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T
 his article addresses data-driven time-frequency 
(T-F) analysis of multivariate signals, which is 
achieved through the empirical mode decomposi-
tion (EMD) algorithm and its noise assisted and 
multivariate extensions, the ensemble EMD (EEMD) 

and multivariate EMD (MEMD). Unlike standard approaches 

that project data onto predefined basis functions (harmonic, 
wavelet) thus coloring the representation and blurring the 
interpretation, the bases for EMD are derived from the data and 
can be nonlinear and nonstationary. For multivariate data, we 
show how the MEMD aligns intrinsic joint rotational modes 
across the intermittent, drifting, and noisy data channels, facili-
tating advanced synchrony and data fusion analyses. Simula-
tions using real-world case studies illuminate several practical 
aspects, such as the role of noise in T-F localization, dealing 
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with unbalanced multichannel data, and nonuniform sampling 
for computational efficiency. 

MoTivaTion for daTa-adapTive analysis
Advances in sensor technology have enabled routine recordings 
of both multidimensional (e.g., three-dimensional RGB images) 
and multichannel (e.g., sensor arrays) signals. Such data are 
typically nonlinear and nonstationary, and their rigorous T-F 
analysis requires a multiscale approach at the accuracy level of 
instantaneous frequency (IF), attained through knowledge of 
joint intrinsic oscillatory modes across the data channels. The 
IF is also essential for a meaningful interpretation of nonlinear 
processes (containing subharmonics). To that end, it is conve-
nient to employ the Hilbert transform (HT) in conjunction with 
the data model [1] 
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where ~ amplitudeam , ~ oscillations.m}  Many representa-
tions based on (1) can be derived—for the Fourier transform, 

( ) ( )expt j tm m} ~= -  and constant.am =  However, the HT 
produces meaningful IF only for monocomponent data while 

the Bedrosian and Nuttall theorems [2], [3] impose further 
constrains on the pair [ , ]am m} , e.g., their nonoverlapping 
spectra. Quadratic Wigner–Ville methods provide excellent 
localization but allow for the analysis of only one frequency at 
a time, while hybrid methods [4] and filterbanks help to deal 
with nonstationary data statistics, but they too yield mathe-
matical artefacts [5], [6]. 

The need to estimate IF of multivariate data can be justified 
on both mathematical and physical grounds (e.g., nonlinear-
ity, variations in light and sound), yet standard tools either 
operate channel-wise thus not accounting for cross-channel 
information, or use static templates (basis functions) imposing 
nonexisting structure on data [7]. 

Limitations of standard methods
Exploratory T-F analysis of multivariate data is typically for-
mulated through integral transforms and analytic signal rep-
resentations [1], [8]. While convenient, this also poses severe 
limitations arising from the following: 

 ■ Fixed bases: Standard Fourier and wavelet approaches 
employ predefined basis functions (harmonic, mother wave-
let), e.g., a sum of sinusoids with fixed frequency, phase, and 
amplitude (Fourier). The accuracy thus critically depends on 
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[fig1] The T-f analysis of nonstationary signals: (a) sTfT spectrogram, (b) wavelet packet, (c) synchrosqueezed transform, and (d) HHs.
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data length and stationarity, yet patterns in real-world data 
can be short and intermittent. 

 ■ Uncertainty principle: Integral transforms (Fourier, wave-
let, Hilbert) blur the notion of time, thus compromising the 
analytic signal representation and trading the temporal reso-
lution for frequency resolution. 

 ■ Physical insight: A direct application of the analytic signal 
representation to nonmonocomponent data may produce 
negative IFs, with no justification in physics. 

 ■ Inadequate metrics: Correlation, coherence, and syn-
chrony measures are defined globally, however, patterns in 
data occur at their own intrinsic scales and thus accurate 
descriptors should be local and scale dependent. 

advantages of data-driven approaches
The EMD methods are nonparametric in the sense that the 
components cm(t) in (1) are derived empirically from the data 
and have the following desirable properties: 

 ■ Adaptivity: The EMD bases are amplitude/frequency 
modulated (AM–FM) locally [10], [5], data-adaptive, and 
sparse [12], [13]. This facilitates the discovery of intrinsic 
patterns at multiple scales, while not requiring the rigid 
assumptions of harmonic or stationary data structures. 

 ■ Enhanced accuracy: Through a template-free identifica-
tion of the multiple within- and cross-channel scales in 
data, EMD promises the T-F accuracy at the IF level, and a 
natural account of inter- and intrawave modulations 
(nonlinearity). 

 ■ Integrity: Coherent “instantaneous” treatment of multi-
channel information ensures the integrity of multivariate 
bases, thus facilitating synchrony, causality, and data fusion 
studies, while allowing for intrinsic, scale-dependent, data 
association metrics [9]. 

eMpirical Mode decoMposiTion
The EMD models a signal x  of length L  as a sum of M  oscillatory 
components called intrinsic mode functions (IMFs). These corre-
spond to the bases { }cm m

M
1=  in (1), and are sparse (with M L% ), 

template free, and entirely data driven. Since the aim of EMD is for 
IMFs to represent intrinsic temporal modes (scales) that charac-
terize the data, the residual r  in (1) cannot contain a full oscilla-
tion and its role is to model the trend within a signal [10]. 

Recall that the estimation of IF via the HT gives 1) negative 
IF for data with a mismatch in the number of extrema and 
zero crossings, and 2) negative IF in the presence of a trend 
and dc offset. To resolve these issues, IMFs are required to be 
monocomponent and to have the following:   

P1) symmetric upper/lower envelopes (zero mean) [11] 
P2) the numbers of zero-crossings and extrema that are either 
equal or differ by exactly one.
Satisfying these conditions ensures narrowband (single-scale) 

IMFs that both admit the representation in (1) and also lend 
themselves to conveying physically meaningful information.  
Algorithm 1 summarizes the steps in EMD computation for a sig-
nal ( )x t  initialized with ( ) ( )x tt =xl  [10]. 

stopping criteria
The stopping criterion in Step 5 of EMD checks if the “local 
trend” ( )d t  fulfills the IMF properties P1) and P2). Its choice gov-
erns the accuracy of EMD —oversifted IMFs contain unwanted 
amplitude modulations, whereas undersifted IMFs tend to violate 
the monocomponent criterion. Existing stopping criteria are 
mostly empirical, and they may stop the sifting after, for instance: 

 ■ the condition P2) for IMFs is met for K  consecutive times; 
usually K4 8# #  [14] 

 ■ the lower and upper envelopes are symmetric [50].
Notice that condition P2) is almost equivalent to all local maxima 
being positive and all local minima negative. 

aLternative LocaL mean estimation methods
More accurate local mean estimation—a key step within EMD—
can be obtained by replacing splines in Step 2 of Algorithm 1 with, 
e.g., Hermite polynomials [36] or by using optimization [17], [18].  

time-frequency via emd: hiLbert–huang spectrum
An attractive property of EMD is that its bases both model 
oscillations within their intrinsic “scale bandwidth” and also 
account for time-varying drifts, including those within a sin-
gle cycle: so-called intrawave modulations (signatures of non-
linearity). In addition, the IMFs admit an amplitude-phase 
modulated representation IMF ( ) ( ( )),cosa t tm m m. i  where the 
amplitudes, ( )a tm , and phases, ( )tmi , are time varying. The IF 
can then be obtained through  

 ■ a direct differentiation of the argument, ( ) /d t dtmi  
 ■ a combination with the quadrature ( ) ( ( ))sina t tm mi , 

thus requiring a monocomponent signal [19] 
 ■ analytic representation of IMFs as in (2).

The EMD embarks on the monocomponent nature of IMFs 
[conditions P1) and P2)] to estimate IF on an IMF-by-IMF basis 
from their analytic versions IMF {IMF } ( )expaHm m m mi+ =. . , 
where {·}H  is the HT operator. Such an analytic representation 
has the form in (1), i.e., 

( ) )s ds~( ) ( ) ( ( )) ( ) (exp expz t a t j t a tm
m
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Algorithm 1: Sifting algorithm for EMD, for , ,1m Mf=

1) Find the locations of all the extrema of the variable ( )txl .
2) Interpolate (using local spline interpolation) between all the 
minima (cf. maxima) to obtain the lower (cf. upper) envelope 
connecting the minima, ( )e tmin  (cf. ( )e tmax ).
3) Compute the local mean ( ) ( ( ) ( )) /m t e t e t 2min max= + .
4) Subtract the local mean from the loop variable ( )txl  to 
obtain the “modulated oscillation” ( ) ( )t m t-( )d t x= l .
5) If ( )d t  satisfies a stopping criterion (see below) set
IMF ( ),d tm =  else set ( ) ( )t d t=xl  and go to Step 1.
6) Subtract the so derived IMF from the variable ( )t ,xl  so 
that ( )t - IMF( ) :t x=x ml l  and go to Step 1.
7) Stop the sifting process when the residual from Step 6 
becomes a monotonic function—the trend r  in (1).
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so that for each IMF the IF ( )tm~ =  ( ) /d t dtmi . For real-world 
signals, the amplitudes are typically much less varying than the 
phases, thus giving physically meaningful values 0m $~ . The 
amplitudes { ( )}a tm m

M
1=  and instantaneous frequencies 

{ ( )}tm m
M

1~ =  plotted against time yield a T-F-amplitude representa-
tion of the signal, termed the Hilbert–Huang spectrum (HHS) [19]. 

Figure 1 shows T-F estimates for a nonstationary mixture of a 
linear chirp and FM sinusoid, obtained using the short-time Fou-
rier transform (STFT), wavelet packet decomposition (WT), reas-
signed scalogram (spectrogram using wavelets) within the 
synchrosqueezed wavelet transform (SST), and the HHS. Notice 
the artefacts present in the fixed-bases STFT and WT, and enhanced 
T-F tracking when using EMD and the EMD-like SST [5]. 

Figure 1 illustrates the advantages of EMD, such as its 
locality, ability to operate on nonstationary data, and approach 
the accuracy level of IF, but the graphs also point out that 
EMD is most successful when the signal has well-separated 
frequency components. This is exemplified by the T-F artefacts 
in the region where the chirp frequency was less than twice 
the frequency of the FM signal (up until 0.35 s) [20], despite 
the actual reconstruction based on (2) still being perfect. The 
fixed-basis STFT and WT could not cope with nonstationarity 
and produced harmonics and spurious frequencies, while the 
SST— a “posterior” method that reallocates WT coefficients to 
have concentrated T-F representation—was not immune to 
these effects either [21]. 

Figure 2 further illuminates the issue of “one-or-two-compo-
nents” for the two-tone signal ( ) ( ) . ( . )cos coss t t t2 0 5 2 0 7r r= +  
for which /f f 2high low 1 . The SST produced two distinct lines in 
the T-F plane, but also created rippling artefacts, while the EMD 
correctly interpreted the signal as a single component with an 
intrawave element—a perfectly valid AM-type IMF arising through 
heterodyning of the two closely spaced tones, whereby 

( / ) [ ( ) ( )]cos cos cos cos1 2a b a b a b= - + + .  Heterodyning 
routinely occurs in nonlinear and physiological systems, e.g., at 
the contact between metal electrodes and skin  (via conductive 
gel); the original tones can be recovered either through a demodu-
lation of IMFs or by using a masking signal [22]. 

noise-aided eMd coMpuTaTion: THe eeMd
The success of EMD has also highlighted that for intermittent 
data, despite a perfect reconstruction, EMD may suffer from 

 ■ mode mixing, whereby either an IMF contains different 
oscillatory modes, or one mode is in different IMFs 

 ■ aliasing, i.e., the overlapping of IMF spectra caused by a sub-
Nyquist nature of extrema sampling [16].
Mode mixing thus obscures the physical meaning of IMFs and 

also violates the local orthogonality of IMFs, while the cubic spline 
interpolation is not an ideal filter and contributes to aliasing. In 
addition, a sufficient number of extrema is needed for successful 
envelope fitting within EMD, thus the lack of extrema at the very 
beginning and end of a data segment creates the so-called end 
effect artefacts, which is visible in Figure 1. 

To help overcome these issues, the EEMD algorithm by Wu 
and Huang [23], described in Algorithm 2, employs ensemble 

averaging of noisy signal realizations, whereby EMD is applied to 
every member of the ensemble 

 Ensemble: { ( )} ( ) { ( )}  ,s t x t w tn n
N

n n
N

1 1= += =  (3)

where ( )x t  is the original signal, { ( )} ( , )w t 0Nn n
N

1
2+ v=  are 

independent realizations of white Gaussian noise (WGN), and the 
averaging is performed across same-index IMFs over the 

F
re

qu
en

cy
 (

H
z)

Time

200 400 600 800
0

1

2

3

F
re

qu
en

cy
 (

H
z)

0

1

2

3

Time

(a)

(b)

200 400 600 800
−10

−8

−6

−4

−2

0

[fig2] separation of closely spaced tones by ssT and eMd:  
(a) rippling artefacts when using ssT and (b) one compact aM 
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ensemble. The EEMD helps mitigate mode mixing by virtue of the 
dyadic filterbank property of EEMD for WGN (explained later), 
while aliasing is dealt with through much more detailed envelopes 
owing to extrema in added noise.  

Since through averaging the effects of added WGN reduce with 
an increase in the ensemble size N  according to /N2v , the 
EEMD benefits from enhanced local mean estimation in noisy 
data to yield IMFs that are less prone to mode mixing. This has 
made EEMD a major algorithm to robustly perform EMD, at a 
cost of increased computational complexity. 

MulTivariaTe eMd
Multivariate data contain joint rotational modes (generalized 
oscillations), whose coherent treatment is required for meaningful 
T-F estimation. Univariate EMD algorithms applied channel-wise 
may yield useful results for loosely coupled data channels, how-
ever, in general this approach is hindered by 

 ■ Nonuniformity: Standard EMD is not likely to yield the 
same number of IMFs for every data channel. 

 ■ Scale alignment: There is no guarantee that same-index 
IMFs would contain equal scales across data channels. 

 ■ Nature of IMFs: Enforcing the same number of IMFs for 
every data channel may compromise T-F estimation, as such 
IMFs are typically not monocomponent.
Not surprisingly, the issues of common mode alignment and 

nonuniqueness have been major obstacles for a more widespread 
use of EMD in studies that require same-index IMFs containing 
the information pertaining to the same scale (synchrony, causality, 
data/image fusion) [24]. 

Direct MEMD algorithms were first developed for the bivar-
iate (complex) case and include the complex EMD [25], which 
exploits univariate analyticity of data channels but does not 
guarantee coherent bivariate IMFs, and the bivariate EMD 
(BEMD) [26], which applies standard EMD to multiple data 
projections and averages the so-obtained local means to yield 
the true bivariate local mean. The BEMD employs uniform 
data projections on a unit circle, and its accuracy increases 
with the number of projections, while the rotation-invariant 
EMD (RI-EMD) uses the same principle as BEMD, albeit with 
only two projections in opposite directions [27]. 

memd principLe
For multivariate data, the principle of separating oscillations 
that underpins EMD should be generalized to that of separat-
ing rotations, whereby 
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Algorithm 2: EEMD
1) Generate  the ensemble ( ) ( ) ( )s t x t w tn n= +  for 

, , ,n N1 f=  where ( ) ( , )w t 0Nn
2+ v . 

2) Decompose every member of the ensemble ( )s tn  into 
Mn  IMFs using standard EMD, to yield the set { ( )}c tm

n
m
M

1
n
= . 

3) Average same-index IMFs ( )c tm
n  across the ensemble to 

obtain the IMFs within EEMD; for instance, the thm  IMF 
is obtained as ( ) ( / ) ( ) .Nc t c t1

n
N

m m
n

1
=

=
r /  
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EMD: signal slow oscillation fast oscillation

MEMD: signal slow rotation fast rotation.

    

    

= +

= +  (4)

To this end, the MEMD [28] uses a vector-valued form of (1) to 
decompose a p -variate signal s( )t  as

 ( ) ( ) ( ), , , ,s c r s c rt t t Rm
m

M

m
p

1
!= +

=

/  (5)

where the p -variate IMFs, { }cm m
M

1= , contain scale-aligned 
intrinsic joint rotational modes and r  is the residual. 

muLtidimensionaL LocaL mean
The MEMD estimates the local p -dimensional mean through 
averaging of multiple envelopes obtained by taking signal projec-
tions along multiple uniformly distributed directions in the 
p-dimensional space, and subsequently interpolating (via cubic 
splines) their extrema. Generalizing the principle behind BEMD, 
the direction vectors are governed by an appropriate sampling of 
a p -dimensional hypersphere. Therefore, the accuracy of local 
mean calculation depends both on the distribution and number 
of direction vectors, becoming critical for a small number of pro-
jections (see the section “Practical Issues in Using EMD”). 

Figure 3(a) depicts a nonuniform sampling scheme based 
on spherical angles [29], while Figure 3(b) illustrates uniform 
sampling [28] for projection vector directions generated by 
low-discrepancy Hammersley sequences [30] (quasi-Monte-
Carlo sampling). Algorithm 3 summarizes the operation of 
MEMD for a p -variate signal ( )s t , whereby a uniform sam-
pling scheme is preferred to assign equal weighting to all the 
projection directions, unlike the angular sampling which 
favors the poles of the sphere in Figure 3(a). 

The ability of MEMD to identify and align intrinsic rota-
tional modes is illuminated in Figure 4 for a trivariate signal 

[X, Y, Z]s =  whose components are mixtures of an 8-Hz 
 sinusoid common to all data channels, a 16-Hz tone in the  
X-component, and 4-Hz and 2-Hz tones in the X&Z  and X&Y  
components; the Z-component was also contaminated by 
noise. Notice that all IMFs are three-dimensional and scale 
aligned: the 8-Hz tone present in all data channels is localized 
in a single IMF5 [X5, Y5, Z5],=  while the 16-Hz, 4-Hz, and 
2-Hz tones are localized in IMF4, IMF6, and IMF7, respec-
tively, whereas the noise is located in IMF1–IMF3. 

Such a strict mode alignment is not achievable when apply-
ing standard EMD channel-wise, highlighting the following 
desirable properties of MEMD: 

 ■ Data are analyzed in the very p-dimensional domain where 
they reside, preserving joint channel properties. 

 ■ The p  data channels have the same number of scale-aligned 
IMFs, containing same rotational modes (integrity of scales). 

 ■ Should mode mixing occur, same-index IMFs will still con-
tain aligned composite scale(s), making possible coherent mul-
tivariate T-F analysis.
These properties facilitate the use of MEMD in various multi-

channel synchrony, coherence, and data fusion applications [24]. 

noise-assisted memd
The success of EMD and EEMD has also highlighted that 

 ■ adding noise to data may both increase the residual 
error and produce different number of IMFs for ensemble 
members in (5), compromising the IMF alignment across 
data channels 

 ■ the nonlinearity of EMD implies that an ensemble aver-
aged IMF within EEMD is not necessarily an IMF.
The idea behind noise-assisted MEMD (NA-MEMD) is not to 

directly add noise to n-channel multivariate data, but to create  
an ( )n l+ -dimensional “composite” space comprising the  
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[fig5] The eMd as a filterbank. The spectra of iMfs for (a) standard eMd, (b) eeMd, and (c) MeMd.

Algorithm 3: MEMD
1) Generate a V -point Hammersley sequence used for uni-
formly sampling a p -dimensional sphere [Figure 3(b)].
2) Calculate the projections ( )q tvi  of the signal ( )s t  along 
the direction vector x vi , for , ,v V1 f=  to give the set of 
projections { ( )}q t v

V
1vi = . 

3) Find the time instants { }ti v
V

1vi =  corresponding to the max-
ima of the set of projected signals { ( )}q t v

V
1vi = . 

4) Interpolate [ , ( )]st ti i
v vi i  to obtain the multivariate envelope 

curves { ( )}e t v
V

1vi = . 
5) Calculate the mean of the V  multidimensional envelopes 

 ( ) ( )m et V t1
v

V

1
v= i

=

/ . (6)

6) Extract the “detail” ( ) ( ) ( ) .d s mt t t= -  If ( )d t  fulfills the 
stoppage criterion for a multivariate IMF, apply the above 
procedure to ( ) ( )s dt t- , else repeat for ( )d t .
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n -dimensional signal subspace and an adjacent subspace of 
l-independent WGN realizations [31]. The subsequent application 
of MEMD yields ( )n l+ -variate coherent IMFs whose integrity is 
reinforced by the filterbank property of MEMD for WGN (see 
 Figure 5). The n-variate IMFs corresponding to the original signal 
are then extracted from the ( )n l+ -variate IMFs by discarding 
the l  channels pertaining to the noise subspace. The disjoint 
nature of the signal and noise subspaces also helps reduce resid-
ual noise and mode mixing in the  NA-MEMD. 

filTerbank properTy of eMd
An important property of EMD algorithms is that the IMFs 
exhibit a quasi-dyadic filterbank structure for WGN (similar to 
wavelets), as shown in Figure 5 for EMD, EEMD, and MEMD. The 
plots were averaged over N 100=  realizations of an eight-chan-
nel WGN process of length L ,1 000=  to which MEMD was 
applied directly and the univariate EMD and EMMD channel-
wise. The scale-aligned IMFs within MEMD gave better defined 
subband filters as compared with EMD and EEMD. This property 
also explains enhanced T-F localization of noise-aided EMD algo-
rithms [15], [31]. 

mode aLignment
Accurate IF estimation based on (2) requires the data-driven basis 
functions within EMD to be approximately monocomponent and 
locally orthogonal. The EMD algorithms do yield such bases: 
 Figure 6 shows correlations of normalized IMFs (performed 
channel-wise) averaged over N ,1 000=  realizations of bivariate 
WGN of length L ,1 000= , with bivariate MEMD [Figure 6(a)] 
outperforming standard EMD applied channel-wise [Figure 6(b)]. 

Although both EMD and BEMD produced diagonally domi-
nant correlograms of IMFs, since within BEMD same-index 
bivariate IMFs contain the same scale, the correlogram of 
bivariate IMFs [Figure 6(a)] exhibits a more pronounced diag-
onal dominance (reduced leakage), highlighting that 

 ■ cross-correlation between IMFs (cf. leakage between 
subbands in Figure 5) may cause blurred T-F estimates 

 ■ the almost orthogonal IMFs (sharp filterbank) within 
MEMD yield aligned scales but also tend to filter out har-
monics for close scales, while the EMD filterbank exhibits 
leakage but accommodates nonlinear signals.

MulTidiMensional eMd for iMages
The success of EMD in identifying multiple intrinsic scales in uni-
variate data has motivated its extensions to images, surfaces, and 
volumes. Fitting of such multidimensional envelopes is not 
straightforward (presence of saddle points, ridges, valleys, sharp 
edges), and EMD-based image analysis methods employ 

 ■ Class I1: long vectorization by concatenating, e.g., all 
the rows 

 ■ Class I2: short vectorization, by treating every row  
(cf. column) of an image as a separate univariate signal 

 ■ Class I3: direct multidimensional surface fitting.
Long vectorization blurs spatial dependencies in an image 

while short vectorization produces image “slices” to give “pseudo-
bidimensional” IMFs. An “image-EMD” should therefore 1) iden-
tify the extrema of an image, 2) interpolate the upper and lower 
image envelopes, 3) average the envelopes to give a local mean, 
and 4) continue as in EMD [32]. The bidimensional EMD belongs 
to Class I3 [33] and interpolates image extrema though radial 
basis functions (tensor product) or B-splines (Class I2), using the 
Riesz transforms instead of the HT to compute the local wave 
number. The method by Linderhed [32] uses thin-plate splines for 
the interpolation of the extrema; this is a “meshless” method giv-
ing two-dimensional (2-D) IMFs and a more accurate compression 
than wavelets, while EMD for surfaces [34] also uses geodesic 
operators. Both require constrained optimization to preserve 
sharp edges, and are sensitive to noise and extrema definition [35]. 
A computationally effective method in [36] produces 2-D IMFs by 
combining Delaunay triangularization with cubic interpolation, 
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while a related method in [37] employs a mesh fitting method 
based on finite elements to compute the local mean, rather than 
using envelope interpolation. 

The multidimensional EEMD (MEEMD) [39] applies EEMD 
to both horizontal and vertical image slices to reduce mode 
mixing and produce well-defined scales. For an ( )M N# -pixel 
image, the EEMD is first applied, e.g., to the M rows slice-by-
slice. The subsequent M  univariate EEMDs are ensemble-
averaged in an IMF-by-IMF fashion to yield J  horizontal scales 
of the original image. The N  columns of these ( )M N# -dimen-
sional “pseudoimages” are then treated as slices and decomposed 
in the same way via separate EEMDs to give K IMFs that capture 
the vertical spatial scales, a total of ( )J K#  pseudoimages. Coher-
ent 2-D IMFs are obtained by recombining the x- and y-scales; 
the MEEMD also scales to volumes of any dimension. 

Figure 7 illustrates the performance of the MEMD and dis-
crete wavelet transform (DWT) for the fusion of overexposed 
and underexposed color images (Class I1). Incorrect exposure 
blurs the detail and both the DWT- and MEMD-based fusion 
schemes were able to enhance the images. The DWT produced 
visible artefacts along the car edges and for flat panels (patches 
on the car boot and roof), while the MEMD-fused image was 
 artefact free [24] (for stopping criteria, see [51]). 

THe roles of inTerMiTTency and noise
The intermittency of real-world data is a main cause of mode 
splitting and mode mixing in EMD; mode splitting is manifested 
by the spread of one scale over two or more IMFs, while mode 
mixing refers to one IMF containing different scales [see Figure 
8(a)]. In addition, the original EMD is compromised for rela-
tively flat signals, with scarce extrema [50], [36], since this 
grossly affects the envelope interpolation—a key step in EMD. 
Noise-assisted EMD algorithms have the ability to mitigate this 
problem through the many additional local extrema arising due 
to the use of noise in the decomposition. 

caLcuLating emd via na-memd
Figure 8 illustrates the benefits of calculating univariate EMD via 
noise-assisted EMD algorithms on an example of a 2-Hz sinusoid 
corrupted by an intermittent interference. The original sinusoid 
satisfies the IMF conditions P1) and P2) and should be localized in 
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[fig8] eMd decompositions of a sinusoid contaminated with 
intermittent interference, located on both sides of the sample 
1,000. standard eMd exhibited mode splitting in all iMfs, while 
eeMd and na-MeMd correctly localized the sinusoid within a 
single iMf. (a) standard eMd. (b) eeMd. (c) na-MeMd.

(a) (b)

(c) (d)

[fig7] an image fusion example. parts (a) and (b) are original 
out-of-exposure images. part (c) is the wavelet-based fusion  
(five level sets). part (d) is the MeMd-based fusion (64 projection 
directions).  
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only one IMF, however, for the case of EMD, mode mixing 
occurred in IMF3 and IMF4 and mode splitting in IMF1–IMF3. 
The noise-assisted EEMD and NA-MEMD were able to localize the 
monocomponent sinusoid within a single IMF, with NA-MEMD 
exhibiting less residual noise than EEMD, whose IMFs c5-c8  still 
contained oscillations. The ensemble size for EEMD was 
N ,1 000=  with the 6.98 dB signal-to-noise power ratio 
( . )0 2w x

2 2v v= , while for NA-MEMD, l 2=  adjacent noise chan-
nels were used to create a trivariate signal, with the signal-to-noise 
channel power ratio of 26 dB ( .0 02w x

2 2v v= ). 

reaL worLd exampLes
The advantages of noise-assisted and MEMD approaches over 
channel-wise univariate ones in T-F analysis of multivariate data 
are next illustrated in two examples of electroencephalogram 
(EEG) analysis for brain–computer interface (BCI). We considered 
seven EEG channels from the following experiments: 

 ■ Experiment 1: a 15-Hz steady-state visual evoked poten-
tial (SSVEP), induced in EEG by a 15-Hz flashing visual 
stimulus 

 ■ Experiment 2: motor imagery BCI, where a drifting .n

10-Hz rhythm occurs when a subject imagines limb movement.
Figure 9 illustrates the EMD-based localization of the 15-Hz 

SSVEP by 1) averaging standard EMDs applied to the seven-
variate EEG channel-wise and 2) nine-variate NA-MEMD (seven 

EEG channels and two noise channels). Both localized the 
15-Hz SSVEP response, however, while as desired, each IMF 
within NA-MEMD contained a single scale the IMF spectra of 
univariate EMDs overlapped [e.g., IMF4 and IMF5 in Figure 
9(a); see also Figure 6]. 

Within a similar setting, Experiment 2) aims to perform T-F 
localization of a real-world drifting 10-Hz n -rhythm in EEG. 
Observe the blurred estimates when this nonstationary rhythm 
was analyzed using STFT and WT [Figure 10(a) and (b)], while 
the SST and NA-MEMD [Figure 10(c) and (d)] were able to track 
the IF in noisy EEG highly accurately and with continuous res-
olution (see also Figure 8). 

pracTical issues in using eMd

unbaLanced muLtivariate data
Real-world multivariate data typically have noncircular (rotation-
dependent) distributions, manifested in different power levels 
(and/or correlation) across the constitutive data channels; this 
biases standard Hilbert-based T-F estimation [45] and can even 
yield physically meaningless negative IF [44]. 

MEMD approaches employ uniform sampling for finding 
directions of data projections, a perfect match for circular data 
with equal channel powers, as shown in blue in Figure 11(a). 
For unbalanced data (improper, correlated), the density of pro-
jections within MEMD should match the signal dynamics, as 
illustrated in green in Figure 11(a) for a noncircular bivariate 
signal.  Figure 11(b) and (c) considers uniformly and adaptively 
sampled noise-assisted BEMD (NA-BEMD) for a bivariate 

[ ; ]signal noisex =  Doppler radar signature, at an SNR of 
8 dB. The data-adaptive sampling accounted for data noncircu-
larity and gave a more accurate object motion signature [40] 
than the wavelet- and Fourier-based methods in Figure 12. 

caLcuLation of instantaneous frequency
While the analytic signal in (2) generates a unique pair 
[ ( ), ( )]a t tm mi  from the data (removing the ambiguity of many 
such combinations representing the data), an IMF is not nec-
essarily monocomponent, violating the Bedrosian conditions 
[2]. However, the recent normalized HT (NHT) and direct 
quadrature (DQ) methods, in conjunction with EMD, have 
overcome the Bedrosian and Nuttall restrictions [19]. Multi-
variate T-F analyses based on EMD also help with this prob-
lem, as cross-channel information reinforces monocomponent 
IMFs, thus admitting correct application of HT, accurate IF 
calculation, and physically meaningful IMFs, as shown in 
 Figures 8 and 9. 

data-Length effects
The resolution of Fourier and wavelet methods critically 
depends on data length, while EMD suffers from the end-
effects ambiguity but copes well with short data [43], as shown 
in the image fusion example in Figure 7. This is further illus-
trated in Figure 12 for the example from Figure 11—both the 
WT and SST produced blurred T-F estimates for short data 
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segments, while the NA-MEMD in Figure 11(c) had good reso-
lution and gave plenty of detail. 

physicaL meaning of imfs
We next illustrate that for real-world data whose intrinsic modes 
are nonstationary but with well-defined and nonoverlapping band-
widths, EMD approaches are capable of producing physically 
meaningful IMFs. Indeed, many natural signals, such as those 
coming from a living organism or environment, exhibit well-sepa-
rated scales. For instance, human physiological responses occupy 
the following bands: 11  Hz for respiration, 1–2 Hz for pulse or eye 
blinks (EMG), while the EEG spectrum is divided into the non-
overlapping delta band centered around 4 Hz and the alpha band 
centered around 10  Hz and so on.  Figure 13 compares the local-
ization ability of independent component analysis (fastICA, rou-
tinely used in EEG analysis) and MEMD for the separation of 12 
Hz eye movement artefacts (EMG) and the (8–13  Hz) alpha 
rhythm from background EEG. The subject moved their eyes 
throughout the recording, closing eyes after 10 s to induce the 
alpha activity in EEG  [Figure 13(a)]. The extracted independent 
components (ICs) provided good reconstruction but no physical 
meaning, as their spectra [Figure 13(a)] did not represent either 
the EMG or alpha bands of interest [47]. On the contrary, the IMFs 
within MEMD were physically meaningful and perfectly captured 

both the alpha rhythm and EMG frequencies in the corresponding 
nonoverlapping IMFs [Figure 13(b)].

enveLope interpoLation and the roLe  
of postprocessing
Envelope fitting underpins the EMD algorithm and is computa-
tionally demanding. For efficient computation, it is desirable to 
perform less accurate but affordable envelope interpolation fol-
lowed by simple postprocessing [41]. Table 1 shows that when 
applied to adaptive forecasting, this approach outperformed 
standard cubic spline interpolation in terms of the prediction 
gain ( ) [dB]signal power/error powerlogR 10   p = . The imper-
fect IMFs obtained through piecewise linear extrema interpola-
tion were enhanced by an M -channel adaptive filter of length 
P  trained by the normalized least mean square (NLMS). 
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[Table 1] nlMs-eMd perforMance in Rp  for filTer 
lengTH p.

TiMe series inTerpolaTion 2p = 5p =  10p =

Henon map linear 14.1 14.6 14.4 
cubic spline 13.8 14.0 13.8 

mackey Glass linear 19.9 18.8 18.9 
cubic spline 18.2 17.8 18.5 
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conclusions and fuTure direcTions
EMD is a spontaneous multiresolution method that represents 
nonlinear and nonstationary data as a sum of oscillatory 
modes inherent in the data, called IMFs. In this way, EMD pro-
vides a sparse representation as IMFs are only required to be 
monocomponent, with no restrictions on linearity or station-
arity. Like any other T-F technique, the success of EMD is 
 context dependent: it is enormously useful for real-world data 
that have well-separated scales, such as physiological and 

 environmental signals, yielding high-resolution IF estimates 
via the HHS. 

For scenarios for which EMD is a good match, the IMFs are 
also likely to convey physical meaning, as in Figure 13, however, 
this cannot be generalized to wideband data or multiple closely 
spaced tones without an insight into the physics behind data gen-
eration. For instance, EMD will represent two closely spaced tones 
as an AM signal, as shown in Figure 2—this is physically perfectly 
meaningful, and we can isolate the two tones as long as we know 
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that the AM within IMFs is due to heterodyning. Another advan-
tage is that EMD approaches are much less sensitive to data length 
(Figures 7 and 12), and do not require harmonics to model non-
linear signals as the AM/FM bases within EMD cater for intrawave 
modulations. 

Our emphasis has been to illuminate the role of noise in EMD, 
its multidimensional and multivariate extensions, and several 
practical signal processing aspects in multivariate settings. The 
following are current and future directions in EMD research: 

 ■ EMD-inspired methods, including sparse monocomponent 
dictionaries, constrained optimization, and connections with 
compressed sensing [46], [5], [12]  

 ■ EMD as a tool for preprocessing (denoising, orthogonaliza-
tion) and sparsification (T-F sparsification for tensors, ICA, 
machine learning)

 ■ mathematical formalism for EMD establishing the extent to 
which postprocessing improves IMF conditioning, and the the-
ory of EMD-enabled filterbanks 

 ■ completeness of bases for multivariate data-driven 
approaches and their mathematical foundation  

 ■ dealing with multivariate data channels with dynamical 
power imbalance, and further work on stoppage criteria, enve-
lope interpolation, and HHS for multivariate data  

 ■ given an imminent release of EMD hardware, the end-effects 
and segment length issues also need revisiting  

 ■ scale-wise intrinsic measures for instantaneous synchrony, 
coherence, entropy, and causality. 
The available software resources include MATLAB codebase for 

EMD and EEMD [49], [50], resources for MEMD [51], while some 
applications in brain science can be found in [48]. 
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