D = diag(d1, . . . , dN ).

The matrix Ŭ in (D.29) has an identical structure to that obtained in the c-FastICA

update, given in (D.22).

For convenience, examine

ŬHŬ = (DU)H(DU)

= UHDHLU

= |D|2 = D2

⇒ (ŬHŬ)−
1
2 = D−1 (D.30)

and so

Ŭ(ŬHŬ)−
1
2 = DUD−1 = U (D.31)

that is, the mapping has reached its fixed point. However, note that this demonstrates

an asymptotic convergence due to oscillations in each single unit update ui once the
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fixed point has been reached. This issue was addressed in the real domain in [162]

and is attributed to sign flipping, whereas in C these oscillations are due to the phase

uncertainty, as illustrated in Section D.6.

In the analysis here, the relation DU = UD is used, as they are both diagonal matrices.

The diagonal elements of D are assumed to be non-zero, making the matrix invertible.

This, in return, proves that the diagonal matrix U contains the fixed points of (D.14),

that is, both FastICA and nc-FastICA converge to a unique solution.

This proof can now be extended to take into account the permutation ambiguity in the

order of the fixed points in U.

Remark 1. Permutations of U are also fixed points of (D.14).

Proof. Extending the result in [161] for real–valued FastICA, the permutation matrix

P is a real valued orthogonal matrix, that is, PPT = I. Thus, we need to show that

PU and UP are also fixed points.

Adapting the proof given in Lemma 2 in [161] to the complex domain, it is straight-

forward to illustrate that PŬ and ŬP converge respectively to PU and UP using the

symmetrical orthogonalisation given in (D.14). More specifically,

(PŬ)
(
(PŬ)H(PŬ)

)− 1
2
= PŬ(ŬHŬ)−

1
2

= PU (D.32)

and

(ŬP)
(
(ŬP)H(ŬP)

)− 1
2
= Ŭ(ŬHŬ)−

1
2P

= UP (D.33)

By using the expression

(
(ŬP)H(ŬP)

)− 1
2
= PT (ŬHŬ)−

1
2P (D.34)

which is adapted from the real domain for the proof of (D.33).

Therefore, permutations ŬP and PŬ both converge to permutations of the fixed

points U, that is, UP and PU.

D.4 Convergence of the nc-FastICA algorithm using a Taylor Series

Expansion approach

The convergence of the nc-FastICA is now investigated using the Taylor Series Ex-

pansion (TSE) approximation of the update algorithm (D.6) in a manner similar to
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that in [22]. The TSE of real-valued functions of complex variables was addressed in

Section B.2 of Appendix B.

For simplicity, the algorithm is rearranged into the form given in (D.15), where the

vector ui is assumed to be close to the solution with |ui1| ≈ 1 and |uij | ≈ 0, ∀j 6= 1.

The TSE of a real-valued function of complex variables f(z) : CN 7→ R up to a second

order around a value z0 is given by [54] (see Appendix B)

f(z0 +∆z) ≈ f(z0) + 2ℜ
{∂f
∂z

∆z
}
+ ℜ

{
∆zHHzz∆z+∆zHHz∗z∆z∗

}
(D.35)

where ∆z = z − z0 and Hzz = ∂
∂z(

∂f
∂z )

H and Hz∗z = ∂
∂z∗ (

∂f
∂z )

H are the Hermitian

matrices. While it is equally valid to define the TSE of f in terms of the augmented

coordinates z and z∗, due to the equivalence of notations, the definition simplifies to

that in (D.35) (see [54, p.39]).

The TSE of the nonlinearities {g, g′} ∈ R in the neighbourhood of ui is then written as

g(|uHs|2) ≈ g(|si|2) + 2g′(|si|2)ℜ{∆ξ}+ g′′uu(|si|2)|∆ξ|2

+ g′′u∗u(|si|2)ℜ{∆ξ∗} (D.36)

and

g′(|uHs|2) ≈ g′(|si|2) + 2g′′u∗u(|si|2)ℜ{∆ξ}+ g′′′uu(|si|2)|∆ξ|2

+ g′′′u∗u(|si|2)ℜ{∆ξ∗} (D.37)

where ∆ξ , ∆(uHs) = uHs − uH
i s = (∆u1)

∗s1 + · · · + (∆uj)
∗sj + · · · + (∆uN )∗sN ,

(∆u1)
∗s1 ≈ 0 and g′′′ is the derivative of g′′.

After the substitution of (D.36)–(D.37) in (D.15) and simplification, the elements of the

vector ŭi can be expressed as

ŭi1 = −E{g(|si|2)|si|2}ui1 + E{2g′(|si|2)|si|2 + g(|si|2)}ui1 (D.38)

and

ŭij
j 6=1

= −E{g′′uu(|sj |2)|sj |4 + g′′uu(|sj |2)|sj |2}|uij |2uij

+ E{g′′′uu(|sj |2)|sj |4}|uij |4uij + E{g′′′uu(|sj |2)|sj |6}|uij |2u∗3ij . (D.39)

As ŭi is normalised after each update, observe from (D.38) and (D.39) that |ŭi1| = 1

and |ŭij | = 0, with the algorithm exhibiting local convergence for the ith single unit

update.
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D.5 Fixed Point Interpretation of Convergence

In Section D.3, the convergence of the generalised complex FastICA algorithm with

symmetric orthogonalisation was presented, where at convergence the matrix U was

shown to be the fixed point of (D.14). Deeper insight into the mechanism of the al-

gorithm is provided by considering a fixed point interpretation of the convergence.

This will be achieved by focusing on the cost function J in (D.5) and by analysing the

convergence behaviour of the algorithm following the methodology in [163, 164].

Regalia and Kofidis [163] provided analysis for the convergence of the real domain

FastICA algorithm using a gradient update method where the conditions for mono-

tonic convergence of the algorithm using convex and non-convex cost functions were

given (upper and lower bounds of the gradient update step-size). A general frame-

work for the convergence of complex FastICA algorithms with symmetric orthogo-

nalisation was recently proposed by Erdogan in [164], where it was shown that the

algorithm is monotonically convergent for convex cost functions, and conditions for

the convergence of non-convex functions were provided. The convergence behaviour

for a convex cost function of a single unit update shall be considered.

Theorem 1. For a non-decreasing nonlinearity G(z) in Equation (D.5), the nc-FastICA al-

gorithm converges monotonically to a maximum of the cost function J (u,u∗).

Proof. First it is illustrated that the cost function J (u,u∗) is a convex function on

CN×N . Recall that a function f : CN 7→ CN is defined as a convex function if for

two vectors z1 and z2

∣∣f(αz1 + (1− α)z2)
∣∣ ≤ α

∣∣f(z1)
∣∣+ (1− α)

∣∣f(z2)
∣∣ (D.40)

where α ∈ [0, 1].

The cost function (D.5) is given in terms of the modified demixing vector u as

J (u,u∗) = E{G(|uHs|2)} (D.41)

Notice that J (u,u∗) can be expressed as G
(
H(uHs)

)
, where H(·) = | · |2, H : CN 7→ R;

the Cauchy-Schwarz inequality (triangle inequality), then shows that H is convex2.

Then, the composite function G ◦ H is convex function if G is non-decreasing [165],

that is

∣∣G
(
H(αu1 + (1− α)u2)

)∣∣ ≤ α
∣∣G
(
H(u1)

)∣∣+ (1− α)
∣∣G
(
H(u2)

)∣∣. (D.42)

Recall that the probability density function (pdf) pZ(z) of a complex random variable

z = zr + zi is defined in terms of the joint pdf of the real and imaginary components

2In the complex domain, the triangle inequality can be stated as ‖a+ b‖ ≤ ‖a‖+ ‖b‖, ∀a,b ∈ C.
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pZ(z) = pZr,Zi
(zr, zi) and 0 ≤ pZ(z) ≤ 1. Following on from [163], the statistical mean

for the function G : CN 7→ R is then defined as

E{G(z)} =
∫∫

zrzi

G(z)pZ(z)dzrdzi. (D.43)

Thus for two vectors u1 and u2, and using Equations (D.40),(D.41) and (D.43)

∣∣J (αu1 + (1− α)u2)
∣∣ =

∫∫

srsi

∣∣G
(
H(αu1 + (1− α)u2)

)∣∣pS(s)dsrdsi

≤
∫∫

srsi

α
∣∣G(H(u1))

∣∣+ (1− α)
∣∣G(H(u2))

∣∣pS(s)dsrdsi

= α
∣∣J (u1)

∣∣+ (1− α)
∣∣J (u2)

∣∣ (D.44)

A comparison with (D.40), shows that J is convex.

For a convex J , the gradient inequality up to a first order is expressed as [165]

J (uk+1) ≥ J (uk) + 2ℜ
{ ∂J
∂uk

(uk+1 − uk)
}

(D.45)

where the first order term 2ℜ
{

∂J
∂uk

(uk+1 − uk)
}

can be readily obtained from the

complex-valued Taylor Series Expansion given in (D.35), and the subscript k denotes

the iteration index.

The upper bound for the term ∂J
∂uk

uk =
〈(

∂J
∂uk

)H
,uk

〉
=
〈
∇u∗

k
J ,uk

〉
is given by3

〈( ∂J
∂uk

)H
,uk

〉
≤
∥∥∥ ∂J
∂u∗

k

∥∥∥ · ‖uk‖︸ ︷︷ ︸
=1

(D.46)

and as uk+1 = ∇u∗
k
J /‖∇u∗

k
J ‖, the second term of the right hand side of inequal-

ity (D.45) can be expressed as

2ℜ
{ ∂J
∂uk

uk+1

︸ ︷︷ ︸
=‖∇u∗

k
J‖

− ∂J
∂uk

uk

︸ ︷︷ ︸
<‖∇u∗

k
J‖

}
> 0, uk 6= uk+1 (D.47)

and therefore J (uk+1) > J (uk). Given that u is bounded to a unit norm, the cost

function J is maximised as one of the fixed points is approached after each iteration

and as k →∞.

More generally, by considering a symmetric orthogonalisation, it can stated thatJ (Uk+1) >

J (Uk), which was presented in [164, Theorem 4].

3The inner product 〈a ,b〉 = aHb.
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D.5.1 Contraction Mapping Theorem for Vector-valued Functions

The Contraction Mapping Theorem (CMT) was originally introduced for scalar func-

tions F : RN 7→ R, and can help the convergence analysis by casting algorithms into

a fixed point iteration (FPI) framework [157]. For example, it has been used to anal-

yse the convergence and stability of nonlinear adaptive filters in both the real and

complex domain, as well as to obtain the lower and upper error bounds of stabil-

ity for contractive and expansive activation functions [166, 63]. The nc-FastICA (or

c-FastICA) weight update algorithm is however a vector-valued function such that

F(u,u∗) : C2N×2N 7→ C2N×2N , where F(·) denotes the update algorithm (D.6) (or

(D.7)) and is defined here in terms of the conjugate coordinates u and u∗. By consid-

ering the duality between C2N and R2N [54](also see Appendix B), the CMT in this is

stated below [167] (Theorem 5.3.2)

Theorem 2 (CMT [167] (Theorem 5.3.2)). For a closed subset A ∈ R2N , the function F is

considered a contraction iff

1. F : A 7→ A, i.e. the function F maps the set onto itself,

2. ∃γ such that ‖F(x)− F(y)‖ ≤ γ‖x− y‖ ∀x,y ∈ A, 0 ≤ γ < 1.

The parameter γ is referred to as the Lipschitz constant where for values in [0, 1), the

function F is a contractive mapping on A and γ defines the rate of convergence.

D.5.2 Convergence Analysis of FPI based on the Jacobian Matrix

The eigenvalues of the Jacobian of the nonlinear function F in the neighbourhood

of the fixed point u⋆ are used to indicate the convergence behaviour. Eigenvalues

situated within the unit circle result in convergence and show that F is a contraction,

and eigenvalues outside the unit circle show that F is an expansion [63]. Using the

complex Taylor expansion [50] it can be stated that

Lemma 2. For a convergent twice differentiable function F : CN 7→ CN , the eigenvalues of

the Jacobian and conjugate Jacobian matrix [54] evaluated at the fixed point u⋆ must lie within

the unit circle U = {z | z ∈ C, |z| < 1}. (See also [168])

Proof. This condition was described in the paper by Ferrante et al. [168] for real func-

tions; they are extended by considering the first order complex Taylor series expansion

of F around the fixed point u⋆ [50]. For the augmented vector ua = [u, u∗]T , the TSE

of F is given by

F(ua +∆ua) = F(ua) +
∂F(ua)

∂ua
∆ua + . . . . (D.48)
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Noting that ua
k = u⋆a − eak and eak as the convergence error, the (k + 1)th iteration can

be expanded around the the fixed point as

ua
k+1 = F(ua

k) = F(u⋆a − eak)

= F(u⋆a) +
∂F

∂ua
k

(ua
k − u⋆a) + . . .

= F(u⋆a) +
∂F

∂ua
k

(−eak) + . . . , ‖ek‖ ≪ 1

≈ u⋆a − ∂F

∂ua
k

eak (D.49)

Substituting ua
k+1 = u⋆a − eak+1 results in

eak+1 =
∂F

∂ua
k

eak

=

(
∂F

∂ua
k

∣∣∣∣
ua
k
=u⋆a

)k

ea0 (D.50)

Therefore as k → ∞, the eigenvalues of the Jacobian JF = ∂F
∂uk

and the conjugate

Jacobian Jc
F = ∂F

∂u∗
k

matrices evaluated at the fixed point must be contained within the

unit circle, for the error to diminish and FPI to converge.

Remark 2. The update algorithm F(u) is a contraction mapping on the unit hypersphere

Sh ∈ CN and converges to a unique solution u⋆ from any u1 ∈ Sh ∈ CN .

Proof. The two N × N Jacobian matrices of F and their respective eigenvalues are

derived in Section D.A at the end of this Appendix. As both the Jacobian matrices

contain only a single non-zero value at the ith diagonal element, the spectra of both

matrices consist of a single non-zero eigenvalue with algebraic multiplicity of one and

zero-valued eigenvalues with multiplicity of (N − 1), as shown in in Equation (D.61).

Following on from Lemma 2 it is apparent that the placement of the non-zero eigen-

values λ and λc given in (D.62) and (D.63) with respect to the unit circle U determine

the convergence of the FPI for F(ui). A close inspection shows that the values of the

latent sources along with the nonlinearity used in the FPI determine the convergence

to the fixed points. Therefore, given {|λ|2, |λc|2} < 1, the update algorithm F is a

contraction on the unit hypersphere Sh ∈ CN with γ < 1.

Then, u = F(u) has a unique solution called the fixed point u⋆ ∈ Sh and the iteration

uk+1 = F(uk) (D.51)
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converges to u⋆ for any starting value u1 ∈ Sh. Considering the distance of the values

at the (k + 1) update, uk+1, to the the fixed point u⋆

‖uk+1 − u⋆‖ = ‖F(uk)− F(u⋆)‖
≤ γ‖uk − u⋆‖ (2nd axiom of CMT)

≤ γk‖u1 − u⋆‖

and since lim
k→∞

γk = 0, then

lim
k→∞

uk+1 = u⋆. (D.52)

In other words, after a sufficient number of updates, the distance to the unique solu-

tion reduces to zero.

D.6 Fixed Point Iteration in the Phase-Space

As discussed in Section D.3, the nc-FastICA algorithm can exhibit oscillations during

convergence, occurring as the algorithm converges to several values with the same

norm; this can be illustrated by using the phase-space approach. While convergence

in the norm is usually used to assess the performance of algorithms, it is also useful

to observe the convergence behaviour in phase-space. For example, in the study of

the global asymptotic stability in linear systems, the effect of several conditions on the

stability can be observed in the phase-space (geometric convergence), while this is not

evident through the examination of convergence in the norm [169, 63].

In order to facilitate the study of convergence in phase-space, focus is given on an

ICA problem with two latent sources and a 2×2 complex mixing matrix A. As shown

in Lemma 1 and Remark 1, at convergence there is a single non-zero value with unit

magnitude in each of the columns of the modified demixing matrix

U =
[
u1 u2

]
=

[
u11 u21

u12 u22

]
∈ C2×2. (D.53)

By observing one of the elements of U, for example u11, it is possible to construct

a phase-space view of the fixed-point iteration and compare with convergence be-

haviour in the norm. In order to study the convergence in the norm, two measures

are used: the convergence of the cost function J (u) to its maxima, and a measure

quantifying the distance of U from the nearest permutation matrix [41]. It is expected

that this value decreases as the algorithm converges to a solution. For the study of

geometric convergence, a scatter plot of the value of u11 at each iteration k, and the

fixed point convergence error |u⋆11 − u11| are utilised.

From the simulations, it was observed that while the phase-space convergence be-

haviour of both the nc-FastICA and c-FastICA algorithms do not show strong depen-

dence on the circularity of the signals, they are heavily dependent on the initial value
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of the demixing matrix, degree of Gaussianity of the signal and the nonlinearity G.

Also, in the analysis of mixtures with additive noise, while the algorithm performance

deteriorated, the phase-space behaviour was similar to that in the noiseless case.

The convergence behaviour of the nc-FastICA algorithm is shown in Figure D.1. The

mixtures of two complex sub-Gaussian sources were separated using the nonlinearity

G(y) =
1

a
log cosh(ay), a = 0.1 (D.54)

after k = 100 iterations of the algorithm (D.6). The phase-space diagram in Fig-

ure D.1(a) and the fixed point convergence error curve in Figure D.1(b) (top) are shown

for the u11 element of the modified demixing matrix U, while the distance of U to a

permutation matrix and value of J (u1) are shown respectively in Figure D.1(b) (mid-

dle) and Figure D.1(b) (bottom).

Figure D.1(a) shows that after k = 4 iterations, the algorithm achieved a limit cycle

whereby the value of y11 converged to values

{1± ǫ,−1± ǫ} = {e±ϕ}, ǫ≪ 1

of unit norm, while oscillating between these fixed points.

This was also reflected in the convergence error curve in Figure D.1(b) (top), where

the oscillation between the two fixed points is quantified as a distance with maximum

attainable value of 2 due to the unit norm constraint of the algorithm. Observation of

the convergence in the norm shows that the error diminishes to zero in Figure D.1(b)

(middle), while in Figure D.1(b) (bottom) the cost function attains it maxima. Therefore,

in correspondence with the results from the phase-space analysis, measures of con-

vergence in the norm depict an initial convergence after around 4 iterations, however,

they do not reflect the oscillatory convergence observed in the phase-space.

Next, the convergence behaviour for the separation of two super-Gaussian sources

using the nc-FastICA algorithm for k = 100 iterations and using the nonlinearity G

in (D.54) was analysed and is shown in Figure D.2. In this scenario, the u12 element of

U was monitored, where it had a stable convergence in the phase-space after around

17 iterations, as seen in Figure D.2(a) and the convergence error curve of Figure D.2(b)

(top). This observation is also in agreement with the diminishing distance of U to a

permutation matrix and the convergence curve of the cost function to a local maxima

(Figure D.2(b) (middle) and Figure D.2(b) (bottom)). In comparison with the previous

experiment, it can be seen that while both scenarios demonstrate convergence in the

norm, they have different behaviour in the phase-space; a limit cycle in the first exper-

iment, and exponential convergence in the second experiment.

These simple experiments demonstrate the usefulness of the phase-space representa-

tion of the convergence behaviour together with the convergence analysis in the norm.



198 Appendix D. Convergence Analysis of the Complex FastICA Algorithm

While the norm-based convergence analysis shows the proximity of the obtained so-

lution to the true value, the geometric interpretation of the convergence behaviour can

distinguish between the monotonic or oscillatory convergence.

D.A Derivation of the eigenvalues of the Jacobian and conjugate

Jacobian matrices of the FPI

The Jacobian JF and conjugate Jacobian Jc
F matrices for the FPI F(ui,k) are given

in (D.15). Denote Fn as the nth element of the vector F = [F1, . . . , Fn, . . . , FN ]T , then

Fn = −E{g(yiy∗i )y∗i sn}
+ E{g′(yiy∗i )(yiy∗i ) + g(yiy

∗
i )}uin

+ E{g′(yiy∗i )y∗
2

i }
N∑

j=1

E{snsj}u∗ij (D.55)

where the iteration subscript k is omitted for simplicity, the uiℓ is the ℓth element of

ui and yi = uH
i s. Using the chain rule for complex vectors within the CR calculus4 ,

∂yi
∂uℓ

= 0,
∂y∗i
∂uℓ

= s∗ℓ and ∂yi
∂u∗

ℓ
= sℓ,

∂y∗i
∂u∗

ℓ
= 0. Following the convention in [54], the rows of

J are the derivatives of Fn with respect to ui, so that

JF =
∂F

∂ui
=




∂F1
∂ui1

· · · ∂F1
∂uiN

...
. . .

...
∂FN

∂ui1
· · · ∂FN

∂uiN


 ∈ CN×N (D.56)

and follows similarly for Jc
F = ∂F

∂u∗
i

.

As the CR calculus applies to general complex functions, the two Jacobian matrices

can be derived straightforwardly by noting that ∂F
∂ui

=
∂y∗i
∂ui

∂F
∂y∗i

and ∂F
∂u∗

i
= ∂yi

∂u∗
i

∂F
∂yi

, to

yield

JF =
∂F

∂ui
= −E

{
[g′(|yi|2)|yi|2 + g(|yi|2)]ssT

}

+ E
{
[g′′(|yi|2)|yi|2yi + 2g′(|yi|2)yi]s∗

}
uT
i

+ E{g′(|yi|2)|yi|2 + g(|yi|2)}I
+ E

{
(s∗uH)[g′′(|yi|2)|yi|2y∗i + 2g′(|yi|2)y∗i ]

}
E{ssT } (D.57)

4For a complex vector-valued composite function f ◦ g, the chain rule (B.13) states that ∂f(g)
∂z

=
∂f
∂g

∂g

∂z
+ ∂f

∂g∗

∂g∗

∂z
and ∂f(g)

∂z∗
= ∂f

∂g

∂g

∂z∗
+ ∂f

∂g∗

∂g∗

∂z∗
.
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Figure D.1 Oscillatory convergence of the element u11 of the modified demixing matrix U,
achieving a limit cycle when using the nc-FastICA algorithm in separating two sub-Gaussian
sources based on the nonlinearity in (D.54).
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Figure D.2 Stable convergence of the element u12 of the modified demixing matrix U,
when using the nc-FastICA algorithm in separating two super-Gaussian sources based on the
nonlinearity in (D.54).
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and

Jc
F =

∂F

∂u∗
i

= −E{g′(|yi|2)y∗
2

i ssT }

+ E
{
[g′′(|yi|2)|yi|2y∗i + 2g′(|yi|2)y∗i ]s

}
uT
i

+ E
{
(suH

i )g′′(|yi|2)y∗
3

i + g′(|yi|2)y∗
2

i

}
E{ssT }. (D.58)

Alternatively, the values of the elements of JF and Jc
F can be found by considering the

derivative of Fn in (D.55) with respect to each element uiℓ as

∂Fn

∂uiℓ
= −E{g′(yiy∗i )yis∗ℓy∗i sn + g(yiy

∗
i )s

∗
ℓsn}

+ E{g′′(yiy∗i )yis∗ℓyiy∗i + g′(yiy
∗
i )yis

∗
ℓ + g′(yiy

∗
i )yis

∗
ℓ}uin

+ E{g′(yiy∗i )(yiy∗i ) + g(yiy
∗
i )}

∂uin
∂uiℓ

+ E{g′′(yiy∗i )yis∗ℓy∗
2

i + 2g′(yiy
∗
i )y

∗
i s

∗
ℓ}

N∑

j=1

E{snsj}u∗ij (D.59)

and

∂Fn

∂u∗iℓ
= −E{g′(yiy∗i )y∗i sℓy∗i sn}

+ E{g′′(yiy∗i )y∗i sℓyiy∗i + g′(yiy
∗
i )sℓy

∗
i + g′(yiy

∗
i )y

∗
i sℓ}uin

+ E{g′′(yiy∗i )y∗i sℓy∗
2

i }
N∑

j=1

E{snsj}u∗ij

+ E{g′(yiy∗i )y∗
2

i }
N∑

j=1

E{snsj}
∂u∗ij
∂u∗iℓ

, (D.60)

where separate cases for the diagonal, ℓ = n, and non-diagonal, ℓ 6= n, elements of the

two Jacobian matrices can be considered.

After substituting the value of the fixed point u⋆
i = [0, . . . , eϕ, 0, . . . , 0]T and some

simplifications, the non-diagonal values of JF and Jc
F are evaluated as zero. Also,

all the diagonal elements apart from the ith diagonal element are evaluated as zero.

Therefore, the spectrum σ of JF and Jc
F consist of (N − 1) zero values and a single

non-zero value denoted by λ and λc, belonging respectively to the spectrum σ(·) of

the Jacobian and conjugate Jacobian matrix. Thus

σ(JF) = { 0, . . . , 0︸ ︷︷ ︸
(N−1) times

, λ}

σ(Jc
F) = { 0, . . . , 0︸ ︷︷ ︸

(N−1) times

, λc} (D.61)



202 Appendix D. Convergence Analysis of the Complex FastICA Algorithm

and the value of the non-zero eigenvalues are given as

λ =
∂Fi

∂uii
= −E{g′(|si|2)|si|4 + g(|si|2)|si|2}

+ E{g′′(|si|2)|si|4 + 3g′(|si|2)|si|2 + g(|si|2)}
+ E{g′′(|si|2)|si|2s∗

2

i + 2g′(|si|2)s∗
2

i }E{sisi} (D.62)

and

λc =
∂Fi

∂u∗ii
= −E{g′′(|si|2)|si|4 + 2g′(|si|2)|si|2}e2ϕ

+ E{g′′(|si|2)|si|2s∗
2

i }E{sisi}. (D.63)



Appendix E

Blind Extraction of Improper

Quaternion Sources

E.1 Introduction

The extension of the widely linear model and augmented statistics to the four dimen-

sional quaternion domain H has recently received plenty of attention due to its accu-

racy in modelling the coupling between signal components, and 3D rotation. In [130],

the concept of proper quaternion random variables (also known as Q-proper) was

discussed as invariance of the probability distribution to rotations by angle π
2 , and

was generalised to any arbitrary angle in [170]. A unifying framework has recently

been proposed in [132] which defines a set of four bases from which to construct aug-

mented quaternion statistics, with a similar approach given in [145]. These bases can

be seen as the quaternion analogue to the complex bases {z, z∗} in augmented com-

plex statistics, and allow for the exploitation of the complete second-order information

present in quaternion signals. The quaternion widely linear model uses those bases

to allow for the optimal minimum mean square error modelling of both Q-proper and

Q-improper quaternion signals [132, 145, 135].

Existing blind source separation methodologies for the quaternion domain include a

semi-blind block-based algorithm in [171] based on the calculation of rotation angle of

whitened quaternion data, and the maximum likelihood approach in [137] where the

choice of nonlinearities for the score function was discussed. On the other hand, blind

source extraction (BSE) algorithms, designed so that only a few sources of interest

from large-scale mixtures are recovered, are still in their infancy in H but have huge

potential due to their ability to extract vector sources. Their introduction would offer

both a reduced computational cost and will relax the need for further post-processing

for the selection of the desired sources. This is especially important in real-world
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applications, such as EEG conditioning for brain computer interfacing (BCI), where

we may only be interested in removing artifacts from an observed mixture comprising

of over 64 recording channels.

To this end, a class of BSE algorithms based on the local temporal structure of quater-

nion source signals is introduced. A quaternion widely linear predictor is used to

extract both Q-proper and Q-improper sources, based on the smallest normalised pre-

diction error, making such BSE independent of source powers. This is a generalisation

of the complex widely linear prediction based BSE algorithm in Chapter 4, and is sup-

ported by simulations on both Q-proper and Q-improper signals.

E.2 Quaternion Widely Linear Model

Consider the quaternion signal y(k) = ya(k)+ıyb(k)+yc(k)+κyd(k), where ya(k), yb(k), yc(k)

and yd(k) are real-valued scalars, and ı,  and κ are orthogonal unit vectors, where

ı2 = 2 = κ2 = −1. It has been shown that its optimal linear mean square estimate

in terms of the observation x(k) ∈ HN is given by the widely linear model [132]. To

show this, we can express the MSE estimator for a quaternion-valued signal y ∈ H in

terms of the MSE estimators of its respective components, that is

ŷα = E{yα|xa, xb, xc, xd}, α = {a, b, c} (E.1)

such that ŷ = ŷa + ıŷb + ŷc + κŷd. By employing the perpendicular involutions (self-

inverse mappings) [138]

yβ = −βyβ, β = {ı, , κ},

the MSE estimator in (E.1) can be written as1

ŷ = E{y|x, xı, x, xκ}+ ıE{yı|x, xı, x, xκ}+ E{y|x, xı, x, xκ}+ κE{yκ|x, qı, x, xκ}.

This results in the so called widely linear estimator

y(k) = hH(k)x(k) + gH(k)xı(k) + uH(k)x(k) + vH(k)xκ(k) (E.2)

where h,g,u and v are coefficient vectors and the symbol (·)H denotes the Hermitian

transpose operator. Thus, the complete second-order information in the observation

x(k) is contained in the augmented covariance matrix

Cax = E{xaxaH} =




Cxx Cxı Cx Cxκ

CHxı Cxıxı Cxıx Cxıxκ

CHx Cxxı Cxx Cxxκ

CHxκ Cxκxı Cxκx Cxκxκ



∈ H4N×4N (E.3)

1Since ya = 1
4
(y + yı + y + yκ) , yb = 1

4
(y + yı − y − yκ), yc = 1

4
(y − yı + y − yκ) and yd =

1
4
(y − yı − y + yκ) [132].
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where xa = [xT , xıT , xT , xκT ]T is the augmented input vector. The matrices Cxı , Cx , Cxκ

are called respectively the ı-, - and κ-covariance matrices (or the pseudo-covariance

matrices Cxβ = E{xxβH}), while Cxx = E{xxH} is the standard covariance matrix. It

is important to note that a Q-proper random vector, x(k) is not correlated with its in-

volutions; in this case the pseudo-covariance matrices vanish, and the augmented co-

variance matrix (E.3) becomes real-valued diagonal. A detailed account of the quater-

nion augmented statistics and WL model is provided in [132, 145, 135].

E.3 Temporal BSE of Quaternion Signals

Consider the observation vector x ∈ HN , a linear mixture of the latent sources s =

[s1, . . . , sN ]T ∈ HNs , given by

x(k) = As(k) (E.4)

where A ∈ HN×Ns is the matrix of mixing coefficients. The sources are considered in-

dependent, with no assumptions made regarding their Q-properness. The mixing ma-

trix is assumed full rank and invertible, and is for simplicity considered to be square.

Ideally, the recovered source y(k) = wHx(k), where w is a demixing vector such that

bH = wHA, has a single non-zero element bn, corresponding to the nth source. If x(k)

is whitened, then bn is of unit magnitude and an arbitrary rotation.

The proposed algorithm calculates the demixing vector w(k) by discriminating be-

tween the sources based on their degree of widely linear predictability, measured by

the normalised mean square prediction error (MSPE); the extraction architecture is

shown in Figure 4.1. The error e(k) at the output of the widely linear predictor is

given by

e(k) = y(k)− yWL(k) (E.5)

where yWL(k) is the widely linear predictor output, given in (E.2). The MSPE E{|e(k)|2}
is normalised so that the relative temporal structure, and hence predictability, of the

sources is unaffected by differences in the magnitude of the observed mixtures (scal-

ing ambiguity), and the cost function is given by

J (w,h,g,u,v) =
E{|e(k)|2}
E{|y(k)|2} . (E.6)

Minimising this cost function with respect to the predictor coefficients results in dif-

ferences between the prediction errors for various sources, and serves as a basis for
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the proposed BSE. After some simplification, the MSPE can be expressed as

E{|e(k)|2} = ξ0 − 2

M∑

m=1

ℜ
{
ξmhm(k) + ξı|mgm(k) + ξ|mum(k) + ξκ|mvm(k)

}

+ 2

M∑

m,ℓ=1

ℜ
{
h∗m(k)ξı|ℓ−mgℓ(k) + h∗m(k)ξ|ℓ−muℓ(k) + h∗m(k)ξκ|ℓ−mvℓ(k)

+ g∗m(k)ξıκ|ℓ−muℓ(k) + g∗m(k)ξı|ℓ−mvℓ(k) + u∗m(k)ξı|ℓ−mvℓ(k)
}

+

M∑

m,ℓ=1

ℜ
{
h∗m(k)ξℓ−mhℓ(k) + g∗m(k)ξıℓ−mgℓ(k) + u∗m(k)ξℓ−muℓ(k) + v∗m(k)ξκℓ−mvℓ(k)

}

(E.7)

where ξα|ℓ−m , wHACsα(ℓ−m)AαHwα and ξℓ−m , wHACss(ℓ−m)AHw andℜ{·} de-

notes the real or scalar part of a quaternion variable. The real-valued MSPE is related

to the cross-correlation and cross-pseudo-correlation of the source components; as the

sources are assumed orthogonal, these matrices are diagonal. For Q-proper sources,

the pseudo-covariances and thus the terms ξα|ℓ−m vanish, simplifying the expression

for the MSPE in (E.7).

A gradient based weight update based on the widely linear predictor is derived using

the conjugate gradient within HR calculus [134], yielding

∇w∗J =
1

σ2
y(k)

(
x̆1(k)e

∗(k)− 1

2
e(k)x̆2(k)−

σ2
e(k)

σ2
y(k)

(
x(k)y∗(k)− 1

2
y(k)x∗(k)

))
(E.8)

with

x̆1(k) = x(k)−
M∑

m=1

h∗m(k)x(k −m)

x̆2(k) = x∗(k)−
M∑

m=1

(
x∗(k −m)hm(k)− xı∗(k −m)gm(k)

− x∗(k −m)um(k)− xκ∗(k −m)vm(k)
)
. (E.9)

The demixing vector w is then normalised to avoid spurious solutions. The moving

average estimates σ2
y and σ2

e of the variance of y(k) and e(k) are given by

σ2
e(k) = γeσ

2
e(k − 1) + (1− γe)|e(k)|2

σ2
y(k) = γyσ

2
y(k − 1) + (1− γy)|y(k)|2 (E.10)

where γe and γy are the respective forgetting factors2.

2If x(k) is whitened, the source estimate power σ2
y(k) = 1.
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Finally, the gradient for the update of the widely linear predictor coefficients in Fig-

ure 4.1 is given by

∇w̆a∗ =
1

σ2
y(k)

(
− ya(k)e∗(k) +

1

2
e(k)ya∗(k)

)
(E.11)

where the vectors w̆a = [hT ,gT ,uT ,vT ]T , y(k) = [y(k − 1), . . . , y(k − L)]T , ya(k) =

[yT (k),yıT (k),yT (k),yκT (k)]T and L is the predictor filter length. The algorithm

in (E.11) is therefore a normalised variant of the WL-QLMS algorithm [135]. Note

that in the derivation of the updates, non-commutativity of the quaternion multipli-

cation should be taken into account. As desired, in the extraction of Q-proper sources,

the elements of w̆a become h 6= 0,g = u = v = 0.

E.4 Simulations

To illustrate the performance of the proposed BSE algorithm two experimental settings

were considered: synthetic benchmark data and real-world EEG data. In the first ex-

periment, two Q-improper benchmark sources of length Ns = 1000 were mixed using

a random quaternion-valued square mixing matrix. Following [137], source s1 was

chosen as a pure phase-modulated 2 point cyclic polytope with improperness mea-

sure3 rs1 = 1, and source s2 was an AR(4) signal generated using noncircular quater-

nion Gaussian noise, where rs2 = 0.44. The sources were recovered using the pro-

posed extraction algorithms in (E.8) and (E.11); the step-size was empirically chosen

as µw = 0.9, predictor length L = 10, step-sizes for the WL predictor coefficient up-

dates µw̆a = 0.01, and forgetting factors in (E.10) as γe = γy = 0.975. For these param-

eters, the MSPE of s1 and s2 were respectively 5.79 and 1.11. The performances were

assessed using the Performance Index (PI) given in Equation (4.30). As desired, based

on (E.11) the source s2 with the smallest MSPE was first extracted, taking around 100

samples to converge to the PI of -43.24 dB, as shown in Figure E.1. When the same

sources were extracted using the standard linear predictor the algorithm diverged,

since due to the Q-improperness of the sources the linear model was inadequate.

In the next experiment, the line noise and electroencephalogram (EOG) artifacts were

extracted from an EEG mixture, recorded from 12 electrodes positioned according to

the 10-20 system at AF8, AF4, AF7, AF3, C3, C4, PO7, PO3, PO4, PO8 and the left

and right mastoids. In addition, 4 electrodes were placed around both eye sockets

to directly record the reference EOG signals4. The frontal, central and occipital elec-

trodes were combined into three 4-tuple quaternion-valued EEG signals. The widely

3 The Q-improperness index rs =

∣

∣E{ssı∗}
∣

∣+

∣

∣E{ss∗}
∣

∣+

∣

∣E{ssκ∗}
∣

∣

3E{ss∗} where rs ∈ [0, 1] and the value
rs = 0 indicates a Q-proper source, while for a highly Q-improper source rs = 1.

4The EOG measurements were not part of the BSE process, they only served as a reference for per-
formance assessment.
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Figure E.1 Learning curves for the quaternion BSE

linear predictor had L = 10 coefficients, step-sizes µw = 0.9 and µw̆a = 9 × 10−3, for-

getting factors γe = γy = 0.975. Deflation was utilised to remove consecutive artifacts

from the mixture; the real and imaginary components of the first and second extracted

quaternion-valued signal contained respectively the line noise and EOG artifacts. The

power spectra of the EOG artifact, extracted line noise and extracted EOG signal are

shown in Figure E.2, with the boxed segments highlighting the extracted undesired

components. The first extracted signal contained the 50Hz line noise, whereas the sec-

ond extracted signal contains the EOG artifacts corresponding to the 1-8Hz activity.

Figure E.3 shows the corresponding results for the strictly linear QLMS predictor; the

bottom panel shows a 30 dB worse performance for the suppression of the power line

noise.
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Figure E.2 Power spectra of the reference EOG artifact (top), extracted line noise (middle)
and extracted EOG (bottom) using the widely linear predictor.
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Figure E.3 Power spectra of the reference EOG artifact (top), extracted line noise (middle)
and extracted EOG (bottom) using the strictly linear predictor.





References

[1] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1996.

[2] P. S. R. Diniz. Adaptive filtering: Algorithms and practical implementation. Springer,

2008.

[3] W.-P. Ang and B. Farhang-Boroujeny. A new class of gradient adaptive step-size

LMS algorithms. IEEE Transactions on Signal Processing, 49(4):805–810, 2001.

[4] D. P. Mandic. A generalized normalized gradient descent algorithm. IEEE Signal

Processing Letters, 11(2):115–118, 2004.

[5] S. C. Douglas. Generalized gradient adaptive step sizes for stochastic gradient

adaptive filters. In International Conference on Acoustics, Speech, and Signal Pro-

cessing, volume 2, pages 1396–1399, 1995.

[6] D. P. Mandic, A. I. Hanna, and M. Razaz. A normalized gradient descent algo-

rithm for nonlinear adaptive filters using a gradient adaptive step size. IEEE

Signal Processing Letters, 8(11):295–297, 2001.

[7] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed. Mean-square perfor-

mance of a convex combination of two adaptive filters. IEEE Transactions on

Signal Processing, 54(3):1078–1090, 2006.

[8] B. Jelfs, P. Vayanos, M. Chen, S. L. Goh, C. Boukis, T. Gautama, T. M. Rutkowski,

T. Kuh, and D. P. Mandic. An online method for detecting nonlinearity

within a signal. Knowledge-Based Intelligent Information and Engineering Systems,

4253/2006:1216–1223, 2006.

[9] B. Jelfs, S. Javidi, P. Vayanos, and D. P. Mandic. Characterisation of signal modal-

ity: Exploiting signal nonlinearity in machine learning and signal processing.

Journal of Signal Processing Systems, 61(1):105–115, October 2010.

[10] A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing, Learning

Algorithms and Applications. Wiley, 2002.



212 References

[11] D. P. Mandic, D. Obradovic, A. Kuh, T. Adalı, U. Trutschell, M. Golz,

P. De Wilde, J. Barria, A. Constantinides, and J. Chambers. Data fusion for mod-

ern engineering applications: An overview. In ICANN 2005, volume 3697, pages

715–721. Springer, 2005.

[12] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley,

2001.

[13] J.-F. Cardoso. Multidimensional independent component analysis. In ICASSP

1998, volume 4, pages 1941–1944, 1998.

[14] A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE

Transactions on Signal Processing, 47(10):2807–2820, 1999.

[15] W. Y. Leong and D. P. Mandic. Post-nonlinear blind extraction in the presence of

ill-conditioned mixing. IEEE Transactions on Circuits and Systems I, 55:2631–2638,

October 2008.

[16] J. Särelä and H. Valpola. Denoising source separation. The Journal of Machine

Learning Research, 6:233–272, 2005.

[17] A. Hyvärinen. Fast independent component analysis with noisy data using

Gaussian moments. In International Symposium on Circuits and Systems, pages

57–61, 1999.

[18] P. Comon. Blind identification and source separation in 2× 3 under-determined

mixtures. IEEE Transactions on Signal Processing, 52(1):11–22, 2004.

[19] L. De Lathauwer and J. Castaing. Blind identification of underdetermined mix-

tures by simultaneous matrix diagonalization. IEEE Transactions on Signal Pro-

cessing, 56(3):1096–1105, 2008.

[20] P. Comon and M. Rajih. Blind identification of under-determined mixtures

based on the characteristic function. Signal Processing, 86(9):2271–2281, Septem-

ber 2006.

[21] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent compo-

nent analysis. Neural Computation, 9(7):1483–1492, 1997.

[22] A. Hyvärinen. Fast and robust fixed-point algorithms for independent compo-

nent analysis. IEEE Transactions on Neural Networks, 10(3):626–634, May 1999.

[23] J.-F. Cardoso. Source separation using higher order moments. In ICASSP 1989,

volume 4, pages 2109–2112, 1989.



References 213

[24] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non-Gaussian signals.

Radar and Signal Processing, IEE Proceedings F, 140(6):362–370, 1993.

[25] D.-T. Pham, P. Garat, and C. Jutten. Separation of a mixture of independent

sources through a maximum likelihood approach. In EUSIPCO 92, volume 2,

pages 771–774, August 1992.

[26] A. J. Bell and T. J. Sejnowski. An information-maximisation approach to blind

separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

[27] D.-T. Pham and P. Garat. Blind separation of mixture of independent sources

through a quasi-maximum likelihood approach. IEEE Transactions on Signal Pro-

cessing, 45(7):1712–1725, 1997.

[28] J.-F. Cardoso and B. H. Laheld. Equivariant adaptive source separation. IEEE

Transactions on Signal Processing, 44(12):3017–3030, 1996.

[29] S. Amari. Natural gradient works efficiently in learning. Neural Computation,

10(2):251–276, February 1998.

[30] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind

signal separation. In Advances in Neural Information Processing Systems, pages

757–763. MIT Press, 1996.

[31] Q. Shi, R. Wu, and S. Wang. A novel approach to blind source extraction based

on skewness. In ICSP 2006, volume 4, pages 3187–3190, November 2006.

[32] P. Georgiev and A. Cichocki. Robust blind source separation utilizing second

and fourth order statistics. In Artificial Neural Networks - ICANN 2002, volume

2415, pages 1162–1167. Springer, 2002.

[33] A. Cichocki, R. Thawonmas, and S. Amari. Sequential blind signal extraction in

order specified by stochastic properties. Electronics Letters, 33:64–65, 1997.

[34] W. Liu and D. P. Mandic. A normalised kurtosis-based algorithm for blind

source extraction from noisy measurements. Signal Processing, 86(7):1580–1585,

2006.

[35] D. P. Mandic and A. Cichocki. An online algorithm for blind extraction of

sources with different dynamical structures. In 4th Internation Symposium of In-

dependent Component Analysis and Blind Signal Separation (ICA 2003), pages 645–

650, 2003.

[36] B.-Y. Wang and W. X. Zheng. Blind extraction of chaotic signal from an instanta-

neous linear mixture. IEEE Transactions on Circuits and Systems II: Express Briefs,

53(2):143–147, February 2006.



214 References

[37] B. Farhang-Boroujeny. Adaptive Filters: Theory and Applications. Wiley, 1998.

[38] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985.

[39] B. Widrow, J. M. McCool, and M. Ball. The complex LMS algorithm. Proceedings

of the IEEE, 63(4):719–720, 1975.

[40] A. Tarighat and A. H. Sayed. Least mean-phase adaptive filters with application

to communications systems. IEEE Signal Processing Letters, 11(2):220–223, 2004.

[41] E. Bingham and A. Hyvärinen. A fast fixed point algorithm for independent

component analysis of complex valued signals. Journal of Neural Systems, 10:1–

8, 2000.

[42] J. Anemüller, T. J. Sejnowski, and S. Makeig. Complex independent component

analysis of frequency-domain electroencephalographic data. Neural Networks,

16(9):1311–1323, November 2003.

[43] B. Picinbono. On circularity. IEEE Transactions on Signal Processing, 42(12):3473–

3482, 1994.

[44] F. D. Neeser and J. L. Massey. Proper complex random processes with applica-

tions to information theory. IEEE Transactions on Information Theory, 39(4):1293–

1302, 1993.

[45] B. Picinbono. Second-order complex random vectors and normal distributions.

IEEE Transactions on Signal Processing, 44(10):2637–2640, 1996.

[46] B. Picinbono and P. Chevalier. Widely linear estimation with complex data. IEEE

Transactions on Signal Processing, 43(8):2030–2033, 1995.

[47] B. Picinbono and P. Bondon. Second-order statistics of complex signals. IEEE

Transactions on Signal Processing, 45(2):411–420, 1997.

[48] P. J. Schreier and L. L. Scharf. Second-order analysis of improper complex ran-

dom vectors and processes. IEEE Transactions on Signal Processing, 51(3):714–725,

2003.

[49] P. J. Schreier and L. L. Scharf. Statistical Signal Processing of Complex-Valued Data.

Cambridge University Press, 2010.

[50] A. van den Bos. Complex gradient and Hessian. IEE Proceedings of Vision, Image

and Signal Processing, 141(6):380–383, 1994.

[51] A. van den Bos. The multivariate complex normal distribution-a generalization.

IEEE Transactions on Information Theory, 41(2):537–539, 1995.



References 215

[52] R. A. Wooding. The multivariate distribution of complex normal variables.

Biometrika, 43(1-2):212–215, 1956.

[53] D. H. Brandwood. A complex gradient operator and its application in adap-

tive array theory. IEE Proceedings F: Communications, Radar and Signal Processing,

130(1):11–16, February 1983.

[54] K. Kreutz-Delgado. The complex gradient operator and the CR-calculus. Dept.

of Electrical and Computer Engineering, UC San Diego, Course Lecture Supplement

No. ECE275A, pages 1–74, 2006.

[55] W. Wirtinger. Zur formalen theorie der funktionen von mehr komplexen verän-

derlichen. Mathematische Annalen, 97(1):357–375, December 1927.

[56] D. P. Mandic and J. A. Chambers. Recurrent Neural Networks for Prediction. John

Wiley, 2001.

[57] S. L. Goh and D. P. Mandic. An augmented CRTRL for complex-valued recur-

rent neural networks. Neural Networks, 20(10):1061–1066, December 2007.

[58] S. L. Goh and D. P. Mandic. An augmented extended Kalman filter algorithm

for complex-valued recurrent neural networks. Neural Computation, 19(4):1039–

1055, 2007.

[59] S. L. Goh, M. Chen, D. H. Popovic, K. Aihara, D. Obradovic, and D. P. Mandic.

Complex-valued forecasting of wind profile. Renewable Energy, 31(11):1733–50,

2006.

[60] S. L. Goh and D. P. Mandic. A complex-valued RTRL algorithm for recurrent

neural networks. Neural Computation, 16(12):2699–2713, 2004.

[61] Y. Xia, C. Cheong Took, S. Javidi, and D. P. Mandic. A widely linear affine

projection algorithm. In IEEE Workshop on Statistical Signal Processing, pages

373–376, 2009.

[62] C. Cheong Took and D. P. Mandic. Adaptive IIR filtering of noncircular complex

signals. IEEE Transactions of Signal Processing, 57(10):4111–4118, October 2009.

[63] D. P. Mandic and S. L. Goh. Complex Valued Nonlinear Adaptive Filters: Noncircu-

larity, Widely Linear and Neural Models. Wiley, 2009.

[64] N. Benvenuto and F. Piazza. On the complex backpropagation algorithm. IEEE

Transactions on Signal Processing, 40(4):967–969, 1992.

[65] H. Leung and S. Haykin. The complex backpropagation algorithm. IEEE Trans-

actions on Signal Processing, 39(9):2101–2104, 1991.



216 References

[66] G.M. Georgiou and C. Koutsougeras. Complex domain backpropagation. IEEE

Transactions on Circuits and Systems II, 39(5):330–334, 1992.

[67] T. Kim and T. Adalı. Universal approximation of fully complex feed-forward

neural networks. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 1, pages 973–976, 2002.

[68] T. Kim and T. Adalı. Approximation by fully complex MLP using elementary

transcendental activation functions. In IEEE Signal Processing Society Workshop

on Neural Networks for Signal Processing XI, pages 203–212, 2001.

[69] J. Eriksson and V. Koivunen. Complex random vectors and ICA models: Iden-

tifiability, uniqueness, and separability. IEEE Transactions on Information Theory,

52(3):1017–1029, 2006.

[70] R. A. Horn and C. A. Johnson. Matrix Analysis. Cambridge University Press,

1985.

[71] S. C. Douglas. Fixed-point FastICA algorithms for the blind separation of

complex-valued signal mixtures. In Conference Record of the Thirty-Ninth Asilomar

Conference on Signals, Systems and Computers, pages 1320–1325, 2005.

[72] E. Ollila and V. Koivunen. Complex ICA using generalized uncorrelating trans-

form. Signal Processing, 89(4):365 – 377, 2009.

[73] E. Ollila, H. Oja, and V. Koivunen. Complex-valued ICA based on a pair

of generalized covariance matrices. Computational Statistics & Data Analysis,

52(7):3789–3805, March 2008.

[74] M. Novey and T. Adalı. Complex ICA by negentropy maximization. IEEE Trans-

actions on Neural Networks, 19(4):596–609, 2008.

[75] H. Li and T. Adalı. A class of complex ICA algorithms based on the kurtosis

cost function. IEEE Transactions on Neural Networks, 19(3):408–420, 2008.

[76] T. Adalı, H. Li, M. Novey, and J.-F. Cardoso. Complex ICA using nonlinear

functions. IEEE Transactions on Signal Processing, 56(9):4536–4544, 2008.

[77] H. Li and T. Adalı. Stability analysis of complex maximum likelihood ICA using

Wirtinger calculus. In ICASSP 2008, pages 1801–1804, 2008.

[78] M. Novey and T. Adalı. On extending the complex FastICA algorithm to non-

circular sources. IEEE Transactions on Signal Processing, 56(5):2148–2154, 2008.

[79] P. J. Schreier. Bounds on the degree of impropriety of complex random vectors.

IEEE Signal Processing Letters, 15:190–193, 2008.



References 217

[80] E. Ollila. On the circularity of a complex random variable. IEEE Signal Processing

Letters, 15:841–844, 2008.

[81] P. J. Schreier, L. L. Scharf, and A. Hanssen. A generalized likelihood ratio test

for impropriety of complex signals. IEEE Signal Processing Letters, 13(7):433–436,

July 2006.

[82] J. P. Delmas and H. Abeida. Asymptotic distribution of circularity coefficients

estimate of complex random variables. Signal Processing, 89(12):2670–2675, De-

cember 2009.

[83] C. L. Nikias and A. P. Petropulu. Higher-order spectra analysis: a nonlinear signal

processing framework. Prentice Hall, 1993.

[84] P. J. Schreier and L. L. Scharf. Higher-order spectral analysis of complex signals.

Signal Processing, 86(11):3321–3333, November 2006.

[85] E. Ollila and V. Koivunen. Adjusting the generalized likelihood ratio test of

circularity robust to non-normality. In IEEE 10th Workshop on Signal Processing

Advances in Wireless Communications, pages 558–562, 2009.

[86] Y. Huang and J. Benesty. Audio signal processing for next-generation multimedia

communication systems. Springer, 2004.

[87] R. Schober, W. H. Gerstacker, and L. H.-J. Lampe. A widely linear LMS al-

gorithm for MAI suppression for DS-CDMA. IEEE International Conference on

Communications, 4:2520–2525, 2003.

[88] R. Schober, W. H. Gerstacker, and L. H.-J. Lampe. Data-aided and blind

stochastic gradient algorithms for widely linear MMSE MAI suppression for

DS-CDMA. IEEE Transactions on Signal Processing, 52(3):746–756, 2004.

[89] S. L. Goh and D. P. Mandic. An augmented extended Kalman filter algorithm for

complex-valued recurrent neural networks. In Proceeding of IEEE International

Conference on Acoustics, Speech and Signal Processing, volume 5, pages 561–564,

2006.

[90] D. P. Mandic, S. Still, and S. C. Douglas. Duality between widely linear and dual

channel adaptive filtering. In ICASSP 2009, pages 1729–1732, 2009.

[91] S. M. Hammel, C. Jones, and J. V. Moloney. Global dynamical behavior of the

optical field in a ring cavity. Optical Society of America, Journal B: Optical Physics,

2:552–564, 1985.

[92] S. Haykin and Liang Li. Nonlinear adaptive prediction of nonstationary signals.

IEEE Transactions on Signal Processing, 43(2):526–535, 1995.



218 References

[93] J. A. Chambers, O. Tanrikulu, and A. G. Constantinides. Least mean mixed-

norm adaptive filtering. Electronics Letters, 30(19):1574–1575, 1994.

[94] D. P. Mandic, P. Vayanos, C. Boukis, B. Jelfs, S. L. Goh, T. Gautama, and T. M.

Rutkowski. Collaborative adaptive learning using hybrid filters. In ICASSP

2007, volume 3, pages 921–924, 2007.

[95] D. P. Mandic, M. Golz, A. Kuh, D. Obradovic, and T. Tanaka, editors. Signal

Processing Techniques for Knowledge Extraction and Information Fusion. Springer,

2008.

[96] D. P. Mandic, P. Vayanos, S. Javidi, B. Jelfs, and K. Aihara. Online tracking of

the degree of nonlinearity within complex signals. In ICASSP 2008, pages 2061–

2064, April 2008.

[97] P. Vayanos, S. L. Goh, and D. P. Mandic. Online detection of the nature of

complex-valued signals. In Proceedings of the 16th IEEE Signal Processing Soci-

ety Workshop on Machine Learning for Signal Processing, pages 173–178, 2006.

[98] B. Jelfs, S. Javidi, S. L. Goh, and D. P. Mandic. Collaborative adaptive filters

for online knowledge extraction and information fusion. chapter 1, pages 3–21.

Springer, March 2008.

[99] T. Kim and T. Adalı. Fully complex backpropagation for constant envelope sig-

nal processing. In Proceedings of the 2000 IEEE Signal Processing Society Workshop

Neural Networks for Signal Processing, volume 1, pages 231–240, 2000.

[100] L. Tong, R. W. Liu, V. C. Soon, and Y. F. Huang. Indeterminacy and identifiability

of blind identification. IEEE Transactions on Circuits and Systems, 38(5):499–509,

1991.

[101] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source

separation technique using second-order statistics. IEEE Transactions on Signal

Processing, 45(2):434–444, 1997.

[102] A. Cichocki and R. Thawonmas. On-line algorithm for blind signal extraction

of arbitrarily distributed, but temporally correlated sources using second order

statistics. Neural Processing Letters, 12(1):91–98, August 2000.

[103] W. Liu, D. P. Mandic, and A. Cichocki. Blind source extraction of instantaneous

noisy mixtures using a linear predictor. In Proc. IEEE International Symposium on

Circuits and Systems, pages 4199–4202, 2006.

[104] W. Liu, D. P. Mandic, and A. Cichocki. Blind second-order source extraction

of instantaneous noisy mixtures. IEEE Transactions of Circuits and Systems II,

53(9):931–935, 2006.



References 219

[105] W. Y. Leong, W. Liu, and D. P. Mandic. Blind source extraction: Standard ap-

proaches and extensions to noisy and post-nonlinear mixing. Neurocomputing,

71:2344 – 2355, 2008.

[106] S. Javidi, M. Pedzisz, S. L. Goh, and D. P. Mandic. The augmented complex least

mean square algorithm with application to adaptive prediction problems. In

Proc. 1st IARP Workshop on Cognitive Information Processing, pages 54–57, 2008.

[107] P. Georgiev, A. Cichocki, and H. Bakardjian. Optimization Techniques for Indepen-

dent Component Analysis with Applications to EEG Data, chapter 3, pages 53–68.

Quantitative Neuroscience: Models, Algorithms, Diagnostics, and Therapeutic

Applications. Kluwer Academic Publishers, 2004.

[108] N. Delfosse and P. Loubaton. Adaptive blind separation of independent sources:

A deflation approach. Signal Processing, 45(1):59–83, July 1995.

[109] S. Y. Kung and C. Mejuto. Extraction of independent components from hybrid

mixture: Kuicnet learning algorithm and applications. In ICASSP 1998, vol-

ume 2, pages 1209–1212, 1998.

[110] R. Thawonmas, A. Cichocki, and S. Amari. A cascade neural network for blind

signal extraction without spurious equilibria. IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, 81(9):1833–1846, 1998.

[111] M. H. Hayes. Statistical Digital Signal Processing and Modeling. Wiley, 1996.

[112] R. N. Vigário. Extraction of ocular artefacts from EEG using independent com-

ponent analysis. Electroencephalography and Clinical Neurophysiology, 103(3):395–

404, 1997.

[113] T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. Mckeown, V. Iragui, and

T. J. Sejnowski. Removing electroencephalographic artifacts by blind source

separation. Psychophysiology, 37(02):163–178, 2000.

[114] A. Delorme, S. Makeig, and T. Sejnowski. Automatic artifact rejection for EEG

data using high-order statistics and independent component analysis. In Inter-

national Workshop on ICA, pages 457–462, 2001.

[115] G. Barbati, C. Porcaro, F. Zappasodi, P. M. Rossini, and F. Tecchio. Optimiza-

tion of an independent component analysis approach for artifact identifica-

tion and removal in magnetoencephalographic signals. Clinical Neurophysiology,

115(5):1220–1232, 2004.

[116] A. Greco, N. Mammone, F. C. Morabito, and M. Versaci. Semi-automatic artifact

rejection procedure based on kurtosis, Renyi’s entropy and independent com-

ponent scalp maps. In International Enformatika Conference, pages 22–26, 2005.



220 References

[117] A. Delorme, T. Sejnowski, and S. Makeig. Enhanced detection of artifacts in

EEG data using higher-order statistics and independent component analysis.

NeuroImage, 34(4):1443–1449, 2007.

[118] P. S. Kumar, R. Arumuganathan, K. Sivakumar, and C. Vimal. An adaptive

method to remove ocular artifacts from EEG signals using wavelet transform.

Journal of Applied Sciences Research, 5:711–745, 2009.

[119] M.G. Jafari and J.A. Chambers. Fetal electrocardiogram extraction by sequen-

tial source separation in the wavelet domain. IEEE Transactions on Biomedical

Engineering, 52(3):390–400, March 2005.

[120] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen,

C. C. Tung, and H. H. Liu. The Empirical Mode Decomposition and the Hilbert

Spectrum for nonlinear and non-stationary time series analysis. Proceedings of

the Royal Society of London. Series A, 454(1971):903–995, March 1998.

[121] N. E. Huang and S. S. Shen. Hilbert-Huang transform and its applications. World

Scientific, 2005.

[122] N. Rehman and D. P. Mandic. Multivariate empirical mode decomposition. Pro-

ceedings of the Royal Society A, 466:1291–1302, 2010.

[123] J. A. Palmer, S. Makeig, and K. Kreutz-Delgado. A complex cross-spectral dis-

tribution model using normal variance mean mixtures. In IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 3569–3572, 2009.

[124] N. Mitianoudis, T. Stathaki, and A. G. Constantinides. Smooth signal extraction

from instantaneous mixtures. IEEE Signal Processing Letters, 14(4):271–274, 2007.

[125] L. T. Duarte, B. Rivet, and C. Jutten. Blind extraction of smooth signals based

on a second-order frequency identification algorithm. IEEE Signal Processing

Letters, 17(1):79–82, 2010.

[126] R. A. Adams and J. J. F. Fournier. Sobolev spaces. Academic Press, 1975.

[127] D. P. Mandic, S. Javidi, G. Souretis, and S. L. Goh. Why a complex valued solu-

tion for a real domain problem. In IEEE Workshop on Machine Learning for Signal

Processing, pages 384–389, August 2007.

[128] J. P. Ward. Quaternions and Cayley numbers. Kluwer Academic Publishers, 1997.

[129] S. Sangwine and N. Le Bihan. Quaternion polar representation with a com-

plex modulus and complex argument inspired by the Cayley-Dickson form. Ad-

vances in Applied Clifford Algebras, 20(1):111–120, March 2010.



References 221

[130] N. N. Vakhania. Random vectors with values in quaternion Hilbert spaces. The-

ory of Probability and its Applications, 43(1):99–115, January 1999.

[131] N. Le Bihan and P. O. Amblard. Detection and estimation of Gaussian proper

quaternion valued random processes. In 7th IMA Conference on Mathematics in

Signal Processing, Cirencester, UK, 2006.

[132] C. Cheong Took and D. P. Mandic. Augmented second order statistics of quater-

nion random signals. Signal Processing, 91(2):214–224, February 2011.

[133] C. Jahanchahi, C. Cheong Took, and D. P. Mandic. On HR calculus, quaternion

valued stochastic gradient, and adaptive three dimensional wind forecasting. In

International Joint Conference on Neural Networks, pages 3154–3158, 2010.

[134] D. P. Mandic, C. Jahanchahi, and C. Cheong Took. A quaternion gradient oper-

ator and its applications. IEEE Signal Processing Letters, 2010 (accepted).

[135] C. Cheong Took and D. P. Mandic. A quaternion widely linear adaptive filter.

IEEE Transactions on Signal Processing, 58(8):4427–4431, August 2010.

[136] B. Che-Ujang, C. Cheong Took, and D. P. Mandic. Split quaternion nonlinear

adaptive filtering. Neural Networks, 23(3):426–434, April 2010.

[137] N. Le Bihan and S. Buchholz. Quaternionic independent component analysis

using hypercomplex nonlinearities. In 7th IMA Conference on Mathematics in Sig-

nal Processing, 2006.

[138] T. A. Ell and S. J. Sangwine. Quaternion involutions and anti-involutions. Com-

puters & Mathematics with Applications, 53(1):137–143, January 2007.

[139] F. Zhang. Quaternions and matrices of quaternions. Linear Algebra and its Appli-

cations, 251:21–57, January 1997.

[140] A. Sudbery. Quaternionic analysis. Mathematical Proceedings of the Cambridge

Philosophical Society, 85(2):199–225, 1979.

[141] S. De Leo and P. P. Rotelli. Quaternionic analyticity. Applied Mathematics Letters,

16(7):1077–1081, October 2003.

[142] L. H. Zetterberg and H. Brändström. Codes for combined phase and amplitude

modulated signals in a four-dimensional space. IEEE Transactions on Communi-

cations, 25(9):943–950, 1977.

[143] Md. K. I. Molla, T. Tanaka, T. M. Rutkowski, and A. Cichocki. Separation of

EOG artifacts from EEG signals using bivariate EMD. In ICASSP 2010, pages

562–565, 2010.



222 References

[144] S. Zhang and A. G. Constantinides. Lagrange programming neural networks.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

39(7):441–452, 1992.

[145] J. Vía, D. Ramírez, and I. Santamaría. Properness and widely linear process-

ing of quaternion random vectors. IEEE Transactions on Information Theory,

56(7):3502–3515, 2010.

[146] W. Liu, D. P. Mandic, and A. Cichocki. Analysis and online realization of the

CCA approach for blind source separation. IEEE Transactions on Neural Networks,

18(5):1505–1510, 2007.

[147] W. Liu, D. P. Mandic, and A. Cichocki. Blind source separation based on gener-

alised canonical correlation analysis and its adaptive realization. In Congress on

Image and Signal Processing, volume 5, pages 417–421, 2008.

[148] S. Javidi, C. Cheong Took, C. Jahanchahi, N. Le Bihan, and D. P. Mandic. Blind

extraction of improper quaternion sources. In International Conference on Acous-

tics, Speech, and Signal Processing, 2011 (in submission).

[149] T. W. Lee and M. S. Lewicki. The generalized gaussian mixture model using

ICA. In International Workshop on Independent Component Analysis, pages 239–

244, 2000.

[150] M. Z. Coban and R. M. Mersereau. Adaptive subband video coding using bi-

variate generalized gaussian distribution model. In IEEE International Conference

on Acoustics, Speech, and Signal Processing, volume 4, pages 1990–1993, 1996.

[151] M. Novey, T. Adalı, and A. Roy. A complex generalized Gaussian distribution

— characterization, generation, and estimation. IEEE Transactions on Signal Pro-

cessing, 58(3):1427–1433, 2010.

[152] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley, 1991.

[153] A. Hjørungnes and D. Gesbert. Complex-valued matrix differentiation: Tech-

niques and key results. IEEE Transactions on Signal Processing, 55(6):2740–2746,

2007.

[154] A. Hjørungnes, D. Gesbert, and D. P. Palomar. Unified theory of complex-valued

matrix differentiation. In ICASSP 2007, volume 3, pages 345–348, 2007.

[155] T. Adalı and H. Li. A practical formulation for computation of complex gradi-

ents and its application to maximum likelihood. In ICASSP 2007, pages 633–636,

2007.



References 223

[156] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University

Press, 1996.

[157] D. P. Mandic and I. Yamada. Tutorial lecture : Machine learning and signal

processing applications of fixed point theory. In IEEE ICASSP 2007: Tutorial

Textbook, pages 1–135, 2007.

[158] M. Novey and T. Adalı. On quantifying the effects of noncircularity on the

complex FastICA algorithm. In ICASSP 2008, pages 1809–1812, 2008.

[159] S. C. Douglas. On the convergence behavior of the FastICA algorithm. In Pro-

ceedings of the 4th International Symposium on Independent Component Analysis and

Blind Signal Separation, pages 409–414, 2003.

[160] A. T. Erdogan. On the convergence of ICA algorithms with symmetric orthogo-

nalization. In ICASSP 2008, pages 1925–1928, April 2008.

[161] E. Oja and Z. Yuan. The FastICA algorithm revisited: Convergence analysis.

IEEE Transactions on Neural Networks, 17(6):1370–1381, November 2006.

[162] H. Shen, M. Kleinsteuber, and K. Huper. Local convergence analysis of FastICA

and related algorithms. IEEE Transactions on Neural Networks, 19(6):1022–1032,

2008.

[163] P. A. Regalia and E. Kofidis. Monotonic convergence of fixed-point algorithms

for ICA. Neural Networks, IEEE Transactions on, 14(4):943–949, July 2003.

[164] A. T. Erdogan. On the convergence of ICA algorithms with symmetric orthogo-

nalization. IEEE Transactions on Signal Processing, 57(6):2209–2221, June 2009.

[165] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[166] D. P. Mandic. Data-reusing recurrent neural adaptive filters. Neural Computation,

14(11):2693–2707, 2002.

[167] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization

and nonlinear equations. Society for Industrial Mathematics (SIAM) Press, 1996.

[168] A. Ferrante, A. Lepschy, and U. Viaro. Convergence analysis of a fixed-point

algorithm. Italian Journal of Pure and Applied Mathematics, 9:179–186, 2001.

[169] D. P. Mandic and J. A. Chambers. On stability of relaxive systems described

by polynomials with time-variant coefficients. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, 47:1534–1537, 2000.



224 References

[170] P. O. Amblard and N. Le Bihan. On properness of quaternion valued random

variables. In IMA Conference on Mathematics in Signal Processing, 2004.

[171] V. Zarzoso and A. K. Nandi. Closed-form semi-blind separation of three sources

from three real-valued instantaneous linear mixtures via quaternions. In Sixth

International Symposium on Signal Processing and its Applications, volume 1, pages

1–4, 2001.


