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Abstract— As more and more wireless LANs are deployed
in many popular locations, there is a need for dynamic radio
resource management (RRM) schemes. This paper proposes a
new dynamic RRM technique for multiple APs network. First,
we develop a real-time algorithm to estimate the number of
active stations from the standpoint of an AP, instead of a station.
Second, we propose a dynamic RRM algorithm that not only
significantly increases network performance but also reduces the
co-channel interference. Third, we find the optimal switching
probability that minimizes the transient time for an AP to
reach its equilibrium state. For uniform traffic conditions, our
scheme produces classical optimal frequency assignments. For
non-uniform traffic conditions, it produces sub-optimal frequency
assignments. Our simulations have shown that the proposed RRM
technique adapts to dynamic network conditions and increases
the channel throughput up to 65% in less than 20 iterations.
The results can be applied to practical WLANs to significantly
improve network performance.

Index Terms— Wireless LAN, resource management, radio
spectrum management, cochannel interference.

I. I NTRODUCTION

RECENTLY, there have been many research efforts in
the IEEE 802.11 WLANs , which have been widely

deployed in many locations such as homes, buildings, and
campuses. The existing research is mainly focused on the
protocol modeling and performance tuning to improve the
capacity of the protocols [1]–[3]. Because the IEEE 802.11
standard only provides a limited number of usable channels,
the signal coverage among many neighboring APs has to be
overlapped in these popular locations. It has been observed
that the channel contentions among neighboring APs result in
worse performance than expected, such as very low through-
put. Therefore, how to improve the network performance and
also reduce the co-channel interference is still a problem.

There are two practical reasons why WLANs have been
densely deployed in many popular locations. The first is to
eliminate coverage holes for a large-scale WLAN that covers
an entire building or campus. The WLAN has to maintain a
high SNR to assure high data rates everywhere. Therefore,
the coverage areas of APs have to be overlapped. The second
is that many APs in these locations are owned by different
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service providers and there is no coordination during the
deployment.

The current solutions could only partially solve the problem,
by static Radio Resource Management (RRM) techniques [4],
[5], such as, a careful frequency planning and AP placement,
a scan for radio energy by an AP to choose a channel with the
least level, thus to separate the neighboring APs that sharethe
same channel. This is usually done in the initial installation or
when the AP is initialized. It cannot adapt to local environment
changes and traffic conditions afterwards. In [6], the authors
proposed a channel allocation technique that maximizes the
per-user throughput in dense WLANs, which is based on an
assumption that each AP knows and periodically broadcasts
the number of active stations that are associated with it, which
is too strong for practical networks, especially when the APs
are owned by different companies in a densely deployed area.

In this paper, we present a new dynamic RRM technique
based on the dynamic IEEE 802.11 model [1]. We develop a
real-time algorithm to estimate the number of active stations
from the standpoint of an AP [7], which include those that
are formally associated with the AP and also those that use
the same channel in the neighboring area of the AP. In
the dynamic RRM technique, an AP finds an optimal radio
channel that is less overloaded by actively monitoring its
channel utilization. By switching to this channel, the overall
network performance will be increased. At the same time, the
co-channel interference among different APs will be reduced.
We develop a heuristic algorithm to optimize the frequency
assignment locally for each AP in the network. This way the
AP determines the best channel it should use for the next
transmission. Then, it switches to that channel with an optimal
switching probability. We also derive an optimal switching
probability that can minimize the transient time for an AP
to reach the equilibrium state. Our simulations have shown
that the proposed scheme quickly adapts to dynamic network
environment without relying on message exchanges among
neighboring APs and outperforms the existing frequency as-
signment schemes.

The reminder of this paper is organized as follows. In
Section II, the dynamic IEEE 802.11 protocol will be briefly
discussed. In Section III, a real-time estimation algorithm will
be presented to estimate the number of active stations from
the standpoint of an AP, instead of a station. In section IV,
the dynamic frequency assignment scheme is introduced. The
optimal switching probability is investigated in Section V.
The simulation results are presented in Section VI. Section
VII discusses the advantages of this proposed technique and
concludes this paper.
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II. T HE DYNAMIC IEEE 802.11 PROTOCOLMODEL

It is well known that the standard IEEE 802.11 protocol
capacity can be significantly increased by either appropriately
tuning the backoff window size according to the number
of active stations, or modifying the backoff distribution to
uniformly spread the channel access in a contention window.
For this reason, the authors in [1] proposed a dynamic IEEE
802.11 protocol, which is based on thep-persistent CSMA
protocol for radio wireless. In the dynamic protocol, a station
transmits at the beginning of an empty slot with a probability
p, and defers the transmission with probability1 − p. The p
value is dynamically adjusted to determine the average backoff
time, based on the network configuration and load conditions.
In the standard protocol, the backoff algorithm uses a set of
predefined slotted windows and doubles the window size after
each collision. The length of the backoff interval decreases
only when the channel is sensed idle.

It is worth pointing out that the only difference between
the dynamic and standard protocol is in the selection of the
backoff interval. Identifying an optimalp value in the dynamic
protocol is equivalent to identifying the average backoff win-
dow size in the standard protocol. Therefore, the methods used
to adjust the average backoff time in the dynamic protocol can
be also used in the standard protocol to select the appropriate
size of the contention window. The dynamic protocol provides
a mathematical model for the standard protocol to tune its
protocol performance. Therefore, we base our RRM technique
on the dynamic protocol.

In this paper, we assume that a station can dynamically
adjust thep value within the contention domain of a single
AP, in order to operate near or at the protocol capacity, which
has been extensively investigated by existing methods [1],
[2]. Our focus is to reassign the radio channels for those
APs that are overloaded with stations in order to improve
the overall network performance. The APs will be responsible
for collecting network status, estimating the number of active
stations, and computing the channel utilization. Each AP and
its stations still use the dynamic protocol.

The time interval between two successful transmissions
is referred to as virtual-transmission time (VTT). A VTT
includes one successful transmission and maybe several colli-
sions and idle slots, as shown in Fig 1. The channel utilization
is defined as the fraction of channel bandwidth used by
successfully transmitted messages. The maximum value of
the channel utilization is known as the protocol capacity. The
utilization has been defined in [1] that

ρ = t̄s/t̄v, (1)

where t̄s is the average time interval that the channel spent
on a successful transmission;t̄v is the average VTT of the
channel. The probability that a station is in idle, or successful
transmission, or collision is the probability of no station, or
exactly one station, or more than one station transmitting at
the beginning of an empty slot. For a network withM stations,
each transmits with ap probability, the three probabilities can
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Fig. 1. IEEE 802.11 MAC Model

be easily found asp0, p1, and1−p0−p1, respectively, where

p0 = (1 − p)M , (2)

p1 = Mp(1 − p)M−1. (3)

Thus, the two values̄ts and t̄v can be calculated as

t̄s = L̄mtBp1, (4)

t̄v = tslotp0 + Esucp1 + (Ecol|col + OH)(1 − p0 − p1), (5)

whereL̄m is the average message length in bytes;Esuc is the
average duration of a successful transmission, given a trans-
mission attempt;Ecol|col is the conditional average duration
of a collision, given that a collision occurs;tB and tslot are
the time needed to transmit a byte and a slot, respectively;OH

is the collision overhead that includes the propagation delay
and interframe spacing time. For the DCF access method,
OH = τ + DIFS, where τ is the propagation delay over
the wireless channel;DIFS is the DCF interframe spacing
time that a station has to wait before attempting to acquire the
channel to send a new frame. For the RTS/CTS access method,
OH = τ + EIFS, whereEIFS is the extended interframe
spacing time, which is used by a station that has just received
a bad or unknown frame to report the bad frame.

It is worth mentioning thatEsuc is only a function of traffic
load, i. e., the message length distribution. ButEcol|col is a
function of network configuration, i. e., the number of active
stationsM , and thep value, in addition to the message length
distribution. The detail expressions forEsuc andEcol|col can
be found in [3].

By substitute Eqns. (4) and (5) into Eqn. (1), we can find

ρ = L̄mtB/[
p0

p1

tslot + Esuc +
1 − p0 − p1

p1

(Ecol|col + OH)],

(6)
Let’s denoteNI andNC as the average number of idle slots,

and the average number of collisions in a VTT, respectively.
We can find that

NI =
p0

p1

=
1 − p

Mp
(7)

NC =
1 − p0 − p1

p1

=
1 − (1 − p)M

Mp(1 − p)M−1
− 1 (8)

As we know that the average number of idles in a VTT
is greater than the average number of collisions by one. If
we denote average duration of an idle period asEidl, then
NItslot = Eidl(NC + 1), i. e.,
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Eidl =
NItslot

NC + 1
=

(1 − p)M

1 − (1 − p)M
tslot. (9)

By substitute Eqns. (9) and (8) into Eqn. (6), we can find

ρ =
L̄mtB

(NC + 1)Eidl + Esuc + NC(Ecol|col + OH)
, (10)

We know NC/(NC + 1) is the probability that a collision
occurs given a transmission attempt. If we denote average
duration of a collision asEcol, we have

Ecol =
NC

NC + 1
Ecol|col.

We can find
Ecol|col =

NC + 1

NC

Ecol. (11)

By substitute Eqn. (11) into Eqn. (10), we have

ρ =
L̄mtB

(NC + 1)Eidl + Esuc + (NC + 1)Ecol + NCOH

, (12)

It has been observed that the same expected overall time is
wasted on idles and collisions when the CSMA Aloha reaches
its maximum departure rate [8]. In [2], the authors proposed
to approximate the condition when the IEEE 802.11 MAC
protocol reaches its capacity by

Ecol|colNC = (NC + 1)Eidl,

which has been verified by extensive simulations. Compared
to Eqn. (11), it is clear that the utilization reaches maximum
value if

Eidl = Ecol, (13)

holds. In the dynamic IEEE 802.11 protocol, by choosing ap
value such thatEidl = Ecol to force the network operate at
maximum throughput.

III. R EAL-TIME ESTIMATION OF AP STATUS

In a CSMA/CA protocol, every time an AP successfully
receives a data frame from a station, the AP will send a
positive acknowledgement frame to the station, after a short
interframe spacing (SIFS) time, which is less than the DIFS.
If the station has not receive the ACK, it will consider the pre-
viously observed busy period as a collision. Similarly for the
downlink traffic the AP observes all the busy and idle periods
of the channel. If the AP has not received an acknowledgment
after sending out a data frame, it will schedule a retransmission
of the data frame in the next available slot. In this way, the
AP can explicitly detect a collision period, in addition to the
successful transmission and idle periods. Therefore, we can
assume that an AP can obtain a channel status by measuring
the collision, successful transmission, and idle periods.

In order to develop a dynamic RRM technique that can
optimally assign radio channels among different APs, we need
to calculate the utilization of a channel from the standpoint of
an AP, instead of a station. Although the AP can also get the
estimated values ofEidl andEcol by using measurements, as
a station in [2], it is not responsible for choosing the optimal p
value. Therefore, Eqn. (13) cannot be used to estimate theM

value. Initially, each AP does have the count of its associated
stations. But in a dynamic network environment, or with co-
channel neighboring APs, the active number of stations that
have messages to send will still contend for a same radio
channel even if these stations may be associated with different
APs. Thus, we still need to estimate theM value. To estimate
the number of active stations associated with an AP, we decide
to use the measurement ofEidl andNI , instead ofEcol, which
involves more computations.

Let’s denote the time interval between two consecutive
transmission attempts as transmission interval. The transmis-
sion attempt can be either a successful or a colliding attempt.
We assume that at the end of thenth transmission interval, the
AP has the values of̃Eidl(n) and ÑI(n), which are denoted
as the measurements ofEidl andNI , respectively. During the
(n + 1)th transmission interval, these measured values will
be used to obtain the estimations ofEidl and NI , which are
denoted aŝEidl(n + 1) and N̂I(n + 1), respectively.

To obtain smooth estimations, we adopt the moving aver-
aging model:

N̂I(n + 1) = α1N̂I(n) + (1 − α1)ÑI(n + 1), (14)

Êidl(n + 1) = α2Êidl(n) + (1 − α2)Ẽidl(n + 1),(15)

where0 < α1 < 1 and 0 < α2 < 1 are smoothing factors
used to adjust the estimation speed and accuracy. The values
of α1 andα2 can be appropriately chosen in terms of specific
application and requirement. In practice, after a few timesof
trying, or if we have observed the changing pattern of the
variables, we can find a good compromise between accuracy
and promptness. In our simulation, we find thatα1 = 0.9 and
α2 = 0.9 is a good value for the smoothing factors.

From Eqns. (7) and (9), we can see thatNI and Eidl are
functions of p0 and p1. After we obtain the estimations of
NI and Eidl, we can also find the estimations ofp0 and
p1. Specifically, at the end of the(n + 1)th transmission
interval, each AP computeŝp0(n + 1) and p̂1(n + 1), which
are denoted as the estimations ofp0 andp1, respectively. By
some rearrangements on Eqns. (7) and (9), we have

p̂0(n + 1) =
Êidl(n + 1)

Êidl(n + 1) + tslot

(16)

p̂1(n + 1) =
Êidl(n + 1)

N̂I(n + 1)[Êidl(n + 1) + tslot]
(17)

In order to find theM value, by some manipulations on Eqns.
(2) and (3), we have

(
Mp0

Mp0 + p1

)M = p0. (18)

We can see that only numeric solution exists forM if we
know p0 and p1. Therefore, we propose an iterative method
by replacing theM ’s in Eqn. (18) with estimations obtained
at different transmission intervals. By combining Eqns. (16)
and (17), we can develop an algorithm as follows:

M̃(n + 1) = log p̂0(n + 1)/[log(M̃(n)p̂0(n + 1)) −

log(M̃(n)p̂0(n + 1) + p̂1(n + 1))]. (19)
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In this way, we can compute a measurement valueM̃ for M
in terms of Eqns. (16) and (17). Similar to Eqn. (14), we also
use a moving average model to smooth the fluctuations of the
estimations:

M̂(n+1) = γ0M̂(n)+γ1M̃(n+1)+(1−γ0−γ1)M̃(n), (20)

whereM̂(n + 1) is the estimatedM value at the(n + 1)th
transmission interval;0 < γ0 < 1 and 0 < γ1 < 1 are
smoothing factors, which can be chosen in terms of operation
requirement. To further smooth the fluctuations of estimations,
we use the second-order moving average model in Eqn. (20),
where0 < γ0 + γ1 < 1.

We summarize that each AP estimates its number of active
stations in real-time by using the measurement about the
average number of idle slots in a VTT and the average duration
of an idle period. These measurements are obtained by using
the AP’s carrier sensing mechanism.

When an AP switches to a different radio channel, it
first estimates the number of active stations associated with
the channel. After a short transition period, the estimation
processes quickly converge to a value around the real value,
which will be demonstrated by simulation results. Therefore,
the AP does not need a prior knowledge about theM value.

IV. T HE DYNAMIC FREQUENCYASSIGNMENTSCHEME

A. The RRM Problem Formulation

The goal of RRM in WLANs is to effectively allocate
the available radio channels to the APs such that the overall
network performance can be maximized and the co-channel
interference can be minimized. Here, the channel utilization
of an AP represents the network performance in the WLAN
service area. This is different from the traditional coverage-
oriented WLAN capacity design and planning, which mainly
addresses how to deliver the maximum signal to every WLAN
service area. The AP placement problem [5], is more like a
static RRM technique, which addresses how to assign APs
to the best location to meet traffic demands and also assign
channels to the APs. The channel assignment is usually
formulated as an integer linear programming (ILP) problem
and found to be NP-complete or NP-hard. In a dynamic
network environment, the RRM needs to consider the changes
in network and traffic conditions over time, including co-
channel interference.

In this paper, the interference is considered in two aspects.
First, the estimatedM value includes both the formally
associated stations and the co-channel stations. Second, the
impact of the co-channel APs on the channel utilization of
an AP is taken into account by defining an effective channel
utilization. The transmissions of one or more co-channel APs
can cause enough interference to be sensed as busy by the AP.
For simplicity, we consider only the strongest interferingset
of APs, S, in which a single such AP can cause the channel
to be sensed as busy.

Assume that there areJ non-overlapping channels, indexed
from 1 to J , IJ = {1, 2, ..., J}, available for allocation toI
APs, indexed from1 to I, II = {1, 2, ..., I}. Since the CSMA
protocol used in IEEE 802.11 prohibits APs from transmitting

when a given channel is sensed busy, we define the effective
channel utilizationU j

i as the fraction of time at which channel
j can be sensed busy or is used for transmission byAPi, that
is,

U j
i (n) = ρj

i (n) +

J
∑

k=1

Ck
i (n)

∑

l∈Si

Ck
l (n)ρk

l (n), (21)

whereρj
i (n) is the channel utilization ofAPi when it operates

on channelj at the nth channel updating cycle;Cj
i is the

interference coefficient thatCj
i = 1 if APi uses channelj

and0 otherwise. The number of APs co-channeled withAPi

on channelj, is Cj
i (n). The interfering set forAPi is denoted

as Si. An AP can identify its interfering set by observing
the receved signal power level from its neighboring APs. For
simplicity, we assume that, in Eqn. (21), each co-channeled
APs transmits at the same probability asAPi. Therefore, a co-
channeled AP is assumed to have the same channel utilization
asAPi.

Mathematically, the problem can be stated similarly to the
static RRM [4]. The objective function for optimal channel
assignment can be defined as follows:

min
j∈IJ

max
i∈II

{U j
i (n)}, for i ∈ II , j ∈ IJ ; (22)

Under the constraint that

U j
i (n) < 1, for i ∈ II , j ∈ IJ ; (23)

at thenth channel adjustment interval during channel alloca-
tion and reallocation period. The objective function in Eqn.
(22) is to assign channels such that the effective utilization of
the most heavily loaded AP is minimized. This results in more
resource available for the most heavily loaded AP for a given
traffic load, thus improves the overall network throughput.The
stability condition in Eqn. (23) is to make sure that all traffic
can be sent eventually.

B. The Dynamic Frequency Assignment Algorithm

Generally, the solution to the optimization problem in Eqns.
(22) and (23) may not exist by using ILP methods. But for
our goal in this paper, the problem can be solved by using
the explicitly computed utilization obtained in Eqn. (12),for
a small scale, i. e.,J = 3.

The new dynamic frequency assignment algorithm can be
outlined as follows:

1. Initially, each AP is randomly assigned a radio channel
from the J available channels. The current assignment is
treated as the best assignment so far.

2. Each AP estimatesM value, the number of active stations
in real-time, including both its associated stations and the co-
channeled stations that use the same channel but with other
APs in the vicinity area.

Note that the co-channel interference is taken into consider-
ation implicitly by the fact that theNI andEidl values, which
are sensed by the AP and used to estimate theM value, are
directly impacted by the co-channel stations. The estimated M
value reflects the number of active stations that are associated
with a virtually formed AP.
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3. Each AP computes its effective channel utilization by
using Eqn. (21), under the current assigned channel. Denote
the utilization of APi is Ui,j(n) when using channelj,
i ∈ {1, 2, ..., I}, and j ∈ {1, 2, ..., J}, at the nth channel
adjustment period.

4. Based on all the channels an AP has used so far,APi

finds its the maximum channel utilization, which corresponds
to minimum number of active stations. ForAPi, let’s denote
Vi,k(n) = min {Ui,j(n)}, where j = 1, 2, ..., Jn are the
channelsAPi that has used so far. By using channelk, APi

reaches its maximum utilization.
5. ForAPi, compare the current maximum value,Vi,k1

(n),
to its previous maximum valueVi,k2

(n − 1), where k2 =
k1 and k1 = k, k1 and k2 are the channels that max-
imize the utilization of APi at the nth and (n − 1)th
channel adjustment periods, respectively. LetWi,kmin

(n) =
min {Vi,k1

(n), Vi,k2
(n − 1)}, wherekmin ∈ {k1, k2} is the

channel that minimizes the maximum utilization ofAPi.
6. Check the inequality:

|Wi,k1
(n) − Wi,k2

(n − 1)| ≤ β, (24)

whereβ is a predefined constant that determines the degrada-
tion of quality of service (QoS) of the network. If Eqn. (24)
holds, stop the current channel adjustment phase. Go to step
2, to monitor the network performance.

7. TheAPi switches to the channelkmin, with a switching
probability ps, where ps is an optimal probability that can
minimize the overall adjustment periods ofAPi. The optimal
ps will be derived in the next section.

8. Let n = n + 1, go to step 2.
It is worth pointing out that the algorithm is not trying

to search a global optimization solution to Eqns. (22) and
(23) because of the complexity of the problem. In the above
algorithm, each AP attempts to find and stay at its optimal
channel locally. The algorithm is carried out by all APs
simultaneously and independently. If the changes in network
performance are within the predefined level, there will be
no channel adjustment. If the changes result in network
performance degradation worse than the predefined level, the
AP will automatically adjust its channel to adapt to the changes
in real-time.

We note that choosing theβ value in Eqn. (24) gives the
algorithm a flexibility to accommodate the need of specific
network environment. To be more sensitive to the changes
in utilization, the algorithm needs to use a relatively small
β value, which could result in frequent updating of channel
assignment. Therefore, to avoid such frequent updating, a
relatively largeβ value is preferred, which could make the
algorithm insensitive to changes in utilization. In our sim-
ulations, we find thatβ = 25% ∼ 50% of the utilization
value at normal operation results in a satisfactory balancefor
slow to moderate changing network environment. However, for
general network environment, how to choose an appropriate
β value is an operational issue that can be addressed in terms
of specific network environment.

The convergence of the algorithm can be proved by using
the Theorem 2 in [4], which says that the algorithm does not
have infinite looping if0 < ps < 1. In the next section, we

 
 
 

 
 
    B 

    R 
 

           G 
 

M 

3 

 S S 

2 1 

(a) 

(b) 
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find thatps = 1/2 if the initial layout of APs is randomly and
uniformly distributed. Therefore, the proposed algorithmcan
reach a local optimal solution with a finite amount of steps for
the uniformly distributed APs. See the Appendix for detailed
proof of the theorem.

V. OPTIMAL SWITCHING PROBABILITY

A. Solution to Chapman-Kolmogorov Backward Equations

The proposed RRM algorithm can be modeled by Fig. 2
(a), in which anAPi that hasMi stations will be assigned
one of the three channels. Each channel is represented by a
color. The state transition process is shown in Fig. 2 (b), in
which 1 and 2 are the transient states and3 is the optimal
state that corresponds to the optimal channel assignment. We
assume that the transition rate for the transition from eachof
transient states to the optimal state is the same and denoted
by s ≥ 0. TheQ−matrix that describes the transitions has the
form

Q =





−s 0 s
0 −s s
0 0 0



 ; s ≥ 0.

In this finite state spaces, the transient probability functions
Pi,j(t), of the three-state Markov process are determined by
solving the Chapman-Kolmogorov backward equations [9].
The result is a system of differential equations that may be
written in matrix form as

P ′(t) = QP (t) = P (t)Q, (25)

whereP (t) = {Pi,j(t)}, i, j ∈ {1, 2, 3} andQ is the transition
rate matrix of the process. Then the solution to the Chapman-
Kolmogrov differential equation can be written

P (t) = eQt. (26)
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The power series can be expanded into matrices operation. In
particular

eQt =
∞
∑

k=0

(Qt)k

k!
= I + Qt +

Q2t2

2!
+

Q3t3

3!
+ ..., (27)

converges for any square matrix Q, whereI is the identity
matrix. By substituting theQ−matrix into the above equation,
the matrix exponential is found by

eQt =





e−st 0 1 − e−st

0 e−st 1 − e−st

0 0 1



 . (28)

B. Optimal Switching Probability

As shown in Figure 2 (a), in a channel updating cycle, the
APi has three choices, to which it can select one as its optimal
channel and switch to the channel. If its current state is1 or
2, the switching probability is1 − e−st. The probability to
stay in its current state ise−st. If its current state is3, then it
won’t switch but stay in state3. For the two transient states,
the switching and staying probability will reach their steady
state values after an infinite long time. For the optimal state,
the staying action will happen instantly, i. e., without costing
any time.

Assume the cycle time to update the channel allocation is
T . Let’s denote the staying and switching probabilities

pst(t) = e−st. (29)

psw(t) = 1 − e−st. (30)

where the subscriptsi for the APi is omitted for simplicity.
Initially, at time t = 0, pst(0) = 0, psw(0) = 1. At time

t = T , pst(T ) = e−sT , psw(T ) = 1 − e−sT . After that, if
a staying event happens for theAP , the transient probability
will decay by the factor ofe−sT . If a switching event happens
for the AP , the transient probability will decay by the factor
of 1−e−sT . For the state3, there is no decaying. During these
transitions, there may be also some staying actions happened
in state3. Although each time a staying in state3 will also
cost timeT , the time is not related the total convergence time
that anAP spends until it stabilizes to its optimal channel.
The time staying in state3 is what we hope and does not
impact the total convergence time of the channel allocation
algorithm. Therefore, we consider the staying in state3 does
not cost any time.

To simplify the notation, let’s also define the probability

ps = 1 − e−sT . (31)

Note that,ps is time-invariant and its value is determined by
the transition rate and the updating cycle time.

We assume that up to now, there have beenn total times
of channel transitions, including staying and switching actions
happened for the two states. Among them,n1 times are staying
actions,n2 times are switching actions. Each of the action
costs a time ofT .

The decaying function for the transient probabilities of the
state1 and2 can be written as

D(s) = (e−sT )n1(1 − e−sT )n2 . (32)
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By substituting Eqn. (31), into the above equation, we can find

D(s) = (1 − ps)
n1pn2

s . (33)

By taking dD(s)/dps = 0, we have

ps =
n2

n1 + n2

. (34)

Let’s define a r.v.X that has two possible values,X = 1 or
X = 0, with probabilitiesq0 and 1 − q0, respectively. Here,
X = 1 means a switching action andX = 0 means a staying
action for the AP. Among then total times of transitions
happened, the numbers of the staying and switching actions
are n1 = nq0, andn2 = n(1 − q0), respectively. IfX has a
uniform distribution over[0, 1], the p.d.f. forX is q0 = 1/2.
Therefore,

ps =
n(1 − q0)

nq0 + n(1 − q0)
= 1 − q0 =

1

2
. (35)

It can be easily verified thatd2D(s)/d2ps < 0, which means
that D(s) is indeed maximized atps = 1/2, the optimal
switching probability. Similarly, for non-uniform distributed
APs layout, we can also find an optimal switching probability
by using Eqn. (34) for a given p.d.f. ofX.

VI. VALIDATION AND SIMULATION RESULTS

A. Network Environment

In this section, we simulate an example network, as shown
in Fig. 3. The network has 7 cells, each cell is divided into
3 hexagon coverage areas. Each hexagon area represents the
coverage area of an AP, which is located in the center of the
hexagon area. The AP is responsible for allocating a channel
for the WLAN stations associated with it. In the figure,APij

represents an AP that is located at(i, j) in the network. The
number of stations associated withAPij is denoted asMij .
We consider two types of initial load for the network. The
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first type isMij = 25 for all APij , i = 1, 2, ..., 6; j = 1,
2, ..., 9, which is called uniform load. The second type is
Mij = 5 ∼ 50, among whichAPij will be randomly allocated
a load, which is called non-uniform load. Totally there are 21
APs in the network. We also simulate a larger size network
with the same architecture as the one shown in Fig. 3, which
has 37 cells and 115 APs.

The simulation works as follows. First, all the APs and
stations run the dynamic IEEE 802.11 protocol [1] in the
MAC sublayer. Second, in order to estimate theM value
by using our algorithm proposed in Section III, an AP has
to collect its operation statistics, such asNI and Eidl, as
defined in Eqns. (7) and (9), respectively. Third, the estimated
M value will be used by the application layer of the AP to
compute its effective channel utilization, as defined in Eqn.
(21), and select a frequency channel for the AP. Finally,
the AP switches to the selected channel with probability
of ps. Therefore, for the MAC sublayer of each AP and
station in the network, we simulate the dynamic IEEE 802.11
protocol without modification, as we analyzed in Section II.
The channel allocation algorithm runs in the application layer.

The MAC parameters use the same values as reported in
[3]. The related parameters are listed as follows:PHYhdr is
the physical header that precedes the transmission of a MAC
frame,MAChdr is the MAC header added to the data payload,
H = PHYhdr + MAChdr is the total overhead added to the
data payload. Also,tB , tslot, tH , tRTS , tCTS , andtACK are
the time needed to transmit a byte, a slot, the overheadH,
the RTS, the CTS, and theACK message. Also,τ is the
maximum propagation delay over the wireless channel.

The values of these parameters are:τ = 1 µs, tslot = 20
µs, SIFS = 10 µs, DIFS = 50 µs, EIFS = 364 µs,
MAChdr = 14.55 µs, PHYhdr = 192 µs, tACK = 192 µs,
tRTS = 214 µs, tCTS = 202 µs, CWMIN = 31 tslot, and
CWMAX = 1023 tslot. The traffic associated with each AP is
assumed to have a bimodal message-length distribution, where
the data payload is 40 bytes long with probabilityq, and 1500
bytes long with probability1 − q, andq = 0.5.

B. Simulation Results

In our first example, each AP is allocated the uniform load,
to verify the correctness of the proposed RRM algorithm.
Starting from a random initial assignment, the proposed algo-
rithm generates an optimal channel assignment map, as shown
in Fig. 4, in less than 10 iterations. On an Intel P4 2.8GHz
PC, one iteration costs about 0.1302 seconds of the CPU time.
It can be seen that the channel assignment is the classical
frequency reuse factor of 3.

As a second example, the APs in the same network are
allocated the non-uniform load. To improve the network
throughput, some neighboring APs may form a virtual AP that
uses the same channel. This has been verified by the second
allocation results, as shown in Fig. 5. It can be seen that a
heavily loaded AP can use a single channel that is different
from those in adjacent APs, while many lightly loaded APs
have to share a channel.

As a third example, the same algorithm is applied to
the large network with 115 APs. For the uniform load, the
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Fig. 5. Channel Allocations For Non-Uniform APs Layout

allocation results are shown in Fig. 6. This time the algorithm
is not able to generate the optimal channel assignment of reuse
factor of 3. The reason is that the algorithm only searches
the optimal solution locally and thus results in a suboptimal
solution. It can be seen that most APs can use a channel that
is different from those in adjacent APs, while less than 10%
of APs have to share a channel with their neighboring APs.
In the worst case, at most two neighboring APs share the
same channel. For the non-uniform load, a similar result is
shown in Fig. 7, in which more lightly loaded APs have to
share a channel with their neighboring APs. As a dynamic
channel assignment scheme, this suboptimal solution is quite
acceptable in practices.

Our fourth example is to demonstrate the effectiveness of
real-time estimation algorithm forM values, three different
load are used in the simulation:M = 25, 50, and 75,
respectively. As shown in Fig. 8, the estimatedM value
approximately converges to the real value within about 200
virtual-transmission times (VTTs). The estimation error falls
below 10% of the real value. For the bimodal message-length
distribution simulated in this study, the VTT can be computed
in terms of Eqn. (5). ForM = 25, 50, and75, the VTT equals
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453.3876 µs, 534.8905 µs, and573.8196 µs, respectively. The
estimation algorithm that was used in the adaptive backoff
mechanism [1] just could not converge to the real value
within an error of 50%, even after 2000 VTTs. Therefore,
our algorithm is more efficient.

To investigate the adaptiveness of theM estimation algo-
rithm to a dynamic network environment, we assume that
many stations continually join and leave the network. Thus,
the M value keeps changing. For the 21-AP-Layout network,
we assume thatM value changes during a period of 3000
VTTS, from 40 to 65, then to 40 again, after that it goes to
20, 60, and 75. This scenario represents a rapid change in
network environment because the interval between changes is
only 500 VTTS, which equals about 250 milliseconds. When
applying theM estimation algorithm, we choose an initialM
value of 100, which is far from the real value. The estimated
M values are shown in Fig. 9. Clearly, the proposed algorithm
adapts to the changes inM values very well.

It is worth pointing out that the channel assignment algo-
rithm takes a much longer time to reach an optimal solution
than the time needed forM estimation algorithm. For example,
for the 21-AP-Layout network with uniform load, it takes
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about 10 iterations or 1.3020 seconds to reach the optimal
assignment. If theM value changes again before the channel
assignment reaches its optimal solution, we will not see
significant throughput improvement, as shown in Fig. 10. In
practice, it takes tens of seconds to activate or deactivatethe
WLAN applications, such as laptop computers. Therefore, it
is acceptable for a channel assignment to take a few seconds
to reach an optimal solution.

Our fifth example is to investigate the overall network per-
formance improvement after using the real-timeM estimation
and dynamic RRM algorithms. For the network shown in Fig.
3, each AP associates a fixed number of stations. Initially,
we randomly assign each AP a channel. After that, each AP
switches to its optimal channel that min-max its throughput
with the optimal switching probability ofps = 0.5. Although
the throughput of some APs may be reduced, the overall
throughput should have been significantly improved. This is
confirmed by the curve of normalized throughput, as shown
in Fig. 10, which shows nearly a 65% improvement achieved
by the proposed algorithms in less than 20 iterations.

Our last example is to verify the optimal switching proba-
bility. For the same 21-AP-Layout network, we simulate the
channel algorithm with different switching probabilities, i.
e., ps = 0.1, 0.2, 0.3, ..., and 1.0. For eachps value, the
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simulation has been conducted 1000 times. Each time, we ran-
domly assign each AP an initial channel. Each AP is randomly
allocated a load by a uniformly distributed random number
generator. The average results from the 1000 simulation runs
are shown in Fig. 11. It can be seen that the solid line, which
corresponds tops = 0.5, has the shortest convergence time,
as compared to otherps values. The simulation results have
demonstrated the effectiveness of our finding of the optimal
switching probability in Eqn. (35).

VII. D ISCUSSION ANDCONCLUSIONS

In this paper, we develop a new dynamic frequency assign-
ment technique for the multiple APs in WLANs. Without the
need of prior knowledge about network status, each AP can be
dynamically assigned to an optimal channel. For the hexagon
coverage with uniform AP layout, the optimal assignment
matches the classical result of a reuse factor 3. The proposed
algorithm not only adapts to the changes in network status but
also significantly increases the overall network performance.

In a dynamic environment, a typical issue is how to trade-
off between the accuracy and promptness of the estimation
algorithm. Another issue is how to tradeoff between the sen-
sitiveness and frequency of the channel assignment algorithm.

As we mentioned before, the proposed algorithms provide the
flexibilities to tune the values of the related parameters in
operation, in terms of specific application requirements. But it
would be better if we can develop a self-learning algorithms.

A third issue is related to the implementation of the dynamic
RRM technique. After an AP has chosen a best channel for
itself, how to inform the stations that are currently associated
with it? One solution is like the hard handoff procedure
that has been implemented in the existing mobile telephone
systems. A disconnected station has to re-associate its AP
again after receives the beacon messages from the AP. Another
solution is like the soft handoff procedure. A station will be
allocated to another AP before the previous one signs it off.
This may need to develop a signaling protocol that could be
implemented in the future and more power WLANs.

Our future work would be investigating the above issues and
applying the technique to a larger number of channel allocation
problems.
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APPENDIX

PROOF OF THEDYNAMIC FREQUENCYASSIGNMENT

ALGORITHM

In this appendix, we present the proof for the Theorem 2 in
[4], with minor modifications when it is applied to prove the
convergence of our frequency assignment algorithm.

Theorem 1: The dynamic frequency assignment algorithm
presented in Section IV-B does not have infinite looping if
0 < ps < 1.

Proof: Given that the number of APsI and available
channelsJ in the system are finite, Steps 2 to 5 can be
completed in a finite amount of time. The only possibility
that the algorithm has an infinite loop is that Steps 2 to 6 are
executed repeatedly without stop. Assume that such looping
can happen and theW value after thenth iteration of Step 6
be denoted byW (n). To proceed, letps = 0 in Step 7 for a
moment. In order to form the infinite looping, we must have
W (1) > W (2) >> W (n) with n → ∞. With both I and
J being finite, there are only a finite number of all possible
channel assignments. Since each new assignment finalized by
Step 6 has a unique maximum effective channel utilization, it
is thus impossible thatn goes to infinity. That is, Step 7 must
be reached after a finite amount of processing.

Let’s assume that infinite looping is possible with0 < ps <
1. Based on the above argument, we now must haveW (1) >
... > W (s) = W (s+1) > ... > W (t) = W (t+1) > ...W (n)
with n → ∞ for somes and t. Since the argument above
has already ruled out the possibility of having subsequences
of W ’s of infinite length between two= signs on this list,
it must contain an infinite number of= signs. Since each=
sign corresponds to an execution of Step 7 with probabilityps,
the probability of executing this step for an infinite numberof
time is thus zero. Hence, the infinite looping cannot exist.
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