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LECTURE NOTES
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Understanding the Basis of Graph Signal Processing  
via an Intuitive Example-Driven Approach

G raphs are irregular structures that 
naturally represent the multifaceted 
data attributes; however, traditional 

approaches have been established outside 
signal processing and largely focus on 
analyzing the underlying graphs rather 
than signals on graphs. Given the rap-
idly increasing availability of multisen-
sor and multinode measurements, likely 
recorded on irregular or ad hoc grids, it 
would be extremely advantageous to ana-
lyze such structured data as “signals on 
graphs” and thus benefit from the ability 
of graphs to incorporate spatial sensing 
awareness, physical intuition, and sensor 
importance, together with the inherent 
“local versus global” sensor association. 
The aim of this lecture note is, therefore, 
to establish a common language between 
graph signals that are observed in irregu-
lar signal domains and some of the most 
fundamental paradigms in digital signal 
processing (DSP), such as spectral analy-
sis, system transfer function, digital filter 
design, parameter estimation, and opti-
mal denoising.

Scope
The move to gather more data from our 
environment, for our applications, health, 
and general well-being, is an established 
fact. The increase in the modalities of 
data acquisition and signal  sensors, 
together with the corresponding increase 
in their structure and the complexity of 
information, has highlighted the need 

for a shift in thinking and new ana-
lytical frameworks. This need becomes 
even clearer when we take into consider-
ation the intermodality and interlocality 
attributes and their interactions, which 
effectively call for radically new data 
analytics approaches. Such a paradigm 
shift is provided by graph signal theory, 
a framework that goes beyond the stan-
dard “vertices, links, and their structural 
properties” components of a graph. It is 
the aim of this lecture note to introduce 
a unifying perspective based on a real-
world multisensor problem.

This is achieved through a physi-
cally meaningful and intuitive real-world 
example of geographically distributed 
estimation of multisensor temperature 
measurements. A similar spatial multisen-
sor arrangement has already been widely 
used in signal processing curricula to 
introduce minimum variance estimators 
and Kalman filters, and by adopting this 
framework, we facilitate a seamless inte-
gration of graph theory into the curricu-
lum of existing DSP courses. By bridging 
the gap between standard approaches and 
graph signal processing, we also show 
that standard methods can be thought 
of as special cases of their graph coun-
terparts, evaluated on path graphs. This 
article was, therefore, primarily written 
in response to the need to bring graph 
signal processing into the curricula of 
existing signal processing and machine 
learning courses, and this material corre-
sponds to a 2-h lecture that could come at 
the very end of the standard lecture course 
syllabi. We also hope that our approach 

will not only help to demystify graph- 
theoretic approaches for education pur-
poses but also empower practitioners and 
researchers to explore a whole host of 
otherwise prohibitive modern applica-
tions. The supporting material, lecture 
slides, data, and MATLAB code can be 
found at http://www.tfsa.ac.me/ln-gsp and 
http://www.commsp.ee.ic.ac.uk/~mandic/
DSP_ML_Education.htm.

Relevance
In classical signal processing, the signal 
domain is determined by equidistant time 
instants or by a set of spatial sensing 
points on a uniform grid. Increasingly, 
however, the actual data sensing domain 
may not even be related to the physical 
dimensions of time and/or space, and it 
typically exhibits various forms of irreg-
ularity, as, for example, in social or web-
related networks, where the sensing points 
and their connectivity pertain to specific 
objects or nodes and the ad hoc topology 
of their links. It should be noted that even 
for the data acquired in well-defined 
time and space domains, the introduc-
tion of new relations between the signal 
samples, through graphs, may yield new 
insights into the analysis and provide 
enhanced data processing (for example, 
based on local similarity, through neigh-
borhoods). We, therefore, set out to show 
that the advantage of graphs over classi-
cal data domains is that graphs account 
 naturally and  comprehensively for irreg-
ular data relations in the problem defi-
nition, together with the  corresponding 
data connectivity in the analysis.
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Through a real-world  temperature 
estimation example, we show that graph 
signal and information processing is par-
ticularly well suited to making sense from 
data acquired over irregular data domains, 
which can be achieved, for example, 
by leveraging intuitions developed on 
Euclidean domains, by employing analo-
gies with other irregular domains such 
as polygon meshes and manifolds, or by 
learning the mutual connectivity patterns 
from the available sets of data. In many 
emerging applications, for example, big 
data, this also introduces a number of 
new challenges:

 ■ Basic concepts must be revisited to 
accommodate structured but often 
incomplete information.

 ■ New physically meaningful frame-
works, specifically tailored for hetero-
geneous data sources, are required.

 ■ Tradeoffs between performance and 
numerical requirements are a pre-
requisite when operating in real 
time, especially given often combi-
natorial ways to analyze graphs.
The common language and enhan -

ced intuition between the standard ap -
proaches and their graph counterparts, 
illuminated in this article through the 
relationships between the vertex and time 
domains, and between the corresponding 
eigenspectrum and frequency domains, 
may be naturally generalized to address 
the aforementioned challenges and spur 
further developments in the curricula on 
statistical signal processing, graph signal 
processing, and big data.

Prerequisites
This lecture note assumes a basic knowl-
edge of linear algebra and DSP.

Problem statement and solutions

History of graph-theoretic  
applications
Graph theory, as a branch of mathemat-
ics, has existed for almost three centuries. 
The beginning of graph theory applica-
tions in electrical engineering dates back 
to the mid-19th century and the  definition 
of Kirchhoff’s laws. Owing to their inher-
ent “spatial awareness,” graph models 
have since become a de facto standard 
for data analytics across the science and 

engineering areas, including chemistry, 
operational research, social networks, 
and computer sciences.

A systematic account of graph theo-
ry as an optimization tool can be attrib-
uted to the seminal book by Nicos 
Christofides of Imperial College Lon-
don, published in 1975 [1]. Soon after 
graph theory gained prominence in 
general optimization, it was very natu-
ral to explore its application in signal 
processing and related data analyt-
ics areas [2]. Indeed, perhaps the first  
lecture course to teach graph theory to 
then emerging communication networks 
and channel coding student cohort was 
introduced by the author Anthony Con-
stantinides in the 1970s. This helped to 
establish and formalize the connections 
between general optimization and the 
topology of a communication network 
and has spurred further applications in 
image processing [3].

After a relative lull in the field over 
more than two decades, current develop-
ments in graph theory owe their promi-
nence to the emergence of modern data 
sources, such as large-scale sensor and 
social networks, which inherently pro-
vide rich underlying physical, social, 
and geographic structures. These require 
new ways to establish statistical infer-
ence, such as through data analytics on 
graphs and within a new, fast-maturing 
field of graph signal processing [4]–[10].

An illustrative example
Graph signal processing represents quite 
a general mathematical formalism that, 
while different from classic concepts, 
does admit the development of graph-
domain counterparts of well-established 
DSP paradigms. It would, therefore, be 
quite valuable to introduce such a gen-
eral concept in an inductive and intui-
tive way, through a simple yet general 
enough and well-understood example 
of a commonly considered topic in 
classical DSP.

To this end, we consider a multisen-
sor setup, shown in Figure 1, for mea-
suring temperature field in a known 
geographical region; such a setup is typ-
ically used in the context of minimum-
variance estimation and Kalman filters. 
The temperature sensing locations are 

chosen according to the significance 
of a particular geographic area to local 
users, with N 64=  sensing points in 
total, as shown in Figure 1(a). The tem-
perature field is denoted by { ( )},x n  and 
a snapshot of its values is given in Fig-
ure 1(b). Each such measured tempera-
ture signal can then be mathematically 
expressed as

 ( ) ( ) ( ),x n s n nf= +  (1)

where ( )ns  is the true temperature that 
would have been obtained in ideal mea-
suring conditions, while the term ( )nf  
comprises the adverse effects of the 
local environment on sensor readings 
or faulty sensor activity and is referred 
to as noise in the sequel. For illustrative 
purposes, the noise ( )nf  was modeled in 
our study as a realization of white, zero-
mean, Gaussian process, with standard 
deviation ,4v =f  that is ( , ),0 16N+f  
which was added to the signal, ( ),s n  to 
yield the signal-to-noise ratio in { ( )}x n  
of . .14 2SNR dB0 =

Remark 1
Classical signal processing requires an 
arrangement of the quintessentially spa-
tial temperature samples in Figure  1(a) 
into a line structure shown in Figure 1(c). 
Obviously, such “lexicographic” order-
ing is not amenable to exploiting the 
spatial information related to the actual 
sensor arrangement, dictated by the ter-
rain. For example, this renders classical 
analyses of this temperature field inad-
equate (or at best suboptimal), as in this 
case the performance critically depends 
on the chosen sensor ordering scheme. 
This exemplifies that even a most routine 
temperature measurement setup requires 
a more complex estimation structure 
than the simple linear one that corre-
sponds to the classical signal processing 
framework, as in Figure 1(c).

To introduce a “situation-aware” noise 
reduction scheme for the temperature 
field in Figure 1, we proceed to explore 
a  graph-theoretic framework for this 
class of problems, starting from a local 
signal average operator. In classical signal 
processing, this can be achieved through 
a moving average operator, for example, 
through averaging across the neighboring 
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data samples, or equivalently neigh-
boring nodes, as in the path graph in 
Figure 1(c), and for each sensing point. 
Physically, such a local neighborhood 
should indeed include geographically 
close neighboring sensing points, 
but these should also exhibit similar 
meteorological proper ties defined 
by the distance, altitude difference, and 
other terrain properties. In other words, 
since the sensor network in Figure 1 
measures a set of related temperatures 
from irregularly spaced sensors, an 
effective estimation strategy should 
include domain knowledge, which is 
not possible to achieve with standard 
DSP (path graph).

Problem setup 
Consider the local neighborhoods for 
the sensing points ,n 20=  29, 37, and 
41, shown in Figure 2(a). The cumula-
tive temperature for each sensing point 
is then given by

( ) ( ),y n mx
at and around m n

= /

so that the local average temperature for 
a sensing point n  may be easily obtained 
by dividing the cumulative temperature, 

( ),y n  by the number of sensing points 
involved. For example, for the sensing 
points n 20=  and ,n 37=  presented 
in Figure 2(a), the “domain knowledge 
aware” local estimation takes the form

( ) ( ) ( ) ( ) ( )y x x x x20 20 19 22 23= + + +

 (2)

( ) ( ) ( ) ( )

( ) ( ) .

y x x x

x x

37 37 32 3

35 61

1= + +

+ +
 

(3)

For convenience, the full set of relations 
among the sensing points can now be 
rearranged into a matrix form, to give

 ,y x Ax= +  (4)

where the matrix A indicates the connec-
tivity structure of the neighboring sensing 
locations that should be involved in the 
calculation for each estimate, ( ).y n  The 
matrix A is therefore referred to as the 
connectivity or adjacency matrix of a 
graph. Its elements are either 1 (if the 
corresponding vertices are related) or 0 (if 

they are not related). Figure 2(b) shows the 
sensing locations with the corresponding 
connectivity patterns for the temperature 
estimation scenario in Figure 2(a). From 
(2) we can observe, for example, that 
the 20th row of the adjacency matrix 
A  will have all zero elements, except 
for ,A 1,20 19=  ,A 1,20 22=  and A 1,20 23=  

(see the supplementary materials in 
IEEE Xplore for more information).

This simple real-world example can 
be interpreted within the graph signal 
processing framework as follows:

 ■ The sensing points where the signal 
is measured are designated as the 
graph vertices (see Figure 1).
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FIGURE 1. An illustration of temperature sensing as a classical signal processing problem. (a) A map 
of sensing locations in a geographic region along the Adriatic Sea (Montenegro). (b) Temperatures 
measured at N 64=  sensing locations. In standard signal processing, the spatial sensor index is 
used for the horizontal axis and serves as the signal domain. (c) This domain can also be interpreted 
as a directed path graph but lacks physical intuition as, for example, sensor 37 (mountains) is fol-
lowed by sensor 38 (coast), with a drastic difference in temperature.
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 ■ The vertex-to-vertex lines that indi-
cate connectivity among the sensing 
points are called the graph edges.

 ■ The vertices and edges form a graph, 
as in Figure 2(b), a new and very struc-
turally rich signal domain.

 ■ The graph, rather than a standard 
vector of sensing points, is then used 
for analyzing and processing data, as 
it is equipped with spatial and physi-
cal awareness.

 ■ The measured temperatures are now 
interpreted as signal samples on a 
graph, as shown in Figure 3.

 ■ Similar to traditional signal process-
ing, this new graph signal may have 
many realizations on the same graph 
and may include noise, thus paving 
the way for statistical approaches.

 ■ Through relation (4), we have, there-
fore, introduced a simple system for 
graph signals that performs physi-
cally and spatially aware signal 
averaging (a linear first-order system 
for a graph signal).
To emphasize our trust in a particu-

lar sensor and to model mutual sensor 
relevance, a weighting scheme may be 
imposed on the edges (connectivity) 
between the sensing points, in the form

 ( ) ( ) ( ).y n x n W x mnm
m n

= +
!

/  (5)

The weight Wnm  indicates the strength 
of the coupling between signal val-
ues at the sensing points n  and m; it 
has the value W 0nm=  if the points n  
and m  are not related or if .n m=  We 
have now arrived at a weighted graph, 
whereby each edge has an associ-
ated weight, ,Wnm  which adds “mutual 
sensor relevance” information to the 
already established spatial awareness 
modeled by the edges. This equips 
graph signal models with additional 
flexibility. In our example, a matrix 
form of a weighted cumulative graph 
signal now becomes

 .y x Wx= +  (6)

To produce unbiased estimates, instead 
of the cumulative sums in (4) and (5), 
the weighting coefficients within the 
estimate for each ( )y n  should sum up to 

(a)

36

56

62

34

45
44

43

35

32
42

41

38

39

46

47 40

50

55

49

48

21

24

19
23

20
22

64

31

30

61

37

33

53

60

15

17 16

54

58

18

57
63

14

13

4 12
3

11
52

10

259

26
8 7

6 5

2 1

59

27 51
28

29

(b)

41

42

38

39

47 40

31
19

23

22 20

61
32

37

59

29

27
28

51

35

FIGURE 2. A temperature estimation setup as a domain-aware graph signal processing problem. 
(a) The local neighborhoods for the sensing points ,n 20=  29, 37, and 41. These neighborhoods 
are chosen using “domain knowledge,” dictated by local terrain and by taking into account the 
distance and altitude of sensors. This allows for the neighboring sensors for each of these sens-
ing locations (vertices) to be chosen in a physically meaningful way, with their relation indicated 
by the connectivity lines, called edges. (b) The local neighborhoods for all sensing vertices from 
Figure 1, presented in a graph form. 
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unity. This may be achieved through a 
normalized form of (6), given by

 ( ),
2
1y x D Wx1= + -  (7)

where the elements of the diagonal nor-
malization matrix, ,D  called the degree 
matrix, are /D Wmnn nm=  while the term 
D W1-  is referred to as a random walk 
or diffusion weight matrix. When this 
simple normalized first-order system is 
employed to filter the original noisy sig-
nal from Figure 3, the .  20 2SNR dB=  
was achieved—an improvement of 6 dB 
over the original signal-to-noise ratio, 

.14SNR 2 dB.0 =

Another important operator for graph 
signal processing is the graph Lapla-
cian, ,L  which is defined as

.L D W= -

Remark 2
A graph is fully specified by the set of 
its vertices and their connectivity scheme 
(designated by edges). The edges may be 
defined by the adjacency matrix, ,A  with 

,{ },A 0 1mn !  for unweighted graphs or 
by the “connectivity strength” matrix, 
referred to as the weight matrix,  ,W  
with ,W Rmn ! +  for weighted graphs. 

The degree matrix, ,D  and the Laplacian 
matrix, ,L  with ,L Rmn !  are defined 
using the adjacency/weight matrix. When 
the relations between all pairs of verti-
ces are mutually symmetric, then all the 
matrices involved are also symmetric, 
and such graphs are called undirected. If 
that is not the case, then the adjacency/
weight matrix is not symmetric, and such 
graphs are called directed graphs.

The previously introduced graph frame-
work is quite general and admits appli-
cation to many different scenarios. For 
example, when performing an opinion 
poll within a social network, the mem-
bers of that social network are treated as 
vertices (data acquisition points), while 
their friendship relations are represented 
by the edges that model graph connectiv-
ity, with the member attributes playing 
the role of graph signal values.

Remark 3
The definition of an appropriate graph 
structure is a prerequisite for physi-
cally meaningful and computationally 
efficient graph signal processing appli-
cations. Three important classes of 
problems, regarding the definition of the 
graph topology, are described in “Graph 
Topology (Edges and Weights).” In the 
following, we demonstrate how this 

simple and intuitive concept provides 
a natural and straightforward platform 
to introduce the graph counterparts of 
several fundamental signal process-
ing algorithms.

System for graph signals
In classical signal processing, a system 
is an operator that transforms an input 
signal into another (output) signal. The 
purpose of this section is to provide a 
definition of a system that operates over 
graph signals. Our focus will be on a 
subclass of systems called graph shift 
invariant systems, also referred to by 
some authors as simply graph filters. 
As illustrated in the following pages, 
this class of systems accounts for the 
topology of the graph where the signals 
reside, while maintaining analytical and 
computational tractability.

Signal shift on a graph
The signal shift operator (unit time delay) 
is the linchpin in discrete-time signal 
processing, but its definition on graphs 
is not so obvious due to the rich underly-
ing connectivity structure.  Topologically, 
the signal shift on a graph can be viewed 
as the movement of a signal sample from 
the considered vertex along all edges 
connected to this vertex. The (backward) 
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FIGURE 3. The move from a multisensor measurement to a graph signal. (a) The temperature field is represented on a graph that combines spatially 
unaware measurements from Figure 1(b) and the physically relevant graph topology from Figure 2(b). (b) The graph signal intensity may also be desig-
nated by the vertex color, as in the right half of the panel. 
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shift operator on a graph can then be com-
pactly defined using the graph adjacency 
matrix as .x Axshifted=

To draw distinction between the stan-
dard shift and the graph shift operator, 
consider the path graph in Figure 1(c) 
and the spatially aware graph in Fig-

ure 2, and assume that the input signal 
is a pulse that occurs only at the sen-
sor ,n 29=  that is, ( ) ( ).x nn 29d= -  
The shifted signal in classical signal 
processing [path graph in Figure  1(c)] 
will be ( ) ( )x nn 28–shifted d=  and can 
be considered as a movement of the 

delta pulse along the path graph from 
vertex n  to vertex ( ).n 1-  The same 
principle can be applied to the graph 
domain in Figure  2(a), whereby the 
delta pulse from vertex n 29=  is 
moved to all its connected vertices, 
to obtain the shifted graph signal, 

While in classical graph theory, the graphs are typically 
given (e.g., in various computer, social, road, transporta-
tion, and power networks), in graph signal processing 
oftentimes the first step is to employ background knowl-
edge of signal-generating mechanisms to define the graph 
as a signal domain. This poses a number of challenges; 
e.g., while the data sensing points (graph vertices) are usu-
ally well defined in advance, their connectivity (graph 
edges) is often not available. In other words, the data 
domain definition within the graph signal paradigm repre-
sents a part of the problem itself and has to be determined 
based on the properties of the sensing positions or features 
of the acquired set of data. All in all, the definition of an 
appropriate graph structure is a prerequisite for physically 
meaningful and computationally efficient graph signal pro-
cessing applications.

Three important classes of problems regarding the defini-
tion of graph edges are as follows:
• Geometry of the vertex positions: The distances 

between vertex positions play a crucial role in establish-
ing relations among the sensed data. In many physical 
processes, both the existence of edges and their associ-
ated connecting weights are defined based on vertex 
distances. To this end, an exponential function of the 

Euclidean distance between vertices, ,rmn  may be used, 
where for a given distance threshold, ,x

or if ,W e W e r/ /
mn

r
mn

r
mn

mn mn
2

1 x= =a a- -

and W 0mn=  for .rmn $ x  This form has been used in 
the graph in Figure 2, whereby the altitude difference, 

,hmn  was accounted for as .W e e/ /
mn

r hmn mn= a b- -

• Physically well-defined relations among the sensing 
positions: Examples include electric circuits, linear 
heat transfer systems, spring-mass systems, and vari-
ous forms of networks such as social, computer, or 
power networks. In these cases, the edge weights are 
given as a part of problem definition.

• Data similarity dictates graph topology: This scenario is the 
most common in image and biomedical signal processing 
(see “Graph Topology Based on Signal Similarity: An 
Image Processing Example”). Various approaches and met-
rics can be used to define data similarity, including the cor-
relation matrix between the signals at various vertices or the 
corresponding inverse covariance (precision) matrix, com-
bined with signal smoothness and edge sparsity conditions.

Learning a graph (its edges) based on the set of the avail-
able data is an interesting and currently extensively studied 
research area.

Graph Topology (Edges and Weights)
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FIGURE 4. A shift operator on a graph. (a) A single-pulse graph signal, ,x  located at the vertex ,n 29=  and given by ( ) ( ).x n n 29d= -   
(b) The graph shifted version of ,x  given by .x xAshifted=  The graph shift operator is demonstrated on the northeast part of the graph from  
Figure 3, around the vertex .n 29=  
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( ) ( ) ( )nx n n27 28– –shifted d d= + +  
( ) ( ),n n51 59– –d d+  a s  s h ow n  in  

 Figure 4.
If the values of the shifted signal are 

also scaled by the weighting coefficients 
of the corresponding edges, then the 
shifted signal is given by .x xWshifted=  
Observe that the Laplacian operator 
applied on a signal, ,Lx  can also be con-
sidered as a graph shift operator, since 
it is a combination of the scaled original 
signal, ,Dx  and its weighted shifted ver-
sion, ,xW  that is, – .Lx Dx Wx=  In 
the sequel, we will adopt the symbol S 
to denote a general shift operator on 
a graph, which yields a graph shifted  
signal, .x xSshifted=

Remark 4
The standard shift operator, ( )x n =  

( ),x n 1-  is a “one-to-one” mapping, while 
the graph shift operator, ,x Sxshifted=  
is a “one-to-many” mapping, which 
accounts for the underlying physics of 
the sensing process (as in our example), 
not possible to achieve with standard 
DSP. Moreover, by its very nature, the 
graph shift also allows us to incorporate 
a contextual relation between the verti-
ces within an irregular grid through the 
weight matrix .W  Notice that the above 
graph shift operator does not satisfy the 
isometry property, since the energy of 
the shifted signal is not the same as the 
energy of the original signal.

System for graph signals
In analogy with the pivotal role of time 
shift in standard system theory, a sys-
tem for graph signals can be implement-
ed as a linear combination of a graph 
signal and its graph shifted versions. 
Here, the notion of a system is used in 
its classical sense, as a set of physical 
rules (an algorithm) that transforms an 
input graph signal into another (output) 
graph signal. The output graph signal 
can then be written as

,

h h h

h

y S x S x S x

S x

M
M

m
m

M
m

0
0

1
1

1
1

0

1

g= + + +

=

-
-

=

-

/ (8)

where, by definition, ,S I0=  while ,h0  
,h1  ,f  hM 1–  are the system coefficients 

(see the section “Spectral Domain 
Graph Filter Design”).

Remark 5
Common choices for the graph shift 
operator are 1) the adjacency ma -
trix, ,S A=  and 2) graph Laplacian, 

.S L=  Normalized versions of the 
 adjacency ma  trix, graph Laplacian, 

,S D LD1/2 1/2= - -  and random walk 
(diffusion) matrix, ,S D W1= -  can also 
be used.

Notice that for the directed and 
unweighted path graph in  Figure 1(c), 
the system for graph signals in (8) 
reduces to the well-known stan-
dard finite impulse response filter, 
given by

 
( ) ( ) ( )

( ).

y n h x n h x n

h x n M

1

1M

0 1

1

g= + - +

+ - +-  (9)

Remark 6
The previously established link bet-
ween the classical transfer function 
of a physical system and its graph-the-
oretic counterpart may serve to pro-
mote new algorithmic approaches that 
stem from signal processing into many 
application scenarios that may be relat-
ed to graphs.

Remark 7
A system defined based on the graph 
Laplacian, ,L  is obtained from (8) by 
replacing S L=  and allows us to pro-
duce an unbiased estimate of a constant, 

,c  whereby if x c=  then ,y c=  since 
by the definition of the graph Laplacian, 

0.Lc =  Hence, a simple first-order sys-
tem based on the graph Laplacian can be 
written as

 hy x Lx1= +  (10)

and is amenable to being used for efficient 
low-pass graph filtering (see “Smooth-
ness and Filtering on a Graph”).

Remark 8
A system for graph signals is convenient-
ly defined by the graph transfer func-
tion, ( ),H S  as

 ( ) .Hy S x=  (11)

Properties of a system for  
graph signals
Following the aforementioned discus-
sion, it is now possible to define the 
properties of systems for graph signals. 
From (8)–(11), the system for graph sig-
nals is said to be:

 ■ linear, if

 ( ) ( )H a a a aS x x y y1 1 2 2 1 1 2 2+ = +

 ■ shift invariant, if

( ) ( ) ( ) .( )H HS Sx S S x=

Remark 9
A system for graph signals, defined as in 
(8), in the form

( )H h h hS S S SM
M

0
0

1 1
1 1g= + + + -

-

 (12)

is linear and shift invariant, since the 
matrix multiplication of the square shift 
matrices is associative ( ) ( )( )S SS SS S= , 
that is, .SS S Sm m=

Graph Fourier transform
While classic spectral analysis is per-
formed in the Fourier domain, spectral 
representations of graph signals employ 
the eigenspectrum (or simply “spec-
trum” hereafter) of the graph shift oper-
ator, ,S  given by

,S U U 1K= -

where U  is an orthonormal matrix of 
the eigenvectors, ,uk  in its columns, 
and K  is a diagonal matrix of the cor-
responding eigenvalues, .km

As in the majority of the litera-
ture dealing with the analysis of the 
frequency content of graph signals, 
here we will use S L=  in numerical 
examples, while S A=  is also used in 
illustrative examples, especially when 
relating graph signal processing to 
classical signal processing. The eigen-
vectors of graph Laplacian, ,L  may 
then be used for the spectral-based 
clustering of graph vertices, as shown 
in “Vertex Clustering.”

The graph Fourier transform (GFT), 
,X  of a graph signal, ,x  is then defined as

 .X U x1= -  (13)



140 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2019   |

The quadratic form of a graph signal on 
an undirected graph is given by

( ( ) ( ))E W x n x m
2
1x Lxx

T
nm

m

N

n

N

1

2

1
= = -

==

//

and can be used to def ine s ignal 
smoothness, since small values of the 
squared local deviation, ( ( ) ( )) ,x n x m 2-  
correspond to a smooth, slow-varying 
signal. For a constant signal, ,x c=  we, 
therefore, have .E 0x =

Physically, the minimum of x LxT  
implies the smoothest possible signal, 
and to arrive at this solution we may 
employ steepest descent. Then, the sig-
nal value at an iteration p  is adjusted 
in the opposite direction of the gradi-
ent, toward the minimum of x Lx.T  The 
gradient of this quadratic form is 

/ ,E 2x Lxx
T2 2 =  which yields the itera-

tive procedure

( ) .x x Lx I L xp p p p1 a a= - = -+

Notice that the signal xp 1+  can be con-
sidered as an output of the first-order 
system in (11), with ,h1 a=-  and this 
relation can be used for simple and effi-
cient filtering of graph signals.

Since the minimum of the quadratic 
form x LxT  corresponds to a constant 
signal, to avoid obtaining only a  constant 
steady state (that is, to also account for  
the slow-varying part of the graph sig-
nal), the aforementioned iteration pro-
cess can be used in alternation with 

( ) .x I L xp p2 1b= ++ +  A compact form of 
these two iterative processes is known as 
Taubin’s a b-  algorithm and is given by

 
( ) ( ) .x I L I L xp p2 b a= + -+  (S1)

For appropriate values of a  and ,b  
this system can give a good and very 
simple approximation of a low-pass 
graph filter with transfer function  

( ) ( ( )H 1k km b a m= + - -  ) ,k
P2abm  and in P  iterations, where 

k  denotes the spectral index (see the section “Spectral 
Domain Graph Filter Design”).

In our experiment, the original noisy signal from Figure 3 
was filtered using Taubin’s algorithm, with .0 2a=  and 

. .0 1b=  After 50 iterations, the signal-to-noise ratio im -
proved from the original .14 2SNR dB0 =  to 26.8 dB 
(see Figure S1). With these parameters, the transfer func-
tion, ( ),H km  retained seven out of 64 spectral compo-
nents in the signal (with an attenuation lower than 3 dB).

Smoothness and Filtering on a Graph
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FIGURE S1. An illustration of low-pass filtering on a graph. (a) The original noisy signal. (b) The 
filtered signal. The graph signal intensity is designated by the vertex color.
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The GFT domain is referred to as 
the graph spectral domain, since the 
domain for the GFT, X  (with elements 
commonly denoted by ( )X k  or ( )),X km  is 
the graph spectrum, , , , , .k N1 2k fm =

Physically, since ,U UT1 =-  the ele-
ment ( )X k  of a GFT, ,X  represents a 
projection of the graph signal, ,x  onto 
the kth eigenvector, ,u Uk !  that is

 ( ) ( ) ( ).X k x n u n
n

N

k
1

=
=

/  (14)

The inverse GFT is then straightfor-
wardly obtained as

 x UX=  (15)

or

 ( ) ( ) ( ) .x n X k u n
k

N

k
1

=
=

/  (16)

Remark 10
In analogy to the classical Fourier trans-
form where the signal is projected onto a set 
of harmonic orthogonal bases, ,X U x1= -  

where U is the matrix of harmonic bases,  
[ , , , ] /e e1u ( / ( )( /) )

k
j k N j N k N T2 2 11 1f= r r -- -  

,N  the GFT can be understood as a 
signal decomposition onto the set of 
eigenvectors of the graph Laplacian (or 
the adjacency matrix) that serve as ortho-
normal basis functions. In the case of a 
directed circular graph, the GFT reduces 
to the standard discrete Fourier transform 
(DFT). For this reason, the transform in 
(14) is referred to as the GFT.

Classic spectral analysis can thus be 
considered as a special case of graph  signal 

The term vertex clustering here refers to the task of identify-
ing and arranging the vertices of a graph into nonoverlap-
ping vertex subsets, with data in each subset expected 
to exhibit relative similarity in some sense. One efficient 
approach to vertex clustering is based on spectral graph 
analysis. For a graph with N  vertices, the orthogonal 
eigenvectors of its Laplacian build an N-dimensional 
space, called the spectral space. The elements ( )nuk  of the 
eigenvector ,uk  ,k 1=  2, …, ,N  can then be assigned to 
vertices ,n  ,n 1=  2,…, N  to form an N-dimensional spec-
tral vector ( ) ( ), ,[ ( ), ].u n u nu nq N21n f=  The elements of the 
first eigenvector, ,u1  of the graph Laplacian are constant 
and are omitted, since they do not convey any spectral dif-
ference to the graph vertices.

For the purpose of vertex clustering, the original 
N-dimensional spectral vector space may be reduced to 
a new L-dimensional spectral space ( ),L N1  where the 
spectral vectors,

[ ( ), ( ), , ( )],u n u n u nqn L2 3 1f= +

are used to define spectral similarity between any two ver-
tices, n  and ,m  as .q qn m 2< <-  Vertex clustering is then 
performed by grouping spectrally similar vertices.

The simplest (and most widely used) case is when only 
one eigenvector, ,u2  is used for spectral clustering, where-
by the order of vertices in the sorted u2 corresponds to its 
smoothest representation. This procedure can be used for 
ordering the vertices in graphs, even if we desire to per-
form any form of classical presentation or processing with 
vertices on a path graph, as in Figure 1(c).

The spectral vector, ,qn  can be either used to desig-
nate a position of a vertex in a new low L-dimensional 
space, or it can be used for coloring of the vertices at 
their original positions. For the graph from Figure 2, 
such coloring was performed using the spectral vector 
elements [ ( ), ( ), ( )]u n u n u nq 2 3 4n=  as color coordinates for 

the vertex n  (see Figure S2). Similar colors indicate high 
spectral similarity. 

Note that vertex clustering is a signal-independent opera-
tion. It just roughly indicates the expected relation between 
sensor data values on the considered graph and suggests 
that data processing operations (including processing of 
the signal from Figure 3) will be predominantly localized 
within these clusters.

Formally, the so-achieved reduction in spectral vertex 
dimensionality, from the original N  eigenvectors to L  eigen-
vectors with lowest variations (with the smallest smoothness 
index ),u Luk

T
k km=  corresponds to low-pass filtering in 

graph signal processing, whereby a signal with N  spectral 
components is projected onto a reduced spectral space 
with L  slowest-varying spectral components, within a given 
set of basis functions (cf. truncated Fourier representation).

Vertex Clustering

FIGURE S2. The vertices in the graph from Figure 2 have been colored 
using the spectral vectors [ ( ), ( ), ( )]u n u n u nqn 2 3 4=  as red, green, blue 
color coordinates.
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spectral analysis, with the adjacency ma -
trix defined on an unweighted circular 
directed graph (a path graph with the con-
nected last and first vertex), where uk=  
[ , , , ] / .e e N1 ( / ( )( /) )j k N j N k N T2 2 11 1fr r -- -  
This becomes obvious upon recognizing 
that the eigenvalues of a directed unweight-
ed circular graph, ,e ( /)

k
j k N2 1m = r- -  are 

easily obtained as a solution of the eigen-
value/eigenvector relation .Au uk k km=  
For a vertex ,n  this relation is of the 
form ( ) ( ) .u n u n1–k k km=  The solu-
tions of this difference equation are the 
elements of the previously discussed ei-
genvector, ( ) / ,Nu n e ( /)( )

k
j Nk n2 1 1= r - -  

and the corresponding eigenvalues, 
.e ( /)

k
j k N2 1m = r- -  It can be shown that 

the eigenvectors of the graph Laplacian 
of a circular graph are real-valued har-
monic functions, whose combinations 
can produce the standard complex-
valued DFT basis functions, albeit in an 
indirect way. The standard signal repre-
sentation in Figure 1(b), therefore, cor-
responds to a signal whose domain is a 
path graph.

As is common in signal process-
ing, for our example in Figure 1 and (1) 
the temperature values were generated 
through a linear combination of several 
graph Laplacian eigenvectors (serving as 
basis functions) in the form 160x u1= +   

( ),n16 8 40 16 24u u u u u2 3 4 5 6 f- - + - +   
where the random Gaussian noise, 

( ),nf  had standard deviation ,4v =f  

to yield the signal-to-noise ratio of 
.  .14 2SNR dB0 =

Spectral domain of a system for 
graph signals
Consider a system for graph signals, as 
in (8), defined by a general shift opera-
tor on a graph ,S  given by

 .hy S xm
m

M
m

0

1

=
=

-

/  (17)

Upon employing the eigendecompo-
sition of the shift operator, ,S U U 1K= -  
we arrive at

( ) ,h Hy U U x U U xm
m

M
m

0

1
1 1K K= =

=

-
- -/

 (18)

where

 ( )H hm
m

M
m

0

1

K K=
=

-

/  (19)

is the transfer function of the system for 
graph signals.

From (18), ,( )U y U xH1 1K=- -  or in 
terms of the GFT of the input and output 
signal

 ( ) .Y XH K=  (20)

The classic spectral transfer function 
for (9) is then obtained by using the adja-
cency matrix of an unweighted directed 
circular graph, whose eigenvalues are 

.e ( /)
k

j k N2 1m = r- -

Spectral domain graph filter design
A system for graph signals that is design -
ed to modify spectral content of graph 
signals in a desired way shall be referred 
to as a graph filter. Consider a graph filter 
with a desired transfer function, ( ) .G K  
As in classical signal processing, a filter 
with this transfer function can be imple-
mented either in the spectral domain or 
in the vertex domain.

The spectral domain implementation 
is straightforward and can be performed 
in the following three steps:

 ■ Calculate the GFT of the input graph 
signal, ,x  in the form .X U x1= -

 ■ Multiply the GFT of x  with the 
transfer function, ( ),G K  to obtain 

( )G .Y XK=

 ■ Calculate the output graph signal as the 
inverse GFT of ,Y  to yield .y UY=

Notice that this procedure may be 
computationally very demanding for 
large graphs, where it may be easier to 
implement the desired filter (or its close 
approximation) in the vertex domain, in 
analogy to the time domain in the clas-
sical approach. In other words, we have 
to find the coefficients, , , ,h h hM0 1 1–f  
in (8), such that their spectral represen-
tation, ( ),H K  is equal (or at least as 
close as possible) to the desired graph 
filter ( ),G K  and then to implement the 
system in the vertex domain using (17).

The previously mentioned condi tion 
that the transfer function of the vertex 
domain system for graph signals in (19), 
given by ( )H h hk k0 1

1 gm m= + + + 
,hM k

M
1

1m-
-  should be equal to the de -

sired transfer function, ,( )G km  for each 
spectral index, ,k  leads to a system of 
linear equations

( )

( )

( )

h h h G

h h h G

h h h G

M
M

M
M

M
M

N N N

0 1 1
1

1 1
1

1

0 1
1

1
1

0 1
1

1
1

2 2 2

g

g
h

g

m m m

m m m

m m m

+ + + =

+ + + =

+ + + =

-
-

-
-

-
-

 (21)

of which the matrix form is given by

 ,V h g=m  (22)

where Vm  is a Vandermonde matrix 
formed of the eigenvalues, ,km  while 

[ , , , ]h h hh M
T

0 1 1f= -  is the vector of 
system coefficients that we wish to esti-
mate, and

Consider the following cases.
1) All the eigenvalues of S are distinct:

a) For ,M N=  the solution is unique.
b)  For M N1  (overdetermined system), the least squares solution is 

obtained.
2) Some of the eigenvalues are of a degree higher than one, the system re-

duces to NNm1  linear equations.
a)  For N NMm1 #  (underdetermined system), ( )M Nm-  filter coefficients 

are free variables, and an infinite number of equivalent filters is obtained.
b) For ,M Nm=  the solution is unique.
c)  For M Nm1  (overdetermined system), the least squares solution is 

obtained.
3) Any filter of an order M Nm2  has a unique equivalent filter whose order 

is at most .Nm  Such equivalence can be obtained by setting the free vari-
ables to zero, h 0i=  for ,Ni m=  , , .N N1 1m f+ -

Comments on the Graph Filter in (22)
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[ ( ), ( ), , ( )]

( ( )) .

G G G

Gdiag

g N
T

1 2 fm m m

K

=

=

In practice, the system order ,M  
or equivalently the order of the graph 
filter, is typically significantly lower 
than the number of equations, ,N  
in (21). For such an overdetermined 
case, the least-squares approxima-
tion of h is obtained by minimizing 
the squared error, .e V h g2

2
2< <= -m  

As in standard least-squares, the 
solution is obtained by a direct mini-
mization, / ,e 0hT22 2 =  to yield the 
coefficient estimates, ,ht  in the form

( ) ( ) .pinvh V V V g V gT T1= =m m m m
-t  (23)

The so obtained solution, ,ht  there-
fore represents the mean-square 
error minimizer for .V h g=m  Notice 
that this solution may not satisfy 

,V h g=m
t  in which case the coeffi-

cients gt  (its spectrum ( ))G Kt  may be 
used, that is

.V h g=m
t t

Such a solution, in general, differs from 
the desired system coefficients g  (its 
spectrum ( )) .G K

The desired transfer function ( )G m  
can be approximated with a polyno-
mial of degree ( M 1- ), for example, 
using the Chebyshev polynomial series, 

( ),PM 1 m-  within the specified interval 
of ,m  as continuous variable. Signal 
filtering is then performed in the ver-
tex domain using relation (11) with a 
matrix polynomial ( ) ( ) .H PS SM 1= -  

Example
Consider the graph signal from Figure 3 
and the graph Laplacian employed as 
the shift operator. The task is to design 
a graph filter whose frequency response 
is ( ) ( ),expg k km m= -  to filter the graph 
signal using this spectral domain graph 
filter. For ,M 4=  the corresponding 
system coeff icients can be found 
t o  b e  . ,h 0 96060 =  . ,h 0 74531 = -  

. ,h 0 19362=  and . .h 0 01623=-  Upon 
filtering the graph signal using the 
so-defined graph transfer function, 
and its vertex domain form (17), the 
obtained output signal-to-noise ratio 
was . ,21 74SNR dB=  that is, a 7.54 dB 
improvement over the original signal-
to-noise ratio of SNR 14.2 dB.0 =  More 
detail on the solution of the system in 
(21) and (22) is provided in “Comments 
on the Graph Filter in (22).”

Optimal denoising
Consider a measurement, as in the 
temperature measurement scenario in 
Figure 1, that is composed of a slow-
varying desired signal, ,s  and a super-
imposed fast-changing disturbance, ,f  
to give

.x s f= +

The aim is to design a graph filter for 
disturbance suppression (denoising), the 
output of which is denoted by y  [11]. 

The graph weights in our temperature field example are 
defined based on the geometric distance of vertices (sensing 
points). However, in some applications signal values them-
selves may be used as an indicator of signal similarity, as is 
the case with image processing, where this is achieved in 
combination with the pixel/vertex distances. For the image 
intensity values at pixels indexed by n and ,m  denoted by 

( )x n  and ( ),x m  a simple difference of intensities

( , ) ( ) ( ) ,n m s x n x mintensity distance nm ; ;= = -

may be used in an exponential kernel to 
define the corresponding edge weights as

 ,W e rfor( ( ) ( )) /
nm

x n x m
nm

2 2
# l= x- -

and W 0nm=  for ,rnm $ l  where rnm is a 
geometric distance of the considered pix-
els vertices, and l is a threshold.

We next present an example of this 
kind of edge weighting applied to a 
simple graph image filtering problem.

Example
Consider the problem of denoising 
a 50-pixel-square, 8-bit grayscale, 

image (see Figure S3). The vertices of the graph are the 
pixels. The edge weights for the graph representation of 
this noisy image were calculated with 2l=  and .20x=  
This value of l  means that each vertex is connected with 
eight neighboring vertices (including diagonal ones) with 
the weights, ,Wnm  defined by the exponential kernel. Low-
pass filtering was performed on the corresponding image 
graph using iterative filtering (Taubin’s algorithm) over 200 
iterations, with .0 15a =  and . .0 1b =

Graph Topology Based on Signal Similarity: An Image Processing Example

FIGURE S3. Graph domain image denoising. The (a) original image, (b) noise-corrupted image, 
and (c) image filtered using Taubin’s algorithm (see “Smoothness and Filtering on a Graph”).

Original Image Noisy Image Graph Filtered Image

(a) (b) (c)
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The optimal denoising task can then be 
defined through a minimization of the 
cost function

 ( ) ,J
2
1y x y x y LyT

2
2; < < a= - +  (24)

where the minimization of the first 
term, ,/1 2 y x 2

2< <-  enforces the out-
put signal, ,y  to be as close as possi-
ble, in terms of the minimum residual 
 disturbance power, to the available 
observations, .x  As shown in “Smooth-
ness and Filtering on a Graph,” the sec-
ond term, ,yy LT  represents a measure 
of  smoothness of the graph filter out-
put, ,y  while the parameter a  models 
a balance between the closeness of the 
output, ,y  to the observed data, ,x  and 
the smoothness-constrained output 
estimate .y  While the problem in (24) 
could also be expressed through a con-
strained Lagrangian optimization, we 
here focus more on the graph-theo-
retic issues and hence adopt a simpler 
option whereby the mixing parameter 
a  is chosen empirically.

The solution to the minimization prob-
lem in (24) follows from

)J
2

(

y
y x

y x Ly 0
T2

2 ;
a= - + =

and results in a smoothing optimal denois-
er in the form

( 2 ) .y I L x1a= + -

The Laplacian spectral domain form of 
this relation then becomes

( 2 ) ,Y I X1aK= + -

with the corresponding graph filter trans-
fer function given by

( ) .H
1 2

1
k

k
m

am
=
+

Observe that for a small ,a  ( )H 1k .m  and 
,y x.  while for a large ,a  ( ) ( )H kk .m d  

and .,consty .  which enforces y  to be 
maximally smooth (a constant, without 
any variation). Using 4,a=  the obtained 
output signal-to-noise ratio for the graph 
signal from Figure 3 was ,26SNR dB=  

an 11.8 dB improvement over the origi-
nal .14SNR 2 dB.0 =

Remark 11
There are many cases when the graph 
topology is unknown, so that the graph 
structure, that is, the graph edges and 
their weights, is also unknown. To this 
end, we may employ a class of methods 
for graph topology learning, which are 
based on the minimization of the cost 
function in (24) with respect to both 
a chosen graph connectivity matrix 
and the output signal, ,y  with addi-
tional (commonly sparsity) constraints 
imposed on the elements of the consid-
ered connectivity matrix.

What we have learned
Natural signals (speech,  biomedical, 
video) often reside over irregular domains 
and are, unlike the standard signals in, 
for example, communications, not ade-
quately processed using standard har-
monic analyses. While data analytics on 
graphs as irregular domains are heavily 
dependent on advances in DSP, neither 
the electrical and electronics engineer-
ing graduates worldwide nor practical 
data analysts are yet best prepared to 
employ graph algorithms in their future 
jobs. Our aim has been to fill this void 
by providing an example-driven plat-
form to introduce graphs, signals on 
graphs, and their properties through a 
well-understood multisensor measure-
ment scenario and the graph notions of 
transfer function, Fourier transform, and 
digital filtering.

We have illuminated that while both a 
graph with N  vertices and a classical dis-
crete time signal with N  samples can be 
viewed as N-dimensional vectors, struc-
tured graphs represent much richer irreg-
ular domains that convey information 
about both the signal itself and its genera-
tion and propagation mechanisms. This 
allows us to employ intuition and physi-
cal know-how from Euclidean domains 
to revisit basic dimensionality-reduction 
operations, such as coarse graining of 
graphs (cf. standard downsampling). In 
addition, in the vertex domain a num-
ber of different distances (shortest-path, 
resistance, diffusion) have useful prop-
erties that can be employed to maintain 

data integrity throughout the processing, 
storage, communication, and analysis 
stages, as the vertex connectivities 
and edge weights are either dictated by 
the physics of the problem at hand or 
are inferred from the data. This particu-
larly facilitates maintaining control and 
intuition over distributed operations 
throughout the processing chain.

It is our hope that this lecture note 
will help to demystify graph signal pro-
cessing for students and educators, 
together with empowering practitio-
ners with enhanced intuition in graph-
theoretic design and optimization. 
This material may also serve as a vehi-
cle to seamlessly merge curricula in 
electrical engineering and computing. 
The generic and physically meaningful 
nature of this  example-driven lecture 
note is also likely to promote intellec-
tual curiosity and serve as a platform to 
explore the numerous opportunities in 
manifold applications in our ever-grow-
ing interconnected world, facilitated by 
the Internet of Things.
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Elucidating the Auxiliary Particle Filter  
via Multiple Importance Sampling

Sequential Monte Carlo methods, also 
known as particle filtering, have seen 
an explosion of development both in 

theory and applications. The publication 
of [1] sparked huge interest in the area 
of sequential signal processing, particu-
larly in sequential filtering. Ever since, 

the number of publications in which 
particle filtering plays a prominent role 
has continued to grow. An early reference 
of development is [2] and later tutorials 
include [3]–[9]. With particle filtering, 
we estimate probability density functions 
(pdfs) of interest by probability mass func-
tions, whose masses are placed at ran-
domly chosen locations (particles) and 
whose weights are assigned to the particles. 

The particle filter (PF) proposed in [1] is 
often called the bootstrap PF (BPF), and 
although it is not optimal, it is the most 
often used filter by practitioners. A filter 
that became also popular is known as the 
auxiliary PF (APF) and was proposed 
in [10]. With the APF, the objective is to 
generate better particles at each time step 
compared to those generated with the 
BPF, thereby improving filtering  accuracy. 
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