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Outline:

Basically, to de-mystify multidimensional adaptive estimation

o Multidimensional and multichannel sensors — a unified approach to
adaptive filtering of such signals

o Circularity — a unique signature of bivariate signals & second order
circularity (properness) & augmented complex statistics

o Duality between the processing in R? and C (isomorphism)
o The issue of complex gradient & CR calculus

o Covariance, pseudocovariance, and widely linear models

o Complex Wiener filter, complex least mean square (CLMS) and
augmented CLMS (ACLMS)

o Magnitude-only, phase-only, and least mean magnitude phase (LMMP)
approaches

o Multivariate adaptive filters (any number of data channels)

o Applications: communications, radar and sonar, target tracking,
renewable energy, smart grid
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We can use multidimensional filters within our usual
adaptive filtering configurations!

System ldentification

«

Adaptive |Y(K)

Noise Cancellation

«

Xk | Adaptive | YK
Filter
° e(k) -
®
-+
N s -+No®)] 4

Filter
ek) A~
®
+
x(k) Unknown d(k)
Input System Output
x(K) Adaptive y(k)
Delay >
Filter
e(k) Y-
®
N+
d(k)

Reference input

Unknown

«

Primary input

Adaptive

System

Filter

x(K)

Delay

Adaptive Prediction

Inverse System Modelling

Imperial College

London © D. P. Mandic

Adaptive Signal Processing & Machine Intelligence 3



Multidimensional adaptive signal processing:
Applications

Renewable Energy Body motion sensor Wearable technologies
2D and 3D anemometers 3D - position, gyroscope, speed Biomechanics
control of wind turbine gait, biometrics virtual reality
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Wind sensors - 2D and 3D anemometers
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Why modelling in C?

o Complex signals by design (communications, analytic signals, equivalent
baseband represenation to eliminate spectral redundancy)

o By convenience of representation (radar, sonar, wind field)

o Problem: Different algebra (no ordering - operator “<" makes no
sense!), and the notion of pdf has to be induced

o Problem: Special form of nonlinearity (the only continuously
differentiable function in C is a constant (Liouville theorem)

o Solution: Special statistics — augmented complex statistics (started in
mathematics in 1992)

o We can differentiate between several kinds of noises (doubly white
circular with various distributions n, L. n; & o;. = 0. , doubly white
noncircular n, L n; & a,,%r > U%W noncircular noise)
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What is the right basis for real world data?
Back to Dennis Gabor 3 but careful: Bedrossian and Nutall theorems

Consider

o Amplitude modulated signal x(t) = m(t) cos(wot) — m(t) + envelope
o Phase modulated signal z(t) = acos(®(t)) — ®(t) & phase
Problem: there is an infinite number of pairs [a(t), ®(t)] s.t.

m(t) cos(wot) = acos(P(t))

Solution: an analytic transform z(t) = x(t) 4+ jH (z(t)) = a(t)e’®®

Remark#1: z(t) cannot be real, as F(z(t)) =0 for w < 0
Remark#2: Hilbert transform (analytic signal) makes it possible to
associate a unique pair [a(t), ®(t)] to any real z(t) = R{a(t)e’*?}
Remark#3: For z(t) = a(t) cos ®(¢t) = H{z(t)} = a(t)sind(¢)
Remark#4: From instantaneous phase ®(¢) — instantaneous
frequency

f(t) = do(t)/dt

so we have an excellent resolution and do not depend on stationarity
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Standard adaptive filtering algorithms in C

Considered straightforward extensions of the corresponding algorithms in R
— replace the vector transpose by the Hermitian transpose:

o Covariance
C = BE{xx'} o C = E{zz"}

o Autoregressive model and Wiener solution
w=R"'p ~o w* =R 'p
o Least mean square (LMS) ~» complex LMS [Widrow at al. 1975]
w(k+ 1) =w(k) + pe(k)x(k) o w(k+1)=w(k)+ pe(k)z" (k)

o Real time recurrent learning (RTRL) for recurrent neural networks
(RNN) [Williams & Zipser 1989] ~» complex RTRL [Goh & Mandic
2004]

w(k+ 1) =w(k) + pe(k)IL(k) o w(k+ 1) =w(k) + pe(k)IT*(k)

This is, however, valid only for circular complex random processes
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Property of division algebras 3~ complex (non)circularity
Noncircularity of the wind distribution v(k) = |v(k)|e’®™

Deterministic vs. Stochastic nature
Linear vs. Nonlinear nature

Nonlinearity’
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Change in signal modality can indicate
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Real world signals are denoted by ’ 7?77’
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o d a unique signature of complex signals?

o % degree of noncircularity -
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Circular vs noncircular complex random variables

Circularity = Rotation invariant distribution p(p, 0) = p(p, 0 — @)

circular variable = construct z = pcos(0) + jpsin(6), 0 ~ U|0,27), p ~ any pdf
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Gaussian circular

Lo |p|=0

-2 0 2
p cosO

p sin®
o

Uniform circular

p sind
o

lp| =0

-2 0 2
p cosO

Gaussian correlated noncircular

o Covariance of z is
c = B{zz"} = B{|2’]}

o Pseudocovariance is
p = E{zz"} = E{z%}

o Circularity  quotient:
p="=r
o Circularity coefficient:
__ |p|
ol =&
Circularity quotient

and coefficient quantify
the degree of non-
circularity
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Some observations

Although a formalism similar to that used for real valued adaptive filters
can also be used for complex valued adaptive filters, notice that in this

: 1 2 _ 1 1.2 2\ 3
case the cost function J(k) = 3le(k)|* = 5e(k)e*(k) = 5(e; +¢;) is a
real valued function of complex variable.

o Standard complex differentiability is based on the Cauchy—Riemann
(C-R) equations and imposes a stringent structure on complex
holomorphic functions;

o Cost functions are real functions of complex variable, that is J : C — R,
and so they are not differentiable in the complex sense, the
Cauchy—Riemann equations do not apply, and we need to develop
alternative, more general and relaxed, ways of calculating their gradients
(CR-calculus);

o It is also desired that these generalised gradients are formally equivalent
to standard complex gradients (their generic extensions) when applied
to holomorphic (analytic) functions.
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Complex Wiener filter

Notice that we have used: (x"y)* = y!x

The Wiener solution can be obtained by minimising

J(w) = E[e(k)e” (k)] = E[(d(k) — wx(k)) (d(k) — wx(k))"]

J(w) = E[|d(k)]?] — w"E[x(k)d*(k)] — w' E[x*(k)d(k)] + w" E[x(k)x" (k)] w
= oi—wilp-p'w+w'Rw — VyJw)=Rw-—p=0
The optimum solution w, and the minimum mean square error Jy,in

W, = argmin J(w) =R 'p Jmin = J(Wo) =05 — p"R™'p

Also, J(w) can be expressed as

J(W) = Jmin + (W — WO)H R (W —w,) = Jin + VIRV by noticing that
d(k) = wi'x(k) +q(k) and e(k) = (wo — w(k))"xi + q(k) = v (k)x(k),
where (k) ~ N(0,02).

Notice that J(w) is quadratic in w and has a global minimum for
W =W, with J,,;,, = 02

o
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Derivative of the cost function ie(k)e*(k) and CLMS

2
As C-derivatives are not defined for real functions of complex variable
o 1[0 0 0 1|0 0
R—der: —=—-|——9— R* —der: — =—|— +)—
9z 2 [8){ 8y] T 9z T 2 lﬁx +‘76y]

and the gradient

o g_0Jee) [0)(ee) (e T_2 0] _ 0J , 0]
Y5 ow ow; =~ Owy - Towr Jw” ‘7(‘9W3
pseudog;adient

The standard Complex Least Mean Square (CLMS) (Widrow et al. 1975)

y(k) = wi(k)x(k)

e(k) = d(k) —y(k) = d(k) —w" (k)x(k)  e*(k) = d"(k) — x" (k)w(k)
and VgJ = VgrJ (conjugate gradient direction)
Oe(k)

wlk1) = wilk) =g s

e (k) =w(k) + pe*(k)x(k)

Thus, no need for tedious computations & the CLMS is derived in one line
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Which derivative to we choose to compute the gradient?

[R-derivative vs. R*-derivative?

Simulation for the CLMS derived using R-der. and R*-der. (w, = 3)
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Orthogonality principle & alternative forms for the CLMS

Consider the expected value for the CLMS update

Elw(k+1)] = Elw(k)] + pE[e(k)x*(k)]
It has converged when w(k + 1) = w(k) = w(oo) and thus the weight
update Aw(k) = pFEle(k)x*(k)] = 0.
This is achieved for E|d*(k)x(k)| — E[x(k)x" (k)|w(k) =0 < Rw, = p
that is, for the Wiener solution, w, = R~ !p.

The condition Ele(k)x*(k)] = 0 is called the “orthogonality condition”
and states that the output error of the filter and the tap input vector are
orthogonal (e L x) when the filter has converged to the optimal solution.

The following formulations for the CLMS produce identical results:

y(k) =x' (k)w(k) = w' (k)x(k)  —  w(k+1)=w(k)+ pe(k)x"(k)
y(k) = wh(k)x(k) =x" (k)w"(k)  —  w(k+1)=w(k)+ pe*(k)x(k)
y(k) =x"(B)w(k) = w' (k)x"(k)  —  w(k+1)=w(k)+ pe(k)x(k)
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Types of convergence of CLMS

It is of greater interest, however, to analyse the evolution of the weights in
time. As with any other estimation problem, we need to analyse the “bias”
and “variance”’ of the estimator, that is:

o Convergence in the mean, to ascertain whether w(k) — w, when
k — oo;

o Convergence in the mean square, in order to establish whether the
variance of the weight error vector v(k) = w(k) — w,(k) approaches
Jmin @S k — 00.

The analysis of convergence of linear adaptive filters is made
mathematically tractable if we use so called independence assumptions,
such that the filter coefficients are

® statistically independent of the data currently in filter memory, and

® {d(l),z(l)} is independent of {d(k),x(k)} for k # 1.
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Convergence of CLMS in the Mean

Assume d(k) = x" (k)w, + q(k), q(k) ~N(0,07). Then
e(k) = x"(k)w,+q(k) —x" (k)w(k)
w(k+1) = wi(k)+ px(k)x"w, — px(k)x" (k)w(k) + pq(k)x(k)

Subtract w, from both sides, and define the weight error vector

v(k) € w(k) — w,

v(k+1) = v(k) — px(k)x" (k)v(k) + pq(k)x(k)

Applying the statistical expectation operator E{-} gives the mean weight
error recursion

Elv(k+1)] = (I - pEx(k)x" (k)]) E[v(k)] + p Ela(k)x(k)]

\ .

-~

— Blv(k+1)] = (1- uR)Elv(k)

Challenge: Unless the correlation matrix R is diagonal, there will be
cross—coupling between the coefficients of the weight error vector.
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Convergence of CLMS in the Mean (contd.)

Solution: Since the eigenvalue decomposition of R = QAQ¥, the
rotation of the weight error vector v(k) by the eigenvector matrix Q, that

is, v/ (k) £y Q" E{v(k)}, decouples the evolution of its coefficients.

Proof: Pre-multiply both sides of mean weight vector error recursion by Q%

Q Bk + 1] = Q" (1 - uQAQ™) E[v(k)] = (1 - uA) Q" E[v(k)]
v/ (k+1) v/ (k)

Since the eigenvector matrix is unitary, i.e. Q¥ Q =1, the modes of
convergence are

vik+1)=(1—pA)Vv'(k)

This recursion will be stable if the diagonal elements of (I — uA) satisfy

2 2
1—puX| <1, fori=1,...,N — 0< u< <
‘ X ’L| X )\max tr[R]
. . 2 . . 2
Since tr|[R| = NE{|z(k)|*}, an easier to estimate bound 0 < p < NETa (T
Imperial College . N : , :
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Convergence of CLMS in the Mean Square

As the filter coefficients converge in the mean, they fluctuate around their
optimum values w,. As a result, the mean square error £(k) = El[|e(k)|?]
exceeds the minimum mean square error J,,;», by an amount referred to as

the excess mean square error, denoted by £pnse(k), that is
2

Imin=0
E(k) = Imintéeuse(k) =" (k) = oi+E[v"(k)Rv(k)] = o7 +tr[RK (k)]
We have used the identity E[v(k)Rv (k)] = tr[RK (k)] = tr[K(k)R],
where K (k) = E[v(k)v(k)].
The excess mean square error depends on second order statistical
properties of d(k),x(k),w(k),e(k). The plot showing time evolution of
the mean square error is called the learning curve.
For convergence in the mean square the misadjustment

1
M = gEj\é‘gE(oo) — SEMS;E(OO) ~ 5/1033]\7

min g

must be bounded and positive, that is, (1 ! tutr[R] > 0), and therefore

0<pu<2/trR] < 0<pu<2/(c2N).
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Does Circularity Influence Estimation in C?
Voltage Sag: A magnitude and/or phase imbalance

o For balanced systems, v(k) = A(k)e?*AT — circular trajectory.

o Unbalanced systems, v(k) = A(k)e?*2T + B(k)e 7“kAT are
influenced by the “conjugate” component.

o We need the complex conjugate when the modelling the signal.

Circularity Diagram

Strictly linear model yields biased estimates
when system is unbalanced

Balanced _ s ‘
= = = Strictly Linear Model
5 N
< L | _Balanced _ Type C Sag Type D Sag
S >
c (&]
k= . - ' 8
% % T ::I [ e, N .‘.“-||~|:I~"-'|‘:|"I.“|||l“.
E 8 lll.:'-"“-ﬁ'i"“l‘" tvel
) | mme UMY
Frequency * I'l""':'.':-':"'"""'::,",'
45 ‘ ‘ |
Real Part 0 0 = — )
Time (sec)
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What are we doing wrong & the Widely Linear Model

Consider the MSE estimator of a signal y in terms of another observation «
y = Elylz]
For zero mean, jointly normal y and x, the solution is
j=hlx
In standard MSE in the complex domain § = hx, however
Yr = Elyrlzr, il & i = Elyi|ar, v
thus y = Elyr|x,, x;] + 1Eyi|xr, x4

Upon employing the identities z,, = (x + 2*)/2 and x; = (z — ™) /2y
9y = Elyr|a, 2] + 1 Elyilx, 2]
and thus arrive at the widely linear estimator for general complex signals
y = hTX 4 ng*
We can now process general (noncircular) complex signals!
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Widely linear autoregressive modelling in C

Standard AR model of order n is given by
2(k) = arz(k — 1) + - +apz(k — n) + q(k) = a’z(k) + q(k),

Using the Yule-Walker equations the AR coefficients are found from

a* = Clc
" at " ¢(0) (1) ... =17 )"
as _ c(1) c(0) c*(n—2) c(2)
| ay L c(n—1) ce(n—2) ... c0) | | c(n) |
where ¢ = [¢(1),¢(2),...,c(n)]! is the time shifted correlation vector.
Widely linear model Widely linear normal equations
~1
_ T T * h* . C P C
y(k) = BT (k)x(k) + g ()" (k) + (k) HEESYRM

where h and g are coefficient vectors and x the regressor vector.
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This is a rigorous way to model general complex signals!

Circularity for lkeda map
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AR model of lkeda signal
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The Augmented (widely linear) CLMS (ACLMS)

Widely linear model y(k) = h'(k)z(k) + g"(k)z*(k)
h(k+1)=h(k) — uVpJ = Ve = —e(k)x*(k)
glk+1)=gk) —uVgd = Vg =—e(k)x(k)

Therefore, the ACLMS update
h(k+1) = h(k)+ pe(k)x™(k)
g(k+1) = g(k)+ pe(k)x(k)

or in a more compact form (using augmented input and weight vectors)

w(k +1) = w(k) + ne®(k)x® (k)

where n = pun = pig, W (k) = (W (k), g (k)" x*(k) = [x" (k), x"(k)]",

e?(k) = d(k) — x* (k)w*(k
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Performance of the ACLMS

Evaluated for both second order circular (proper) and improper signals.

10° ¢
wmd CLMS and ACLMS original
lorenz, ACLMS osrff e CLMS
- = = ACLMS
2 0.4+
10
0.3+
\Iorenz CLMS 0.2
10" - ar4 CLMS and ACLMS
s 'Y = 0.1}
: o
o / I
o' | = 0
i D
10° / oC _oAqt
ikeda, ACLMS 7‘
ikeda, CLMS -0.2¢
-0.3}
107"
-0.4+
_05 L
1072 - . . , ,
0] 500 0 20 40 60
Epoch number Samples

The ACLMS outperforms CLMS for second order noncircular signals.

Batch training

Online learning (Lorenz attractor)
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Wind modelling: Performance vs dynamics vs circularity

Data recorded in an urban environment over one day

45 :
high 18
4, 4
16f
o 3.5 % 14k ;
2 ° ™ 12 | N
%2.5 .% 10k ’\‘y’,\'/"@ - |
E 2 ‘ (2 sk y_v_‘,.—v—‘:‘t\jy:’// . B
T medium S |eommmTIIIooC medium _____---
= 15 __ o 6F Csiiramaeee=mT T [RRTRTE
= e g pTTTTTIITIITTIINT @
1 O 4 E
| a ey E—
8. o’ LLMMH 2 |
low
“JMH m i me mm Lol u ] ‘W& L o1 é 0
0 1 5 . . ,
Sample number « 10° Moving Average window size (s)

(a) Modulus of complex windover one day (b) CLMS vs ACLMS for different wind regimes.
CLMS - black, ACLMS - blue

Different wind regimes ~~ different dynamics,
v(k) = Jo(k)[e’®™),
Different dynamics ~+ different circularity properties ~~ impact of ACLMS

v| - speed, ® - direction
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Real bivariate or complex: Isomorphism between C and R?

(also serves as a basis for the CR calculus)

oo 2= S [G)

whereas in the case of complex—valued signals, we have

RN

For convenience, the “augmented” complex vector v € by
C2N*1 can be introduced as 2 .
% « 1T \
v = |[z1,2],---, 2N, 2N] -
' X
T \
vV = AW, W = [$1,y1,---7$N,yN] N !
. . : Iy /
where matrix A = diag(J,...,J) € C*N*2N is block Py
. . ([
diagonal and transforms the composite real vector w C
into the augmented complex vector v. -
X
Imperial College . N : , :
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Duality between bivariate real and complex filters
Desired signal: d(k) = d,.(k) + 3d;(k), Input: x(k) = x,(k) + jx;(k),

The bivariate (dual channel) real filter:
[c@(k)] _ [aT(/f) bT(k)] [X )]
di(k)] — Le"(k) d"(k) )
The strictly linear model d(k) = w' (k)x(k) (w(k) = w,(k) + jw;(k)) in

the CLMS is highly restrictive since it imposes the condition
a(k) =d(k) =w.(k) and b(k)=—c(k) =w;(k)

Augmented CLMS: d(k) = h (k)x(k) + g (k)x* (k)
[c{r(k)] _ [ (hy (k) + g (k)" (hi(k) — gi(k))T] [Xr(k)]
dik)] T L ak) + (k)T (o (k) — g (k)] [xi(k)
Sufficient degrees of freedom to model general complex signals!
The bound on the step-size which preserves convergence: 0 < i < =2

Amaa:

The bivariate and augmented complex correlation matrices related as
C* = E[z°z*"] = E[AwwT A"] = AWAY
It then follows that \% = 2)\“.

(

r
X,L'(

k
k

I'= ACLMS and DCRLMS converge at the same speed when 1, = 2pt4c1ms-
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Duality: Simulations

3{z(t)}

S{zM}

AR(4) and lkeda signal

Covariance of the AR(4) signal Covariance of the lkeda signal
10000 ‘ ‘ ‘ : ‘ :
5000
5000 ‘L A
R a— 0 50 100 R T — 0 50 100
Lag Lag
Pseudocovariance of the AR(4) signal Pseudocovariance of the lkeda signal
10000 ‘ ‘ ‘ ‘ : ‘
5000
5000
A
R a— 0 50 100 R T — 0 50 100
Lag Lag

Covariances and pseudocovariances

0.2

R, =10log —=

P g O_g
Algorithm AR4 lkeda Wind
R, for DCRLMS 5.8423 | 3.9733 | 13.2604
R, for CLMS 6.6380 | 2.4278 | 14.2941

R,, for ACLMS

6.6096 | 4.0330 | 14.8926

R, for DCRLMS (double )

6.6096 | 4.0330 | 14.8926
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Duality simulations: Dependence on the parameters

(observe the possibility for better tuning using the complex ACLMS)

DCRLMS Lorenz (left) and wind signal (right)

Prediction gain [dB]
Prediction gain [dB]

ACLMS Lorenz (left) and wind signal (right)

Prediction gain [dB]
Prediction gain [dB]

0.4
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Part 2: Advanced learning algorithms
and applications of

Complex-Valued Adaptive Filters

Imperial College
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Application: Circularity tracker

Relationship between a complex variable and its conjugate

Consider the problem of using a zero-mean r.v. z € C to estimate its
complex conjugate, that is

find an estimate of w that minimizes
Juse = E{le|’} = E{|z* — £*|*}

The Wiener solution

E{ZQ} P
R DU _
wopt =C T = W = E

S Circularity Quotient!!!

Imperial College
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Real time tracker of complex circularity

Idea: Use an adaptive filter to estimate the complex conjugate of a
signal using the original signal as the input.

Since the complex least mean square (CLMS) [Widrow 1975] estimates the
Wiener solution, we can configure it with input signal z; and the desired

signal 2.
The one-tap filter weight is the estimate of the circularity quotient p.

Adaptive filtering configuration CLMS algorithm

z Ak %
() i 2 = Wi2k
k 23K
er Ck = R — 2k
. @ ...... .
) j_ | W41 = Wk + HELZE
2 :

e w]
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Real time tracker of complex circularity

Simulations on synthetic white Gaussian data

The
evolution of the CLMS weights when

real and imaginary parts of the

tracking circularity.

Real Part of the Circularity Quotient

1t —— Estimated [
= ==True

0.5

0 - -
0 500 1000 1500 2000 2500 3000
Sample, k
Imaginary Part of the Circularity Quotient
1 T T T T T
— Estimated

0.5 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500

Synthetic signal was generated by

concatenating three segments of zero-mean
white Gaussian signals, z; r, with different
properties, where

Zik = Tik T JYik Zi ™~ N(O, C, Pq;)
1 = {1,2,3}

Each segment:

Sample, k c Pi il

1—1000 1 0.8/ 0.8
1001 — 2000 1 0.6+0.43 0.72
2001 — 3000 1 0 0

3000
Sample. k
Imperial Coll
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Real time tracker of complex circularity

Simulations on wind sensor data

The circularity diagram of wind speeds in  The estimate of circularity coefficient for
the low, medium and high dynamic regimes.  wind signals in the low, medium and

high dynamic regimes using the proposed
Circularity Diagram of Wind Signal & y & g pProp

7 ] algorithm.
3 - Wind Regimes
High = High Circularity Coefficient of Wind Signal
2r * Medium [ - Hiah

- AL |5 : . RN LN
= oW 8 1} : Medium : )
=3 L2 <>
@ 1f 1 b ' :
| (]
E o
£ 0 1 g
E - . e
Q Medium O :
o = O r L J
- ~1f 1 0 5000 10000 15000
k= Sample, k
=

—2oF - R . . .

Wind signal modelled as wind a complex
number
_37 -
-3 -2 -1 0 1 2 3
Wind spbeed (East-West) S = SE _I_ jSN
Imperial College
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Circular vs. Noncircular: Fast convergence vs. accuracy
Best of both worlds 3~ a Hybrid Filter

Virtues of Convex Combination () € [0, 1])

_______ . : . -
X AX+ (1-Dy y
Convexity = existence and uniqueness of solution &
d(k)

%?

filter 1 Ak) e(k)
W1<k) yl(k’)

x(k) . y(k)
*
filter 2 ya(k)
wa(k) éj 1 — A(k)
k)

Let Filterl be trained by CLMS and Filter2 by ACLMS

Imperial College
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Adaptation of the mixing parameter \

To preserve their inherent characteristics, subfilters, F'ilterl and Filter2
updated based on their own errors:

o Linear e.pms(k)

o Widely linear egcims(k)

The convex mixing parameter A is updated based on based on

J(k) = %e(k)e*(k) = %\e(k)ﬁ v Vad(B)a=am) = e(k)%i((:))%*(k)gi((z))
and the stochastic gradient based update of A becomes
ME+1) = ME)+ px {e(k) (Yactms(k) = Yeims(k))”
+ (k) (Yerms(k) — yaclms(k))}
We must ensure that the value of \(k) belongs to 0 < A\(k) < 1.
Imperial College © D. P. Mandic Adaptive Signal Processing & Machine Intelligence 37
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Performance of hybrid filters — prediction setting
consider an LMS/GNGD hybrid — GNGD is fast, LMS with small ;. has good M

Hybrid attempts to follow the subfilter with better performance.
If one of the subfilters diverges, hybrid filters still converges.

it B
LMS
LS, = 0.1 21
' / | L/ | | | |
) @ ol ¥ HybridFiter ~ GNGD
3 = 3 | | ‘ ‘
UJ10-2 w
1) 0
b \ I 2 _2 \
|
4 | '
10 A ‘ i e Al df“"'”" | .
WW,,« Iw #mmﬂmww 40
L5, p=18 Hytid Fie ‘ s
b \ \ \ \ \ \ \ -6 : : : :
W0 m am aw o0 w0 6w T e 0 200 400 600 800 1000
Samples Number of iteration
Learn. curves for pred.: Left & linear signal Right 9 nonlinear signal
Imperial College . - : , :
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The hybrid CLMS < ACLMS filter (prediction setting)

Left: circular AR(4) process

i i T
h i |WWFWW Lt W i

Bl (”r ‘ ol IW““l“WMWMW\MWﬂ
ﬂ ”WW hm“”UMN e

Hybrid !

| |
2000 3000 4000
Number of iterations

\
0 1000

5000

1 0"Iog1 Oe2

Right: Noncircular lkeda map

Hybnd filter

- 60 500 1 000 1 5b0 2600 2500 3000
Number of iterations (k)

o The CLMS has half the number of parameters of ALMS
o Hence, it initially converges faster for all test signals

® Both filters perform similarly for proper data in terms of the steady state
® ACLMS has superior steady state properties for the improper lkeda map
® Hybrid filter: both fast covergence and excellent steady state properties!
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A continuum between phase-only and magnitude-only
cost functions (when does phase error matter?)

e Answer #1: Constant Modulus

’ (FagATude orly Update) Channel Estlmator. (CM.CE)

[Rupp 1998] can estimate time-

varying channels better if phase
error Is ignored.

e Answer #2: |Least Mean Phase
,,,,,,,,, d(k) (LMP) [Tarighat/Sayed 2004]
can estimate complex symbols
better if phase error term is added
to update.

imaginary axis

(phase only update)

0 real axis 1 e Answer #3: Least Mean

d — teaching signal y — filter output Magnitude Phase (LM MP)

So, when does the (complex) [Douglas/Mandic ICASSP 2011]
phase error matter to the overall employs a combined magnitude-
performance? and phase-based criterion best
performance with stable behavior.
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On phase-only cost functions

The least mean phase (LMP) learning is based on the cost function
2
Jp(k‘) = (de — Zyk)

where e(k) = Zdy, — Zy(k), and y(k) = w (k)x(k).

['hen,
5 ()72 %(Wkﬂxk) 2
= (Ldy — / = | Zdy — arct = | Zdy, — arct
Jp(k) ( dp yk) { . — arc an%(yk)] { . — arctan ( ,Ij k)}

and Jp, min 1S achieved for wi = w,,;, to give

x(~xr H Cx H
\S(Woptxk) 2 \S(O{WOthk) 2
Jp.min = Jp(Wopt) = | Zdj, — arctan 7 = | Zdj — arctan 7
(Woptxk) (OéWOthk)
Therefore J,(Wopt) = Jp(aWeye), for any a and there is no unique
minimum.
Imperial College . N : , :
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Decomposing the squared error cost function

Decompose the well-known squared error cost function:

Jims = le(k)* = |d(k) — y(k)|*
d(k)|* + ly(k)* — [d(k)y" (k) + d(k)y* (k)]
= (ld(k)| = ly(k)))* + 21d(k)ly (k)| — [d(k)y* (k) + d(k)y* (k)]
= (d(k)| — ly(k ))”+21d(k)]ly(k) L — cos(fa — 0y)]
Magnitude Error Phase Error

The Least Mean-Magnitude Phase (LMMP) algorithm can be derived as
w(k +1) =w(k) — pmVwsIMag — tpVwrJphase

= w(k) + pm (|d(k)| = [y(k )|)—Xk+up< (k) — |d() yk)XZ

Y| Y|
If 1, = py,, the LMMP simplifies into the CLMS!
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Example: Channel equalisation in digital communications

. |
transmitted,
signal |

|
l i Channel Equaliser
S H e T [ (smD1}

channel
noise

—> }{C(f).

Ha)

O Channel equalization is a simple way of mitigating the detrimental effects caused by a
frequency-selective and/or dispersive communication link between sender and receiver.

O During the training phase of channel equalization, a digital signal s[n] that is known to
both the transmitter and receiver is sent by the transmitter to the receiver

O The received signal z[n]| contains two signals: the signal s[n] filtered by the channel
impulse response, and an unknown broadband noise signal v|[n]

O The goal is to filter x[n] to remove the inter-symbol interference (ISI) caused by the
dispersive channel and to minimize the effect of the additive noise v[n]
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Example: Digital communications &~ continued

Input signal constellation

4
3r ] ] o ]
2t 1 «10° Impulse Response
5 T T
. 1r [+ [+ o [+ 1 ° ——e Transmission channel
—_ 4+
£
2 0 ol
E 3
-1 -] -] o -] 2 |
E— 2
-2r < |
L
-3r [+ [+ [+ [+ 1 -’..---A--AAA
0 ‘ l ® o 9o 90 0 0 00000
4 . !
-4 -2 0 2 4 "o 5 10 20
Re{s(n)} Samples
Received signal x[n] Equalized signal y[n]
40 T T T 5 T
30¢ 4 By - 5 S -
20} L TR Al
2r . .
< < e Pt SUED N
: ) e neos
~ -0 - S g RN
27 . 1‘ -
-201 g T i
-3 i S
-30f "
-40 . : : -5 :
-40 -20 20 40 -5 5

0 0
Re{x[n]} Re{y[n]}
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Beamforming example

e Beamforming Model: ULA, \/2 spacing
e Sources: BPSK, BPSK, QPSK, QPSK
e Angle of Arrival: —45°,8°, —13°, 30°

e Number of Antenna Elements: 3

e Algorthims: ACLMS and CCLMS

e Desired Signal: d(k) = s;(k), 1 <p <4

e Step Size: = 0.0001.

Compare: Convergence Rates, Steady State MSE

Imperial College
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Output signal constellations

CCLMS

NMSE = -10.1832dB

% Wy

0 2

Rely, (n)]

NMSE = -4.8665dB

.# .
. 083 feny
[ A d
\'_'l\, SRS
WA

K

0 2

Rely,(n)]

ACLMS

Imly, (n)]

Imly,y(n)]

NMSE = -20.477dB

0 2
Rely, (n)]

NMSE = -14.8754dB

L 8
o Ny

-2

0
Rely,(n)]

ACLMS has lower MSE because of non-circular binary sources

Imperial College

London
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Signal constellations: channel equalization

Channel: 3-tap with frequency offset

Source phases: time-varying

Performance meas.: average inter-symbol interfer., ISI (not dependent on phase)

Im{y(k)}

Im{y(k)}

Im{y(k)}

-1.5

LMS,2500 k 10000,=0.2

Re{y(k)}
LMS,2500 k 100000=0.02

-1 0 1
Re{y(k)}

CMA,2500 k 10000,=0.2

Re{y(k)}

LMMP,2500 k 10000,ocm=0.2,mp=0.02

1.5

Re{y(k)}

Im{y(k)} Im{y(k)} Im{y(k)}

Im{y(k)}

h.i.Li

-1.5

LMMP,12500 k 20000,ocm=0.2,ocp=0.02

1.5
1

LMS,12500 k 20000,=0.2

' ¥ 2 3
% &
F 2 % ¥ 4

AP

LMS,12500 k 20000,=0.02

Bl d
»% &
2 2 2

SHRP
B Re{g(k)} 1

CMA,12500 k 20000,=0.2

Re{y(k)}

S4%¢
i X L)

| Hae

0
Re{y(k)}

Im{y(k)}

Im{y(k)}

Im{y(k)}

Im{y(k)}

-1.5

LMS,22500 k 30000,=0.2

-1 0 1
Re{y(k)}

LMS,22500 k 30000,=0.02

L

-1 0 1
Re{y(k)}

CMA,22500 k 30000,=0.2
o

Re{y(k)}

Moral:

Signal phase uncertainty

can harm channel
amplitude  and phase
estimation  performance,

unless it is mitigated within
the algorithm itself.

LMMP,22500 k 30000’“m=0‘2‘°cp=0'02

1.5

-1 0 1
Re{y(k)}

LMMP in red addresses this
uncertainty explicitly.
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Case Study: Frequency estimation in smart grid
Sources of frequency deviation

Transmission: well-modelled
distribution side is not

high voltage transmission | local distribution Lsub

ov (6)

@ o000 @ M
120V substation

pole

substation transformer 000
available: f, V, I, L

12
3-5MVA

138kV 46kV
> > @

- o
r -

well modelled poorly modelled (no sensors)
Block diagram of power grid Nodal estimation

o Dual character of load/supply ~ f+4 for G > L and f— for G < L
o Harmonics and freq. drifts from loads with nonlinear V' — I properties

o Transient stability issues cause inaccurate frequency estimates, also
switching on/off the shunt capacitors in reactive power compensation
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The three-phase power system and o transformation

Three-phase system where V,(k), Vi(k), V.(k) are the peak values.
va(k) = Va(k)cos(WkAT + ¢)

2
vp(k) = Vi(k)cos(WkAT + ¢ — ?W)
2T
ve(k) = Ve(k)cos(wWkAT + ¢ + ?)
The af transform - a complex signal which carries the same information
N 2 gﬁl %ﬁl - va(k) ]
Ua(k) — g 1 -5 —3 Ub(k’)
o) 0 o = | Lwk)

For balanced systems vy = 6 and thus the co;nplex Clarke's voltage
v(k) = va(k) 4 gug(k) = A(k)e?@WFATHO) o B(k)e I (WhATTP)

A(k) _ \/E(Va(k)+‘gb(k)+vc(k)) and B(k) _ \/E(QVa(k)—l‘gb(k)—VC(k)) . ﬂ(Vb(ki_VC(k))J

Clearly, unbalanced systems are noncircular!
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Noncircularity in unbalanced voltage conditions

o Balanced system: V, (k) = V,(k) = V.(k), A(k) = const, B(k) =0,
and v(k) is on a circle
o Unbalanced system: V,(k), V4(k), V.(k) are not identical

® A(k) is no longer constant, B(k) # 0

® v(k) is not on a circle — a degree of noncircularity

| Some types of voltage sags
+++'|'H*H-HH'I'++++ ] " " k.

ooooo..... \
0.5} "-i- ] —— = 3 -

—_
T

05} Type A Type C Type D
"’00000000 1 1 1
-1} 4
++"'+-I-+|.,.,.,_|_|.|.H-+"'++ = o =
%) %) %)
-1 —0.5 0 0.5 1
R(} -1 -1 -

-1 %y 1 ®(y 1 -1 R®{} 1

balanced and unbalanced system Their circularity diagrams
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Simulations: Several successive sags

g AR T A Tyt S FAARY 52
8 '\ l" A '\ ;,‘ A "’ .....
E 0N\ \, - n\1 s
2 Op\e¢ \‘! . "! A \‘!\ s "! A A 51
|3 N /‘\"o o\’ \\".o POR 4 /‘u"
-1
50t
o ¥ Ll
3 T 49t Wiy L
» > ) "p -
o 2 - ||||I'!‘I”l5ill !
[ [ i PRSI} [ 1 S e ey
o >
= g 48} i
LC
. 2 47+
Q0 !
wn C - |
o 46 heh
1 i
ST ' il
ot _o s ‘ ‘ ‘ 45 w s ‘ ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.1 0.2 0.3 0.4 0.5
Time (sec) Time (sec)

Phase voltages for different sags Linear and widely linear frequency estimation

o Initially, the power system (50Hz) was operating normally and both
CLMS and ACLMS converged to 50Hz

o The widely linear ACLMS had advantage in the subsequent type C and
D sags and under harmonics
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Using the widely linear model for frequency estimation

The widely linear model is able to estimate the frequency for both circular

(balanced) and noncircular (unbalanced) voltages.

55 I T T
= = = Strictly Linear Model
~N = Widely Linear Model
1L
= | Balanced = Type C Sag ~ Type D Sag
-
()
o
fagf * v
,_% True f:.':--l.':.l::,':,":;:::.".::. "y
Frequenc L P L L
Eabtaell AT AL
45 ' . .
0) 0.1 0.2 0.3 0.4
Time (sec)
Imperial College _ o _ _ _
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Introduction to Distributed Adaptive Filters

Multiple adaptive filters collaborating in a network

The Diffusion ACLMS at node 4

Neighborhood of Node % Input:  z;(k) = [X?(k),Xf(k)]T,
________________ v Weights: w;(k) = [h!(k),g! (k)]*
yi(k) = w;' (k)z(k)
i v ei(k) = di(k) — yi(k)
Connection Node i .
Y,(k+1) =wi(k) + pie; (k)zi(k)
Average MSE Across 6 Nodes N
23 e
g 2 | owilk+1) =) app(k+1)
2_25 —e—D-ACLMS| /—1
S 26 1
2 | The weighting coefficients satisfy
—ogl———
Sparse

> D
Connection Level onse g Ay; — 1 — Qi; — 1— E Qy;
/=1 0=+£14
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Performance of the Diffusion-CLMS and
Diffusion-ACLMS in the smart grid

F ency estimate at a randomly selected .
requentcy st y The average MSE of the frequency estimate

node with multiple frequency events of D-ACLMS and D-CLMS under a Type D

between 0.1 s and 0.5 s

Sag.
Average MSE Across 6 Nodes
52 I I I 20 T T T T T
| | —=D-ACLMS —
N ot} e ', |==-AcMs || B
< L ! } 1771 | —Reference uwT
g 50 :‘ : 2
(0]
349 : 1 g
o . ! o
L 48 B 1 : é
/:/— -\ r: - \ | .
47 40
0 0.1 0. 3 4 0.5 30 70
Time (sec
Individual MSE at Each Node
50 50l —15¢ = ACLMS (No diffusion) ® D-ACLMS]]
g ¥
= 495 = 495 —
9 3 T 20 1
S 49 S 49 o
> =] n
S 485 g 485 = 25 1
I o
48 48
-30
0.12 0.14 0.16 0.18 0.2 029 03 031 032 033 1 2 3 4 5
Time (sec) Time (sec) Node
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Conclusions

o Adaptive processing of noncircular complex signals

o These arise e.g. due to the nonlinearity of transievers (I/Q imbalance
mitigation), multipath, in some modulation schemes (BPSK, GSMK,
PAM, offset-QPSK) widely used in practical communications systems

o Standard solutions assume second order circularity of signal distributions
and are inadequate when the signals are observed through nonlinear
sensors, mixtures of sources, or noise model which is not doubly white

o This is achieved based on augmented complex statistics and widely
linear modelling

o The complex LMS (CLMS) and augmented CLMS (ACLMS) introduced

o Convergence of CLMS and ACLMS - from the booklet provided
(Chapter 6)

o This promises enhanced practical solutions in a variety of applications
(interference supression, DoA estimation, blind estimation)
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A comprehensive account of widely linear modelling

D.Mandic and V. Goh, “Complex Valued Nonlinear Adaptive Fllters:
Noncircularity, Widely Linear and Neural Models”, Wiley 2009.

o Unified approach to the design of complex
valued adaptive filters and neural networks

o Augmented learning algorithms based on
widely linear models

o Suitable for processing both second order
circular (proper) and noncircular (improper)
complex signals

o ACLMS, augmented Kalman filters,
augmented CRTRL, linear and nonlinar IIR
filters

o Adaptive stepsizes, dynamical range
reduction, collaborative adaptive filters,

Sl S statitical tests for the validity of complex

representations

COMPLEX VALUED'
NONLINEAR
ADAPTIVE FILTERS

djir [ wvfeinr
T TR
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Some back—up material

Imperial College

London © D. P. Mandic Adaptive Signal Processing & Machine Intelligence 57



Appendix: Transform domain signal processing

Usually complex valued (e.g. Fourier Domain)

Frequency domain adaptive filtering e A0 =081
dfn] @ 2 @
Transformation é 0 g 0
Function g_z 2
0l | Transformtion W_ i CL/Z ' o 1° ? Sa?ﬁpfcriurﬁier e | ? Sa‘?ﬁpchFunﬁ%er 0o
g .0 I T T T Tl?é?é‘i’oow‘ %M
Inverse 8—0-5 l l l l l 8 Hﬁ
> Trarflsfort{nation — You L ‘ ‘ ‘ , TTTTTTTT??WA“
b ! ’ Correla:ign lag * “ ’ ’ Correlat}gn lag N ’
. ] g 0 Burg Power Spectral Density Estimate ;g 5 Burg Power Spectral Density Estimate
A transform can be applied to the inputs i
of an adaptive filter in order to maximise v 2
the performance of the LMS algorithm, i.e.
a White input With equal eigenvalues < ’ NorrﬁflizedFroe.;uencyo(.znrad/s(;?nple) 1 < ’ Norrr(:;lizedFl?e.‘;uencyo(.inrad/s(;?nple) 1
Various techniques can be used such as | <0 — highpass, a > 0 — lowpass
Lattice Filters, the FFT which requires z(k)=a1x(k—1) +w(k)
the Complex LMS algorithm, the Discrete Hich . I f g o
. I ass signal: tast changing iIn
Cosine or Wavelet transforms, or sub-band _ ghp g ging
flters time & however, smooth spectrum
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Appendix: The CLMS algorithm
Step-by-step derivation

Consider a complex valued FIR filter.

The weight update equation for a real valued filter is

w(k+1) =w(k) + ne(k)x(k)

Now, the weights and errors and teaching signal and input are complex

valued.

Hence

7

QN

¥
o

75

g

/\/\ﬁ\/\/\
- 2y
— — ~— ~— ~—
|
P
ﬁ
~~
2y

<
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Appendix: The CLMS cost function

The complex LMS should simultaneously adapt the real and imaginary
part, minimising in some sense both e,.(k) and e;(k), with respect to the
average total error power, given by

1 1 1
Ele(k)e” (k)] = 5B [ex(k) + €f (k)] = SF [e7(k)] + 5 F [e7 (k)]
Since the two components of the error are in quadrature relative to each

other, they cannot be minimised independently.

The derivation of the complex LMS is similar to the derivation fo the
original LMS, except that the rules of complex algebra must be observed.

— (x*(k))" w*(k), e.g.

*

Notice that (x”(k)w(k))

r X w = [(x, + j7;) (W, + Jw;)| = [xrw, — xjw; + J(Trw; + x;w,)] After
conjugation we have |z,w, — x;w; — j(x,w; + z;w,-)]. On the other hand
r*w* = [(z, — 325) (wr — Jw;] = [Trw, — Tiw; — J(Trw; + TiW,)],

which is the same as when we conjugate the whole expression.
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Appendix: The CLMS Derivation

e*(k) = d"(k) — (x" (k)" w" (k)
Therefore, for a GD adaptation we have

wik+1) = w(k) — %nvw (e(k)e* (k)

where V(e(k)e*(k)) = V,(e(k)e*(k)) + 3Vi(e(k)e*(k)).

[ O(e(k)e* (k) |
8w11
O(e(k)e (k))

V.(e(k)e™(k)) = Oway =e(k)V,.(e"(k)) + e (k)V,(e(k))

d(e(k)e” (k)
Owny
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Appendix: The CLMS derivation — contd.

Notice that ( in a simplified way)

(k) = d(k) — 2(kpu(k) = d(k) -
() () — (k) + o (R)u(k) + (k) ()]

(k) = d(k) — ey (R (8) + (k) (k) — (e (R (R) + (R ()]
The partial derivatives wrt to w, and w; are

ey =l () + i) = ~x(

Gtk = —lea) + g ()] = —x()

G =l ) = —x ()

o = k) = g ()] =~ (k)
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Appendix: The CLMS Derivation — Complex Gradients

The instantaneous gradient with respect to its real and imaginary
component becomes

+ )
Vi(e* (k) + e*(k)Vi(e(k))
) +e7 (k) (=5x(k))

Now, applying the method of steepest descent, to the real and imaginary
part of the weights we have

Wik +1) = wy(k) — o1V, (e(k)e” (k)

wilk+1) = wik) ~ 5nVi (e(k)e (k)
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Appendix: The CLMS Derivation — Filter Update
Having in mind that w(k + 1) = w,.(k + 1) + yw;(k + 1), we have

Wk +1) = w(k) — 21 [V, (e(k)e (k) + 5V (e(R)e" (k)]

If the gradients are now substituted in the above equation, we have

Vi (e(k)e™ (k) + gVi(e(k)e (k) =
e(k)(=x"(k)) + e (k) (=x(k)) + 7 le(k) ()x"(k)) + " (k) (=gx(k))] =

—e, X" — 16; X" — ;X + 96X — ;X — 916X + e, X — jeix =

—2e,x" — 29e;x* = —2e(k)x" (k)
Therefore, the complex form of the LMS algorithm is given by

w(k+1) =w(k) + ne(k)x™(k)
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