
Avoiding Spurious TCP Timeouts in Wireless Networks
by Delay Injection

Thierry E. Klein Kin K. Leung
Wireless Research Laboratory

Bell Laboratories - Lucent Technologies
600 - 700 Mountain Avenue
Murray Hill, NJ 07974, USA

e-mail: tek, kin@lucent.com

Richard Parkinson Louis G. Samuel
Wireless Research Laboratory

Bell Laboratories - Lucent Technologies
The Quadrant Stonehill Green

Swindon, SN5 7DJ, Un ited Kingdom

e-mail: rp15, lsamuel@lucent.com

Abstract — The transmission control protocol (TCP) has
been designed to provide reliable transport of packets by
adjusting the transmission rate to the network congestion
level. While TCP can adapt to small fluctuations in the delay
between the sender and the receiver, adverse affects (most
importantly spurious timeouts) have been observed under
large delay variability. In this paper, we exhibit the pres-
ence of such delay spikes in wireless networks and discuss
their possible origins. We then investigate a new method-
ology for avoiding spurious TCP timeouts by appropriately
injecting additional random delay along the communication
path. Different algorithms for the delay injection are pre-
sented and we assess their relative performances and mer-
its through simulations. In particular we show by numeri-
cal examples that the delay injection methodology can sig-
nificantly decrease the number of timeouts and increase the
achieved TCP throughput by about8% in the network sce-
nario considered in this paper. One of the attractive fea-
tures of the new methodology is that it does not require any
changes to the TCP protocol and can be applied indepen-
dently of the TCP version used.
Keywords: Wireless networks, TCP, timeout, throughput,
end-to-end performance.

I. I NTRODUCTION

The transmission control protocol (TCP) remains the most
widely used transport control protocol in the Internet today.
Although TCP was initially designed and optimized for wireline
networks, with the growing popularity of wireless data appli-
cations, it is increasingly being used over wireless networks
as well. The main objective of TCP is to efficiently use the
available bandwidth in the network and to prevent overloading
the network (and the resulting packet losses) by appropriately
throttling the senders’ transmission rates. Network congestion
is deemed to be the underlying reason for packet losses. This
is in sharp contrast to wireless networks in which packet losses
may occur for various other reasons related to the time-varying
nature of the wireless channel and the mobility of the end
user. As a consequence, TCP may interpret packet losses due
to transmission errors, high latency and delay variability as
indications of network congestion and react inappropriately by
reducing the sender’s transmission window and initiating its
slow start phase and the congestion control mechanism. Most

wireless networks aim at avoiding packet losses at the TCP layer
by implementing robust link layer protocols (using error control
coding and robust link adaptation) as well as soft handoff
and seamless mobility management algorithms. However all
of these solutions increase the packet transmission delay and
its variability and may have adverse effects on the TCP behavior.

In this paper, we concentrate on the issue ofdelay spikes
and their influence on TCP timeouts and throughput. Delay
spikes are defined as a sudden and significant change in the
round-trip time between a TCP sender and its receiver. High
delay variability has been observed in fixed wired networks
and can be caused for example by route flipping [1]. In
wireless networks on the other hand, the delay variability can
be attributed to several factors, most notably the time-varying
quality of the wireless link (both the inherent variability and the
one induced by the terminal mobility). A sudden change in the
link quality leads to a burst of transmission errors and link level
retransmissions. The retransmissions in return cause an increase
in the packet transmission delay. Other reasons for delay spikes
may include handoff delay when users are transferred between
receiving base stations and transmission interruptions due to
priority scheduling and preemptive service. The latter reason
is becoming increasingly important as future wireless networks
become more and more multimedia networks, requiring
efficient scheduling algorithms to maintain quality of service
guarantees.

Delay spikes have been observed and measured indepen-
dently by several researchers [7], [9] and [12]. The effects
of large delays and delay variability on the behavior of TCP
have been investigated in [3] and [4]. In particular it is shown
that sudden increases in the delay may lead to spurious TCP
timeouts and trigger two undesirable responses [10]. First TCP
interprets the timeout as being caused by packet losses and
(unnecessarily) retransmits the packets that are presumed lost.
In addition the congestion avoidance mechanism is triggered
and falsely reduces the TCP window size leading to low
throughput. Several solutions have been proposed to alleviate
the effect of delay spikes on TCP performance. Most notably,
TCP Eifel [10] has been proposed to detect spurious timeouts
as well as spurious retransmits by implementing time stamping
at both the sender and the receiver. However, TCP Eifel has

not yet been widely deployed and also requires an additional
12-byte overhead in the TCP header. Other potential solutions
are described in [5] and [6]. It is important to point out that
all of the above solutions require modifications to the TCP
protocol which may not be widely available. These solutions
do not attempt to avoid spurious timeouts but rather change the
reaction of TCP when such timeouts occur. Moreover, some of
them interfere with the nature of the protocol paradigm (e.g. a
split-TCP solution using a proxy mechanism).

In this paper, we take a completely different approach,
and investigate a solution that does not require any change to
the TCP protocol and does not break the protocol paradigm,
but instead attempts to avoid triggering the TCP timeout
mechanism unnecessarily. The fundamental idea is to artifi-
cially inject additional delay in the round-trip path in order to
increase the timeout threshold. In other words, we provide a
methodology to increase the variance of the round-trip time
without significantly increasing the average round-trip time. It
is worthy pointing out that the delay injection method is rather
counter intuitive. Indeed the spurious TCP timeouts occur due
to the high variability of the packet round trip times (RTT),
but yet our new solution is to further increase the variability so
that unnecessary timeouts are avoided. The original concept
of TCP timeout avoidance by delay injection has been pro-
posed earlier [2], but was not investigated in any systematic way.

Our main contribution is to quantify the potential benefits of
this solution, to study different methods for performing the de-
lay injection and to determine the respective optimal parameters
for each method in a systematic way. We demonstrate that, by
appropriate choice of the parameters of the injected delay, the
number of timeout occurrences can be significantly reduced, if
not eliminated. At the same time, the achieved TCP throughput
can be increased in the cases under consideration, thereby
providing improved end-user perceived performance. Besides
describing this novel methodology for avoiding spurious time-
outs in TCP and emphasizing the fact that this methodology
does not require any TCP modifications, this paper provides
a proof of concept of the so-called delay jitter algorithm and
illustrates the potential throughput performance gains that may
be achieved.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide additional details on the issue of the delay
spikes and their impact on TCP. In Section III, we describe the
methodology of artificial delay injection and propose several al-
gorithms to achieve the stated goals of reducing the number of
spurious TCP timeouts and increasing the TCP throughput. Per-
formance results are presented in Section IV and the relative
merits of the different algorithms are discussed. Conclusions
follow in Section V.

II. D ELAY SPIKES AND SPURIOUSTIMEOUTS IN TCP

In this section, we provide more details on the delay spikes and
their impact on TCP. It is assumed that the reader is familiar with
the main features of TCP and we only summarize the essence

of the specific features needed for the understanding of this pa-
per. In order to detect packet or acknowledgment losses, TCP
implements a timer which can be viewed as an upper bound
on the round-trip time between the sender and the receiver. If
an acknowledgement is not received before the timer expires,
the corresponding packet is deemed to be lost and the conges-
tion control mechanism is triggered and the packet is retrans-
mitted. The calculation of the timeout threshold is therefore of
crucial importance [8]. Denote byRTT [k] the k-th measure-
ment value of the round-trip time.1 The round-trip time is calcu-
lated by a timer which is started when the packet is transmitted
by the TCP sender and stopped when an acknowledgement for
the same packet is received.S[k] denotes thesmoothed average
round-trip timeand is calculated as [11]:

S[k] = (1− g) S[k − 1] + g RTT [k] (1)

whereg is the smoothing factor with typical valueg = 1
8
. In

other words, the smoothed value of RTT is updated whenever a
new RTT measurement is available. In addition the variations
of the RTT are tracked by calculating the mean deviation (as an
approximation of the standard deviation) [11]:

V [k] = (1− h)V [k − 1] + h
��RTT [k]− S[k]

�� (2)

where the gainh is typically taken ash = 1
4
. Finally the timeout

threshold value RTO is set to [11]:

RTO[k] = S[k] + m V [k] (3)

with the standard choice ofm = 4. That is, after sending
a packet, the TCP sender sets a timer with the RTO value in
equation (3) as the timeout threshold value. A TCP timeout is
declared if an acknowledgement for the corresponding packet is
not received before the timer expires (i.e. if the RTT associated
with the packet exceeds the RTO threshold). It is expected
that this usually happens when a packet or the corresponding
acknowledgement is lost. If the packet is indeed lost, then the
timeout mechanism is required in order to avoid deadlock. On
the other hand, if the packet is not lost, but merely delayed,
the timeout mechanism is falsely triggered. This timeout is
called spurious and would have been avoided if the RTO value
had been larger. It is easily seen that sudden and large changes
in the round-trip time,i.e., delay spikes, can cause spurious
timeouts and unnecessarily shut down the congestion window
leading to unnecessary loss in TCP throughput.

In order to avoid spurious timeouts, several changes to the
TCP protocol have been proposed, such as implementing the
time-stamping option or changing the granularity of the TCP
timer. Other solutions would aim at making the RTO calcula-
tion more robust to delay spikes and would include changing the
smoothing parametersg andh and the weighting factor of the
variance in the RTO calculation (i.e., the parameterm). How-
ever since all of these solutions require a change in the TCP

1In most implementations, only one packet at any given time is
tracked for the calculation of the timeout threshold. Thus the threshold
is only updated once per window of transmitted packets. If the time-
stamping option however is enabled, it is possible to track the round trip
time of all packets.

2

protocol (and the related standard and the de facto standards of
the control parameters) and may not be widely and readily avail-
able, it may be preferable to seek solutions that are transparent
to TCP and do not depend on the TCP version or its implemen-
tation. This is the objective of the remainder of this paper.

III. D ELAY JITTER ALGORITHM

In this section, our proposed methodology for reducing the
number of TCP timeouts is described in detail. We have argued
against changing the TCP protocol and therefore the update
equations for the calculation of RTO. The only parameters
that influence the value of RTO (and thus whether there is a
timeout or not) are the smoothed average and mean deviation
of the RTT. Clearly we do not wish to modify the average
round-trip time as the TCP throughput (for long-lived flows in
steady-state) is essentially inversely proportional to the average
RTT. Hence the only remaining possibility is to influence the
calculation of the mean deviation (or the variance of the RTT).
The fundamental idea behind this methodology (referred to as
delay jitter algorithm) is to inject additional random delay (by
holding back a packet or acknowledgment somewhere along
the round-trip path) so as to increase the variance of the RTT,
without significantly increasing its average value.2

Our contribution is to develop systematic ways and in-
vestigate different algorithms to inject additional delay in the
round-trip path with the objective of reducing the number of
spurious TCP timeouts caused by delay spikes and increasing
the achieved TCP throughput. There is an interesting tradeoff
involved in this methodology. On the one hand, reducing
the number of spurious timeouts can potentially increase the
throughput. On the other hand, injecting additional delay in
the round trip path increases the average RTT, which in return
leads to a decrease in throughput. However we demonstrate by
numerical examples that, by appropriate choice of the delay
jitter parameters, the net effect is an overall increase in TCP
throughput along with a significant reduction in the number of
timeout occurrences.

LetD[k] be artificial delay injected for measurementk. Then
the new value of RTT (used for the calculation ofS andV and
therefore for RTO) is given byRTTnew[k] = RTT [k] + D[k].
The new timeout threshold valueRTOnew[k] is calculated
according to the same formulas in equations (1) to (3) as before
with the corresponding value ofRTTnew[k].

We now propose several algorithms and methods for
choosing the artificial delay. A constant delayD[k] for
every measurement (i.e. tracked packet) would increase the
average RTT but would not affect the variance in the RTO
calculation. Since not all transmitted packets are subjected
to this delay injection, it would still provide some level of
robustness against delay spikes. However, for added generality,
random delay injection is considered where the randomness
may come from either the time of the delay injection or from

2Note that in practice it only makes sense to inject delay only to those
packets that are being tracked for the RTO calculation.

the actual value of the additional delay. The first algorithm
called theFixed Time - Fixed Delay (FTFD)method, injects
a fixed delay according to a fixed schedule. In other words,
we have thatD[k] = D0 wheneverk = i N andD[k] = 0
otherwise. D0 is value of the added delay andN is the
period of the schedule (the so-calledjitter period), meaning
that an additional delay ofD0 is added everyN tracked packets.

A second method, called theRandom Time - Fixed Delay
(RTFD) method, injects the additional delay to every packet
with a certain probabilityp. This means that for every mea-
surementk, D[k] = D0 with probabilityp andD[k] = 0 with
probability 1 − p. Note that by choosingp = 1

N
the average

additional delay (averaged over all tracked packets) is the same
for both FTFD and RTFD methods.

The third method, called theRandom Time - Random Delay
(RTRD)method, introduces even more randomness in the de-
lay injection by making the time of the injection as well as the
amount of additional delay random variables. LetfD(d) be a
probability density function on the additional delay with mean
D0. Then with probabilityp, D[k] = d whered is chosen ac-
cording to the above probability density function (taken to be
exponential in our simulations). Conversely, with probability
1 − p, D[k] = 0. All of the above proposals are parameterized
by different tunable parameters that have to chosen in order to
obtain the best performance.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performances of the methods
described in Section III. To start however, we present some
measurements to exhibit the presence of delay spikes in a
live wireless network and motivate the use of the delay jitter
algorithm. Ping tests with a pre-specified payload size were
conducted on a commercial GPRS network and the round-trip
time between the mobile terminal and a target router recorded.
The mobile user is assumed to be stationary and all of the exper-
iments were conducted during light network loading conditions.
The target router in the network was identified using thetracert
utility and chosen to be the first router recorded in the tracert
list. This minimizes the contribution of the backhaul network
to the round-trip time recorded for the pings. Consequently
the major part of the recorded RTT is due to the limited data
rate on the air interface and the dynamic assignment of radio
resources to the data flow. In our experiments, the ping utility
issues 10,000 messages and waits for a maximum of 10 seconds
for the associated reply message. When the reply is received or
the maximum wait time expires, the next ping request message
is sent. When a reply is received, the ping utility displays a
statistics report which includes the RTT for the corresponding
ping message.3

3The collected measurements in the GPRS network show that the av-
erage RTT is on the order of500 msec. Future wireless data networks
are expected to have round trip times that are significantly smaller, on
the order of100 msec. We therefore scale all the measurements by a
factor of 5 and present the corresponding results in this paper. How-
ever, we note that the delay jitter methodology has also been applied to

3

In Figure1, we show the RTT measurements for0-byte ping
packets, as well as the associated RTO estimate, calculated from
equation (3). A timeout is declared if the RTT measurement
exceeds the RTO threshold for that packet. We only show a
window of100 consecutive samples and note that there are two
timeout occurrences: one for packet25 and the other one for
packet40. The main objective is to demonstrate the presence of
delay spikes, even in a scenario when the mobile is stationary
(and therefore the channel variations are limited and there are
no mobility-induced handoffs) and the network is lightly loaded.
The number of occurrences of such delay spikes is only expected
to increase in scenarios when the user is mobile and the network
load is increased. Furthermore, since no packets were lost dur-
ing the experiments, these timeouts are spurious and attributed
to the large RTT spikes observed. Since the ping packets are
only sent upon reception of the previous reply message, the RTT
measurements turn out to be essentially uncorrelated and the
timeouts are observed as isolated incidents. If ping packets are
sent successively without waiting for the corresponding replies,
the RTT measurements may be more correlated and delay spikes
are expected to be observed in bursts. The impact of a burst of
delay spikes may depend on the TCP implementation and in par-
ticular on the retransmission mechanism upon observing a time-
out (e.g. go-back-n or selective retransmission). It is therefore
expected that the performance gains of the delay jitter algorithm
may also depend on the particular retransmission mechanism,
although we emphasize that the algorithm itself does not change
and does not need to be aware of the retransmission strategy.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Packet Index

R
T

T
 /

R
T

O
 (

m
se

c)

RTT
RTO

Timeouts

Figure 1: RTT and RTO measurements without delay jit-
ter

We now turn our attention to the three different methods for
delay injection and study their ability to reduce the number of
timeouts. In theFTFD method, a delay ofD0 is injected every
N packets whereN is the period. For theRTFD method, the
delayD0 is injected to every packet with probabilityp = 1

N
so

that the average jitter period and the value of the delay injection
remain the same. Finally, for theRTRDmethod, delay is again

the original set of RTT measurements. The obtained results show that,
while the number of timeouts is significantly reduced, the achieved TCP
throughput is not greatly changed.

injected to every packet with probabilityp = 1
N

. However,
when delay is injected, the value is chosen from an exponential
distribution with meanD0. First we provide some evidence that
this methodology can indeed reduce the number of timeouts
by applying theFTFD method to the vector of collected RTT
measurements. The new RTO threshold is again computed
according to equation (3). In Figure2, we show the effect on
the RTT measurements and RTO estimates of theFTFD method
with D0 = 100 msec andN = 3 (this choice for the set of
parameters will be explained shortly). Note that one of the
timeouts in Figure1 has been avoided in Figure2. However the
second timeout could not be avoided as the experienced delay
spike is just too large. In general, the ”margin” between RTO
and RTT is substantially increased, when compared to Figure1,
thus increasing the robustness to delay variations.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Packet Index

R
T

T
 /

R
T

O
 (

m
se

c)

RTT
RTO

Timeout

Figure 2: RTT and RTO measurements with delay jitter

Next we examine the impact of the delay injection on the
distribution of the RTT measurements. The stated goal of
the delay jitter method is to increase the variance of the RTT,
but the resulting change on the entire distribution cannot be
ignored. Figure3 shows the RTT distribution without delay
jitter and for the three different methods when the parameters
areD0 = 100 msec andN = 3. First of all, we observe that the
distribution of the RTT (without delay jitter) is approximately
uniform and does not exhibit the expected normal distribution.
This shape is essentially preserved under a fixed delay injection,
except that the distribution becomes bimodal. This could be
expected since, with probability1

3
each packet is subject to an

additional delay of100 msec, which essentially corresponds to
the gap between the two uniform pieces of the distribution. As
could be expected, the distribution underFTFD and RTFD is
essentially the same as the injection period forRTFD is chosen
according to a geometric distribution with the same mean as
the deterministic injection period forFTFD. However, when
the injected delay is exponentially distributed, the shape of the
RTT distribution is radically altered and exhibits an exponential
tail. Therefore we may conclude that the delay jitter method
can also be used for RTT distribution shaping.

4

80 100 120 140 160 180 200 220 240 260
0

200

400

600

800

1000

1200

1400

msec

N
u

m
b

er
 o

f
O

cc
u

rr
en

ce
s

Histogram of RTT

No Jitter
FTFD
RTFD
RTRD

Fixed or Average Delay: D
0
=100msec

Fixed or Average Jitter Period: N=3

Figure 3: Histogram of RTT measurements with and
without delay jitter

After justifying the use of the delay jitter algorithm by
simple comparison between the RTT measurements and the
RTO estimates, we now set out to assess its impact on the
TCP performance. We have build a complete TCP simulator
capturing all the feedback and congestion control and timeout
mechanisms [11]. In particular, we implement selective repeat
as retransmission policy, but disable the time stamping option.
We consider four different values for the amount of delay
injectedD0 = 40, 60, 80 and100 msec and for each value the
jitter period is varied. In Figures4, 5, 6 and7, we show the
number of TCP timeouts under the different injection methods
that were recorded by our TCP simulator during an FTP-like
transfer of512 segments of500 bytes each. The results shown
are the average values from10 independent experiments. In all
four plots, the horizontal line denotes the number of timeouts
observed without the delay jitter algorithm.

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

Fixed or Averaged Jitter Period

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

FTFD
RTFD
RTRD
No jitter

Figure 4: Number of timeouts whenD0 = 40 msec.

Several important conclusions may be drawn. First and
foremost, it is observed that the proposed methodology can
indeed reduce the number of TCP timeouts, provided that the

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

Fixed or Averaged Jitter Period

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

FTFD
RTFD
RTRD
No jitter

Figure 5: Number of timeouts whenD0 = 60 msec.

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

Fixed or Averaged Jitter Period

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

FTFD
RTFD
RTRD
No jitter

Figure 6: Number of timeouts whenD0 = 80 msec.

parameters are carefully chosen. This observation is valid for all
three methods of delay injection. As an additional sanity check,
consider the extreme case when the jitter period is very large.
In this case, delay is injected so infrequently that it essentially
does not affect the RTT and the corresponding RTO calculation.
Therefore, we expect that the number of timeouts is essentially
equal to the number of timeouts without the jitter algorithm.
This trend is observed in all four plots and for all three methods
and is confirmed if the jitter period is further increased. In
addition, the reader might expect that, whenN = 1, the delay
is injected to every packet and consequently the RTT for every
packet is increased by the same amount (at least forFTFD
and RTFD methods) and therefore the number of timeouts
is not changed. This is not the case though, since the delay
jitter algorithm is only applied to those packets that are being
tracked for the RTO calculation; in our implementation only
one packet per window of transmitted packets is being tracked.
The aforementioned intuition that forN = 1 the number of
timeouts is not changed compared to the no-jitter scenario is
correct if TCP tracks all packets for RTO calculation, as would
be the case if the time-stamping option were enabled.

5

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

Fixed or Averaged Jitter Period

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

FTFD
RTFD
RTRD
No jitter

Figure 7: Number of timeouts whenD0 = 100 msec.

In general it is noted that theRTRDmethod performs quite
poorly with respect to the other two methods. The reason for
the performance degradation is that the method introduces too
much randomness into the RTT measurements. In essence,
randomness is desirable to increase the variance of the RTT
to a certain extent, but this same randomness introduces too
much uncertainty in the measurements themselves. The lesson
to be learned is that the degree of randomness has to be tightly
controlled for desirable results. The remaining two methods,
FTFD andRTFD, effectively manage to reduce the number of
TCP timeouts and thus achieve one of the stated design goals.
The FTFD method (at least for the experiments performed in
this study) gives the optimal performance in terms of reducing
the number of TCP timeouts. The best performance is achieved
when D0 = 100 msec andN = 3 (reducing the average
number of timeouts from24 to 0.1).

The above results however only show one aspect of the TCP
performance. In particular, users are more concerned with their
achieved throughput. We now turn our attention to this second
aspect and show the delay jitter algorithm leads to an overall
throughput improvement. We have already observed that the
delay jitter algorithm leads to a slight increase in the average
RTT, which is equal top D0

1
W

, wherep is the delay injection
probability, D0 is the average injected delay andW is the
average window size. The latter term comes from the fact that
the delay is potentially only injected to packets that are tracked
for RTO calculation, i.e. to at most one packet per window
of outstanding packets. This small increase in average RTT
negatively affects the throughput performance, since the TCP
throughputT can be approximated as the ratio of the average
window size to the average RTT. In the absence of timeouts,
the delay jitter algorithm would not provide any throughput
gain. However the presence of delay spikes causes spurious
timeouts which unnecessarily reduce the throughput. The delay
jitter algorithm, besides a slight increase in the average RTT,
also has the desirable effect of eliminating spurious timeouts,
which would increase the throughput. In the remainder of this

section, we show that the increase in RTT can be more than
offset by the reduction of timeouts and the net effect of these
two consequences of the delay jitter algorithm can result in an
increased throughput. Since theFTFD method is the preferred
method to reduce the number of timeouts, we exclusively
concentrate onFTFD for our throughput analysis. In Figure
8, we plot the achieved TCP throughput as a function of the
jitter period for different values of the injected delay. The
throughput without the delay jitter is shown as a horizontal line
and is equal to103.58 kbps. Note that a maximum throughput
of 111.96 kbps (which represents an improvement of about
8%) is achieved whenD0 = 70 msec andN = 5 (at least for
the studied range of parameters). Thus we have demonstrated
that the delay jitter algorithm can indeed be considered as a
viable option to alleviate the effect of delay spikes and reduce
the number of spurious timeouts and provide throughput gains.
We point out that our TCP simulator implements the selective
retransmission policy and, upon timeout, retransmits only the
corresponding packet. In other implementations of TCP, such as
those that use a go-back-n mechanism, all outstanding packets
would be retransmitted. The inherent throughput degradation
resulting from a spurious timeout is expected to be larger and
consequently the improvement achieved by delay injection is
expected to be more significant. This is especially true if the
temporal correlation in the RTT samples is small. In that case,
subsequent packets, following a packet that experienced a delay
spike, do not expect to experience delay spikes themselves.
On the other hand, if the temporal correlation is stronger, a
go-back-n retransmission strategy may provide better results as
some of the subsequent packets (which are likely to timeout as
well) are pro-actively retransmitted and their timeouts in some
sense anticipated.

We note that, with the set of parameters that minimizes the
number of timeouts (i.e. D0 = 100 msec andN = 3), the
achieved throughput (not shown in the graph) is only101.20
kbps. It is therefore interesting to observe that minimizing
the number of timeouts in fact may not necessarily maximize
the achieved TCP throughput. In other words, to eliminate
virtually all timeouts, the average injected delay needs to be
fairly large in order to make the timeout threshold more robust
to delay spikes. The required delay value however results in
an overall throughput degradation. A possible explanation is
that TCP timeouts tend to occur in bursts (as observed by our
simulations) and therefore do not all have the same effect on
TCP throughput (since the congestion window remains small
for subsequent timeouts after the initial timeout in the same
burst).

We emphasize again that the delay jitter algorithm can be ap-
plied with any implementation and version of TCP and does not
require any explicit TCP-level information and any modifica-
tions to the TCP standard. To our knowledge, this methodology
has not appeared in the literature and is complementary to other
advocated approaches. Finally we comment on the possible im-
plementation of the proposed delay jitter algorithm. As pointed
out earlier, there is no advantage to inject delay to packets whose

6

RTT is not tracked and that are therefore not considered for the
RTO calculation. One could enable the TCP time-stamping op-
tion in which every packet is tracked for the RTO calculation and
the proposed algorithm can be directly applied to all packets.
On the other hand, without the time-stamping option, typically
only one packet per window is tracked. Identifying the tracked
packets to enable efficient delay injection for performance gains
remains an open research problem. To inject a given delay to
a packet, it can be temporarily put in a buffer for the specified
amount of delay before being released to the rest of the com-
munication path. Although this may cause packets to arrive out
of order at the receiving end, TCP duplicate acknowledgements
and buffering out-of-sequence packets at the receiver will en-
sure proper reception and protocol operation. In addition, since
the optimal delay jitter parameters may depend on the underly-
ing delay statistics and the network scenario at hand, an adap-
tive version of the delay jitter algorithm may prove necessary in
practice for maximum performance gains. This is the objective
of current investigations and goes beyond the scope of this pa-
per, which aims at a proof of concept of this novel methodology.

10
0

10
1

10
2

90

95

100

105

110

115

120

Fixed Jitter Period

T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

80 msec
70 msec
60 msec
50 msec
No jitter

Figure 8: TCP throughput as a function of the jitter pe-
riod for different values of the injected delay in the FTFD
method.

V. CONCLUSIONS

In this paper, we have shown the presence of delay spikes in
wireless networks, have discussed their possible origins and
described their negative impact on TCP performance by causing
spurious timeouts. Rather than modify the TCP protocol, we in-
vestigated an innovative methodology that significantly reduces
the probability of TCP timeouts and consequently increases the
TCP throughput performance. The essence of the methodology
is to inject artificial delay in the round-trip path in order to
increase the variance of the round trip estimate and thereby
increase the timeout threshold calculation. Several algorithms
for injecting delay are presented and their relative performances
assessed. Numerical results demonstrate that the proposed
delay jitter algorithm is a viable alternative to other methods
to combat spurious timeouts and that it provides throughput

gains, even in fairly simple and well-behaved network scenarios.

ACKNOWLEDGMENTS

The authors would like to acknowledge helpful discussions with
J. Cloutier and M. Sherif. The authors also thank Gee Ritten-
house and Mark Haner for their continued support of this re-
search.

REFERENCES

[1] M. Allman and V. Paxson, ”On Estimating End-To-End Network
Path Properties”, inProceedings of ACM SIGCOMM, September
1999.

[2] J. Cloutier et al., ”Improved Wireless Data Transmission using
Time Out Control”,private communication.

[3] S. Fu, M. Atiquzzaman and W. Ivancic, ”Effect of Delay Spike on
SCTP, TCP Reno and Eifel in a Wireless Mobile Environment”, in
Proceedings of International Conference on Computer Communi-
cations and Networks, October 2002

[4] A. Gurtov, ”Effect of Delays on TCP Performance”, inProceedings
of IFIP Personal Wireless Communications, August 2001.

[5] A. Gurtov, ”Making TCP Robust Against Delay Spikes”, University
of Helsinki, Department of Computer Science, Technical Report C-
2001-53, November 2001.

[6] A. Gurtov and R. Ludwig, ”Responding to Spurious Timeouts in
TCP”, in Proceedings of IEEE INFOCOM, March 2003.

[7] A. Gurtov, M. Passoja, O. Aalto and M. Raitola, ”Multi-Layer Pro-
tocol Tracing in a GPRS Network”, inProceedings of the IEEE
Vehicular Technology Conference, September 2002.

[8] V. Jacobson, ”Congestion Avoidance and Control”, inProceedings
of ACM SIGCOMM, 1988.

[9] J. Korhonen, O. Aalto, A. Gurtov and H. Laamanen, ”Measured
Performance of GSM HSCSD and GPRS”, inProceedings of the
IEEE Conference on Communications, June 2001.

[10] R. Ludwig and R. Katz, ”The Eifel Algorithm: Making TCP Ro-
bust Against Spurious Retransmissions”, inACM Computer Com-
munication Review, vol. 30, No. 1, January 2000.

[11] W. R. Stevens,TCP/IP Illustrated, Vol. I, Addison Wesley, 1995.

[12] M. Yavuz and F. Khafizov, ”TCP over Wireless Links with Vari-
able Bandwidth”, inProceedings of the IEEE Vehicular Technology
Conference, September 2002.

7

