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Outline

Background on:

Complex-Valued Signal Processing

o Why a complex-valued solution in a real-valued world?
o History of complex numbers.

Part 1: Complex Calculus

o Cauchy-Riemann equations
o Key point 1: CR-Calculus and its application

Part 2: Complex Statistics

o Data model: Gaussian

o Moving from real to complex

o Key point 2: Circularity and widely linear estimation

o Covariance and pseudocovariance

o Widely linear autoregressive model §- caters for both second order
circular (proper) and non-circular (improper) data
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Motivation for modelling in C

Much more convenient in a number of applications

O

Magnetic source imaging (fMRI, MRI, MEG) are recorded in the Fourier
domain, that is, the data are inherently complex-valued

Interferometric radar - high coherence in order to obtain both the
altitude and amplitude introduces speckles

Array signal processing, antennas, direction of arrival (DoA)
Transform domain signal processing (DCT, DFT, wavelet)
Mobile communications (equalisation, |/Q mismatch, nonlinearities)

Homomorphic filtering — we like zero mean signals, but in R the log
does not exist for x < 0, yet log z = log|z| + jarg(z) does

Optics and seismics - reflection, refraction &~ phase information
Fractals, associative memory (recognising objects from their parts)

Much work still to be done — great opportunity for future research!

Imperial College
London

© D. P. Mandic Adaptive SP & Machine Intelligence 3



The Role of Geometry

o Complex numbers were only accepted after they had a geometric
interpretation, but it was only possible for b*> — ¢? > 0.
o Wallis - complex number a point on the plane (solutions A & B)

y y

b b
b b A c B
c
sqrt( bz—cz)

A (=b.0) B X (=b.0)

Real solution Complex solution

o In 1732 Leonhard Euler, 2" —1 =0 — cosf + +/—1sinb
o Abraham de Moivre (1730) and again Euler (1748), introduced the

famous formulas -
(cosf + gsinf)” = cosnb + ysinnf

0

cost) 4+ 9sinf) = ¢’

o In 1806 Argand interpreted 3 = v/—1 as a rotation by 90° and
introduced Argand diagram, z = = + jy, and the modulus v/z2 + y? .
o In 1831 Karl Friedrich Gauss introduced + = y/—1 and complex algebra.
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History of complex numbers

Find a triangle of Area = 7 and Perimeter = 12

o Heron of Alexandria (60 AD)

B

12 units

To solve this, let the side | AB| = «x, and the height | BC'| = h, to yield

1
—x h
2

perimeter = x -+ h+ \/x?2+ h?

In order to solve for & we need to find the roots of

area

6z — 432 4+ 84 = 0

However, this equation does not have real roots.
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Fundamental theorem of algebra (FTA)

o Initial work by Albert Girard in 1629
‘there are n roots to an n-th order polynomial’
He also introduced the abbreviations sin, cos, tan in 1626.
o Descartes in the 1630s 'For every equation of degree n we can
imagine roots which do not correspond to any real quantity’
o In 1749 Euler proved the FTA
Every n-th order polynomial in R has exactly n roots in C

N © North pole

Complex plane

(a) Riemann sphere (b) Earth projection from
South pole
Stereographic projection and Riemann sphere

o Cauchy — ’conjugate’, Hankel — ’direction’, Weierstrass — ’'absolute value’
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History of mathematical notation

Did you know?

® 9th century Al Kwarizimi's Algebra - solutions descriptive rather than in
form of equations

® 16th century - G. Cardano Ars Magna - unknowns denoted by single
roman letters

® Descartes (1630-s) established general rules

— lowercase italic letters at the beginning of the alphabet for unknown
constants a, b, c, d

— lowercase italic letters at the end of the alphabet for unknown
variables x,y, 2z

® +/—1 =1 — Gauss 1830s, boldface letters for vectors x, v - Oliver
Heaviside

® Hence ax®+by+cz=0
More detail: F. Cajori, History of Mathematical Notations, 1929
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Modern complex estimation: Numerous opportunities

o Complex signals by design (communications, analytic signals, equivalent
baseband represenation to eliminate spectral redundancy)

o By convenience of representation (radar, sonar, wind field), direction of
arrival related problems

o Problem: More powerful algebra than R? but no ordering (operator
“<" makes no sense!) and the notion of pdf has to be induced from R?

o Problem: Special form of nonlinearity (the only continuously
differentiable function in C is a constant (Liouville theorem)

o Solution: Special 'augmented’ statistics — (started in maths in 1992) —
more degrees of freedom and physically meaningful matrix structures

o We can differentiate between several kinds of noises (doubly white
circular with various distributions n, L. n; & o;. = ;. , doubly white

noncircular n, L n; & o > 07%?;1 noncircular noise)
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Example 1: Human visual system

Importance of phase information

Surrogate images. Top: Original images I7 and I5; Bottom: Images I, and I, generated

by exchanging the amplitude and phase spectra of the original images.
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Example 2: Noncircularity arising from 1/Q imbalance

One of the key issues in the future 5G networks

802.11ac 64QAM Original Signal (Noise Added)

& & & o o o o o
—»| DAC [—p| LPF
p cos(@.n) xl(n) e o 5 & & & o o
S](n) ,(n) 55eg w e & o & o »
RF LO o
+ x(n) 2 e 5 & & o & * o
ey Or
S o o 6 e & @ o o
+90° - o
e (1) 05 ® ¢ & € & & o
s, (n 9 x,(n
0 N o Q( ) e s o & o o o
gsin(w.n+ 0) e o ¢ 8 o o o o

4 05 0 05 1
In-Phase
802.11ac 64QAM I/Q Imbalanced Signal (Noise Added)

00 $
b 00000:

0.5+

Consider the baseband discrete-time input
signal, s(n), which is complex circular,
e.g., 64-QAM. After passing through an
1/Q imbalanced modulator, the output z(n)
becomes noncircular, that is
z(n) = p(n) * s(n) +v(n) *x s (n)

where 05|
p(n) = 1/2[h1(n) + ghq(n)e™’

v(n) = 1/2[hi(n) — ghq(n)e ']

Quadrature
o (4] -

(&)

'
=y

In-Phase
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(Non-)Linear separability and learning machines

DL

X1 or X2

X4 and x2

Logic functions and linear separability

o \ (|
f(=1,1)=—1 £(1,1,)=1

- A
f(-1,-1)=—1 f(1,-1)=—1
o -1t o

AND function is linearly separable

1
X1 Xor X2

e

©

hard
limiter

inputs output
-y
/@ ”neabr' i
combiner
X2 E
threshold
Perceptron—type neural network
(@) 11 (|
f(-1,1)=-1 £(1,1,)=1
—1 1
f(-1,-1)=1 f(1,-1)=-1
O -1+ o

How about the XOR
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Usefulness of complex numbers in machine intelligence

Example: Nonlinear separability of the logic XOR problem

T1 T 2 P(z) = XOR
1 1| 147 1
1 1| 1—9 1
11| —149 -1
11| —1— 1

In R we need multiple layers

(1,

P(z) =«
—1,

\

arg(z) in 1st or
3rd quadrants

arg(z) in 2nd or
4th quadrants.

But a single neuron in C performs the

XOR and is amplitude independent

1l Im

o -1+]j 1+j e
decision boundary
real part
x=0
1 T Re
lO T y=0
decision boundary
0 imaginary part
o -1-j ~ | 1-je

——>

1
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Part 1: Complex Calculus

We will now introduce a modern perspective on complex calculus, the
so-called CR calculus which offers much more flexibility in the
differentiation of complex functions, and is indispensable in learning
systems where the objective (cost) functions are typically real-valued
functions of complex variables.

Such functions are not differentiable using the standard complex
differentiation (Cauchy-Riemann), yet gradient based learning schemes
require such derivatives.

We show that the CR-calculus applies both to the holomorphic (complex
analytic) and non-holomorphic functions of complex variable, and will
elucidate the use of the so-called ‘pseudo-gradient’.
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Difference with complex-valued functions

Consider the magnitude and phase for the function f(z) = tanh(-)

-4 -4 S -4
Real [ Imaginary [ Real Imaginary O

Singularities: Isolated singularities (removable singularities, poles,
essential singularities), branch points, singularities at oo.

In gradient based learning, we seek a coefficient vector w using the so
called pseudo-gradient of the cost function J = E{|e|?} = E{ee*},

8] aJ
Vel () = B T Tow,
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Recap: What is a derivative?

we need to understand where the pseudo-gradient comes from

The definition of derivative for f(z) € R: Real-Dormain.
f(z)
f/(x) = lima, o LEHEe)=f(@)

For a complex function

f(z) = u(z,y) + jv(z,y)

to be differentiable at z = x + jy, the limit .
_ Complex-Domain:

must converge to a unique complex number 2

no matter how Az = A, + A, — 0. ‘

f(z) = lima__s0 f(z—i-AAzz_f(z)

So, the complex derivative is only defined for
analytic functions. >

Imperial College
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Complex derivatives: The Cauchy-Riemann conditions

Conditions for the derivative to exist in C

For f(z) to be analytic, a unique limit must exist regardless of how Az
approaches zero

7o) = fim [LEFBey+ Ay b (@t Aay + Ay) ] — [u(zy) + (@ 9)]

must exist regardless of how Az approaches zero. It is convenient to
consider the two following cases for the C— derivatives:

Case 1: A, =0 and A, — 0, which yields

fl(2) = lima, 0 [U(w+Am,y)+Jv(w+AZi/)]—[U(w,y)ﬂv(fc,y)]

u(x+Az,y)—u(z,y) +]v(x+Ax£J)—v(w,y)

Imperial College
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Complex derivatives: The Cauchy-Riemann conditions

Conditions for the derivative to exist in C

Case 2: A, =0 and A, — 0, which yields

Fio) = lima, ot a (et d)] - [uaa ny)

= lima, o “(waer?Z?y—U(w,y)_|_U(w,y+AAy3—v(x,y)

ov(z,y)  ,Ou(z,y)
oy oy

For continuity, the limits from Case 1 and Case 2 must be identical, which
yields the Cauchy-Riemann equations

Ou(xz,y) Ov(x,y) Ov(z,y)  Ou(z,y)

Ox oy Ox Oy

This introduces a tremendous amount of structure (restrictions) in the
calculus, as shown in an intuitive example on the next two slides.

Imperial College
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Example of complex-valued optimisation

Channel equalisation in wireless comms (reversing distortion of transmitted signals)

Adaptive equalisation

= Z-a
/ Training
Dacision
xfnl " ¥in) Sn—A)
Channsl - AE:‘E::“ | ’)(\

Descision

- Dhireciad
&) - + dfn)

Objective: To minimize the cost function

"o Received si'gnal mm 2 *
o Equalizedsignal o m 5 J<W) — |€(k’)| — e(k)e (k)
e Signal constellation "= , o ® m
4+ opo ” nguunn 0 %5‘: - po o . 9 9 . k k
3 L S W, e o = e, +¢e; = u(k) + jv(k)
o n:llj o o e n“n'?g B o
o °| B F hagefae o | ° 2 2
2 . Nl ¥ Y L Here, u(k) = e. +e; and wv(k)=0
S ol . Tami. aoq# B 9 0 d 0
© a oooa oD pao qv:,l:'l:ll:ll:'l:h:| un 'U,: 'U: ’LL: i _ ’U:
5 | T e 8 o But, 5ep=2€r 7 5e;=0r 5e; =261 # ~ e, 0
=] EDD o qh g =] a a =] =]
2f % o gogmEa® g dwm o g0 . . . .
. ° ni"ugan s 4% Our J(w) is not differentiable in the
o =} Op o n% o
o a I:'|:|:| & o o o H |:I|:| o . .
- T Cauchy—Riemann sense (here, error power is
B T a real function of complex variables e(k) and
_6 E ) a )
6 4 2 2 4 6 e (k)) but the equaliser has to work!
In-Phase
Imperial College
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Cauchy—Riemann derivatives are very restrictive!
Recall: f(z) =u(z,y)+ jv(z,y) — f'(2) = Ou(z,y)/0x + j0v(z,y)/0x

Ou(z,y)  Ov(x,y) Ov(z,y)  Ou(z,y)
or Oy or Oy
Intuition: The Jacobian matrix of f(z) = u + jv, is given by

% % 1/ 1/
J — 815 8% A [ /I 1/ /1/ ]

ox Oy

0 —1
Functions which depend on both z =z + jy and z* = x — jy are not
analytic, for example

Thus, f(z) = z* is not analytic as its Jacobian J = [ L0 ]

J(z2,2%) = 22" = 2°+9y* = J:[Qw Q?J] o ou , Ov Ov ou

0 O dr " Oy Or 0y
Another typical example is the cost function J = Ze(k)e*(k) = 3|e(k)[?
Imperial CO"ege © D. P. Mandic Adaptive SP & Machine Intelligence 19
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The key: CR-derivatives

Can we exploit results from multivariate calculus in R??

Goal: Find the derivative of a complex function f(z) w.r.t. z = x + yv.

In standard Multivariate Calculus in R *1 the derivative of anunction

— 99 __ | 99 dg
9(x), x = |21, T2,...,7N] is defined as 37 [8—391,...,%}

o Step 1: Define the vector x = [z, 5y]?, hence z = 11x.

o Step 2: Express the derivative of f with respect to “real” vector x i.e

of _ [ﬂ ﬁr

9x — |9z 3oy (see the Appendix 3 for vector-valued derivatives )

o Step 3: Transform the derivative vector in Step 2 back into C

0f _\20f _0f 0f _9f _ of

0z 0x 8:1} 0y  Ox (‘3y

o Step 4: Normalise the derivative since f is “differentiated twice”, to
give the R—derivatives (cf. differentiate wrt z* for R*— derivatives)

of _11of  Of " of _119f f
R — der: 5, [8:15 8y] Similarly, R*™ — der : py [8:15 8y]

Imperial College
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CR-derivatives of holomorphic functions
CR-derivatives vs. standard C-derivatives for f(z) =z & f(z) =

If a function f = f(z,2*) = u(z,y) + yv(x,y) is holomorphic, then the
Cauchy—Riemann conditions are satisfied, that is

Ou(z,y) _ ovlz,y) _ , Ovlz,y) _ Oulz,y)
Ox oy ox 0y

Therefore the R— and R*—derivatives are

of 1[of Of] 1. 0u Ov

) I S bt el B

R der. : 02 | 2*=const. _2 85[3 (9?/_ [28:6 + 2‘78:1:] f (Z)
\ L 0f 1 f ofl

R der. : 02z* | z=const. _2 8513 ay =0

For holomorphic functions the R*-derivative vanishes and the
R-derivative is equivalent to the standard complex derivative

Example: (i) f(z)=z2=24+3y = R—-der=1 & R*—der=0,
(i) f(z)=2"=x—gy=R—-der=0 & R*—der=1

Imperial College
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Example 3: The CR-calculus for non—holomorphic
functions

Consider a real function of complex variable f(z) = |z|° = z2* = 22 + ¢2,

where z = = + jy (clearly non—holomorphic). Assuming z L z*, the
R-derivative and the conjugate R*-derivative are
of 0(zz") . of  0(zz")

= 2z and = = 2

0z 0Oz 0z* 0z*

To verify, start from
f(z) = f(ulz,y) + jo(z,y) = flu,v) =2* + 3

where u(z,y) = 2% + y? and v(x,y) = 0. Therefore,

. of 110(z*+y*) Oz +y?) _ 1
R — der: 5—5[ o —) 5y ] 2[2x jQy]—x 7 =2z"
) of 110(@*+y?®)  d@*+y?)y 1
— : = — —|2x+72y| = =
wders = [ ] < Sper) = =

Imperial College
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Example 4: Some typical CR-derivatives

Prove these from the definitions of the R and R* derivatives

For the R — derivative, the function is partially differentiated w.r.t z while
keeping z* constant, and vice versa for the R* — derivative.

f(z,2*)  R—der R*—der  C—der

2z 1 0 1
2" 0 1 Undefined
|2]? = z2* z* 2 Undefined
Z22* 2|z|? Z2 Undefined

e” e” 0 e”

If f(z,2%) is independent of z*, then the R-derivative of f(z) is equivalent
to the standard C-derivative;

Imperial College
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Which derivative to we choose to compute the gradient?

An example from learning systems: R-der vs. R*-der?

Simulation for the CLMS derived using R-der. and R*-der. (w, = 3)
Step-Size, un=0.01 Step-Size, u=0.1
4 T T T 4 I I Ll DL O N B o | mwi
— 0O Gradient — 0O _ Gradient SRR R
w . w . :I:I::I:::I ::-:-
3.5[| - - -1, Gradient 3.5|| - - -0, Gradient SR
g oty W
[
3 _w
3 2.5/ g R
£ = Lo
0 %) :: [
€ Both R-der. & R*—der S b b
(@] (@) 1
D 15l follow the same D 15 g
=+ trajectory... = butR-der. leads . R
. .. g B g 1
to instability TR
1r HhTE T W
Py T iy WA
N W
0.5 0.5¢ :"l'l' Pt WA
Py v iy W
:”I g ot W
gt W
0 | | | | O | | L, 0.0 4 . 140, [T
0 100 200 300 400 500 0 100 200 300 400 500
Time Instant, n Time Instant, n
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Part 2: Complex Statistics

Now that we have familiarised ourselves with the concept of
(non-)circularity, we will examine how to use the concept in the domain of
second-order statistics and how to design so-called widely linear
estimators which are second-order optimal for both second-order circular
(proper) and second-order noncircular (improper) data.

Imperial College
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Isomorphism between C and R?

Moving from real-valued to complex-valued data

oo 2= S [G)

whereas in the case of complex—valued signals, we have

RN

For convenience, the “augmented” complex vector v € by
C2N*1 can be introduced as 2 .
% « 1T \
v = |[z1,2],---, 2N, 2N] -
' X
T \
vV = AW, W = [$1,y1,---7$N,yN] N !
. . : Iy /
where matrix A = diag(J,...,J) € C*N*2N is block Py
. . ([
diagonal and transforms the composite real vector w C
into the augmented complex vector v. -
X
Impenal CO"ege © D. P. Mandic Adaptive SP & Machine Intelligence 26
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The multivariate complex normal distribution
We cannot introduce a CDF & pdf introduced via duality with R

Recall, the relationships like “<” or “>" make no sense in C.

V = cov(v) = E[vv?] = AWA#

Using the result by Vanden Bos 1995
1

w = A7lv= 5 Aty
1\ 2N
det(W) = (5) det(V)
wWlw = viiv-ly

The multivariate generalised complex normal distribution (GCND) can now

be expressed as
1 _LVAy-ly

R

and has been derived without any restriction.

Imperial College
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Circular complex random variables

Try to generate complex ran. var. from various distrib. in MATLAB

1

Circularity &~ Rotation invariant distrib.

p(p,0) = p(p,0 — @)

1. The name of the distribution takes after bt ;&x G IE
. . . ol wx X e SRR %*x
the distribution of the real-valued random e ;

R x %
5

g B 8 Xy

I 28 G Ty K

8 PRSI e ™ 2 % ol
. . R L
variable p with a pdf p(p); A

psin®

2. It can be Gaussian, uniform, etc.

3. Take another real—valued random variable

6, which must be uniformly distributed on
0, 27| and independent of p;

4. Construct the complex random variable Z =
X +jY as
X = pCOS(H), Y = ,08111(9)
\Jl) Gaussian circular
Imperial College _
London © D. P. Mandic
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Complex circularity

Definition: A complex-valued random is called circular if its probability
distribution is not dependent on the angle, that is, the distribution is
“rotation invariant’.

For simplicity, we consider univariate complex-valued random variables; the
concepts are readily extended to the multivariate case.

Recall that for an iid complex-valued random variable 7 = X + jY, the pdf

Pz(z) = Px(z)Py(y)
On the other hand, in the case of a rotation invariant Pz(z), its pdf is

only be dependent of the Euclidean distance from the origin in the
complex domain. Therefore, if the random variable Z is circular, we have

g(r) = Pz(z) = Px(z)Py(y)

where r = \/x? + y? and ¢g(-) is a general function.

Imperial College
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Circularity
Some circular distributions

Circular complex-valued random variables

The distribution of R is Rayleigh. The distribution of R is exponential
Thus, the distributions of the real
and imaginary parts are Gaussian. Pr(r) = Ae ™ N =1

2 2

15 15
1

0.5

= 0
05
1

15 15
& -1 0 1 2 2 -1 0 1 2
R{} R{}
circular Rayleigh distribution circular exponential distribution
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Circularity
A noncircular distribution

Independent real & imaginary distributions but not circular!

Distributions of the real and imaginary part
are independent Laplace distributions

1 1 1
Px(xz) = 56_|x| and EPy(y) — ie_lm
Thus,

1 — (|
Pz =z + gy) = Ze ([z[+lyl)

Although the distributions on the
real and imaginary axes are
independent and hence uncorrelated,
the resulting distribution is not
rotation invariant, that is, it is non-
circular.

-2 -1 0 1
"{}

N

Imperial College
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Signal modality — So why are complex signals different?

(many expressions are conformal 3~ but dangerous to directly apply real tools!)

Deterministic vs. Stochastic nature
Linear vs. Nonlinear nature

Nonlinearity ’y
aos )
O

N
A

r) " Wind

’ ? ) speed

) NARMA Wing
1
’? \direction= ]
? . ”?
ARMA
Linearity >
Determinism Stochasticity

Change in signal modality can indicate
e.g. health hazard (fMRI, HRV) 0

Real world signals are denoted by ’777’

o d a unique signature of complex signals?

o % degree of noncircularity -

Imperial College
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Other definitions of circularity

Via Probability density function, Characteristic Function, Cumulants

o Probability density function. A complex random variable Z is circular if its pdf is a
function of only the product zz*, that is’

pZ,Z*(Z7 Z*) — pZ¢,Z(’;(Z¢7 Z;;)

and for for Gaussian CCRVs we have 1
PZ,Z*(Z, Z*) =

4r 20
3r * L 151
x X X x

10f

S{z(1)}

-0.2 R Vo< S ‘ ‘ ‘
20 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.5

Ofz()}
(k) Complex AR(4) (I) Complex Lorenz (m) Complex wind

MThe pdf of a circular complex random variable is function of only the modulus of z, and not of z™".

Imperial College
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Example: Does circularity influence estimation in C?

Visualising the Clarke transform and noncircular voltage sags

3-phase Voltage o—f Voltage
1 ~—n—=— Clarke’s
—V,—V, —V,| Transform
E—
__ 05 1
s 2
[4)) 0 g 0
g g
° o
> -1
-0.5
1 0 0.05
- ‘ ‘ I [ . Ti
10 0.00 0.0 maginary (pu)_1 0 ime (s)
Time (s)
Circularity Diagram Phasor Diagram Phasor Diagram

Balanced _

Type C

»
'\ 5%

Imaginary Part

Real Part

Imperial Coll
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What are we doing wrong &~ Widely Linear Model

Consider the MSE estimator of a signal y in terms of another observation «
y = Elylz]
For zero mean, jointly normal y and x, the solution is
j=hlx
In standard MSE in the complex domain § = hx, however
Yr = Elyrlzr, il & i = Elyi|ar, v
thus y = Elyr|x,, x;] + 1Eyi|xr, x4

Upon employing the identities z,, = (x + 2*)/2 and x; = (z — ™) /2y

9y = Elyr|a, 2] + 1 Elyilx, 2]
and thus arrive at the widely linear estimator for general complex signals
We can now process general (noncircular) complex signals!

Imperial College
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Using the widely linear model for frequency estimation

The widely linear model is able to estimate the frequency for both circular

(balanced) and noncircular (unbalanced) voltages.

55 ' ! !
= = = Strictly Linear Model
< = Widely Linear Model
L
= | Balanced  TypeCSag | Type D Sag
&
)
o
o iy P Futy [ I
i True -':,'-':'l-..-,::,':.:ll:-.".:lﬂ. ’
Frequenc L Dol T
e BT HAH Y
45 ' | |
0 0.1 0.2 0.3 0.4
Time (sec)
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Dealing with Complex Statistics

Provides us with a tremendous amount of structure

For z = x + jy, ‘augmented’ vectors w® = [h’ g?]? and 2z = [z!, 2|1

aH _a
y=w*"z

so the ‘augmented’ covariance matrix

a Z H_T7 sz Pzz
cL=p| ;| = | pE G
Remark #1: In general, the covariance matrix C,, = E{zz"} does not
completely describe the second order statistics of z

Remark #2: The pseudocovariance or complementary covariance
P.. = F{zz'} needs also to be taken into account;

Remark #3: For second-order circular (proper data) P,, = 0 vanishes
because:

E{z x 2"} = E{z*} — E{y*} + 2)E{zy} = 03 — 0 + 2)pzy
Remark #4: General complex random processes are improper.

‘Properness’ is a second order statistical property and ‘circularity’ is
a property of the probability density function.
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Measuring improperness & intuitive example

Consider the estimation of a zero-mean complex r.v. z € C from its conjugate, that is
2 =nhz"
Solution: Find an estimate of A that minimises

JMSE = E[|€|2] = E[|z" — 2*|2]

The Wiener solution is then

x7—1 p
hot = Elzz"| Elzz] = —=p-
where p, is referred to as the circularity quotient. We now have

1
0, = Z (ai — 05 + 2]cxy>

where the real part of p, gives the power difference between the real and imaginary parts
while the imaginary part of p, models their correlation (both normalized by total power).

o Ld L3 |p|
Now, the circularity coefficient n=— 0<n<1
C
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Different kinds of noncircularity

"Noncircular’ and ’'Improper’ used interchangeably, but these are not identical

-3

Circularity coefficient = 0
Correlation coefficient.= 0

. Circularity coefficient = 0.8;
-" .. . Correlation coefficient = -0.8

-3 -2 -1 0 1 2 3

Circularity coefficient = 0.8;
Correlation coefficient = 0

Circularity coefficient = 0.8;

0 Correlation coefficient=0.8 - ... : -~ .'

So, the degree of
circularity can be
used as a fingerprint
of a signal, allowing us
enormous  additional
freedom in estimation,
compared with
standard strictly
linear systems.

For instance, we
can now differentiate
between different
Gaussian signals!

Recall: Real valued
ICA cannot separate
two Gaussian signals.
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Circularity

Constellations in communications, 4 symbols

Consider a communication system with 4 complex-valued symbols.

The most widely used modulation schemes P {’%

are quadrature phase shift keying (QPSK) / \ LR oo

and amplitude shift keying (ASK). \ /o 2 -1
QPSK

Although these constellations are arranged so that the distances of each point to its

nearest neighbour is equal in both cases, the QPSK is more compact.

QPSK second-order statistics:
c= FE[zz"] =1
p=FElzz] =0

covariance :
pseudocov. :

covariance :
pseudocov. :

ASK second-order statistics:

ASK

c= FE[zz"] = 2.5

p=FEl[zz] =2.5

In the case of the QPSK there is no power difference or correlation between the real and
imaginary components, resulting in the impropriety measure of p = 0.
In the case of the ASK all the information is on the real axis, resulting in the impropriety
measure of p = 1 (real-valued signals are maximally non-circular).
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Circularity in communications
Constellations in communications, 16 symbols

Now, consider a communication system with 16 complex-valued symbols.

The most widely used modulation - . 50
schemes are the amplitude and o -4 waeE 2z 242e’s
quadrature phase shift keying zf':/e,-%;‘j ef;‘z‘i i \/ge.f_%f__.____\/’zef%i
APSK) and quadrature amplitude /[ #7 "w o o
modulation QAM). _2¢‘_1(: :1 ',52—>m{-} _;o; —4 +1—9:7>m{-}
Note that the constellation for 16- \ ]g\_;j,’j;_n / i é----{f---d' |
APSK is more compact than that %" Ly R _jzﬁe” | n
of the 16-QAM. R 22/ 4 $mmmmmmmm o2
16-APSK 16-QAM
16-APSK second-order statistics: 16-QAM second-order statistics:
c=FE[zz"] =25 c = FE[zz"] =3.75
p=FE[zz] =0 p=FE[zz] =0

Although both methods are proper, only the 16-APSK is circular (losely speaking).
Note that circular constellations offer better energy efficiency, whereas non-circular
constellations are more resilient to noise, especially when using widely-linear

processing.
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Autoregressive Modelling in C

Standard AR model of order n is given by
2(k) = arz(k — 1) + - +apz(k — n) + q(k) = a’z(k) + q(k),

Using the Yule-Walker equations the AR coefficients are found from

a* = Clc
" at ] " ¢(0) c*(1) Fn—1) 17T e) ]
as _ c(1) c(0) c*(n—2) c(2)
| ay L c(n—1) ce(n—2) ... c0) | | c(n) |
where ¢ = [¢(1),¢(2),...,c(n)]! is the time shifted correlation vector.
Widely linear model Widely linear normal equations
~1
_ T T * h* . C P C
y(k) = BT (k)x(k) + g ()" (k) + (k) HEESYRM

where h and g are coefficient vectors and x the regressor vector.
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Example 5: Pseudocovariance <~ properness

Real-world data are rarely circular (short length, aftefacts)?

Complex AR(4) process (circular)

10000

Covariance of the AR(4) signal

5000

L

—$bO -50

0
Lag

50

100

Pseudocovariance of the AR(4) signal

10000 w

5000

—$bO -50

0
Lag

50

100

Complex AR(4) process (proper)

Complex lkeda map (noncircular)

0.8

0.6

0 0.2 0.4 0.6 0.8 1 12 14

Covariance of the Ikeda signal

A

0
Lag
Pseudocovariance of the lkeda signal

50001

—¥60 -50 50 100

5000

VL

0
Lag

—%bO -50 50 100

Complex lkeda map (improper)
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This is a rigorous way to model general complex signals!

Circularity for lkeda map AR model of lkeda signal

0.8 1 :
— Covariance
oer - = = Pseudocovariance
0.4t 0.8) B
0.2
- 0 0.6¢
N o2
c? 0.4 0.4r
-0.6
-0.8 0.2+
—1F
A 14 9% “10 o ST 20
1 T 1 T :
—— Covariance -— Covariance
A = = = Pseudocovariance A = = = Pseudocovariance
0.8+ b 0.8+ b
0.6+ b 0.6r
0.4r .“ 4 0.4r [
0.2 A . 0.2 ,""
i a ~ i ANM. ' M
Q== ‘ ‘ ‘ = Q ‘ : ‘
-20 -10 0 10 20 -20 -10 0 10 20
Covariances: Original Ikeda Widely linear AR of lkeda
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Lecture summary

O

We have demystified several basic concepts in complex calculus
Problems with the Cauchy-Riemann derivatives
The CR-calculus deals with both analytic and non-analytic functions

Complex noncircularity & a mathematical microscope into data
behaviour

Circularity & property of a probability distribution, properness is a
second order statistical property (pseudocovariance vs covariance)

Widely linear modelling & deals with both proper and improper signals

Examples in communications and smart grid
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Appendix 1: Noncircularity and 1/Q imbalance &~ A
proof

Derivation:
The modulated passband signal x,(n) is given by

xp(n) = [s1(n) * hr(n)] coswen — [sg(n) * hg(n)]gsin(w.n + )

= [s1(n) * hi(n) + gsin psq(n) * hg(n)] coswen — gcos gsinw.n
27 (n) zg(n)

Upon extracting the baseband signal from x,(n), and taking the in-phase and quadrature
branches as the real and imaginary parts of x(n), we have
z(n) = xi(n) + jzqg(n)
1

= ~[hi(n) + g hg(n)] =5(n) + [hi(n) — geho(n)] s (n)

\=

u(n) v(n)
where s(n) = sr(n) 4+ jsq(n)
In a narrow-band scenario, the 1/Q imbalance becomes frequency-independent, that is,
hr(n) = hg(n) = 6(n), and so
1 iy 1 iy
2(n) = S[L+ ge ) s(n) + 1 — ge )5 (n)

\ = J J

TV TV
i v
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Appendix 2: The depressed cubic (so called 'cubic
formula’) implicitly uses complex numbers

o In the 16th century Niccolo Tartaglia and G. Cardano considered closed

formulas for the roots of third- and fourth-order polynomials.

o Cardano first introduced complex numbers in his book Ars Magna in

1545, as a tool for finding roots of the 'depressed cubic’ z3 + az + b = 0.
1

ay® + by’ +cy+d=0 substitute y:x—gb = 2>+ Bx+v=0

o Scipione del Ferro of Bologna and Tartaglia showed that the depressed

cubic can be solved as

mi/_’u\/++\/—_¢+

Tartaglia's formula for the roots of 23 — z = 0 is —= ( é 1 1).
(v=1)3

o In 1572, in his Algebra, while solving for 3 — 152 — 4 = 0, R. Bombelli

arrived at (2 + \/—1) + (2 — \/—1) = 4 and introduced the symbol v/—1.

o In 1673 John Wallis realised that the general solution for the form
2 2 _
x4+ 2bx+c*=0is = bt V&
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Appendix 3: Derivatives of a multivariate function

f(x) = f(z1,...,zN) [ 0f(x) ]
ox
2f(x)
Gradient V, f(x)) = g — 0 and the Hessian matrix H, > 0.

of(x)
8$N

2
where the elements of the Hessian matrix are {Hx}” = gx‘g;{).
107

Theorem: If f(z,z") is a real-valued function of the complex vectors z and z*, the

vector pointing in the direction of the maximum rate of change of f(z,z") is
V.« f(z,2z"), the derivative of f(z,2z") wrt z*. [Hayes 1996].

Thus, the turning points of f(z,z") are solutions to V= f(z,z") = 0,

0 0
0xq + J@yl
where V + = % ;  V,allz =a*, | Vpxallz =0
0 0
| axn —|— jayn _
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Appendix 4: Some useful examples from CR-calculus

For proofs see lecture supplement

. 9,
Linear Form: e {XTa} =0

9,
ox*

9,
Quadratic Form: P {xHCx} = Cx

{x"a} = a

Linear Form:

Quadratic Form: % {XTCX*} - CTx
X

oy" H
Vector Form: y = Ax, = A
%
ox
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Appendix 4: Some useful examples from CR-calculus

Chain Rule
H a T
Linear Form: % {xHa} = 85;* a-+ %X*
9, ox oxT’
Quadratic Form: p {XHCX} = 8};* Cx + %CTX*
oyH  oxH oyl oxT
Vector Form: y = Ax, 8};* = 8};* A (“;z,* = 5;* AT
Matrix Derivatives
Linear Form: 9 {(TrB*C} =C?
- OB* -
0
Quadratic Form:  ——— {TrACA"} = AC
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Appendix 5: Does Circularity Influence Estimation in C?

Real-world example: Estimation in the Smart Grid

Three-phase voltages can be represented as a single-channel complex
signal by first using the Clarke Transform,

oo (k)] (v2 v2 V2 | [ Vu(k)cos(wnT + ¢q)
0 21 2 2 2
va (k)| = 3 1 —% —% Vi(k) cos(wnT' + ¢y — 2%)
v(k)_ L 0 @ —@_J Ve(k) cos(wnT + ¢ + 2F) |
CIarkJ/Iatrix h Three—phzge voltage .

Then by forming the complex-valued a5 voltage: v(k) = vo(k) + Jvg(k):
U(k) — Ua(k) +jv5(l<:) — A(k)ejwkT 4+ B(k)e—]wkT

A(k) = Y8 [V, (k)e?®e + Vy(k)e?® + Vo(k)er?e]

B(k) = 8 [Va(k)e %0 + Vi(k)e (%) 1 (k)20 F)]

For balanced systems i.e. V, (k) = Vi(k) = V.(k) and ¢, = ¢p = ¢,
B(k) =

-
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Appendix 6: CR calculus and learning alg. (more later)
The derivative of the cost function ie(k)e*(k) and CLMS

2
As C-derivatives are not defined for real functions of complex variable
o 1|0 0 0 1|0 0
R—der: —=—-|——9)— R* —der: — =—|— +)—
T 9z 2 lax ”78y] N lax +]8y]

and the gradient

* * * T
V. J— 0J (e, e*) _ dJ (e, e ),‘“’({1](6,6 ) _ 0J _ 0J +38‘].
ow Owq ow N ow*  JOw" ow?
pseudo}?adient
The standard Complex Least Mean Square (CLMS) (Widrow et al. 1975)
y(k) = w(k)x(k)
e(k) = d(k) — w" (k)x(k) e’ (k) = d*(k) — x" (k)w(k)
and VyJ = Vyrd
Oze(k)e*(k)
1 — . 2 — *
w(k+1) w(k) — p v (8) w(k) + pe*(k)x(k)

Thus, no tedious computations &~ the CLMS is derived in one line.
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App 7: Stochastic gradient optimis. &~ complex gradient
Cost function J(e,e*) = |e|*> = ee*, where e(k) = d(k) — w (k)x(k)

: oJ oJ oJ 1" o.J
Gradient: VuJ = — = e, — el
ow owq own ow
.. oJ oJ
For the minima: — = 0 and =0
ow ow*
The first term of Taylor series expansion 571H o]
becomes (since J (e, €*) is real): {a_w] AW = Ha_WH |Aw™]| cos(6)

oJ1t oJ 1% oJ141 oJ 1%
AJ(e,e’)= [—} Aw + [—} Aw" =28 [—} Aw" 5 =2R [ } Aw’

Ow OwW* Ow OwW*
Therefore, the scalar product

oJ1"
< 0J/Ow, Aw" >= [8—] Aw" =|| 8J/0w |||| Aw" || cos Z(OJ/Ow, Aw")
w

achieves its maximum value when g—v{, | Aw*, that is, for Vi J = V.

The maximum change of the gradient of the cost function is in the direction of
the conjugate weight vector (R*-derivative) ~~ equivalent to pseudogradient .
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Appendix 8: Performance advantage of widely linear
modelling in C

The MSE of the widely linear and the strictly linear estimator of a variable
y are respectively given by

Ellew. "] = Elly — yw "] = Ely[’] - (h"c + g"p")

Elles.|”] = Elly — ysi|’] = E[ly|*] — c¢"C"c

The performance advantage of using the widely linear model in C is then
AMSE:E[|65L\2]—E[|6WL\2]:lp—PC_*c*]H[C—PC_*P*]_1[p—73C_*c*l

Is this term always nonnegative?

A joint diagonalisation of C and ‘P can be achieved by using the strong
uncorrelating transform to give C = Q19" and P = QA Q" where

A =diag{A1, A2,....; An}tand 1 > Ay > --- > Ay > 0. Upon such joint
diagonalisation, we have

N 2
bn
AMSE=[Q 'p—AQ "c")" I_AQ[Q p—AQ " :21’_&220
bH b n=1 n
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Appendix 9: Data model &~ Gaussianity

starting from real-valued data

Why Gaussian? Justification: Central Limit Theorem

If we form a sum of independent measurements
— the distribution of the sum tends to a Gaussian distribution
1 _(w—u2a:)2 )
p(af;) = 7€ 7% L~ N(Nmaagc)
\/2mo:

= distribution defined by its mean and variance!!!

If 2 ~ N(0,02) then E{z*""1} =1,3,...,(2n - 1)02", Vn

In the vector case (/N Gaussian random variables)

1 )T (x—
p(x[O],x[l],...,x[N—l]):(ZW)N/Qdet(C 7 3(x—pa)’ oy (x—pia)

where C,, = F{(x — p,)(x — p,)!} is the covariance matrix.
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App. 10: Does degree of circularity influence estimation

in C?

Voltage sag: A magnitude and/or phase imbalance

o For balanced systems, v(k) = A(k)e?*AT — circular trajectory.

o Unbalanced systems, v(k) = A(k)e?*AT + B(k)e 7“kAT are
influenced by the “conjugate” component.

+ We need the complex conjugate of the signal too.

The strictly linear model, v = f(v),
Circularity Diagram yields biased estimates when the system is
unbalanced
Balanced _
55 w

e = = = Strictly Linear Model

& T

% T _ Balanced _ TypeCSag Type D Sag

c >

= (&)

(@) c 50 — T

© [} [ N L]

: SUL T M AR

o ML ML N
L. True "‘lll:|::: :ll:|::::|l:ll|lll y
Frequency ”"I:""':".":I.":::
Real Part 45 ‘ ‘ ‘
0.1 0.2 0.3 0.4
Time (sec)
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