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Outline

Background on:

Complex-Valued Signal Processing

◦ Why a complex-valued solution in a real-valued world?
◦ History of complex numbers.

Part 1: Complex Calculus

◦ Cauchy-Riemann equations
◦ Key point 1: CR-Calculus and its application

Part 2: Complex Statistics

◦ Data model: Gaussian
◦ Moving from real to complex
◦ Key point 2: Circularity and widely linear estimation
◦ Covariance and pseudocovariance
◦ Widely linear autoregressive model # caters for both second order

circular (proper) and non-circular (improper) data
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Motivation for modelling in C
Much more convenient in a number of applications

◦ Magnetic source imaging (fMRI, MRI, MEG) are recorded in the Fourier
domain, that is, the data are inherently complex-valued

◦ Interferometric radar - high coherence in order to obtain both the
altitude and amplitude introduces speckles

◦ Array signal processing, antennas, direction of arrival (DoA)

◦ Transform domain signal processing (DCT, DFT, wavelet)

◦ Mobile communications (equalisation, I/Q mismatch, nonlinearities)

◦ Homomorphic filtering – we like zero mean signals, but in R the log
does not exist for x ≤ 0, yet log z = log |z|+ arg(z) does

◦ Optics and seismics - reflection, refraction # phase information

◦ Fractals, associative memory (recognising objects from their parts)

◦ Much work still to be done – great opportunity for future research!
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The Role of Geometry

◦ Complex numbers were only accepted after they had a geometric
interpretation, but it was only possible for b2 − c2 ≥ 0.
◦ Wallis - complex number a point on the plane (solutions A & B)
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Real solution Complex solution

◦ In 1732 Leonhard Euler, xn − 1 = 0 → cos θ +
√
−1 sin θ

◦ Abraham de Moivre (1730) and again Euler (1748), introduced the
famous formulas

(cos θ +  sin θ)
n

= cosnθ +  sinnθ

cos θ +  sin θ = eθ

◦ In 1806 Argand interpreted  =
√
−1 as a rotation by 90o and

introduced Argand diagram, z = x+ y, and the modulus
√
x2 + y2 .

◦ In 1831 Karl Friedrich Gauss introduced ı =
√
−1 and complex algebra.
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History of complex numbers
Find a triangle of Area = 7 and Perimeter = 12

◦ Heron of Alexandria (60 AD)

A

12 units

7  sq. units

C

B

To solve this, let the side |AB| = x, and the height |BC| = h, to yield

area =
1

2
x h

perimeter = x+ h+
√
x2 + h2

In order to solve for x we need to find the roots of

6x
2 − 43x+ 84 = 0

However, this equation does not have real roots.
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Fundamental theorem of algebra (FTA)

◦ Initial work by Albert Girard in 1629
’there are n roots to an n-th order polynomial’

He also introduced the abbreviations sin, cos, tan in 1626.
◦ Descartes in the 1630s ’For every equation of degree n we can
imagine roots which do not correspond to any real quantity’
◦ In 1749 Euler proved the FTA

Every n-th order polynomial in R has exactly n roots in C

b

Σ

N

jy

x

z

Complex plane

North pole

a

(a) Riemann sphere (b) Earth projection from
South pole

Stereographic projection and Riemann sphere

◦ Cauchy→ ’conjugate’, Hankel→ ’direction’, Weierstrass→ ’absolute value’
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History of mathematical notation
Did you know?

~ 9th century Al Kwarizimi’s Algebra - solutions descriptive rather than in
form of equations

~ 16th century - G. Cardano Ars Magna - unknowns denoted by single
roman letters

~ Descartes (1630-s) established general rules

– lowercase italic letters at the beginning of the alphabet for unknown
constants a, b, c, d

– lowercase italic letters at the end of the alphabet for unknown
variables x, y, z

~
√
−1 = ı – Gauss 1830s, boldface letters for vectors x,v - Oliver

Heaviside

~ Hence ax2 + by + cz = 0

More detail: F. Cajori, History of Mathematical Notations, 1929
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Modern complex estimation: Numerous opportunities

◦ Complex signals by design (communications, analytic signals, equivalent
baseband represenation to eliminate spectral redundancy)

◦ By convenience of representation (radar, sonar, wind field), direction of
arrival related problems

◦ Problem: More powerful algebra than R2 but no ordering (operator
“≤” makes no sense!) and the notion of pdf has to be induced from R2

◦ Problem: Special form of nonlinearity (the only continuously
differentiable function in C is a constant (Liouville theorem)

◦ Solution: Special ’augmented’ statistics – (started in maths in 1992) –
more degrees of freedom and physically meaningful matrix structures

◦ We can differentiate between several kinds of noises (doubly white
circular with various distributions nr ⊥ ni & σ2

nr = σ2
ni

, doubly white
noncircular nr ⊥ ni & σ2

nr > σ2
ni

, noncircular noise)
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Example 1: Human visual system
Importance of phase information

Surrogate images. Top: Original images I1 and I2; Bottom: Images Î1 and Î2 generated

by exchanging the amplitude and phase spectra of the original images.
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Example 2: Noncircularity arising from I/Q imbalance
One of the key issues in the future 5G networks

+90°

DAC

LPF

LPF

DAC

( )Is n

( )Qs n

cos( )cnw

sin( )cg nw q+

( )Ix n

( )Qx n

( )x n+

-

RF LO

( )Ih n

( )Qh n

Consider the baseband discrete-time input

signal, s(n), which is complex circular,

e.g., 64-QAM. After passing through an

I/Q imbalanced modulator, the output x(n)

becomes noncircular, that is

x(n) = µ(n) ∗ s(n) + ν(n) ∗ s∗(n)

where

µ(n) = 1/2[hI(n) + ghQ(n)e
−jθ

]

ν(n) = 1/2[hI(n)− ghQ(n)e
−jθ

]
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(Non–)Linear separability and learning machines
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Logic functions and linear separability

output

w2

w1

Σ

x2
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θ

inputs

linear

limiter

threshold

combiner

hard

y

Perceptron–type neural network

f(1,−1)=−1

1

1

−1

−1

f(1,1,)=1f(−1,1)=−1

f(−1,−1)=−1

AND function is linearly separable

f(−1,−1)=1

1

1

−1

−1

f(1,1,)=1f(−1,1)=−1

f(1,−1)=−1

How about the XOR
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Usefulness of complex numbers in machine intelligence
Example: Nonlinear separability of the logic XOR problem

x1 x2 z P (z) = XOR
1 1 1 +  1
1 -1 1−  -1

-1 1 −1 +  -1
-1 -1 −1−  1

P (z) =





1, arg(z) in 1st or

3rd quadrants

−1, arg(z) in 2nd or

4th quadrants.

In R we need multiple layers
But a single neuron in C performs the

XOR and is amplitude independent

0

Im

decision boundary

real part

x=0

Re

−1 + j

−1 − j

1 + j

1 − j 

y=0
boundarydecision

imaginary part

1

0

1

c© D. P. Mandic Adaptive SP & Machine Intelligence 12



Part 1: Complex Calculus

We will now introduce a modern perspective on complex calculus, the
so-called CR calculus which offers much more flexibility in the

differentiation of complex functions, and is indispensable in learning
systems where the objective (cost) functions are typically real-valued

functions of complex variables.

Such functions are not differentiable using the standard complex
differentiation (Cauchy-Riemann), yet gradient based learning schemes

require such derivatives.

We show that the CR-calculus applies both to the holomorphic (complex
analytic) and non-holomorphic functions of complex variable, and will

elucidate the use of the so-called ‘pseudo-gradient’.
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Difference with complex-valued functions

Consider the magnitude and phase for the function f(z) = tanh(·)
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Singularities: Isolated singularities (removable singularities, poles,
essential singularities), branch points, singularities at ∞.

In gradient based learning, we seek a coefficient vector w using the so
called pseudo-gradient of the cost function J = E{|e|2} = E{ee∗},

∇wJ(e, e∗) =
∂J

∂wr
+ 

∂J

∂wi
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Recap: What is a derivative?
we need to understand where the pseudo-gradient comes from

The definition of derivative for f(x) ∈ R:

f ′(x) = lim∆x→0
f(x+∆x)−f(x)

∆x

For a complex function

f(z) = u(x, y) + v(x, y)

to be differentiable at z = x + y, the limit
must converge to a unique complex number
no matter how ∆z = ∆x + ∆y → 0.

f ′(z) = lim∆z→0
f(z+∆z)−f(z)

∆z

So, the complex derivative is only defined for
analytic functions.

Real-Domain:

Complex-Domain:
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Complex derivatives: The Cauchy-Riemann conditions
Conditions for the derivative to exist in C

For f(z) to be analytic, a unique limit must exist regardless of how ∆z
approaches zero

f ′(z) = lim
∆x→0
∆y→0

[
u (x+ ∆x, y + ∆y) + v (x+ ∆x, y + ∆y)

]
−
[
u(x, y) + v(x, y)

]

∆x + ∆y

must exist regardless of how ∆z approaches zero. It is convenient to
consider the two following cases for the C− derivatives:

Case 1: ∆y = 0 and ∆x → 0, which yields

f ′(z) = lim∆x→0

[
u(x+∆x,y)+v(x+∆x,y)

]
−
[
u(x,y)+v(x,y)

]
∆x

= lim∆x→0
u(x+∆x,y)−u(x,y)

∆x
+ v(x+∆x,y)−v(x,y)

∆x

= ∂u(x,y)
∂x + ∂v(x,y)

∂x
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Complex derivatives: The Cauchy-Riemann conditions
Conditions for the derivative to exist in C

Case 2: ∆x = 0 and ∆y → 0, which yields

f ′(z) = lim∆y→0

[
u(x,y+∆y)+v(x,y+∆y)

]
−
[
u(x,y)+v(x,y)

]
∆y

= lim∆y→0
u(x,y+∆y)−u(x,y)

∆y
+

v(x,y+∆y)−v(x,y)

∆y

= ∂v(x,y)
∂y − ∂u(x,y)

∂y

For continuity, the limits from Case 1 and Case 2 must be identical, which
yields the Cauchy-Riemann equations

∂u(x, y)

∂x
=
∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y

This introduces a tremendous amount of structure (restrictions) in the
calculus, as shown in an intuitive example on the next two slides.
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Example of complex-valued optimisation
Channel equalisation in wireless comms (reversing distortion of transmitted signals)

In-Phase
-6 -4 -2 0 2 4 6

Q
u

a
d

ra
tu

re

-6

-4

-2

0

2

4

6

Adaptive equalisation

Received signal
Equalized signal
Signal constellation

Objective: To minimize the cost function

J(w) = |e(k)|2 = e(k)e
∗
(k)

= e
2
r + e

2
i = u(k) + v(k)

Here, u(k) = e2
r + e2

i and v(k) = 0

But, ∂u
∂er

=2er 6= ∂v
∂ei

=0, ∂u
∂ei

=2ei 6= − ∂v
∂er

=0

# Our J(w) is not differentiable in the

Cauchy–Riemann sense (here, error power is

a real function of complex variables e(k) and

e∗(k)) but the equaliser has to work!
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Cauchy–Riemann derivatives are very restrictive!
Recall: f(z) = u(x, y) + v(x, y) → f ′(z) = ∂u(x, y)/∂x+ ∂v(x, y)/∂x

∂u(x, y)

∂x
=
∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y
Intuition: The Jacobian matrix of f(z) = u+ v, is given by

J =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
⇔

[ ′1′ ′1′
′ − 1′ ′1′

]

Thus, f(z) = z∗ is not analytic as its Jacobian J =

[
1 0
0 −1

]
.

Functions which depend on both z = x+ y and z∗ = x− y are not
analytic, for example

J(z, z∗) = zz∗ = x2+y2 ⇒ J =

[
2x 2y
0 0

]
⇔ ∂u

∂x
6= ∂v

∂y

∂v

∂x
6= −∂u

∂y

Another typical example is the cost function J = 1
2e(k)e∗(k) = 1

2|e(k)|2
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The key: CR-derivatives
Can we exploit results from multivariate calculus in R2?

Goal: Find the derivative of a complex function f(z) w.r.t. z = x+ y.

In standard Multivariate Calculus in RN×1 the derivative of a function

g(x), x = [x1, x2, . . . , xN ] is defined as ∂g
∂x =

[
∂g
∂x1

, . . . , ∂g
∂xN

]T

◦ Step 1: Define the vector x = [x, y]T , hence z = 1Tx.

◦ Step 2: Express the derivative of f with respect to “real” vector x i.e
∂f
∂x =

[
∂f
∂x

∂f
j∂y

]T
(see the Appendix 3 for vector-valued derivatives )

◦ Step 3: Transform the derivative vector in Step 2 back into C

∂f

∂z
= 1T

∂f

∂x
=
∂f

∂x
+
∂f

∂y
=
∂f

∂x
− ∂f

∂y

◦ Step 4: Normalise the derivative since f is “differentiated twice”, to
give the R−derivatives (cf. differentiate wrt z∗ for R∗− derivatives)

R− der :
∂f

∂z
=

1

2

[
∂f

∂x
− ∂f

∂y

]
. Similarly, R∗ − der :

∂f

∂z∗
=

1

2

[
∂f

∂x
+ 

∂f

∂y

]
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CR-derivatives of holomorphic functions
CR-derivatives vs. standard C-derivatives for f(z) = z & f(z) = z∗

If a function f = f(z, z∗) = u(x, y) + v(x, y) is holomorphic, then the
Cauchy–Riemann conditions are satisfied, that is

∂u(x, y)

∂x
=
∂v(x, y)

∂y
and

∂v(x, y)

∂x
= −∂u(x, y)

∂y

Therefore the R− and R∗−derivatives are

R− der. :
∂f

∂z

∣∣∣
z∗=const.

=
1

2

[
∂f

∂x
− ∂f

∂y

]
=

1

2

[
2
∂u

∂x
+ 2

∂v

∂x

]
= f ′(z)

R∗ − der. :
∂f

∂z∗

∣∣∣
z=const.

=
1

2

[
∂f

∂x
+ 

∂f

∂y

]
= 0

For holomorphic functions the R∗-derivative vanishes and the
R-derivative is equivalent to the standard complex derivative

Example: (i) f(z) = z = x+ y ⇒ R− der = 1 & R∗ − der = 0,
(ii) f(z) = z∗ = x− y ⇒ R− der = 0 & R∗ − der = 1
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Example 3: The CR-calculus for non–holomorphic
functions

Consider a real function of complex variable f(z) = |z|2 = zz∗ = x2 + y2,
where z = x+ y (clearly non–holomorphic). Assuming z ⊥ z∗, the
R-derivative and the conjugate R∗-derivative are

∂f

∂z
=
∂(zz∗)
∂z

= z∗ and
∂f

∂z∗
=
∂(zz∗)
∂z∗

= z

To verify, start from

f(z) = f
(
u(x, y) + jv(x, y)

)
= f(u, v) = x2 + y2

where u(x, y) = x2 + y2 and v(x, y) = 0. Therefore,

R− der :
∂f

∂z
=

1

2

[∂(x2 + y2)

∂x
−∂(x2 + y2)

∂y

]
=

1

2

[
2x−2y

]
= x−y = z∗

R∗ − der :
∂f

∂z∗
=

1

2

[∂(x2 + y2)

∂x
+
∂(x2 + y2)

∂y

]
=

1

2

[
2x+2y

]
= x+y = z
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Example 4: Some typical CR-derivatives
Prove these from the definitions of the R and R∗ derivatives

For the R− derivative, the function is partially differentiated w.r.t z while
keeping z∗ constant, and vice versa for the R∗ − derivative.

f(z, z∗) R−der R∗−der C−der

z 1 0 1

z∗ 0 1 Undefined

|z|2 = zz∗ z∗ z Undefined

z2z∗ 2|z|2 z2 Undefined

ez ez 0 ez

If f(z, z∗) is independent of z∗, then the R-derivative of f(z) is equivalent
to the standard C-derivative;
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Which derivative to we choose to compute the gradient?
An example from learning systems: R-der vs. R∗-der?

Simulation for the CLMS derived using R-der. and R∗-der. (wo = 3)
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...but R−der. leads 
to instability 

Both R−der. & R*−der
follow the same 
trajectory...   
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Part 2: Complex Statistics

Now that we have familiarised ourselves with the concept of
(non-)circularity, we will examine how to use the concept in the domain of

second-order statistics and how to design so-called widely linear
estimators which are second-order optimal for both second-order circular

(proper) and second-order noncircular (improper) data.
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Isomorphism between C and R2

Moving from real-valued to complex-valued data

z → za ↔
[
z
z∗

]
=

[
1 
1 −

] [
x
y

]

whereas in the case of complex–valued signals, we have

z → za ↔
[

z
z∗

]
=

[
I  I
I − I

] [
x
y

]

For convenience, the “augmented” complex vector v ∈
C2N×1 can be introduced as

v = [z1, z
∗
1, . . . , zN , z

∗
N ]
T

v = Aw, w = [x1, y1, . . . , xN,yN ]T

where matrix A = diag(J, . . . ,J) ∈ C2N×2N is block
diagonal and transforms the composite real vector w
into the augmented complex vector v.

2

jy

x

y

x

C

R
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The multivariate complex normal distribution
We cannot introduce a CDF # pdf introduced via duality with R

Recall, the relationships like “<” or “≥” make no sense in C.

V = cov(v) = E[vvH] = AWAH

Using the result by Vanden Bos 1995

w = A−1v =
1

2
AHv

det(W) =

(
1

2

)2N

det(V)

wTW−1w = vHV−1v

The multivariate generalised complex normal distribution (GCND) can now
be expressed as

f(v) =
1

πN
√
det(V)

e−
1
2vHV−1v

and has been derived without any restriction.
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Circular complex random variables
Try to generate complex ran. var. from various distrib. in MATLAB

Circularity # Rotation invariant distrib.

p(ρ, θ) = p(ρ, θ − φ)

1. The name of the distribution takes after
the distribution of the real–valued random
variable ρ with a pdf p(ρ);

2. It can be Gaussian, uniform, etc.

3. Take another real–valued random variable
θ, which must be uniformly distributed on
[0, 2π] and independent of ρ;

4. Construct the complex random variable Z =
X + jY as

X = ρ cos(θ), Y = ρ sin(θ)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ρ cos θ

ρ 
si

n 
θ

(i) Uniform circular

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ρ cos θ
ρ 

si
n 

θ

(j) Gaussian circular
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Complex circularity

Definition: A complex-valued random is called circular if its probability
distribution is not dependent on the angle, that is, the distribution is
“rotation invariant”.

For simplicity, we consider univariate complex-valued random variables; the
concepts are readily extended to the multivariate case.

Recall that for an iid complex-valued random variable Z = X + Y , the pdf

PZ(z) = PX(x)PY (y)

On the other hand, in the case of a rotation invariant PZ(z), its pdf is
only be dependent of the Euclidean distance from the origin in the
complex domain. Therefore, if the random variable Z is circular, we have

g(r) = PZ(z) = PX(x)PY (y)

where r =
√
x2 + y2 and g(·) is a general function.
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Circularity
Some circular distributions

Circular complex-valued random variables

The distribution of R is Rayleigh.
Thus, the distributions of the real
and imaginary parts are Gaussian.

circular Rayleigh distribution

The distribution of R is exponential

PR(r) = λe−λr, λ = 1

circular exponential distribution
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Circularity
A noncircular distribution

Independent real & imaginary distributions but not circular!

Distributions of the real and imaginary part

are independent Laplace distributions

PX(x) =
1

2
e
−|x|

and
1

2
PY (y) =

1

2
e
−|y|

Thus,

PZ(z = x+ y) =
1

4
e
−(|x|+|y|)

Although the distributions on the
real and imaginary axes are
independent and hence uncorrelated,
the resulting distribution is not
rotation invariant, that is, it is non-
circular.

c© D. P. Mandic Adaptive SP & Machine Intelligence 31



Signal modality – So why are complex signals different?
(many expressions are conformal # but dangerous to directly apply real tools!)

Deterministic vs. Stochastic nature
Linear vs. Nonlinear nature

Determinism

Nonlinearity

Linearity

Chaos

ARMA

(a)

(b)

(c)

? ?

?

?

? ?
?

?

NARMA

Stochasticity

Change in signal modality can indicate
e.g. health hazard (fMRI, HRV)

Real world signals are denoted by ’???’

◦ ∃ a unique signature of complex signals?

◦ # degree of noncircularity
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Other definitions of circularity

Via Probability density function, Characteristic Function, Cumulants

◦ Probability density function. A complex random variable Z is circular if its pdf is a

function of only the product zz∗, that is1

pZ,Z∗(z, z
∗
) = pZφ,Z∗φ

(zφ, z
∗
φ)

and for for Gaussian CCRVs we have
pZ,Z∗(z, z

∗
) =

1

πσ2
e
−zz∗/σ2
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1The pdf of a circular complex random variable is function of only the modulus of z, and not of z∗.
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Example: Does circularity influence estimation in C?
Visualising the Clarke transform and noncircular voltage sags

0 0.02 0.04
−1

−0.5

0

0.5

1

Time (s)

V
ol

ta
ge

 (
p.

u.
)

3−phase Voltage

 

 

v
a

v
b

v
c

0

0.05

−1

0

1

−1

0

1

Time (s)

α−β Voltage

Imaginary (p.u.)

R
ea

l (
p.

u.
) 

vα

vβ

Clarke’s
Transform

Circularity Diagram

Real Part

Im
ag

in
ar

y 
P

ar
t

Balanced

Type C
Sag

Type D
Sag

Phasor Diagram

Type C
Sag

Phasor Diagram

Type D
Sag

c© D. P. Mandic Adaptive SP & Machine Intelligence 34



What are we doing wrong # Widely Linear Model

Consider the MSE estimator of a signal y in terms of another observation x

ŷ = E[y|x]

For zero mean, jointly normal y and x, the solution is

ŷ = hTx

In standard MSE in the complex domain ŷ = hHx, however

ŷr = E[yr|xr, xi] & ŷi = E[yi|xr, xi]
thus ŷ = E[yr|xr, xi] + E[yi|xr, xi]

Upon employing the identities xr = (x+ x∗)/2 and xi = (x− x∗)/2

ŷ = E[yr|x, x∗] + E[yi|x, x∗]
and thus arrive at the widely linear estimator for general complex signals

y = hHx + gHx∗

We can now process general (noncircular) complex signals!
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Using the widely linear model for frequency estimation

The widely linear model is able to estimate the frequency for both circular
(balanced) and noncircular (unbalanced) voltages.
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Dealing with Complex Statistics
Provides us with a tremendous amount of structure

For z = x + y, ‘augmented’ vectors wa = [hT ,gT ]T and za = [zT , zH]T

y = waHza

so the ‘augmented’ covariance matrix

Ca
zz = E

[
z
z∗

] [
zHzT

]
=

[
Czz Pzz

P∗zz C∗zz

]

Remark #1: In general, the covariance matrix Czz = E{zzH} does not
completely describe the second order statistics of z

Remark #2: The pseudocovariance or complementary covariance
Pzz = E{zzT} needs also to be taken into account;

Remark #3: For second-order circular (proper data) Pzz = 0 vanishes
because:

E{z × zT} = E{x2} − E{y2}+ 2E{xy} = σ2
x − σ2

y + 2ρxy

Remark #4: General complex random processes are improper.

‘Properness’ is a second order statistical property and ‘circularity’ is
a property of the probability density function.
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Measuring improperness # intuitive example

Consider the estimation of a zero-mean complex r.v. z ∈ C from its conjugate, that is

ẑ = hz
∗

Solution: Find an estimate of h that minimises

JMSE = E[|e|2] = E[|z∗ − ẑ∗|2]

The Wiener solution is then

hopt = E[zz
∗
]
−1
E[zz] =

p

c
= ρz

where ρη is referred to as the circularity quotient. We now have

ρz =
1

c

(
σ

2
x − σ

2
y + 2cxy

)
where the real part of ρz gives the power difference between the real and imaginary parts

while the imaginary part of ρz models their correlation (both normalized by total power).

Now, the circularity coefficient η =
|p|
c

0 ≤ η ≤ 1
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Different kinds of noncircularity
’Noncircular’ and ’Improper’ used interchangeably, but these are not identical
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So, the degree of
circularity can be
used as a fingerprint
of a signal, allowing us
enormous additional
freedom in estimation,
compared with
standard strictly
linear systems.

For instance, we
can now differentiate
between different
Gaussian signals!

Recall: Real valued
ICA cannot separate
two Gaussian signals.
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Circularity
Constellations in communications, 4 symbols

Consider a communication system with 4 complex-valued symbols.

The most widely used modulation schemes

are quadrature phase shift keying (QPSK)

and amplitude shift keying (ASK).
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ℑ{⋅}

ℜ{⋅}

ℑ{⋅}

1 2−2 −1

	


�
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�
�

	


��
�

	


��
�

QPSK ASK

Although these constellations are arranged so that the distances of each point to its

nearest neighbour is equal in both cases, the QPSK is more compact.

QPSK second-order statistics:

covariance : c = E[zz∗] = 1

pseudocov. : p = E[zz] = 0

ASK second-order statistics:

covariance : c = E[zz∗] = 2.5

pseudocov. : p = E[zz] = 2.5

In the case of the QPSK there is no power difference or correlation between the real and

imaginary components, resulting in the impropriety measure of ρ = 0.

In the case of the ASK all the information is on the real axis, resulting in the impropriety

measure of ρ = 1 (real-valued signals are maximally non-circular).
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Circularity in communications
Constellations in communications, 16 symbols

Now, consider a communication system with 16 complex-valued symbols.

The most widely used modulation

schemes are the amplitude and

quadrature phase shift keying

APSK) and quadrature amplitude

modulation QAM).

Note that the constellation for 16-
APSK is more compact than that

of the 16-QAM.
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16-APSK second-order statistics:

c = E[zz∗] = 2.5

p = E[zz] = 0

16-QAM second-order statistics:

c = E[zz∗] = 3.75

p = E[zz] = 0

Although both methods are proper, only the 16-APSK is circular (losely speaking).

Note that circular constellations offer better energy efficiency, whereas non-circular

constellations are more resilient to noise, especially when using widely-linear

processing.
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Autoregressive Modelling in C
Standard AR model of order n is given by

z(k) = a1z(k − 1) + · · ·+ anz(k − n) + q(k) = aTz(k) + q(k),

Using the Yule-Walker equations the AR coefficients are found from

a∗ = C−1c



a∗1
a∗2
...
a∗n


 =




c(0) c∗(1) . . . c∗(n− 1)
c(1) c(0) . . . c∗(n− 2)

... ... . . . ...
c(n− 1) c(n− 2) . . . c(0)




−1


c(1)
c(2)

...
c(n)




where c = [c(1), c(2), . . . , c(n)]T is the time shifted correlation vector.

Widely linear model Widely linear normal equations

y(k) = hT (k)x(k) + gT (k)x∗(k) + q(k)

[
h∗

g∗

]
=

[
C P
P∗ C∗

]−1 [
c
p∗

]

where h and g are coefficient vectors and x the regressor vector.
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Example 5: Pseudocovariance ! properness
Real-world data are rarely circular (short length, aftefacts)?

Complex AR(4) process (circular) Complex Ikeda map (noncircular)
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This is a rigorous way to model general complex signals!

Circularity for Ikeda map AR model of Ikeda signal
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Lecture summary

◦ We have demystified several basic concepts in complex calculus

◦ Problems with the Cauchy-Riemann derivatives

◦ The CR-calculus deals with both analytic and non-analytic functions

◦ Complex noncircularity # a mathematical microscope into data
behaviour

◦ Circularity # property of a probability distribution, properness is a
second order statistical property (pseudocovariance vs covariance)

◦ Widely linear modelling # deals with both proper and improper signals

◦ Examples in communications and smart grid
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Appendix 1: Noncircularity and I/Q imbalance # A
proof

Derivation:

The modulated passband signal xp(n) is given by

xp(n) = [sI(n) ∗ hI(n)] cosωcn− [sQ(n) ∗ hQ(n)]g sin(ωcn+ ϕ)

= [sI(n) ∗ hI(n) + g sinϕsQ(n) ∗ hQ(n)︸ ︷︷ ︸
xI(n)

] cosωcn− g cosϕ︸ ︷︷ ︸
xQ(n)

sinωcn

Upon extracting the baseband signal from xp(n), and taking the in-phase and quadrature

branches as the real and imaginary parts of x(n), we have

x(n) = xI(n) + jxQ(n)

=
1

2
[hI(n) + ge

−jϕ
hQ(n)]︸ ︷︷ ︸

µ(n)

∗s(n) +
1

2
[hI(n)− ge−jϕhQ(n)]︸ ︷︷ ︸

ν(n)

∗s∗(n)

where s(n) = sI(n) + jsQ(n)

In a narrow-band scenario, the I/Q imbalance becomes frequency-independent, that is,

hI(n) = hQ(n) ≈ δ(n), and so

x(n) =
1

2
[1 + ge

−jϕ
]︸ ︷︷ ︸

µ

s(n) +
1

2
[1− ge−jϕ︸ ︷︷ ︸

ν

]s
∗
(n)
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Appendix 2: The depressed cubic (so called ’cubic
formula’) implicitly uses complex numbers

◦ In the 16th century Niccolo Tartaglia and G. Cardano considered closed
formulas for the roots of third- and fourth-order polynomials.
◦ Cardano first introduced complex numbers in his book Ars Magna in
1545, as a tool for finding roots of the ’depressed cubic’ x3 + ax+ b = 0.

ay3 + by2 + cy + d = 0 substitute y = x− 1

3
b ⇒ x3 + βx+ γ = 0

◦ Scipione del Ferro of Bologna and Tartaglia showed that the depressed
cubic can be solved as

x =
3

√

−γ
2

+

√
γ2

4
+
β3

27
+

3

√

−γ
2
−
√
γ2

4
+
β3

27

Tartaglia’s formula for the roots of x3 − x = 0 is 1√
3

(
(
√
−1)

1
3 + 1

(
√−1)

1
3

)
.

◦ In 1572, in his Algebra, while solving for x3 − 15x− 4 = 0, R. Bombelli
arrived at

(
2 +
√
−1
)

+
(
2−
√
−1
)

= 4 and introduced the symbol
√
−1.

◦ In 1673 John Wallis realised that the general solution for the form
x2 + 2bx+ c2 = 0 is

x = −b±
√
b2 − c2
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Appendix 3: Derivatives of a multivariate function

f(x) = f(x1, . . . , xN)

Gradient ∇xf(x)) =


∂f(x)
∂x1
∂f(x)
∂x2...
∂f(x)
∂xN

 = 0 and the Hessian matrix Hx > 0.

where the elements of the Hessian matrix are {Hx}i,j = ∂2f(x)
∂xi∂xj

Theorem: If f(z, z∗) is a real-valued function of the complex vectors z and z∗, the

vector pointing in the direction of the maximum rate of change of f(z, z∗) is

∇z∗f(z, z∗), the derivative of f(z, z∗) wrt z∗. [Hayes 1996].

Thus, the turning points of f(z, z∗) are solutions to ∇z∗f(z, z∗) = 0,

where ∇z∗ = 1
2


∂
∂x1

+  ∂
∂y1...

∂
∂xn

+  ∂
∂yn

 , ∇za
Hz = a∗, ,∇z∗a

Hz = 0
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Appendix 4: Some useful examples from CR-calculus

For proofs see lecture supplement

Linear Form:
∂

∂x∗
{
xTa

}
= 0

Linear Form:
∂

∂x∗
{
xHa

}
= a

Quadratic Form:
∂

∂x∗
{
xHCx

}
= Cx

Quadratic Form:
∂

∂x∗
{
xTCx∗

}
= CTx

Vector Form: y = Ax,
∂yH

∂x∗
= AH
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Appendix 4: Some useful examples from CR-calculus

Chain Rule

Linear Form:
∂

∂z∗
{
xHa

}
=
∂xH

∂z∗
a +

∂aT

∂z∗
x∗

Quadratic Form:
∂

∂z∗
{
xHCx

}
=
∂xH

∂z∗
Cx +

∂xT

∂z∗
CTx∗

Vector Form: y = Ax,
∂yH

∂z∗
=
∂xH

∂z∗
AH,

∂yT

∂z∗
=
∂xT

∂z∗
AT

Matrix Derivatives

Linear Form:
∂

∂B∗
{Tr B∗C} = CT

Quadratic Form:
∂

∂A∗
{

Tr ACAH
}

= AC
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Appendix 5: Does Circularity Influence Estimation in C?
Real-world example: Estimation in the Smart Grid

Three-phase voltages can be represented as a single-channel complex
signal by first using the Clarke Transform,



v0(k)
vα(k)
vβ(k)


 =

√
2

3




√
2

2

√
2

2

√
2

2
1 −1

2 −1
2

0
√

3
2 −

√
3

2




︸ ︷︷ ︸
Clarke Matrix




Va(k) cos(ωnT + φa)

Vb(k) cos(ωnT + φb − 2π
3 )

Vc(k) cos(ωnT + φc + 2π
3 )




︸ ︷︷ ︸
Three-phase voltage

Then by forming the complex-valued αβ voltage: v(k) = vα(k) + vβ(k):

v(k) = vα(k) + vβ(k) = A(k)eωkT +B(k)e−ωkT

A(k) =
√

6
6

[
Va(k)eφa + Vb(k)eφb + Vc(k)eφc

]
,

B(k) =
√

6
6

[
Va(k)e−φa + Vb(k)e−(φb+

2π
3 ) + Vc(k)e−(φc−

2π
3 )
]

For balanced systems i.e. Va(k) = Vb(k) = Vc(k) and φa = φb = φc,

B(k) = 0
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Appendix 6: CR calculus and learning alg. (more later)
The derivative of the cost function 1

2e(k)e∗(k) and CLMS

As C-derivatives are not defined for real functions of complex variable

R− der:
∂

∂z
=

1

2

[
∂

∂x
−  ∂

∂y

]
R∗ − der:

∂

∂z∗
=

1

2

[
∂

∂x
+ 

∂

∂y

]

and the gradient

∇wJ =
∂J(e, e∗)
∂w

=

[
∂J(e, e∗)
∂w1

, . . . ,
∂J(e, e∗)
∂wN

]T
= 2

∂J

∂w∗
=

∂J

∂wr
+ 

∂J

∂wi︸ ︷︷ ︸
pseudogradient

The standard Complex Least Mean Square (CLMS) (Widrow et al. 1975)

y(k) = wH(k)x(k)

e(k) = d(k)−wH(k)x(k) e∗(k) = d∗(k)− xH(k)w(k)

and ∇wJ = ∇w∗J

w(k + 1) = w(k)− µ
∂1

2e(k)e∗(k)

∂w∗(k)
= w(k) + µe∗(k)x(k)

Thus, no tedious computations # the CLMS is derived in one line.
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App 7: Stochastic gradient optimis. # complex gradient
Cost function J(e, e∗) = |e|2 = ee∗, where e(k) = d(k)−wH(k)x(k)

Gradient: ∇wJ =
∂J

∂w
=

[
∂J

∂w1

, . . . ,
∂J

∂wN

]T
For the minima :

∂J

∂w
= 0 and

∂J

∂w∗
= 0

The first term of Taylor series expansion

becomes (since J(e, e∗) is real):

@J

@w
�w⇤


@J

@w

�H

�w⇤ =

����
@J

@w

����
���w⇤�� cos(✓)

∆J(e, e
∗
)=

[
∂J

∂w

]T
∆w +

[
∂J

∂w∗

]T
∆w

∗
=2<

{[
∂J

∂w

]H
∆w

∗
}

=2<
{[

∂J

∂w∗

]T
∆w

∗
}

Therefore, the scalar product

< ∂J/∂w,∆w
∗
>=

[
∂J

∂w

]H
∆w

∗
=‖ ∂J/∂w ‖‖ ∆w

∗ ‖ cos∠(∂J/∂w,∆w
∗
)

achieves its maximum value when ∂J
∂w ‖ ∆w∗, that is, for ∇wJ = ∇w∗J .

The maximum change of the gradient of the cost function is in the direction of

the conjugate weight vector (R∗-derivative)  equivalent to pseudogradient .
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Appendix 8: Performance advantage of widely linear
modelling in C
The MSE of the widely linear and the strictly linear estimator of a variable
y are respectively given by

E[|eWL|2] = E[|y − yWL|2] = E[|y|2]− (hHc + gHp∗)

E[|eSL|2] = E[|y − ySL|2] = E[|y|2]− cHC−1c

The performance advantage of using the widely linear model in C is then

4MSE=E[|eSL|2]−E[|eWL|2]=[p−PC−∗c∗]H[C−PC−∗P∗]−1[p−PC−∗c∗]︸ ︷︷ ︸
Is this term always nonnegative?

A joint diagonalisation of C and P can be achieved by using the strong
uncorrelating transform to give C = QIQH and P = QΛQT , where
Λ = diag{λ1, λ2, . . . , λN} and 1 ≥ λ1 ≥ · · · ≥ λN ≥ 0. Upon such joint
diagonalisation, we have

4MSE =[Q−1p−ΛQ−∗c∗]H︸ ︷︷ ︸
bH

I

I−Λ2
[Q−1p−ΛQ−∗c∗]︸ ︷︷ ︸

b

=

N∑

n=1

|bn|2

1− λ2
n

≥ 0
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Appendix 9: Data model # Gaussianity
starting from real-valued data

Why Gaussian? Justification: Central Limit Theorem

If we form a sum of independent measurements

⇒ the distribution of the sum tends to a Gaussian distribution

p(x) =
1√

2πσ2
x

e
−(x−µx)2

2σ2
x x ∼ N (µx, σ

2
x)

⇒ distribution defined by its mean and variance!!!

If x ∼ N (0, σ2
x) then E{x2n−1} = 1, 3, . . . , (2n− 1)σ2n

x , ∀n

In the vector case (N Gaussian random variables)

p
(
x[0], x[1], . . . , x[N − 1]

)
=

1

(2π)N/2det(Cxx)1/2
e−

1
2(x−µx)TC−1

xx (x−µx)

where Cxx = E{(x− µx)(x− µx)
T} is the covariance matrix.
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App. 10: Does degree of circularity influence estimation
in C?
Voltage sag: A magnitude and/or phase imbalance

◦ For balanced systems, v(k) = A(k)eωk∆T → circular trajectory.

◦ Unbalanced systems, v(k) = A(k)eωk∆T +B(k)e−ωk∆T are
influenced by the “conjugate” component.

# We need the complex conjugate of the signal too.

Circularity Diagram
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Notes:

◦
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Notes:
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Notes:

◦
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Notes:

◦
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