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Outline:
Basically, to de-mystify multidimensional adaptive estimation

◦ Multidimensional and multichannel sensors – a unified approach to
adaptive filtering of such signals

◦ Circularity – a unique signature of bivariate signals # second order
circularity (properness) # augmented complex statistics

◦ Duality between the processing in R2 and C (isomorphism)

◦ The issue of complex gradient # CR calculus

◦ Covariance, pseudocovariance, and widely linear models

◦ Complex Wiener filter, complex least mean square (CLMS) and
augmented CLMS (ACLMS)

◦ Magnitude-only, phase-only, and least mean magnitude phase (LMMP)
approaches

◦ Multivariate adaptive filters (any number of data channels)

◦ Applications: communications, radar and sonar, target tracking,
renewable energy, smart grid
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We can use multidimensional filters within our usual
adaptive filtering configurations!
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Multidimensional adaptive signal processing:
Applications

Renewable Energy Body motion sensor Wearable technologies

2D and 3D anemometers 3D - position, gyroscope, speed Biomechanics

control of wind turbine gait, biometrics virtual reality
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Wind sensors - 2D and 3D anemometers
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Why modelling in C?

◦ Complex signals by design (communications, analytic signals, equivalent
baseband represenation to eliminate spectral redundancy)

◦ By convenience of representation (radar, sonar, wind field)

◦ Problem: Different algebra (no ordering - operator “≤” makes no
sense!), and the notion of pdf has to be induced

◦ Problem: Special form of nonlinearity (the only continuously
differentiable function in C is a constant (Liouville theorem)

◦ Solution: Special statistics – augmented complex statistics (started in
mathematics in 1992)

◦ We can differentiate between several kinds of noises (doubly white
circular with various distributions nr ⊥ ni & σ2

nr = σ2
ni

, doubly white
noncircular nr ⊥ ni & σ2

nr > σ2
ni

, noncircular noise)
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What is the right basis for real world data?
Back to Dennis Gabor # but careful: Bedrossian and Nutall theorems

Consider

◦ Amplitude modulated signal x(t) = m(t) cos(ω0t) → m(t) # envelope

◦ Phase modulated signal x(t) = a cos(Φ(t)) → Φ(t) # phase

Problem: there is an infinite number of pairs [a(t),Φ(t)] s.t.
m(t) cos(ω0t) = a cos(Φ(t))

Solution: an analytic transform z(t) = x(t) + H
(
x(t)

)
= a(t)eΦ(t)

Remark#1: z(t) cannot be real, as F
(
z(t)

)
= 0 for ω < 0

Remark#2: Hilbert transform (analytic signal) makes it possible to
associate a unique pair

[
a(t),Φ(t)

]
to any real x(t) = <

{
a(t)eΦ(t)

}

Remark#3: For x(t) = a(t) cos Φ(t) ⇒ H
{
x(t)

}
= a(t) sin Φ(t)

Remark#4: From instantaneous phase Φ(t) → instantaneous
frequency

f(t) = dΦ(t)/dt

so we have an excellent resolution and do not depend on stationarity
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Standard adaptive filtering algorithms in C
Considered straightforward extensions of the corresponding algorithms in R
– replace the vector transpose by the Hermitian transpose:

◦ Covariance
C = E{xxT}  C = E{zzH}

◦ Autoregressive model and Wiener solution

w = R−1p  w∗ = R−1p

◦ Least mean square (LMS) ; complex LMS [Widrow at al. 1975]

w(k + 1) = w(k) + µe(k)x(k)  w(k + 1) = w(k) + µe(k)z∗(k)

◦ Real time recurrent learning (RTRL) for recurrent neural networks
(RNN) [Williams & Zipser 1989] ; complex RTRL [Goh & Mandic
2004]

w(k + 1) = w(k) + µe(k)Π(k)  w(k + 1) = w(k) + µe(k)Π∗(k)

This is, however, valid only for circular complex random processes
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Property of division algebras # complex (non)circularity
Noncircularity of the wind distribution v(k) = |v(k)|eΦ(k)

Deterministic vs. Stochastic nature
Linear vs. Nonlinear nature
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Real world signals are denoted by ’???’

◦ ∃ a unique signature of complex signals?

◦ # degree of noncircularity
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Circular vs noncircular complex random variables
Circularity = Rotation invariant distribution p(ρ, θ) = p(ρ, θ − φ)

circular variable = construct z = ρ cos(θ) + jρ sin(θ), θ ∼ U [0, 2π), ρ ∼ any pdf
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◦ Covariance of z is
c = E{zz∗} = E{|z2|}

◦ Pseudocovariance is
p = E{zzT} = E{z2}

◦ Circularity quotient:
ρ = p

c

◦ Circularity coefficient:
|ρ| = |p|

c

Circularity quotient
and coefficient quantify
the degree of non-
circularity
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Some observations

Although a formalism similar to that used for real valued adaptive filters
can also be used for complex valued adaptive filters, notice that in this
case the cost function J(k) = 1

2|e(k)|2 = 1
2e(k)e∗(k) = 1

2(e2
x + e2

y) is a
real valued function of complex variable.

◦ Standard complex differentiability is based on the Cauchy–Riemann
(C–R) equations and imposes a stringent structure on complex
holomorphic functions;

◦ Cost functions are real functions of complex variable, that is J : C 7→ R,
and so they are not differentiable in the complex sense, the
Cauchy–Riemann equations do not apply, and we need to develop
alternative, more general and relaxed, ways of calculating their gradients
(CR-calculus);

◦ It is also desired that these generalised gradients are formally equivalent
to standard complex gradients (their generic extensions) when applied
to holomorphic (analytic) functions.
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Complex Wiener filter
Notice that we have used: (xHy)∗ = yHx

The Wiener solution can be obtained by minimising

J(w) = E
[
e(k)e∗(k)

]
= E

[(
d(k)−wHx(k)

)(
d(k)−wHx(k)

)∗]

J(w) = E
[
|d(k)|2

]
−wHE

[
x(k)d∗(k)

]
−wTE

[
x∗(k)d(k)

]
+ wHE

[
x(k)xH(k)

]
w

= σ2
d −wHp− pHw + wHRw → ∇w∗J(w) = Rw − p = 0

The optimum solution wo and the minimum mean square error Jmin

wo = argmin
w
J(w) = R−1p Jmin = J(wo) = σ2

d − pHR−1p

Also, J(w) can be expressed as

J(w) = Jmin + (w −wo)
H

R (w −wo) = Jmin + vHRv by noticing that
d(k) = wH

o x(k) + q(k) and e(k) = (wo−w(k))Hxk + q(k) = vH(k)x(k),
where q(k) ∼ N (0, σ2

q).

Notice that J(w) is quadratic in w and has a global minimum for
w = wo, with Jmin = σ2

q .
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Derivative of the cost function 1
2e(k)e∗(k) and CLMS

As C-derivatives are not defined for real functions of complex variable

R− der:
∂

∂z
=

1

2

[
∂

∂x
−  ∂

∂y

]
R∗ − der:

∂

∂z∗
=

1

2

[
∂

∂x
+ 

∂

∂y

]

and the gradient

∇wJ =
∂J(e, e∗)

∂w
=

[
∂J(e, e∗)

∂w1
, . . . ,

∂J(e, e∗)

∂wN

]T
= 2

∂J

∂w∗
=

∂J

∂wr
+ 

∂J

∂wi︸ ︷︷ ︸
pseudogradient

The standard Complex Least Mean Square (CLMS) (Widrow et al. 1975)

y(k) = wH(k)x(k)

e(k) = d(k)− y(k) = d(k)−wH(k)x(k) e∗(k) = d∗(k)− xH(k)w(k)

and ∇wJ = ∇w∗J (conjugate gradient direction)

w(k + 1) = w(k)− µ ∂e(k)

∂w∗(k)
e∗(k) = w(k) + µe∗(k)x(k)

Thus, no need for tedious computations # the CLMS is derived in one line
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Which derivative to we choose to compute the gradient?
R-derivative vs. R∗-derivative?

Simulation for the CLMS derived using R-der. and R∗-der. (wo = 3)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
Step−Size, µ = 0.01

Time Instant, n

W
ei

gh
t E

st
im

at
e

 

 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
Step−Size, µ = 0.1

Time Instant, n

W
ei

gh
t E

st
im

at
e

 

 

∇
w*

 Gradient

∇
w

 Gradient

∇
w*

 Gradient

∇
w

 Gradient

...but R−der. leads 
to instability 

Both R−der. & R*−der
follow the same 
trajectory...   

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 14



Orthogonality principle & alternative forms for the CLMS

Consider the expected value for the CLMS update

E
[
w(k + 1)

]
= E

[
w(k)

]
+ µE

[
e(k)x∗(k)

]

It has converged when w(k + 1) = w(k) = w(∞) and thus the weight
update ∆w(k) = µE[e(k)x∗(k)] = 0.

This is achieved for E
[
d∗(k)x(k)

]
−E

[
x(k)xH(k)

]
w(k) = 0⇔ Rwo = p

that is, for the Wiener solution, wo = R−1p.

The condition E[e(k)x∗(k)] = 0 is called the “orthogonality condition”
and states that the output error of the filter and the tap input vector are
orthogonal (e ⊥ x) when the filter has converged to the optimal solution.

The following formulations for the CLMS produce identical results:

y(k) = xT (k)w(k) = wT (k)x(k) → w(k + 1) = w(k) + µe(k)x∗(k)

y(k) = wH(k)x(k) = xT (k)w∗(k) → w(k + 1) = w(k) + µe∗(k)x(k)

y(k) = xH(k)w(k) = wT (k)x∗(k) → w(k + 1) = w(k) + µe(k)x(k)
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Types of convergence of CLMS

It is of greater interest, however, to analyse the evolution of the weights in
time. As with any other estimation problem, we need to analyse the “bias”
and “variance” of the estimator, that is:

◦ Convergence in the mean, to ascertain whether w(k)→ wo when
k →∞;

◦ Convergence in the mean square, in order to establish whether the
variance of the weight error vector v(k) = w(k)−wo(k) approaches
Jmin as k →∞.

The analysis of convergence of linear adaptive filters is made
mathematically tractable if we use so called independence assumptions,
such that the filter coefficients are

~ statistically independent of the data currently in filter memory, and

~ {d(l), x(l)} is independent of {d(k), x(k)} for k 6= l.

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 16



Convergence of CLMS in the Mean

Assume d(k) = xH(k)wo + q(k), q(k) ∼ N (0, σ2
q). Then

e(k) = xH(k)wo + q(k)− xH(k)w(k)

w(k + 1) = w(k) + µx(k)xHwo − µx(k)xH(k)w(k) + µq(k)x(k)

Subtract wo from both sides, and define the weight error vector

v(k)
def
= w(k)−wo

v(k + 1) = v(k)− µx(k)xH(k)v(k) + µq(k)x(k)

Applying the statistical expectation operator E{·} gives the mean weight
error recursion

E[v(k + 1)] =
(
I− µE[x(k)xH(k)]

)
E[v(k)] + µE[q(k)x(k)]︸ ︷︷ ︸

=0

=⇒ E[v(k + 1)] =
(
I− µR

)
E[v(k)]

Challenge: Unless the correlation matrix R is diagonal, there will be
cross–coupling between the coefficients of the weight error vector.
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Convergence of CLMS in the Mean (contd.)

Solution: Since the eigenvalue decomposition of R = QΛQH, the
rotation of the weight error vector v(k) by the eigenvector matrix Q, that

is, v′(k)
def
= QHE{v(k)}, decouples the evolution of its coefficients.

Proof: Pre-multiply both sides of mean weight vector error recursion by QH

QHE[v(k + 1)]︸ ︷︷ ︸
v′(k+1)

= QH
(
I− µQΛQH

)
E[v(k)] =

(
I− µΛ

)
QHE[v(k)]︸ ︷︷ ︸

v′(k)

Since the eigenvector matrix is unitary, i.e. QHQ = I, the modes of
convergence are

v′(k + 1) = (I− µΛ) v′(k)

This recursion will be stable if the diagonal elements of (I− µΛ) satisfy

|1− µλi| < 1, for i = 1, . . . , N =⇒ 0 < µ <
2

λmax
<

2

tr[R]

Since tr[R] = NE{|x(k)|2}, an easier to estimate bound 0 < µ < 2
NE[|x(k)|2|].
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Convergence of CLMS in the Mean Square

As the filter coefficients converge in the mean, they fluctuate around their
optimum values wo. As a result, the mean square error ξ(k) = E[|e(k)|2]
exceeds the minimum mean square error Jmin by an amount referred to as
the excess mean square error, denoted by ξEMSE(k), that is

ξ(k) = Jmin+ξEMSE(k)
Jmin=σ2

d=⇒ ξ(k) = σ2
q+E

[
vH(k)Rv(k)

]
= σ2

q+tr[RK(k)]

We have used the identity E[vH(k)Rv(k)] = tr[RK(k)] = tr[K(k)R],
where K(k) = E[v(k)vH(k)].

The excess mean square error depends on second order statistical
properties of d(k),x(k),w(k), e(k). The plot showing time evolution of
the mean square error is called the learning curve.

For convergence in the mean square the misadjustment

M =
ξEMSE(∞)

ξmin
=
ξEMSE(∞)

σ2
q

≈ 1

2
µσ2

xN

must be bounded and positive, that is, (1− 1
2µtr[R] > 0), and therefore

0 < µ < 2/tr[R] ↔ 0 < µ < 2/(σ2
xN).
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Does Circularity Influence Estimation in C?
Voltage Sag: A magnitude and/or phase imbalance

◦ For balanced systems, v(k) = A(k)eωk∆T → circular trajectory.

◦ Unbalanced systems, v(k) = A(k)eωk∆T +B(k)e−ωk∆T are
influenced by the “conjugate” component.

◦ We need the complex conjugate when the modelling the signal.

Circularity Diagram

Real Part

Im
ag

in
ar

y 
P

ar
t

Balanced

Type C
Sag

Type D
Sag

Strictly linear model yields biased estimates
when system is unbalanced

0 0.1 0.2 0.3 0.445

50

55

Time (sec)

Fr
eq

ue
nc

y 
(H

z)

 

 

Old Method
SmartFrequency 

True 
Frequency

Strictly Linear Model

Type C Sag Type D SagBalanced

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 20



What are we doing wrong # the Widely Linear Model

Consider the MSE estimator of a signal y in terms of another observation x

ŷ = E[y|x]

For zero mean, jointly normal y and x, the solution is

ŷ = hTx

In standard MSE in the complex domain ŷ = hHx, however

ŷr = E[yr|xr, xi] & ŷi = E[yi|xr, xi]
thus ŷ = E[yr|xr, xi] + E[yi|xr, xi]

Upon employing the identities xr = (x+ x∗)/2 and xi = (x− x∗)/2
ŷ = E[yr|x, x∗] + E[yi|x, x∗]

and thus arrive at the widely linear estimator for general complex signals

y = hTx + gTx∗

We can now process general (noncircular) complex signals!
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Widely linear autoregressive modelling in C
Standard AR model of order n is given by

z(k) = a1z(k − 1) + · · ·+ anz(k − n) + q(k) = aTz(k) + q(k),

Using the Yule-Walker equations the AR coefficients are found from

a∗ = C−1c



a∗1
a∗2
...
a∗n


 =




c(0) c∗(1) . . . c∗(n− 1)
c(1) c(0) . . . c∗(n− 2)

... ... . . . ...
c(n− 1) c(n− 2) . . . c(0)




−1


c(1)
c(2)

...
c(n)




where c = [c(1), c(2), . . . , c(n)]T is the time shifted correlation vector.

Widely linear model Widely linear normal equations

y(k) = hT (k)x(k) + gT (k)x∗(k) + q(k)

[
h∗

g∗

]
=

[
C P
P∗ C∗

]−1 [
c
p∗

]

where h and g are coefficient vectors and x the regressor vector.
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This is a rigorous way to model general complex signals!

Circularity for Ikeda map AR model of Ikeda signal
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The Augmented (widely linear) CLMS (ACLMS)

Widely linear model y(k) = hT(k)z(k) + gT(k)z∗(k)

h(k + 1) = h(k)− µ∇h∗J ⇒ ∇h∗J = −e(k)x∗(k)

g(k + 1) = g(k)− µ∇g∗J ⇒ ∇g∗J = −e(k)x(k)

Therefore, the ACLMS update

h(k + 1) = h(k) + µe(k)x∗(k)

g(k + 1) = g(k) + µe(k)x(k)

or in a more compact form (using augmented input and weight vectors)

wa(k + 1) = wa(k) + ηea(k)xa
∗
(k)

where η = µh = µg, wa(k) = [hT (k), gT (k)]T , xa(k) = [xT (k), xH(k)]T ,

ea(k) = d(k)− xa
T
(k)wa(k)
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Performance of the ACLMS

Evaluated for both second order circular (proper) and improper signals.
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Wind modelling: Performance vs dynamics vs circularity

Data recorded in an urban environment over one day
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Real bivariate or complex: Isomorphism between C and R2

(also serves as a basis for the CR calculus)

z → za ↔
[
z
z∗

]
=

[
1 
1 −

] [
x
y

]

whereas in the case of complex–valued signals, we have

z → za ↔
[

z
z∗

]
=

[
I  I
I − I

] [
x
y

]

For convenience, the “augmented” complex vector v ∈
C2N×1 can be introduced as

v = [z1, z
∗
1, . . . , zN , z

∗
N ]
T

v = Aw, w = [x1, y1, . . . , xN,yN ]T

where matrix A = diag(J, . . . ,J) ∈ C2N×2N is block
diagonal and transforms the composite real vector w
into the augmented complex vector v.

2

jy

x

y

x

C

R
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Duality between bivariate real and complex filters
Desired signal: d̂(k) = d̂r(k) + d̂i(k), Input: x(k) = xr(k) + xi(k),

The bivariate (dual channel) real filter:[
d̂r(k)

d̂i(k)

]
=

[
aT (k) bT (k)
cT (k) dT (k)

] [
xr(k)
xi(k)

]

The strictly linear model d̂(k) = wH(k)x(k) (w(k) = wr(k) + wi(k)) in
the CLMS is highly restrictive since it imposes the condition

a(k) = d(k) = wr(k) and b(k) = −c(k) = wi(k)

Augmented CLMS: d̂(k) = hH(k)x(k) + gH(k)x∗(k)[
d̂r(k)

d̂i(k)

]
=

[
(hr(k) + gr(k))T (hi(k)− gi(k))T

−(hi(k) + gi(k))T (hr(k)− gr(k))T

] [
xr(k)
xi(k)

]

Sufficient degrees of freedom to model general complex signals!
The bound on the step-size which preserves convergence: 0 < µ < 2

λmax
The bivariate and augmented complex correlation matrices related as

Ca = E[zazaH] = E
[
AωωTAH

]
= AWAH

It then follows that λa = 2λω.

RACLMS and DCRLMS converge at the same speed when µr = 2µaclms.
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Duality: Simulations
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AR(4) and Ikeda signal Covariances and pseudocovariances

Rp = 10 log
σ2
z

σ2
e

Algorithm AR4 Ikeda Wind

Rp for DCRLMS 5.8423 3.9733 13.2604

Rp for CLMS 6.6380 2.4278 14.2941

Rp for ACLMS 6.6096 4.0330 14.8926

Rp for DCRLMS (double µ) 6.6096 4.0330 14.8926
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Duality simulations: Dependence on the parameters
(observe the possibility for better tuning using the complex ACLMS)

DCRLMS Lorenz (left) and wind signal (right)
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ACLMS Lorenz (left) and wind signal (right)
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Part 2: Advanced learning algorithms
and applications of

Complex-Valued Adaptive Filters
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Application: Circularity tracker
Relationship between a complex variable and its conjugate

Consider the problem of using a zero-mean r.v. z ∈ C to estimate its
complex conjugate, that is

ẑ∗ = w∗z

find an estimate of w that minimizes

JMSE = E{|e|2} = E{|z∗ − ẑ∗|2}

The Wiener solution

wopt = c−1r =
E{z2}
E{|z|2} =

p

c

→ Circularity Quotient!!!
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Real time tracker of complex circularity

Idea: Use an adaptive filter to estimate the complex conjugate of a
signal using the original signal as the input.

Since the complex least mean square (CLMS) [Widrow 1975] estimates the
Wiener solution, we can configure it with input signal zk and the desired
signal z∗k.

The one-tap filter weight is the estimate of the circularity quotient ρ.

Adaptive filtering configuration

zk

(·)∗

Σ

−

ẑ
∗

k

z
∗

k

ek

w
∗

k

CLMS algorithm

ẑ∗k = w∗kzk

ek = z∗k − ẑ∗k
wk+1 = wk + µe∗kzk
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Real time tracker of complex circularity
Simulations on synthetic white Gaussian data

The real and imaginary parts of the

evolution of the CLMS weights when

tracking circularity.
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Estimated
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Synthetic signal was generated by

concatenating three segments of zero-mean

white Gaussian signals, zi,k, with different

properties, where

zi,k = xi,k + jyi,k zi ∼ N (0, c, pi)

i = {1, 2, 3}

Each segment:

Sample, k c pi |ρi|
1− 1000 1 0.8j 0.8

1001− 2000 1 0.6 + 0.4j 0.72

2001− 3000 1 0 0
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Real time tracker of complex circularity
Simulations on wind sensor data

The circularity diagram of wind speeds in

the low, medium and high dynamic regimes.
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The estimate of circularity coefficient for

wind signals in the low, medium and

high dynamic regimes using the proposed

algorithm.
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Circular vs. Noncircular: Fast convergence vs. accuracy
Best of both worlds # a Hybrid Filter

Virtues of Convex Combination (λ ∈ [0, 1])

yλx + (1−  )yλx

Convexity ⇒ existence and uniqueness of solution ©

filter 2

filter 1

x(k)

∑

d(k)

∑e(k)

y(k)∑

∑

-

-

-
λ(k)

1− λ(k)

e1(k)

y1(k)

y2(k)

e2(k)

w1(k)

w2(k)

Let Filter1 be trained by CLMS and Filter2 by ACLMS
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Adaptation of the mixing parameter λ

To preserve their inherent characteristics, subfilters, Filter1 and Filter2
updated based on their own errors:

◦ Linear eclms(k)

◦ Widely linear eaclms(k)

The convex mixing parameter λ is updated based on based on

J(k) =
1

2
e(k)e∗(k) =

1

2
|e(k)|2  ∇λJ(k)λ=λ(k) = e(k)

∂e∗(k)

∂λ(k)
+e∗(k)

∂e(k)

∂λ(k)

and the stochastic gradient based update of λ becomes

λ(k + 1) = λ(k) + µλ

[
e(k)

(
yaclms(k)− yclms(k)

)∗

+ e∗(k)
(
yclms(k)− yaclms(k)

)]

We must ensure that the value of λ(k) belongs to 0 ≤ λ(k) ≤ 1.
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Performance of hybrid filters – prediction setting
consider an LMS/GNGD hybrid – GNGD is fast, LMS with small µ has good M

Hybrid attempts to follow the subfilter with better performance.
If one of the subfilters diverges, hybrid filters still converges.
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The hybrid CLMS ↔ ACLMS filter (prediction setting)

Left: circular AR(4) process Right: Noncircular Ikeda map
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◦ The CLMS has half the number of parameters of ALMS
◦ Hence, it initially converges faster for all test signals

~ Both filters perform similarly for proper data in terms of the steady state
~ ACLMS has superior steady state properties for the improper Ikeda map
~ Hybrid filter: both fast covergence and excellent steady state properties!

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 39



A continuum between phase-only and magnitude-only
cost functions (when does phase error matter?)

y − filter output

updatephase only

d(k)y(k−1)

y
lmp

y

y
cma

clms

magnitude only update

real axis0

im
a

g
in

a
ry

 a
x
is

1

1

d − teaching signal

So, when does the (complex)
phase error matter to the overall
performance?

• Answer #1: Constant Modulus
Channel Estimator (CMCE)
[Rupp 1998] can estimate time-
varying channels better if phase
error is ignored.

• Answer #2: Least Mean Phase
(LMP) [Tarighat/Sayed 2004]
can estimate complex symbols
better if phase error term is added
to update.

• Answer #3: Least Mean
Magnitude Phase (LMMP)
[Douglas/Mandic ICASSP 2011]
employs a combined magnitude-
and phase-based criterion best
performance with stable behavior.
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On phase-only cost functions

The least mean phase (LMP) learning is based on the cost function

Jp(k) =
(
∠dk − ∠yk

)2

where e(k) = ∠dk − ∠y(k), and y(k) = wH(k)x(k).

Then,

Jp(k) =
(
∠dk − ∠yk

)2
=
[
∠dk − arctan

=(yk)

<(yk)

]2
=
[
∠dk − arctan

=(wH
k xk)

<(wH
k xk)

]2

and Jp,min is achieved for wk = wopt, to give

Jp,min = Jp(wopt) =
[
∠dk − arctan

=(wH
optxk)

<(wH
optxk)

]2
=
[
∠dk − arctan

=(αwH
optxk)

<(αwH
optxk)

]2

Therefore Jp(wopt) = Jp(αwopt), for any α and there is no unique
minimum.
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Decomposing the squared error cost function

Decompose the well-known squared error cost function:

JLMS = |e(k)|2 = |d(k)− y(k)|2

= |d(k)|2 + |y(k)|2 − [d(k)y∗(k) + d(k)y∗(k)]

= (|d(k)| − |y(k)|)2
+ 2|d(k)||y(k)| − [d(k)y∗(k) + d(k)y∗(k)]

= (|d(k)| − |y(k)|)2

︸ ︷︷ ︸
Magnitude Error

+ 2|d(k)||y(k)| [1− cos(θd − θy)]︸ ︷︷ ︸
Phase Error

The Least Mean-Magnitude Phase (LMMP) algorithm can be derived as

w(k + 1) = w(k)− µm∇w∗JMag − µp∇w∗JPhase

= w(k) + µm (|d(k)| − |y(k)|) yk
|yk|

x∗k + µp

(
d(k)− |d(k)| yk|yk|

)
x∗k

If µp = µm, the LMMP simplifies into the CLMS!
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Example: Channel equalisation in digital communications

Equaliser

≈1/Hc(f){s[n]} {s[n-D]}
∑Channel

Hc(f)

v[n] :

channel

noise

transmitted

signal

H f
H fc

c

( )
( )

⋅ =

1
1

2 Channel equalization is a simple way of mitigating the detrimental effects caused by a

frequency-selective and/or dispersive communication link between sender and receiver.

2 During the training phase of channel equalization, a digital signal s[n] that is known to

both the transmitter and receiver is sent by the transmitter to the receiver

2 The received signal x[n] contains two signals: the signal s[n] filtered by the channel

impulse response, and an unknown broadband noise signal v[n]

2 The goal is to filter x[n] to remove the inter-symbol interference (ISI) caused by the

dispersive channel and to minimize the effect of the additive noise v[n]
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Example: Digital communications # continued
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Beamforming example

• Beamforming Model: ULA, λ/2 spacing

• Sources: BPSK, BPSK, QPSK, QPSK

• Angle of Arrival: −45◦, 8◦,−13◦, 30◦

• Number of Antenna Elements: 3

• Algorthims: ACLMS and CCLMS

• Desired Signal: d(k) = s∗p(k), 1 ≤ p ≤ 4

• Step Size: µ = 0.0001.

Compare: Convergence Rates, Steady State MSE
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Output signal constellations

CCLMS ACLMS

ACLMS has lower MSE because of non-circular binary sources
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Signal constellations: channel equalization
Channel: 3-tap with frequency offset Source phases: time-varying

Performance meas.: average inter-symbol interfer., ISI (not dependent on phase)

Moral :

Signal phase uncertainty

can harm channel

amplitude and phase

estimation performance,

unless it is mitigated within

the algorithm itself.

LMMP in red addresses this

uncertainty explicitly.
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Case Study: Frequency estimation in smart grid
Sources of frequency deviation

Transmission: well-modelled
distribution side is not

138kV
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120V
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available: f, V, I, L

3−5MVA

local distributionhigh voltage transmission

poorly modelled (no sensors)well modelled

transformer
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substation

46kV
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M

M
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Gsub
Lsub
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20%

12kV

circuit (local grid)
Σ

Block diagram of power grid Nodal estimation

◦ Dual character of load/supply  f+ for G > L and f− for G < L

◦ Harmonics and freq. drifts from loads with nonlinear V − I properties

◦ Transient stability issues cause inaccurate frequency estimates, also
switching on/off the shunt capacitors in reactive power compensation
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The three-phase power system and αβ transformation

Three-phase system where Va(k), Vb(k), Vc(k) are the peak values.

va(k) = Va(k)cos(ωk4T + φ)

vb(k) = Vb(k)cos(ωk4T + φ− 2π

3
)

vc(k) = Vc(k)cos(ωk4T + φ+
2π

3
)

The αβ transform - a complex signal which carries the same information



v0

vα(k)
vβ(k)


 =

√
2

3




√
2

2

√
2

2

√
2

2
1 −1

2 −1
2

0
√

3
2 −

√
3

2






va(k)
vb(k)
vc(k)




For balanced systems v0 = 0, and thus the complex Clarke’s voltage

v(k) = vα(k) + vβ(k) = A(k)e(ωk∆T+φ) +B(k)e−(ωk∆T+φ)

A(k) =
√

6(Va(k)+Vb(k)+Vc(k))

6 and B(k) =
√

6(2Va(k)−Vb(k)−Vc(k))

12 −
√

2(Vb(k)−Vc(k))

4 

Clearly, unbalanced systems are noncircular!
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Noncircularity in unbalanced voltage conditions

◦ Balanced system: Va(k) = Vb(k) = Vc(k), A(k) = const, B(k) = 0,
and v(k) is on a circle

◦ Unbalanced system: Va(k), Vb(k), Vc(k) are not identical
~ A(k) is no longer constant, B(k) 6= 0
~ v(k) is not on a circle → a degree of noncircularity
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Simulations: Several successive sags
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Phase voltages for different sags Linear and widely linear frequency estimation

◦ Initially, the power system (50Hz) was operating normally and both
CLMS and ACLMS converged to 50Hz

◦ The widely linear ACLMS had advantage in the subsequent type C and
D sags and under harmonics
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Using the widely linear model for frequency estimation

The widely linear model is able to estimate the frequency for both circular
(balanced) and noncircular (unbalanced) voltages.
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Introduction to Distributed Adaptive Filters
Multiple adaptive filters collaborating in a network

Node i

Neighborhood of Node i

Connection

Sparse Dense
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D−ACLMS

The Diffusion ACLMS at node i
Input: zi(k) = [xTi (k),xHi (k)]T ,
Weights: wi(k) = [hTi (k),gTi (k)]T

yi(k) = wH
i (k)zi(k)

ei(k) = di(k)− yi(k)

ψi(k + 1) = wi(k) + µie
∗
i (k)zi(k)

wi(k + 1) =

N∑

`=1

a`iψ`(k + 1)

The weighting coefficients satisfy
N∑

`=1

a`i = 1 =⇒ aii = 1−
∑

6̀=i

a`i
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Performance of the Diffusion-CLMS and
Diffusion-ACLMS in the smart grid

Frequency estimate at a randomly selected

node with multiple frequency events

between 0.1 s and 0.5 s
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Conclusions

◦ Adaptive processing of noncircular complex signals

◦ These arise e.g. due to the nonlinearity of transievers (I/Q imbalance
mitigation), multipath, in some modulation schemes (BPSK, GSMK,
PAM, offset-QPSK) widely used in practical communications systems

◦ Standard solutions assume second order circularity of signal distributions
and are inadequate when the signals are observed through nonlinear
sensors, mixtures of sources, or noise model which is not doubly white

◦ This is achieved based on augmented complex statistics and widely
linear modelling

◦ The complex LMS (CLMS) and augmented CLMS (ACLMS) introduced

◦ Convergence of CLMS and ACLMS – from the booklet provided
(Chapter 6)

◦ This promises enhanced practical solutions in a variety of applications
(interference supression, DoA estimation, blind estimation)
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A comprehensive account of widely linear modelling

D.Mandic and V. Goh, “Complex Valued Nonlinear Adaptive FIlters:
Noncircularity, Widely Linear and Neural Models”, Wiley 2009.

◦ Unified approach to the design of complex

valued adaptive filters and neural networks
◦ Augmented learning algorithms based on

widely linear models
◦ Suitable for processing both second order

circular (proper) and noncircular (improper)

complex signals
◦ ACLMS, augmented Kalman filters,

augmented CRTRL, linear and nonlinar IIR

filters
◦ Adaptive stepsizes, dynamical range

reduction, collaborative adaptive filters,

statitical tests for the validity of complex

representations
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Some back–up material
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Appendix: Transform domain signal processing
Usually complex valued (e.g. Fourier Domain)

Frequency domain adaptive filtering

Adaptive Filter ∑x[n]

Transformation

Function

e[n]

d[n]

Transformation

Function

Inverse

Transformation

function
yout

-
+

A transform can be applied to the inputs

of an adaptive filter in order to maximise

the performance of the LMS algorithm, i.e.

a white input with equal eigenvalues.

Various techniques can be used such as

Lattice Filters, the FFT which requires

the Complex LMS algorithm, the Discrete

Cosine or Wavelet transforms, or sub-band

filters.
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x[n] = −0.8*x[n−1] + w[n]

a < 0 → highpass, a > 0 → lowpass

x(k) = a1x(k − 1) + w(k)

Highpass signal: fast changing in
time # however, smooth spectrum
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Appendix: The CLMS algorithm
Step-by-step derivation

Consider a complex valued FIR filter.

The weight update equation for a real valued filter is

w(k + 1) = w(k) + ηe(k)x(k)

Now, the weights and errors and teaching signal and input are complex
valued.

Hence

e(k) = er(k) + ei(k)

d(k) = dr(k) + di(k)

x(k) = xr(k) + xi(k)

w(k) = wr(k) +  wi(k)

y(k) = xT (k)w(k)
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Appendix: The CLMS cost function

The complex LMS should simultaneously adapt the real and imaginary
part, minimising in some sense both er(k) and ei(k), with respect to the
average total error power, given by

E [e(k)e∗(k)] =
1

2
E
[
e2
r(k) + e2

i (k)
]

=
1

2
E
[
e2
r(k)

]
+

1

2
E
[
e2
i (k)

]

Since the two components of the error are in quadrature relative to each
other, they cannot be minimised independently.

The derivation of the complex LMS is similar to the derivation fo the
original LMS, except that the rules of complex algebra must be observed.

Notice that
(
xT (k)w(k)

)∗
= (x∗(k))

T
w∗(k), e.g.

x× w = [(xr + xi)(wr + wi)] = [xrwr − xiwi + (xrwi + xiwr)] After
conjugation we have [xrwr − xiwi − (xrwi + xiwr)]. On the other hand
x∗w∗ = [(xr − xi)(wr − wi] = [xrwr − xiwi − (xrwi + xiwr)],

which is the same as when we conjugate the whole expression.
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Appendix: The CLMS Derivation

e∗(k) = d∗(k)−
(
xT (k)

)∗
w∗(k)

Therefore, for a GD adaptation we have

w(k + 1) = w(k)− 1

2
η∇w (e(k)e∗(k))

where ∇(e(k)e∗(k)) = ∇r(e(k)e∗(k)) + ∇i(e(k)e∗(k)).

Now,

∇r(e(k)e∗(k)) =




∂(e(k)e∗(k))
∂w1r

∂(e(k)e∗(k))
∂w2r...

∂(e(k)e∗(k))
∂wNr




= e(k)∇r(e∗(k)) + e∗(k)∇r(e(k))
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Appendix: The CLMS derivation – contd.

Notice that ( in a simplified way)

e(k) = d(k)− x(k)w(k) = d(k)−
− [xr(k)wr(k)− xi(k)wi(k) + (xr(k)wi(k) + xi(k)wr(k))]

e∗(k) = d(k)− [xr(k)wr(k) + xi(k)wi(k)− (xr(k)wi(k) + xi(k)wr(k))]

The partial derivatives wrt to wr and wi are

∂e(k)

∂wr(k)
= −[xr(k) + xi(k)] = −x(k)

∂e(k)

∂wi(k)
= −[−xi(k) + xr(k)] = −x(k)

∂e∗(k)

∂wr(k)
= −[xr(k)− xi(k)] = −x∗(k)

∂e∗(k)

∂wi(k)
= −[xi(k)− xr(k)] = −[−x∗(k)]
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Appendix: The CLMS Derivation – Complex Gradients

The instantaneous gradient with respect to its real and imaginary
component becomes

∇r(e(k)e∗(k)) = e(k)∇r(e∗(k)) + e∗(k)∇r(e(k))

= e(k)(−x∗(k)) + e∗(k)(−x(k))

∇i(e(k)e∗(k)) = e(k)∇i(e∗(k)) + e∗(k)∇i(e(k))

= e(k) (x∗(k)) + e∗(k) (−x(k))

Now, applying the method of steepest descent, to the real and imaginary
part of the weights we have

wr(k + 1) = wr(k)− 1

2
η∇r (e(k)e∗(k))

wi(k + 1) = wi(k)− 1

2
η∇i (e(k)e∗(k))
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Appendix: The CLMS Derivation – Filter Update

Having in mind that w(k + 1) = wr(k + 1) + wi(k + 1), we have

w(k + 1) = w(k)− 1

2
η [∇r (e(k)e∗(k)) + ∇i (e(k)e∗(k))]

If the gradients are now substituted in the above equation, we have

∇r (e(k)e∗(k)) + ∇i (e(k)e∗(k)) =

e(k)(−x∗(k)) + e∗(k)(−x(k)) +  [e(k) (x∗(k)) + e∗(k) (−x(k))] =

−erx∗ − eix∗ − erx + eix− erx∗ − eix∗ + erx− eix =

−2erx
∗ − 2eix

∗ = −2e(k)x∗(k)

Therefore, the complex form of the LMS algorithm is given by

w(k + 1) = w(k) + ηe(k)x∗(k)
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Notes

◦
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Notes
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Notes
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