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Optimal Sampling vs.
Oversampling

= Sampling at Nyquist rate F, =2F;

= Allows perfect reconstruction in principle, but...
» Pre-sampling anti-aliasing filter must have very
steep roll-off:

« High-order analogue filter: expensive, difficult,
Imprecise, large phase distortion, ...

= Sampling at F. >>2F; & decimation to 25

= Larger separation between images = easier
filtering of aliases (lower-order filter)

« Cheaper analogue component; easier digital than

analogue VLSI filters; greater digital complexity
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| (Qversampling Noise Reduction

= Quantisation step (&-bit ADC, range A): Q=2—F§,

= Noise power density (per unit sampling

bandwidth): , _ on _Q/12_Q% .\,
" F /2 FJ/2 6F
= Total in-band noise power:

2 b2
F R / 2 F Py g
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S . ...'
= Low Z, for high . e

2 i
F.'>>2F; = P,'<< oy Pl Fe R Fo R

>
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_Oversampling:

| | Effective Resolution

Equivalent g-bit ADC operating at F=2F,
giving same noise power as &-bit ADC
operating at F>>2F, over same range -

(RI2°)° Fs _(R/I2')’ Fy

12 E/2 12 2R /2

l.e.,

b+ |092(F52/(2FB)):b+ log, (M)

B =

« M = oversampling ratio, /-6 = resolution increase
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| | Qversampling Ratio

T T T o i Example:

M=10°: f=b+10, i.e.,
standard 16-bit ADC @
F=2Fzhas equivalent
resolution w.r.t. noise
power as an oversampling
6-bit ADC @ F.=2x10°F,
or as oversampling 11-bit
ADC @ F.=2000F,

Thus, 0.5 bit length reduction of ADC per doubling of ¥/
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| | ZA (SiIgma-Delta) Converters

(b-bit multipliers)

5 A N |
5 (2MFy) (2MFy). (2MF,) | 2Fg
! |

Analogue 1-bit Mt band IM diai
igital
g integrator i ADC | 1 Digital LPF b > (digital)

(analogue)

1-bit
|

DAC
.. 2Aquantiser ; M downsampler

Analogue w(n)

_ v(n-

integrator X(n)-y(n 1)4% J >
1

-High-rate oversampling allows for differential encoding: only 1 bit needed to
guantify change A between input and delayed output of 1-bit ADC, for closely spaced
consecutive samples in output of ZA quantiser (bitmap of sample increments)

%

-Mth order alias digital LPF eliminates out-of-band quantisation noise (sharp cut-off);
heavy comp.; remedy: perform multiplications at later stage (down-rate 2F,) instead

-Long word length of digital o/p determines overall oversampling rate
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> A Converters

= Accumulator (integrator) & guantiser outputs:

w(n) = x(n) - y(n-1) + w(n-1) :
y(n—-1) =w(n-1)+e(n-1) )

= |y(n) =w(n)+e(n)=x(n)+[e(n) —e(n—-1)]

— noise transfer function: |

H(z)=1-2z"

—_—_—— e ——— —

= Output psdf (one-sided spectrum):

py(f)=‘H(ej”Ts ]2 pN(f):4sin2(

T
2

ij(f)
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| | XA Qversampling

= Precise psdf of output noise depends on pdf
& spectral characteristics of {x(n)}

= Assume: {e(n)} is random,

uncorrelated, white:

o = oy _Q°/12 0 R S N
N FS /2 FS /2 é L——:::::__:::4_—_L!L—-ADCL =
= def of OUtpUt noise: ‘—“ED—I—CQ“ifé‘quam'Sef
2sin(z £ T,) Q°
(1)~ BN (10
3 F
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_Oversampling:
| | Performance Comparison

s For efficient oversampling (M >>1, f <<F,):

2(7 fIF.)?°Q% 27%°Q%*f?
f)=~ : =
Py (1) 3F, 3F°
= Output noise power for XA modulator:

F 272_2Q2|:3
Py:jo py(f)df: 9FS3 °

= Improvement over standard oversampling:

P, 3M*?
10log,, B =10log,o| —— |=[-5.17+20log,,(M)] dB
y 7T
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_Oversampling:
| | Performance Comparison

AleIoglo[E”]:[—5.17+20Iog10(M)] dB  M=10: A=14.8 dB
' M=1000: A=54.8 dB
M=105- A=114.8 dB

U R R R I R B

100 |- -2 b b oo b - L TS

B0/~ it~ - AT 1.5 bit length reduction
of ADC per doubling of
M (relative to standard

oversampling):

B0 AT -
] e e
IS due to noise shaping
by | H(7)]: noise reduc-

N R A R R : :
mm” 10 10 10° 10 10° 10 tion If f<FB
M Professor L R Arnaut © 11
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| | Qversampling: Application

Example: measurement of indoor EM wave propagation: GSM
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Oversampling: Application

S| (dB)

GSM band (925 MHz)

Z-Z,, =1300mm; f=925MHz (M2 =16.2 cm) Z-Z, =1300mm; f=925MHz

e 600
200

Y=Y, (mm) 00 X=X, (mm)
5cm x 5 cm cell size

1cm x 1cm cell size
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S, (dB)

| | Qversampling: Application

ISM band (2450 MHz)

7-7,=1300mm; f=2450MHz (/2 =6cm)  Z-Z;=1300mm; f=2450MHz

K '.-I.--l ", ¥l
a7l
. ..|“|I' v
b il

<200 ( Y=Y, (mm) 0 0 X-X_ (mm)
0 5cm x 5 cm cell size
1cm x 1cm cell size Professor L R Arnaut © 14
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o) | Nygquist Condition

= Alias-free (sub)sampling of (discrete) function
(0= (08 0= X0 80-KT) = FHT,)5(t-kT,)
) k=—00 k=—o0
= Spectrum (Fourier transformation): convolution
Xa(f)= [ X(f —qo){Tlﬁa(co—sz)}dco

g K==

1 +o00 400

== X [X(f-9)5(¢-kF)dg

[ k:—OO —00

Thus, xn(f)zTi S X (f —kF,)

s kK=—00

= No spectral overlap (aliasing, stroboscopy) iff|F = 2F;
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Undersampling: Aliasing

Xie'®
-2n i T 22,1 o
(a)
X e
| cu f‘ A
-2n S .n T n ®
Aliasing Aliasing
(b)
2¥ (™) '
\/\M
n - 0 % 2 @
(c)
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v| | UNndersampling: Baseband

= Shannon sampling theorem: F, >2F;

= Applies to baseband signals (DC-coupled): F5 is
largest frequency component in signal

« Motivation: avoid spectral overlap of baseband
frequency responses that are periodically continued
due to sampling operation

= For bandpass (narrowband modulated) signals
(e.g., radio- and optical communications, IF
filters, etc.): condition Is too conservative: large
spectral gaps occur because F.>> |F; - F, |
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v| | UNndersampling: Bandpass

= Aliasing of bandpass signal Is avoided if
baseband can be folded periodically around
carrier frequency without causing overlap

= Range of permissible sample frequencies:

2F
n

“<F <

2F,
" n-1

l.e.,

1§n£{

u

F-F

|

= Yields additional permissible lower sampling
rates for narrowband signals without aliasing

« Practically useful (slower computations)
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o) | Undersampling: Applications

Example 1. digitization of analogue FM audio
F,= 88 MHz, F£,= 108 MHz = 1<Nn<5  (nonzero gap)

A ("=4) " (n=3) (n=2) (n=1)
S| k
\ / >
20 s 72 R F 2F,  2F, f (MHz)
587 =88 =108 =176 =216

en=1: classical (= Nyquist rate)
*n=2: between modulated (/,~=1) signal and doubled (/=2) signal
n=3: D=2/3, I~1

eN=51432MHz<F, <44MHz =>86.4MHz<2..2.5F, <110MHz Professor L R Amaut © 20
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| | Multl-Rate DSP

Quadrature Mirror Filters
for Subband Coding
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) | SUbband Coding

s Problem statement:

« Efficient transmission of realistic speech or video signals
= Contain most energy at relative low frequencies (time/space)
« Coding scheme to be tailored to assign more bits to LF band

= Solution:
s Subband coding:

=« divide total frequency band in unequal subbands;

narrowest subband for interval with highest energy (equalization of
power across band)

= each subband is encoded separately
= is alternative to companding (pre-distortion) 5 fessor L R Arnaut © 22
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) | SUbband Coding

s Example:
A

5

|
|

2 : 1 bit/sample
|

' >
0  9f,/96 of /32 2 f

(ID=1/3)  (/D=9/16) (D=2) (approximate equalisation)
- Multi-rate conversion by factor /D after each frequency subdivision (LPF/HPF)

- Reduced bitrate of digitized signal (bandwidth compression) due to
nonuniform coding (variable number of bits per sample)
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) | SUbband Coding

= Implementation:

A A
Hy(w) Hi(o) Ho(w) Hi(o)

()] I D)
> : >
mt/a T m/a T

Brickwall Filter: Quadrature Mirror Filter (QMF):

Physically aliasing for decimated subbands can be removed
unrealizable by judicious choice of AHy(w) and H;(w)
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| | TWO-Channel QMF

= Implementation (analyzer / synthesizer):

Ho(z) X0 Y
(EPF) W2 L ol T2 Go(2)
X(n) | y(n)
| Hi(2) | X1 Yy
(ﬁPF) 12 S S ) Gi(2)

(for 1/D=1/2)
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| | Two-Channel QMF: AnaIyS|s

Ho(2)
(LPF) V2
= QMF Analyzer: <Ll
Hi(z) X
(HPF) 2

D-1 - 1 . 1
Xo(z):%ZHo(eXP(—ﬂTﬂkaDjX(exp(—%kaf’} D=2
k=0
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= QMF Synthesizer: Yol 17

—

Vo

Vo(2)=Y,(2') 1=2
1™

G[} (Z}

Two-Channel QMF: Synthesis

| y@)

Y (0)=Gy(@)¥(20)+ Gy (0)Y,(20)

Gi(z)

= Cascaded QMF analyzer-synthesizer:

Yo(w): Xo(a))’ Yl(a)): Xl(a)) =

¥(0) = [Ho(@)By @)+ Hy(@)8,(@)X (@)~ [Ho(o - 7)64(0) + Hy(o- 76, (el (o)

Professor L R Arnaut © 27

Aliasing (k=1)



LRA

) | QME Anti-Aliasing

= Elimination of aliasing for any input signal:
Ho(w_”)Go(w)"' Hl(w_”)Gl(w):o
e.g. |Glw)=H,@-7) Gl(o)=-H,(0-7)
= results in time-/nvariant filter

= example: alias-free symmetric subband coding

A
Hy(o) Hi(ow)=Hy(o-7)

Gy(@)=Ho(@), Gi(w)=-H,(0-7)

| >
/2 s
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| | QMF Perfect Reconstruction

= Distortion-free & alias-free reconstruction:
Ho(a))GO(a))+ Hl(a))Gl(a)): Dexp(— jkw), D=2
& Ho(a))Hl(a)—ﬂ)— Hl(a))Ho(a)—ﬂ)z Dexp(— jkw)
» Example: symmetric subband
Hg(a))— Hg(a)—ﬂ): Dexp(— jkw)
i.e., |Hi(w)-Hi(o-7) independent of w (all-pass
filter), but may exhibit phase distortion!

= It can be shown: linear-phase FIR QMF causes
amplitude distortion
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) | M-Channel QMF Bank

= Mbranches; { Min analyzer, TMin synthesizer

= Output Ath analyzer branch (BPF+D):

Xk(z):iMZ_lH [zl"\" exp(— jh—mj)x(zl”v' exp(— Jbr_mjj (M =D)

= Output synthesizer (I+BPF) Y(z ZG (2)v,(z")
)—kZ:;G (z ){ ZH (zexp zexp j }

::Z:Lm(z)X(zexp(—JTmD, L.(z =W§Hk(zexp[ J—DG()

Professor L R Arnaut © 30



LRA

= Alias-free QMF:

Y (o) = L,(w) X

iff ZL

L.(z)=0,

l.e.

| | M-Channel QMF

(zexp |

27
M

1<

m<M

mD ~0, VX(2)
-1

= Distortion-free & alias-free QMF:
(@) independent of o (all-pass filters)

Professor L R Arnaut © 31
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