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Demystifying the Coherence Index in Compressive Sensing

The existence and uniqueness condi-
tions are a prerequisite to ensure 
the reliable reconstruction of sparse 

signals from reduced sets of measure-
ments within the compressive sensing 
(CS) paradigm. However, despite their 
underpinning role in practical applica-
tions, the existing uniqueness relations 
are either computationally prohibitive to 
implement [the restricted isometry prop-
erty (RIP)] or involve mathematical tools 
that are beyond the standard background 
of engineering graduates (the coherence 
index). This may introduce conceptual 
and computational obstacles in the devel-
opment of engineering intuition, design 
of suboptimal practical solutions, and 
understanding of theoretical and practi-
cal limitations of the CS framework.

To this end, we employ standard lin-
ear algebra to introduce a simple but rig-
orous derivation of the coherence index 
condition, with the aim of empowering 
signal processing practitioners with intu-
ition for the design and implementation 
of CS systems. Given that the coherence 
index is one of very few CS metrics that 
admits mathematically tractable and 
computationally feasible calculation, we 
hope that this article will help to bridge 
the gap between the theory and applica-
tions of CS.

The basic CS setting
CS is a maturing field that, under appro-
priate conditions, provides a rigorous 
framework for efficient data acquisition 

[1], [2]. Examples include applications 
that rest upon reliable sensing from the 
lowest possible number of measure-
ments, such as the recovery of sparse 
signals from vastly reduced sets of mea-
surements, and practical solutions in 
critical cases when some measurements 
are physically unavailable or heavily 
corrupted by disturbance.

Research under an umbrella of spar-
sity has been a major topic of investiga-
tion for about a quarter of century and 
produced solid theory to support the 
exact reconstruction of sparse signals in 
CS scenarios. The coherence index is of 
particular interest for practitioners since 
it is one of the very few supporting theo-
retical tools within the CS framework 
that can be calculated in a computation-
ally feasible way. However, its derivation 
follows a rather complex and convolved 
path; this fact spurred us to revisit the 
coherence index from a signal processing 
perspective to equip practitioners with 
an easy-to-understand interpretation of 
and intuition for the design and physical 
meaningfulness in the analysis. We pro-
vide a similar intuition for the feasibility 
of calculating the RIP condition [1]–[9].

Definitions and notation

Definition 1
A sequence, { ( )},X k  , , , ,k N0 1 1f= -  
is referred to as sparse if the number, ,K  of 
its nonzero elements, ( ) ,X k 0!  is much 
smaller than its total length, ;N  that is,

( ) { , , , }, .X k k k k k K N0 for K1 2 f! ! %

Definition 2
A linear combination of the elements of 

( )kX  that is given by

 ( ) ( ) ( )y m a k X km
k

N

0

1

=
=

-

/  (1)

is called a measurement, with the weight-
ing coefficients (weights) denoted by 

( ) .a km

The sensing scheme for produc-
ing the measurements ( ),y m  , ,m 0 1=  

, ,M 1f -  admits a vector/matrix form 
that is given by

 ,y AX=  (2)

where [ ( ), ( ), , ( )]y y y M0 1 1y Tf= -  is 
an M 1#  column vector of the measure-
ments, A is an M N#  measurement 
matrix that has the weights ( )a km  as its ele-
ments, and X is an N 1#  sparse column 
vector with elements ( ).X k  An illustration 
of the CS concept is given in Figure 1.

Without a loss of generality, we shall 
assume that the measurement matrix, 

,A  is normalized so that the energy of its 
columns sums up to unity. Consequently, 
the diagonal elements of its symmetric 
Gram form, ,A AH  are equal to one, 
where AH  is the complex conjugate 
transpose of .A

While CS theory states that, under 
certain mild conditions, it is possible to 
reconstruct a sparse N-dimensional vec-
tor, ,X  from a reduced M-dimensional 
set of measurements, ,y  practitioners 
require physically meaningful, intuitive, 
and easily interpretable uniqueness 
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tools for the applications of CS to be -
come more widespread.

A solution to the CS paradigm
Several approaches have been established 
for the CS paradigm, and we follow the 
principles behind the matching-pursuit 
method. The simplest case, when the 
positions of the nonzero elements in 
X  are known, is considered first to 
provide the intuition and an example 
of the detection of unknown positions 
of the nonzero elements in .X  This 
serves as a basis for our derivation of 
the uniqueness relation through the 
coherence index for a general case 
of unknown positions of the nonzero 
elements in .X

Known coefficient positions
Consider the case with K  nonzero ele-
ments of X  located at arbitrary but 
known positions; that is, ( )X k 0!  for 

{ , , , }.k k k kK1 2 f!  Compared to the 
general form of the measurement rela-
tions in (2), this gives rise to the follow-
ing reduced system of equations:

( )
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For a successful CS recovery, the 
matrix form of the system, which is 
given by

,y A XMK K=

needs to be solved for the nonzero 
elements ( )kX  located at { , ,k k k1 2!  

, },kKf  which are conveniently grouped 
into a K 1#  vector, .XK  Observe that 
the matrix, ,AMK  is an M K#  dimen-
sional submatrix of the full M N#  
measurement matrix, ,A  in (2), where-
by only the columns that correspond to 
the positions of the nonzero elements 
in X  are kept (for illustration, see col-
umns 1 and 6 in Figure 1). The small-
est number of measurements needed to 

recover the K-element vector, ,XK  is, 
therefore, .M K N1=  For ,KM2  as 
in Figure  1, the system is overdeter-
mined, and the solution is found in the 
least-squares sense to give [3]

( ) ( ) ,pinvX A A A y A yK MK
H

MK MK
H

MK
1= =-

 (4)

where ( ) ( )pinv A A A AMK MK
H

MK MK
H1= -  

denotes the pseudo-inverse of matrix 
,AMK  while the matrix A AMK

H
MK  is 

referred to as the K K#  dimensional 
Gram matrix of .AMK

From (4), the existence of a recov-
ery solution requires that the inverse 
( )A AMK

H
MK

1-  does exist or, in other 
words, that ) .Krank(A AMK

H
MK =  This 

stipulation can be equally expressed 
via the matrix condition number as 

( ) ,cond A AMK
H

MK 31  which casts the 
existence condition into a more conve-
nient form that is dictated by the eigen-
value spread of .A AMK

H
MK  For noisy 

measurements, the reconstruction error 
includes contributions from the input 
noise and ill-posedness that are due to a 
high matrix-condition number (known 
as the mathematical artifact). In this 
sense, the goal of a successful CS (sam-
pling) strategy can be interpreted as that 
of forming the measurement matrix, ,A  
to produce a condition number as close 
to 1 as possible.

The signal processing  
framework for CS
The most fertile domains for signal spar-
sity are common linear signal transforms, 
since they enable the original time-
domain samples of the signal ( )x n  to be 
considered as measurements (linear com-
binations) of the representation domain 
coefficients, ( ).X k  For example, when the 
discrete Fourier transform (DFT) is used 
as the signal sparsity domain, the mea-
sured signal samples can be expressed as

( ) ( ) ( )y m x n
M

e X k1 /
m

j n k N

k

N
2

0

1
m= = r

=

-

/
 (5)

for , , , .m M0 1 1f= -  In this case, the 
measurements, ( ),y m  can be regarded as 
a reduced set of signal samples, ( ).x nm  
Observe that this expression conforms to 
the general CS formulation (1), where the 
weights ( )a km =  ( / ) / .exp j n k N M2 mr  
Since CS employs a random subset of 
time instants, { , , , } ,n n n 0M0 1 1f 1- "  

, , , },N1 2 1f -  measurement matrix A  
is obtained from the inverse DFT matrix, 
whereby only the rows corresponding to 
{ , ,n n0 1  , }nM 1f -  are kept. Matrix ,A  
obtained in such a way, is called a partial 
DFT measurement matrix.

Remark 1
The convenience of the considered DFT 
representation enables us to consider 
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FIGURE 1. The CS principle. The short and wide measurement matrix, ,A  maps the original N-dimen-
sional K-sparse vector, ,X  to an M-dimensional dense vector of measurements, ,y  with M N<  and 

N.<<K  In our case, ,N 14=  ,M 7=  and .K 2=  Since M  is the maximum rank of A  and ,M N<  
the original N-dimensional vector X  cannot, in general, be recovered from the measurements, y  
(there is lack of degrees of freedom). However, the CS paradigm allows for the complete and unique 
recovery of sparse signals, with the coherence index being a common way to define the correspond-
ing conditions. The same A  is used in Figure 2.
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Nyquist subsampling as a special case 
of a reduced set of measurements, with 
the specific positions of K  nonzero ele-
ments given by

[ ( ), ( ), , ( ),

, , , ] .

X X X K0 1 1

0 0 0

X
T

f

f

= -

The classic subsampling operation 
can be explained by starting from the 
assumption that only the first /K N P=  
elements are nonzero, with P 12  an 
integer. Then, the original signal can 
be subsampled at ,n mPm =  since this 
y ields  (a Km k) ( / ) / ,exp j mk K2r=  
with A AMK

H
MK  being an identity matrix. 

On the other hand, some important 
applications, such as radar signal pro-
cessing, routinely deal with a very small 
number of nonzero elements, ( ).X k  
However, in contrast to the classic sub-
sampling scenario, these nonzero trans-
form-domain elements may be located at 
any position { , , , }.k N0 1 1f! -  While 
this makes it impossible to perform clas-
sical subsampling, this class of applica-
tions does admit a unique solution with 
a reduced number of signal samples 
within the CS theory framework.

Despite the obvious methodological 
advantages of CS over classical analyses, 
operation on a reduced set of measure-
ments compromises the uniqueness of 
the CS solution. It is, therefore, natural to 
first examine the conditions that should 
be satisfied by the measurements (their 
number and the properties of the mea-
surement matrix) so that the existence of 
the CS solution is guaranteed and unique.

Example 1
To illustrate how a reduced set of samples 
can compromise the uniqueness of the 
solution, consider a signal with the total 
length of N  and the smallest sparsity 
degree of K 1=  in the DFT domain, 
that is, with only one nonzero element 
in .X  Assume that a significant num-
ber of /M N 2=  measurements (signal 
samples) are available at , , ,n 0 2 f=

, ,N N4 2- -  with an even ,N  and 
suppose that the measurement val-
ues are ( ) ( ) .y m x m2 1= =  The solu-
tion to this simple problem is not 
un ique, since ( ) ( / ),expx n j nk N2 1r=  

, , , ,n N0 1 1f= -  fo r  k 01 =  a nd 

/ ,k N 21 =  satisfying all of the prob-
lem conditions.

The uniqueness of the CS paradigm
In general, the question of uniqueness 
can be understood within the follow-
ing framework. Consider a K-sparse 
vector X  with the nonzero elements 

( )X k 0!  a t  { , , , }k k k kK1 2 f!  a n d 
assume that its vector form, ,XK  is 
a solution to .y A XMK K=  Assume 
also that the solution is not unique, so 
there exists another vector, ,Xl  with 
nonzero elements at the different posi-
tions { , , , },k k k kK K K1 2 2f! + +  whose 
reduced form, ,XKl  supports the same 
measurements, ;y  that is, .y A XMK K= l l  
T h e n ,  ,0A X A XMK K MK K- =l l  a n d 
this matrix equation can be combined 
into ,0A XM K K2 2 =  where AM K2  is an 
M K2# -dimensional submatrix of the 
measurement matrix, ,A  and X K2  is a 
2K-dimensional vector. Then,

 ■ A nontrivial solution to the matrix 
equation 0A XM K K2 2 =  indicates that 
the CS solution is nonunique. The con-
dition for a nonunique solution is, 
therefore, ( ) K2rank A AM K

H
M K2 2 1  for 

at least one combination of K2  nonze-
ro element positions.

 ■ If ( ) K2rank A AM K
H

M K2 2 =  for all 
possible combinations of K2  nonzero 
element positions (out of ),N  the sce-
nario of two K-sparse solutions is not 
possible, and the solution is unique.
This rationale is a starting point for 

the definition of the common unique-
ness criteria in CS. The coherence-index 
relation is typically derived through the 
Gershgorin disk theorem [10]. Notice 
that the maximum robustness of the 
cond it ion ( ) K2rank A AM K

H
M K2 2 =  is  

achieved if )cond(A AMK
H

MK  is close 
to unity. It should be mentioned 
that the RIP is tested in a similar way 
through a combinatorial consideration 
of the matrix norm A X XM K K K2 2

2
2

2< < < <2 2  
through eigenvalue analysis. The gen-
eral case, with unknown positions of 
the nonzero elements in ,X  can be 
solved by combining the method for 
the known positions and a direct search 
approach, as described in “The Direct 
Search, Uniqueness of the Solution, and 
Restricted Isometry Property.” Howev-
er, this is not computationally feasible.

Structured and sparse measurement 
matrices
It is common for the measurement 
matrices to combine all of the elements 
from X  into every measurement from 

.y  These measurement matrices are 
referred as dense. In some practical 
cases, the measurements may depend 
only on some of the elements from ,X  
and the elements that do not contribute 
to the formation of the measurements 
are designated by zero values in the mea-
surement matrix, A  [11]–[14]. These 
measurement matrices are, therefore, 
sparse and may also be well structured. 
Typically, two approaches are used for 
their processing, of which one is based 
on the multiplication of the original mea-
surement matrix, ,A  by a random N × 
N matrix, ,B  to yield a dense measure-
ment matrix, .BA  The other approach 
employs the sparse and structured mea-
surement matrices in their original form 
for the reconstruction.

As a simple example of the latter 
approach, consider the structured, par-
tial, nonoverlapping, short-time Fou-
rier transform measurement matrix 
[14]. The full measurement matrix, ,A  
consists of blocks of the partial DFT 
matrices, so the dimensionality for the 
analysis may be easily reduced to the 
examination of the constituting blocks. 
It is important to notice that each block 
must satisfy the general CS conditions, 
such as those presented in this article.

Detection of unknown  
coefficient positions
In the CS setup, the positions of the 
nonzero elements in X  are typically not 
known. A natural approach to solve the 
CS reconstruction problem would be to 
adopt a two-step strategy as follows:
1) detect the positions of the nonzero 

elements
2) apply a reconstruction algorithm 

with the known positions of the non-
zero elements.
An intuition for the estimate of the posi-

tions of the nonzero elements in the first 
step comes from the linear nature of the 
measurements, ( ),y m  obtained as linear 
combinations of the sparsity domain ele-
ments, ( ),X k  and the corresponding rows 
of the measurement matrix, .A
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Remark 2
The linearity of the CS paradigm in (2) 
admits a back-projection of the measure-
ments, ,y  to the measurement matrix, 

,A  defined by

 ,X A y A AX0
H H= =  (6)

to estimate the positions of the non-
zero elements in .X  In an ideal case, 
the matrix A AH  should ensure that the 
initial estimate, ,X0  contains exactly K  
elements at positions { , , , },k k kK1 2 f  for 
which the magnitudes are greater than 
the largest one at the remaining posi-
tions. Then, by taking the positions of the 
highest-magnitude elements in X0  as the 
set { , , , }k k kK1 2 f  in (3), the algorithm 

for the known nonzero element positions, 
from the previous section, can be applied 
to reconstruct the signal.

Remark 3
Note that if A AH  were an identity matrix, 
the initial estimate, ,X0  would corre-
spond to the exact solution, .X  However, 
with a reduced number of measurements, 

,M N1  this cannot be achieved (due to the 
Welch lower bound). A pragmatic require-
ment for the existence of the CS solution 
would, therefore, be that the off-diagonal 
elements of A AH  are as small as possible 
compared to the unit diagonal elements.

The condition that all of the K  ele-
ments in the initial estimate, ,X0  that are 

located at the nonzero positions in the orig-
inal sparse vector, ,X  are larger than any 
other element in the initial estimate, ,X0  
can be relaxed through an iterative pro-
cedure. To be able to find the position, 

,k1  of the largest nonzero element in ,X0  
its value must be larger than the values 

( )X k0  at the original zero-valued posi-
tions. After the position of the largest 
element is found and its value estimat-
ed, this component can be reconstruct-
ed and subtracted from the measurements, 

,y  and the procedure is continued with 
the remaining ( )K 1 -- sparse elements in 
an iterative manner. The stopping crite-
rion becomes that A X yMK K =  should 
hold for the estimated nonzero positions  

The Direct Search Solution
The simplest and most intuitive way to extend the solution 
to compressive sensing (CS) that has unknown positions in 
X, as in (3), to the general case with K  unknown nonzero 
positions, , , , ,k k kK1 2 f  would be to consider all possible 
combinations of the K  nonzero positions (out of N) and 
solve the system in (3) for each combination that is dictat-
ed by the sequence , , , .k k kK1 2 f  After solving the system 
in the least-squares sense, the solution should be checked 
against the given measurement in (3). A zero error indi-
cates a successful solution of the reconstruction problem. 
The solution is, therefore, unique if only one combination 
of the coefficients , , ,k k kK1 2 f  produces zero error.

A practical problem with this kind of reconstruction is that 
it requires the evaluation of K

N` j combinations, a nondeter-
ministic polynomial-time hard problem with an unaffordable 
computational burden. For example, for N 1,024=  and 
K 5,=  we would require 1013 combinations, whereby the 
corresponding overdetermined system (3) needs to be 
solved for each combination.

The Restricted Isometry Property Calculation 
A very popular approach to check, in theory, for the 
uniqueness of the solution is based on the restricted isome-
try property (RIP) of the measurement matrix. This can be 
formalized by stating that a K - sparse solution is unique if 
measurement matrix A satisfies the RIP condition with a 
constant 0 1K2 1# d  for a K2 - sparse signal, while to 
obtain the RIP constant, a check of a K2 - sparse signal 
requires K

N
2` j combinations of the submatrices, ,A K2  and 

their eigenvalue decomposition. Therefore, this is an even 
more complex problem than the direct search solution, 

which makes it prohibitive for practical use. For example, 
for a vector with N 1,024=  entries out of which K 5=  
nonzero coefficients are considered, the RIP check requires 
1023 combinations and matrix calculations. To put this into 
perspective, for a given measurement matrix, the RIP is 
checked only once; however, if the same matrix is used in 
not more than 1010 experiments, the direct combinatorial 
search is still more efficient, although it is equally computa-
tionally prohibitive and often not feasible in practice.

The Complexity of the Coherence Index Calculation
The coherence index check requires only N

2` j combina-
tions, which is both computationally feasible and sparsity 
invariant. This makes it a preferred choice in the optimiza-
tion of measurement matrices. Various other efforts to 
avoid RIP calculation in the uniqueness check may be 
found in the literature, among which the most notable are 
those referred to as the RIP-less approaches [S1]–[S4].

References
[S1] H. Arguello and G. R. Arce, “Colored coded aperture design by con-
centration of measure in com- pressive spectral imaging,” IEEE Trans. 
Image Process., vol. 23, no. 4, pp. 1896–1908, Apr. 2014. doi: 10.1109/
TIP.2014.2310125.

[S2] E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of com-
pressed sensing,” IEEE Trans. Inf. Theory, vol. 57, no. 11, pp. 7235–7254, 
Nov. 2011. doi: 10.1109/TIT.2011.2161794.

[S3] H. Calderón, J. F. Silva, J. M. Ortiz, and A. Egaña, “Reconstruction of 
channelized geological facies based on RIPless compressed sensing,” 
Comput. Geosci., vol. 77, pp. 54–65, Apr. 2015. doi: 10.1016/j.
cageo.2015.01.006.

[S4] L. Stanković and M. Daković, “On the uniqueness of the sparse sig-
nals reconstruction based on the missing samples variation analysis,” 
Math. Probl. Eng., vol. 2015, 2015. doi: 10.1155/2015/629759.

The Direct Search, Uniqueness of the Solution, and Restricted Isometry Property



156 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2020   |

{ , , , }k k kK1 2 f  and elements ( ),X k  as 
outlined in Algorithm 1.

Practical guidelines
In real-world scenarios, when we want 
to apply CS methods to the reconstruc-
tion of an N-dimensional signal from its 
reduced M-dimensional measurements, 
signal sparsity must be assumed, since 
it is a prerequisite for any CS-based 
reconstruction. However, for real-world 
signals, an exact sparsity, ,K  is rarely 

known in advance, meaning that the 
M  measurements for the signal recon-
struction problem should be empiri-
cally assumed (for example, the signal 
bandwidth in classical signal sam-
pling). After each step during iterative 
reconstruction, as in Algorithm 1, we 
may easily test if the stopping criterion, 

,A X yMK K =  is satisfied, as it indicates 
that the true sparsity degree has been 
reached and detected. We should subse-
quently check for the uniqueness of the 
solution using the appropriate criteria 
to ensure that there are no other pos-
sible solutions with the same sparsity. If 
the stopping criterion is not reached 
after the sparsity degree, ,K  reaches the 
maximal expected sparsity, the number 
of measurements, ,M  or the structure of 
the measurement matrix, ,A  does not 
satisfy the reconstruction conditions, 
the matrix must be redesigned, or the 
number of measurements increased.

The unique reconstruction 
condition
The key criterion for faithful signal 
reconstruction from a reduced set of 
measurements is the uniqueness of the 
result. In CS methodology, the unique-
ness is commonly defined through the 
coherence index, as stated below.

Proposition
The reconstruction of a K-sparse signal, 

,X  is unique if the coherence index, ,n  of 
the measurement matrix, ,A  satisfies [2]

 ,K
2
1 1 11

n
+c m  (7)

where the coherence index is defined by

k l! ( ) ( )
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 (8)

For a normalized measurement matrix, 
,A  the coherence index, ,n  is equal to 

the maximum absolute off-diagonal ele-
ment of .A AH

The proposition is usually proved 
based on the Gershgorin disk theorem 
[10], a topic that is not covered in the 
engineering curricula; this obstacle pre-
vents the more widespread engagement 
of engineers in the CS field and wider 
success of the eventual applications. To 
this end, we proceed to derive the recon-
struction condition in a self-contained 
and intuitive way that does not require 
advanced mathematics.

As an example, consider a 7 14#  
measurement matrix, ;A  for clarity, we 
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FIGURE 2. An illustration of the coherence index relation for .K 2=  (a) The matrix A AH  for the ETF matrix A  from Figure 1 and the original elements 
in X  with nonzero values at k 11 =  and .k 62 =  The values in matrix A AH  are indicated by black equals 1, white equals 0, dark gray equals n+ , and 
light gray equals .n-  The components in the initial estimate ,X A yH0 =  calculated using the measurements y AX=  that result from (b) the nonzero 
element at k 11 =  in the blue bar plot and (c) .k 62 =  in the yellow bar plot. The visual demonstration that the condition for a correct detection of the 
original nonzero element position from the initial estimate is ,1 22n n-  with (d) the stacked bar plot for both components and (e) the resulting 

( ) .X k0; ;

Algorithm 1: Matching pursuit-based 
reconstruction.

Input: 
  • Measurement vector y
  • Measurement matrix A
  • Required precision f

 1: K ! Q
 2: e y!
 3: while e 2< < f2  do
 4:  k ! position of the highest value in A eH

 5:  kK K! ,
 6:   AK !  columns of matrix A selected by 

set K
 7:  ( )X A ypinv KK !
 8:  Ay XK K K!
 9:  e y yK! -
10: end while

11: 
,
,

,
.X

0
X

for the positions not in
for the positions in

K
KK

! )

Output:
  • Reconstructed signal elements X
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employ the so-called equiangular tight 
frame (ETF) matrix, for which the abso-
lute value of the off-diagonal elements 
of A AH  is constant and equal to the 
coherence index, .n  Matrix A AH  is 
visualized in Figure 2(a). Its diagonal 
elements are, by definition, equal to 
one, while its off-diagonal elements that 
have values of !n  can be treated as the 
disturbances in the detection of the non-
zero element positions in .X  Observe 
that the off-diagonal column elements 
of this matrix represent the normalized 
contribution of the corresponding non-
zero element in the sparse vector, ,X  to 
the cumulative disturbance.

Consider the case with only one nonze-
ro element in ,X  say at position ,k 11 =  
with its initial estimate, ,X0  designated 
by the dark blue bar plot in Figure 2(b). 
For only one nonzero element in ,X  the 
condition for the correct detection of its 
position in the estimate X0  would be 
that the maximum possible disturbance 
value, ,n  is smaller than the value on the 
diagonal, which is, in this case, .11n

Assume now that the signal sparsity 
index is ,K 2=  with nonzero elements 
in X  at ( )X 1 1=  and ( ) ,X 6 1=  as 
indicated in Figure 2(a) by the respec-
tive yellow and blue columns in matrix 

.A AH  The set of M 7=  measurements, 
,y AX=  is used to calculate the initial 

estimate in (6) as ,X A y A AXH H
0 = =  

as shown in the stacked bar plot in Fig-
ure 2(d). More specifically, the multi-
plication of A AH  by X  results in two 
components in the initial estimate:

 ■ The component whose values are 
shown in dark blue bars represents 
the contribution of ( )X 1  to the ini-
tial estimate .X0

 ■ The component designated by yel-
low bars represents the correspond-
ing contribution of ( ) .X 6

Remark 4
Compared to the case where the spar-
sity is ,K 1=  we can observe two dif-
ferences when the sparsity degree is 

:K 2=
 ■ The disturbances arising from each 

nonzero element in X  combine so 
that the maximum possible distur-
bance is increased to .2n

 ■ The unit value of the original non-
zero element in X  is also affected 
by the disturbing values of the other 
nonzero element, with the maxi-
mum possible amplitude reduction 
of this nonzero element of ( ),1 n-  
as shown in the stacked bar plot in 
Figure 2(d).

Remark 5
From the absolute value of the ini-
tial estimate in Figure 2(e), that is, 
| “ ” “ ” | ,blue bars yellow bars+  we can 
conclude that for ,K 2=  the correct non-
zero element position in X  will always 
be detected if the original unit ampli-
tude, reduced by the maximum pos-
sible disturbance, ,n  is greater than the 
maximum possible disturbance value, 

,2n  at the original zero-valued posi-
tions in .X  In other words, for ,K 2=  

the reconstruction condition is given 
by .1 22n n-  If this condition is met, 
the position of the nonzero element will 
always be correctly detected, which is 
precisely the aim of uniqueness analy-
sis. Note that, for rigor, we assumed 
the worst-case scenario for the largest 
position detection of ( ) ( ) ,X X1 6 1= =  
whereby the disturbance from the other 
nonzero element was the strongest pos-
sible. If ( ) ( ) ,X X1 62  it would relax 
the condition for detection of the ( )X 1  
position, and vice versa.

More specifically, the coherence 
index for the considered ETF matrix is 

. .0 2774n =  Therefore, in the worst-case 
scenario, the initial estimated values at 
the nonzero positions k 11 =  and k 62 =  
would be . . ,1 1 0 2774 0 7226n- = - =  
which is greater than the largest possible 
value, . . ,2 2 0 2774 0 5547#n = =  of the 
initial estimate at the positions where 
the original vector X  is zero-valued, 

{ , } .k 1 6"  Therefore, the coherence 
index condition . ( / ) .K 0 5 1 1 2 31 n+ =  
is satisfied for .K 2=  Observe, also, 
that matrix ,A  defined previously, can-
not be used with ,K 3$  since the maxi-
mum possible disturbance of 3n  would 
be larger than a maximally reduced unit 
value at the nonzero element position 
in the initial estimate. The amount of 
this maximum reduction would be ,2n  
resulting in the initial estimate value of 
( )1 2n-  and a misdetection of the non-
zero element position in .X

As an example of the tightness of 
the coherence index condition,  Figure 3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

0

2µ
2µ

–2µ

1 – µ 1 – µ

X0(k )

(a) (b)

X0 = AHy = AHAX

FIGURE 3. (a) The initial estimate, ,X0  for a 12 16#  partial DFT measurement matrix, where . ,0 2455n =  and the sparsity degree of K 2=  in ,X  with 
( ) ( )X X1 6 1= =  [the real part of ( )X k0  is presented in the stacked bar plot]. (b) The positions of nonzero elements in X  are detected at { , }k 1 6!  if their 

amplitude, when reduced by the maximum possible disturbance from the other component, ,n  is above the maximum possible disturbance, ,2n  of both 
components, at a position of an original zero-valued element in ,X  { , }.k 1 6"  Observe that there is a larger misdetection margin compared to the ETF 
case, indicated by the corresponding ( )1 n-  and 2n  levels, that is a consequence of different distributions of disturbances (off-diagonal elements of 
matrix A A).H
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 presents the CS recovery based on a 
12 16#  par tial DFT measurement 
matrix, ,A  with .0 2455n =  for the case 
of .K 2=  Observe that, unlike the ETF 
case, the disturbance terms are not equal. 
However, all of the conclusions regard-
ing the worst-case scenario remain valid, 
and the nonzero element positions in 
X(k) will be correctly detected based on 
the presented initial estimate, ( ),X k0  if 

.1 22n n-  To provide further intuition, 
the illustration in Figure 2 is repeated for 
a 15 30#  measurement matrix, ,A  and 

,K 3=  with the results shown in Fig-
ure 4. Following the same reasoning as in 
the previous case, we can conclude from 
the absolute value of the initial estimate 
that the detection condition now becomes 

.1 2 32n n-  The coherence index for 
this matrix is, therefore, . ,0 1857n =  with 
the corresponding coherence index con-
dition . ( / ) . .K 0 5 1 1 3 21 n+ =  Notice  
that this matrix cannot be used for 
K = 4, since 1 3 42n n-  would not hold, 
meaning that a disturbance would be 
incorrectly detected as a desired non-
zero component.

Remark 6
Following the simple and inductive ap -
proach, it becomes immediately obvi-
ous that, for a general case of a K-sparse 

,X  the position of the largest element 
position in X  will be correctly detected 
in the initial estimate, ,X0  if

 ( ) .K K1 1 2n n- -

The bound directly yields the coherence 
index condition in (7), with the deriva-
tion obtained in a natural and practi-
cally relevant way.

Remark 7
After the position of the first nonzero 
component in a sparse X  is success-
fully detected, reconstructed, and 
re  moved, the same procedure and rela-
tions can be iteratively applied to the 
remaining “deflated” signal, which 
now exhibits a reduced ( )K 1- -spar-
sity level, thus guaranteeing a unique 
solution. A simple analytic derivation 
to support the intuition behind the pro-
posed proof of the condition for unique 

reconstruction is provided in “The 
Proposed Derivation of the Coherence 
Index Relation in (7),” and as illustrat-
ed in Figures 2–4. The case with small 
measurement matrices of the ETF type, 
which have been considered so far, fully 
supports the proposed derivation of the 
coherence index and its appropriate-
ness in theory and practice, as it pro-
duces a tight bound on the existence and 
uniqueness of the reconstruction. The 
corresponding performance for prob-
lems of large dimensions is illustrated 
in “The Coherence Index: From Theory 
to Practice.”

In summary, the coherence index has 
been derived for several independent 
worst-case scenarios to provide a rigor-
ous and easily interpretable uniqueness 
bound. In practical applications, the 
uniqueness condition is typically further 
relaxed. To this end, in our approach, we 
considered various cases.

 ■ The amplitudes of all of the nonzero 
components in X  are equal: If this is 
relaxed to the general case of differ-
ent values of the nonzero elements in 
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FIGURE 4. The illustration of the coherence index relation for .K 3=  (a) The components of the initial estimate, ,X A y A AXH
0

H= =  that result from each 
of the three unity-valued nonzero elements in X  at { , , }.k 1 4 18!  (b) The components are combined into the initial estimate, .X0  The positions of the 
nonzero elements in X  are detected at { , , }k 1 4 18!  using the absolute value of the initial estimate, ( ) ,X k0; ;  if their amplitudes, reduced for a maximum 
possible disturbance, ,2n  from the other two components are above the maximum possible disturbance, ,3n  of all three components at the position of 
an original zero-valued element in ,X  { , , }.k 1 4 18"  The condition for the correct detection of the nonzero element positions with K 3=  is, therefore, 

;1 2 32n n-  that is, ( ) ,K K1 1 2n n- -  which generalizes to any .K
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,X  we can expect a successful, more 
relaxed, and unique reconstruction, 
even if the coherence index condi-
tion may be violated.

 ■ Only one element in the initial esti-
mate, ,X0  was compared to the max-
imum possible disturbance: Having 
any one of the original nonzero 
components in the initial estimate at 
a position of a nonzero element in 
X  above the maximum disturbance 
would guarantee a successful recon-
struction and further relax the recon-
struction condition.

 ■ All of the disturbances at the nonze-
ro- and zero-valued element posi-
tions are assumed to be in phase: 
That is, they sum together with the 
maximum possible magnitudes. This 
is a very low-probability event that, 
again, relaxes the practical sparsity 
limit for the reconstruction.

 ■ The distribution of the off-diagonal 
elements of A AH  plays an important 
role: When there are several nonzero 
elements in X  they combine to an 
approximately Gaussian distributed 
variable, and the resulting distur-
bance may obey different distribu-
tions and yield varying results.
For large sparsities, ,K  the misdetec-

tion probability (shown in Figure S1) 
can be improved (lowered) by increas-
ing the upper limit for the iterations in 
Algorithm 1 by a few percentage points, 
with respect to the expected sparsity, .K
After the iterations are completed, the 
expected sparsity, ,K  is used in the final 
reconstruction. This kind of calculation 
solves the problem that results from the 
fact that the iterative reconstruction in 
Algorithm 1 cannot produce the exact 
result if it misses one of the nonzero 
coefficient positions.

A real-world example
As an example, we considered the test 
image “pout” from MATLAB. When 
compressed in the 2D discrete cosine 
transform (2D-DCT) domain, this 
image may be considered as sparse. 
In our experiment, it was initially 
com  pressed to retain the eight larg-
est 2D-DCT values in each 8 8#  block 
of pixels (a 12.5% compression ratio). 
Next, 40% of the pixels were corrupted 
with “salt and pepper” noise and marked 
as missing/unavailable, and they are des-
ignated in white in Figure 5(a). The image 
was reconstructed from this incomplete 
version using Algorithm 1, with the 
available pixels serving as the mea-
surements, ,y  and the partial 2D-DCT 
matrix as the measurement matrix, .A  
The coherence index was calculated as  
the maximum absolute off-diagonal ele-
ment in ,A AH  as in Figure 2. Figure 5(c) 

The formal definition of the coherence index is

( ) ( ) ,max a k a l
, ,k l k l

m
m

M

m
0

1
n = )

! =

-

/

where it is assumed that the measurement matrix is normal-
ized; that is, ( )a k 1M

mm
1
0

2; ;/ ==
-  for each .k

A measurement (or signal sample) of a K -sparse signal 
can be written, by definition, as

( ) ( ) ( ).y m X k a k
i

K

i m i
1

=
=

/

Its initial estimate in (6), for one coefficient, ( ),X k0  is

( ) ( ) ( ) ( ) ( ) ( , ),X k X k a k a k X k k k
i

K

i m
m

M

m i
i

K

i i0
1 0

1

1
n= =)

= =

-

=

/ / /

where ( , ) ( ) ( ).k k a k a k*
m
M

i m m i0
1/n = =
-  The maximum possible 

absolute value of ( , )k kin  is equal to the coherence index; 
that is, ( , ) .max k k,k k ii ; ;n n=

Without a loss of generality, assume that the element 
( )X k1  at position k1  is real-valued with the unit amplitude, 
( ) ,X k 11 =  while the remaining elements are not greater 

than the unity, ( ) ,X k 1i; ; #  , , .i K2 f=  The unit value at k1  
will be disturbed by the influence of other nonzero coeffi-
cients; that is,

( ) ( ) ( ) ( , ).X k X k X k k k
i

K

i i0 1 1
2

n= +
=

/

In the worst-case scenario for the detection of the coeffi-
cient at position ,k1  all ( ) ( , )X k k ki in  should assume their 
lowest possible value of .n-  Then,

( ) ( ) ( , ) ( ) ,X k X k k k K1 1 1i i
i

K

0 1
2

; ; $ ; ; $n n- - -
=

/

and the minimum possible value of ( ) ,X k0 1; ;  therefore, 
becomes

( ) ( ) .min X k K1 10 1; ; n= - -

For correct detection, the amplitude of ( )X k0 1  should be 
greater than the maximum possible disturbance at posi-
tions where the original coefficients are zero-valued, 

,k ki!  which is equivalent to

( ) ( , ) .max X k k k K
k k i

K

i i
1i

n n=
! =

/

The condition that the coefficient position, ,k1  must be 
correctly detected becomes

( ) ( ) ( , ) .min maxX k X k k k
k k i

K

i i0 1
1i

2; ; n
! =

/

From the last two relations, it immediately follows that

( ) ,K K1 1 2n n- -

which, as desired, produces the coherence index relation 
given in (7).

The Proposed Derivation of the Coherence Index Relation in (7)
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To establish a link with common compressive sensing 
practice, we statistically compare the reconstruction per-
formance based on the following measurement matrices: 
the equiangular tight frame (ETF), Gaussian matrix (real- 
and complex-valued with identical and independently dis-
tributed real and imaginary parts), and partial discrete 
Fourier transform (DFT) measurement matrix, with 
N 258=  and M 129.=

For the Gaussian and partial DFT matrices, we chose the 
best measurement matrix (with the smallest n) from 1,000 
random realizations. The corresponding values of n  were 
0.3527, 0.2737, 0.0624, and 0.1484 for the Gaussian 
(real- and complex-valued) matrix, ETF, and partial DFT 
matrix, respectively. The lowest value for the coherence 
index, ( )/( ( ))N M M N 1n = - - = . ,0 0624  was ob tain -
ed for the ETF, as expected, from the Welch bound 
theory. The theoretic limits for the sparsity degree, ,K  that 
guarantee the reconstruction with a probability of one are 

. ( / ) . ,K 0 5 1 1 8 51 n+ =  ,.K 3 91  ,.K 2 31  and .K 911  
for the ETF, partial DFT, and Gaussian (complex- and real-
valued) measurement matrices, respectively.

In the experiment, all four matrices were used to recon-
struct signals for a range of sparsity degrees, , ,K 1 2=  

, , .3 64f  For each sparsity level, ,K  the problem was 
solved 100,000 times with random positions of the non-
zero coefficients. For each ,K  the solution was checked 

against the known positions and values of the nonzero 
elements in ( ),X k  and the number of  mis-detections was 
recorded. The number of misdetections for each K  was 
then divided by the total number of realizations.

The results for the misdetection probability are shown 
in the Figure S1. For a sufficient practical probability 
value of the misdetection (for example, lower than 

),10 4-  the partial DFT performed significantly better than 
the ETF. Figure S1 shows that it produced a reconstruc-
tion without any error, with a probability of 0.9999, for 

,K 211  while for the ETF, the result holds for .K 151
This can be explained by the probability distribution of 

the off-diagonal elements of A AH  being the worst possi-
ble in the ETF, with ( ) . ( ( ) ( )),p 0 5p d p n d p n= - + +  and 
the variance of ( ) .( )/( )N M M N 12 2v n= = - -  For the 
partial DFT matrix, the off-diagonal elements of A AH  
were approximately Gaussian distributed, with the vari-
ance ( )/( ( ))N M M N 12v = - -  [S5], while in the Gaussian 
measurement matrix, the off-diagonal elements were also 
Gaussian distributed, with 1/ .M2v =

The probabilistic approach can also be used to derive a 
relation between ,K  ,N  and M for a successful reconstruc-
tion of .X  with a given probability, as thoroughly shown in 
[S5]. We present a brief practical analysis. The real and 
imaginary parts of the off-diagonal elements of A AH  (the 
disturbances at the original zero-valued positions in X) com-
bine within the initial estimate for each nonzero element in 
X. For a large sparsity degree, ,K N1% %  the resulting dis-
tribution of the disturbance is approximately Gaussian, 

( , / ),K0 2N 2? v  where 2v  is the variance of a single com-
plex-valued, off-diagonal element of A A.H  A successful 
reconstruction may be expected if the amplitude of the dis-
turbance (Rayleigh distributed) is, with high probability, 
below the nonzero unit-amplitude element in the initial esti-
mate. For example, if K 2v  is denoted by / ,1 l  the amplitude 
in at least one position of the zero-valued elements in X  will 
be above one, with a probability of ( ) .N K e Ne+- l l- -  For 
a partial DFT matrix, assuming 16l =  when ,Ne 10 5+l- -  
the reconstruction is achieved with a high probability for

( )
.K N M

M N
16
1 1

1
-

-

For N 258=  and ,M 129=  it follows that / . ,K M 8 16 11 =  
as suggested for the practical sparsity limit in [9]. This cor-
responds to the previous statistical results, with a probability 
of incorrect reconstruction below .10 5-

Reference
[S5] L. Stanković, S. Stanković, and M. G. Amin, “Missing samples analy-
sis in signals for applications to L-estimation and compressive sensing,” 
Signal Process., vol. 94, pp. 401–408, Jan. 2014. doi: 10.1016/ 
j.sigpro.2013.07.002.
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Gaussian measurement (blue) matrices.
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and (d) illustrates the reconstruction 
procedure and shows the measurement 
matrix, ,A  values of the 2D-DCT for 
one 8 8#  pixel block arranged into 
vector form, ,X  and the available pix-
els for the same block, .y  The achieved 
mean square error of the reconstructed 
image, compared to the original before 
compression, was –34 dB, while the 
achieved peak signal-to-noise ratio with 
respect to the original (with all of the 
pixels available and before compres-
sion) was 86 dB.

If we were to check the RIP condi-
tion for this example, we would have 
to examine all of the submatrices that 
were obtained after choosing K2 16=  
columns from matrix .A  The number 
of submatrices would be 

. ,
64
16

4 9 1014#=c m  

and for each submatrix, eigen decompo-
sition must be performed to obtain the 
corresponding eigenvalues. The largest 
eigenvalue should be selected for the 
RIP constant for ,K2 16=  denoted by 

,16d  and checked to see if it is below 
the theoretical limits. This exemplifies 
that, even for low values of N 64=  and 

,K 8=  the RIP calculation is not fea-
sible. To obtain the coherence index, 
we have 

,
64

2 106
2
=c m  

combinations of the columns. The same 
reconstruction framework can be applied 

to many other practical scenarios, 
including those presented in [7], [13], 
and [15].

Conclusions
The coherence index condition for unique 
sparse signal reconstruction, which is a 
prerequisite for the successful CS para-
digm, has been derived using simple 
signal processing tools and through an 
intuitive example. Our perspective has 
demonstrated that this index provides 
a tight uniqueness bound for relatively 
small dimensions of CS problems, fol-
lowed by a clear interpretation of its con-
servative nature for large-scale issues. 
This has been achieved for a range of 
high probabilities for obtaining the cor-
rect result and avoiding misdetection. It 
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image, with the missing pixels designated in white. (b) The reconstructed image obtained using Algorithm 1. (c) The measurement matrix, ;A  the sparse 
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bilistic effects (explained in “The Coherence Index: From Theory to Practice”), the recovery was of high quality, even with ,K 8=  as used in this example. 
The achieved mean square error was 34 dB,-  while the peak signal-to-noise ratio was 86 dB (with all of the pixels available and before compression). This 
demonstrates the rather conservative nature of the coherent index that is bound in practical applications and supports the analysis in “The Coherence Index: 
From Theory to Practice.”
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was also shown that general measure-
ment matrices, such as the frequently 
used partial DFT matrix, are likely to 
outperform results derived from the con-
sidered ETF-based measurement matrix 
as long as the analysis is restricted to 
pragmatically high probabilities of the 
correct solution, resulting in a practical 
relaxation of the theoretical probability 
of one for avoiding misdetection.
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clustering quality.
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Deduplication on Encrypted Big 
Data in Cloud
Yan, Z.; Ding, W.; Yu, X.; Zhu,  
H.; Deng, R.H.
A scheme based on data ownership 
challenge and proxy re-encryption is 
proposed to manage encrypted data 
storage with deduplication. It supports 
flexible data update and sharing with 
deduplication, even when the data 
holder is offline, and integrates cloud 

data deduplication with access con-
trol. Extensive performance analysis 
and tests show the superior efficiency 
and effectiveness of the scheme for 
potential practical deployment, espe-
cially for big data deduplication in 
cloud storage.
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Petuum: A New Platform for 
Distributed Machine Learning on 
Big Data
Xing, E. P.; Ho, Q.; Dai, W.; Kyu Kim, 
J.; Wei, J.; Lee, S.; Zheng, X.; Xie, P.; 
Kumar, A.; Yu, Y.

This paper proposes a general-purpose 
framework, Petuum, that systematically 
addresses data- and model-parallel chal-
lenges in large-scale machine learning. 
It observes that many machine-learning 
programs are fundamentally optimiza-
tion centric and admit error-tolerant, 
iterative-convergent algorithmic solu-
tions. It presents unique opportunities 
for integrative system design, such as 
bounded-error network synchroniza-
tion and dynamic scheduling based on 
machine-learning program structure.
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