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ABSTRACT

The problem of finding the sparse representation of a signal has at-
tracted a lot of attention over the past years. In particular, unique-
ness conditions and reconstruction algorithms have been established
by relaxing a non-convex optimisation problem.

The finite rate of innovation (FRI) theory is an alternative ap-
proach that solves the sparsity problem using algebraic methods
based around Prony’s algorithm. Recent extensions to this frame-
work have shown that it is possible to recover sparse representations
beyond the uniqueness limits, that is, finding all the possible sparse
representations that fit the observation for the case of signals which
are sparse in the union of Fourier and canonical bases. In this paper,
we show the application of such methods to the case of the union of
DCT and Haar basis. We present an extension that takes advantage
of the even symmetry of the cosine functions to build an algorithm
that can operate over the observed vector and in a dual domain. We
also analyse the case of the union of frames. Simulation results con-
firm the validity of this new approach and show that it outperforms
state of the art algorithms in a number scenarios.

Index Terms— Sparse representation, union of bases, Prony’s
method, finite rate of innovation.

1. INTRODUCTION

Many signals of interest have often a simpler representation in some
appropriate overcomplete dictionaries. However, finding this repre-
sentation is an ill-posed problem since we are dealing with an under-
determined system of equations. Images are a good example of such
signals, where, for instance, regular textures have a compact repre-
sentation in the DCT basis but discontinuities and localised details
can be better represented in wavelet dictionaries. In this scenario,
we would like to find the combinations of DCT and Haar elements
that are able to reproduce the 2D image with the smallest number
of elements, i.e., we want to find a sparse representation in an over-
complete dictionary consisting of the union of DCT and Haar atoms.
Being able to recover a sparse representation of an observed signal
has a wide range of applications going from compression to denois-
ing or signal detection. It is therefore necessary to devise fast and
reliable algorithms that can find such representations.

Let y ∈ CN be a complex-valued finite dimensional signal that
has a K-sparse representation in an overcomplete dictionary, that is,

y = Dx, (1)
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where D ∈ CN×L is the overcomplete dictionary with L > N

atoms and x = (x[`])L−1
`=0 , with x[`] ∈ C, satisfies ‖x‖0

def
=

# {` : |x[`]| 6= 0} = K. One way of recovering the sparse vector x
from the observation y is by solving the following problem:

(P0) : argmin
x̃
‖x̃‖0 s.t. y = D x̃, (2)

which is intractable since the `0 “norm” is nonconvex. In practice,
this problem can be solved via a convex relaxation, which replaces
the `0-norm by the `1-norm [1]–[5]. This technique is known as
Basis Pursuit and under some conditions, the `1 approach is guar-
anteed to find the solution to (P0). It is thus important to establish
the uniqueness of the solution to (P0). Since the system in (1) is
underdetermined, there are an infinite number of vectors x that lead
to the same observation y, provided that y belongs to the span of the
columns of D. However, it has been shown that in the case where
D is built from the union of two orthogonal bases, the solution is
unique if

‖x‖0 < 1/µ (D) , (3)

where

µ (D)
def
= max

k 6=`

|d∗k d`|
‖dk‖2 ‖d`‖2

(4)

is the mutual coherence of the dictionary and dk and d` are the
colummns of matrix D [3]. Research in this area has also focused
on finding the best overcomplete dictionary in order to have sparse
representations [6]–[8]. We refer the interested reader to the Elad’s
book [9] for furhter details.

Finding sparse representations is also related to the theory of fi-
nite rate of innovation (FRI) signals [10]–[12]. This framework con-
siders the problem of sampling and reconstructing non-bandlimited
signals and has been applied to several problems such as image
super-resolution [13], ultrasound imaging [14] and many others
[15]–[21]. A recently proposed algorithm, ProSparse [22], solves
the sparsity problem with an approach based on Prony’s method
[23]. The authors present the algorithm for the overcomplete dictio-
nary built from the Fourier and identity bases and extend it to more
general pairs of bases where one of the bases can be expressed in
terms of a Vandermonde matrix and the other basis is local, that is,
its elements have very few non-zero elements.

Here, we focus on the DCT and Haar pair of bases. We ex-
tend the approach presented in [22] and we study the average per-
formance of this algorithm compared to Basis Pursuit. We also anal-
yse the more underdetermined scenario where the dictionary is built
from the union of a DCT frame and a Haar basis. In this case, Basis
Pursuit is heavily penalised because the coherence of the dictionary
increases considerably. In both cases, ProSparse shows competive



performances compared to Basis Pursuit, and in some situations out-
performs the latter. We first give a brief overview of ProSparse and
then present the proposed extension to the DCT-Haar case. We prove
that the algorithm is guaranteed to find the sparsest solutions when
the number of non-zero elements is below a threshold that goes be-
yond the uniqueness bound. We then validate the approach with
simulations.

2. SPARSE RECONSTRUCTION BASED ON PRONY’S
METHOD

This section summarises the main contributions of [22]. In this sec-
tion we focus our discussion on the case of the union of Fourier and
canonical bases.

2.1. Fourier and canonical bases

When the dictionary is the union of Fourier and identity bases the
atoms can be recovered applying a variation of Prony’s method [22].
This new algorithm is called ProSparse.

Let D = [Φ, Ψ] be an overcomplete dictionary, where Φ is a
unitary Fourier matrix of size N × N and Ψ is the identity matrix.
x can be expressed in terms of the elements that correspond to each
basis as follows: x = [xΦ, xΨ]T , where xΦ,xΨ ∈ CN . It follows
that y = ΦxΦ + ΨxΨ. We assume that the vector y is composed
of Kp Fourier atoms and Kq spikes, that is, xΦ is Kp-sparse and
xΨ is Kq-sparse. The overall sparsity of the vector x is thus K =
Kp +Kq . It follows that each element of y is given by

y[n] =

Kp∑
k=1

ak√
N
ej

2π
N
mkn+

Kq∑
k=1

bk δ[n−nk], 0 ≤ n < N, (5)

where ak, bk ∈ C\{0}, 0 ≤ m1 < . . . < mKp < N and 0 ≤ n1 <
. . . < nKq < N . The goal is to recover the two sets of parameters
{(ak,mk)}Kpk=1 and {(bk, nk)}Kqk=1 from the observation y = Dx.

Each Fourier atom contributes to the entire vector y, but since
the spikes are localised, only Kq samples are influenced by them.
We can thus search for clean intervals of consecutive samples that
are only due to the Fourier atoms. For such intervals, the samples of
vector y are given by

y[n] =

Kp∑
k=1

ak√
N
ej

2π
N
mkn, (6)

where we restrict the index n to the clean window. If the clean win-
dow contains at least 2Kp samples, parameters ak and mk can be
perfectly recovered from samples y[n] by applying Prony’s method
[24]–[26]. Prony’s method is based on finding the coefficients h[n]
of a filter that annihilates the sequence y[n], that is,

y[n+Kp] + h[1] y[n+Kp − 1] + . . .+ h[Kp] y[n] = 0. (7)

The z-transform of the sequence h[n] is given by H(z) = 1 +∑Kp
n=1 h[n] z

−n =
∏Kp
k=1(1 − uk z

−1), where uk = ej2πmk/N

are the zeros of H(z). If the clean window has at least 2Kp sam-
ples, the coefficients h[n] can be obtained by solving a linear system
of equations given by (7). The locations of the non-zero elements,
mk, are then obtained from the roots of H(z). The amplitudes ak
can then be obtained from (6), since the parameters mk are now
known. Therefore, with Prony’s method we can reconstruct xΦ. The
spikes’ locations and amplitudes are then obtained from the residual
y −ΦxΦ.
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Fig. 1: Comparison of bounds for sparse signal representation in union of
Fourier and canonical bases for N = 256.

Note that the Fourier atoms in y are periodic with periodN sam-
ples, and therefore the search of the clean window can be performed
modulo N , that is, for a window of length L located at index n
we access the elements of vector y as: ( y[(n+ `)mod (N)] )L−1

`=0 .
Moreover, if the reconstruction algorithm fails to find a clean section
of at least 2Kp samples in y, we can also apply the same strategy
to the discrete Fourier transform of y: ŷ = DFTN {y}. In this
dual case, the spikes become complex exponentials and thus xΨ is
reconstructed by applying Prony’s method to a window of at least
2Kq samples.

2.2. ProSparse

For the sake of completeness, we state here the key proposition re-
lated to ProSparse.

Proposition 1. [22] Assume D = [F , I] and let y ∈ CN be an
arbitrary signal. There exists an algorithm, with a worst-case com-
plexity ofO(N3), that finds all (Kp,Kq)-sparse signals x such that
y = Dx and KpKq < N/2.

Note that this bound is much weaker than the uniqueness bound
(3) and the `1 bound which for the case of Fourier and identity is
approximately given by Kp + Kq < 0.91

√
N [3]. These bounds

are illustated in Figure 1.

3. EXTENSION TO THE UNION OF DCT AND HAAR
BASES

ProSparse can be extended to other pairs of bases. For instance, it
can also be applied to the case where Φ is a DCT matrix and Ψ is a
local basis such as a Haar matrix with one decomposition level. The
`-th column of the DCT matrix of size N ×N is given by

φ`[n] =

{
1/
√
N for ` = 0,√

2
N

cos
[
π
N
(n+ 0.5) `

]
for 1 ≤ ` < N,

(8)

where n corresponds to the row index and goes from 0 toN−1. Note
that {φ`}N−1

`=0 form an orthonormal basis of the Euclidean space RN
and therefore the matrix Φ is orthogonal. The Haar orthogonal ma-
trix of size N ×N with one decomposition level is given by

Ψ =
1√
2

[
IN/2 ⊗

[
1
1

]
, IN/2 ⊗

[
1
−1

]]
(9)

where IN/2 is the identity matrix of size N/2 and ⊗ denotes the
Kronecker product.



The DCT atoms can be expressed as the sum of two complex
exponentials and thus be recovered with Prony’s method. However,
in order to reconstruct the entire sparse vector x = [xTΦ, x

T
Ψ]T we

also require Ψ to be local. This guarantees that we will be able to
find clean windows where we can apply Prony’s method provided
that the sparsity of x is not too large. By local we mean that a non-
zero element in xΨ influences a small number of elements in vector
y. The ideal local basis is the identity or canonical basis, where
each atom contributes to a single element in y. For the Haar matrix
given as in (9), each atom has effect on two consecutive samples of
y. In what follows we propose an extension of Prony’s method for
DCT atoms and improve ProSparse’s bound for the union of DCT
and Haar bases.

3.1. Prony’s with complex conjugate roots on the unit circle

The DCT atoms can be expressed as two complex exponentials1:

φ`[n] =

√
1

2N

(
ej

π`
2N ej

2π
2N

` n + e−j
π`
2N e−j

2π
2N

` n
)
. (10)

In this case, a naive application of Prony’s method can estimate Kp

DCT atoms from 2Kp complex exponentials, and therefore would
require 4Kp consecutive clean samples. However, since the expo-
nentials are in complex conjugate pairs this number can be reduced.

Lemma 1. Let y[n] =
∑K
k=1

(
ak e

jαkn + bk e
−jαkn

)
. The αk

parameters are uniquely determined from 3K consecutive samples.

Proof. The filter that annihilates this sequence has 2K + 1 taps:
H(z) =

∏K
k=1(1 − e

jαkz−1)(1 − e−jαkz−1). Since the roots of
H(z) appear in complex conjugate pairs, this can aslo be written
as H(z) =

∏K
k=1(1 − 2 cosαk z

−1 + z−2). The coefficients of
H(z) satisfy: hl = h2K−l, for l = 0, 1, . . . ,K − 1. Moreover,
h0 = h2K = 1. Thus, we only need to estimate K coefficients.
This can be done by solving the following system:

y2K + y0 . . . yK+1 + yK−1 yK
y2K+1 + y1 . . . yK+2 + yK yK+1

...
. . .

...
...

y3K−1 + yK−1 . . . y2K + y2K−2 y2K−1




1
h1
...
hK

 = 0.

If all αk are distinct, this system has a unique solution.

3.2. Making the problem circular

The underlying periodicity of the DCT atoms is 2N samples, but
vector y is of lengthN . However, we can take advantage of the even
symmetry of the cosine function to extend the vector y to a vector
of 2N samples. From (10) it follows that φ`[n] = φ`[2N − 1− n].
We can therefore build the following extended vector of size 2N :

yext[n] =

{
y[n] for 0 ≤ n < N,

y[2N − 1− n] for N ≤ n < 2N,
(11)

where each atom that comes from the DCT elements in xΦ can be
reconstructed by recovering the two exponentials that appear in com-
plex conjugate pairs. Since the common period of these complex ex-
ponentials is 2N , we can perform the search of the clean window by

1For ` = 0 the atom φ0[n] has a constant value of 1/
√
N , this matches

the decomposition in (10) with an amplitude correction of a factor of 1/
√
2.
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Fig. 2: Comparison of bounds for sparse signal representation in union of
DCT and Haar bases for N = 256.

accessing the elements of yext modulo 2N . In matricial form we can
express the extended vector as follows:

yext =

[
I
J

]
y (12)

where I is the identity matrix of size N , and J is the identity with
rows flipped in the up/down direction. Note that with this extension
the elements that are due to xΨ will influence four elements, two in
the first N elements of yext and another two in the second half of the
extended vector.

3.3. Building the dual vector

Similarly to the Fourier-Identity case, we can build a dual vector
where we can also apply Prony’s method to reconstruct the sparse
vector x. Since the complex exponential elements in vector yext

have a common discrete period of 2N samples, their DFT are given
by Dirac deltas: DFT2N

{
ej

π`
2N ej

2π
2N

` n
}

= ej
π`
2N δ[m − `] and

DFT2N

{
e−j

π`
2N e−j

2π
2N

` n
}
= e−j

π`
2N δ[m− (2N − `)]. The DCT

atoms are thus the local atoms in the Fourier transform of yext given
by ŷext = DFT2N {yext}. As previously described, the Haar atoms
in the extended vector yext influence four elements. Therefore, when
taking the DFT of yext, each Haar atom will lead to four complex
exponentials. It follows that we need a clean window of at least 8Kq

samples in order to recover the Haar atoms from ŷext.

3.4. ProSparse in the DCT-Haar case

We now denote by U the DCT matrix given as in (8), H , the Haar
matrix defined as in (9), F the Fourier matrix and I and J the iden-
tity and flipped identity as used in (12). Subscripts denote the di-
mension of these square matrices. Based on the previous derivations
we can state the following result:

Proposition 2. Assume D = [UN , HN ] and let y ∈ CN be an
arbitrary signal. There exists an algorithm, with a worst-case com-
plexity ofO(N3), that finds all (Kp,Kq)-sparse signals x such that

y = Dx and 3KpKq +Kq < N. (13)

Proof. From the observed signal y we can build the extended vector
yext as in (12). We have that

yext =

[
UN HN

JN UN JN HN

]
x =

[
UN HN

JN UN JN HN

] [
xU

xH

]
,
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Fig. 3: Probability of success of ProSparse and Basis Pursuit (white repre-
sents probability of reconstruction of the sparse vector equal to one and black
probability equal to zero). The overcomplete dictionary is given by the union
of the DCT and Haar bases with N = 256. For each pair (Kp,Kq), 100
realisations of the sparse vector x have been generated with the locations of
the atoms uniformly distributed and the amplitudes drawn fromN (0, 1).

where xU is Kp-sparse and xH is Kq-sparse. This is equivalent to

yext = [F2NA, H2NB]x = [F2N , H2N ]

[
xF

xG

]
(14)

where xF
def
= AxU , xG

def
= BxH ,

A
def
=



√
2 0 . . . 0

0 ej
π
2N . . . 0

...
...

. . .
...

0 0 . . . ej
π(N−1)

2N

0 0 . . . 0

0 0 . . . e−j
π(N−1)

2N

...
... . . . ...

0 e−j
π
2N . . . 0


and B

def
=

IN/2 0N/2
JN/2 0N/2
0N/2 IN/2
0N/2 JN/2

 .

It is easy to verify that if xU and xH are Kp and Kq sparse re-
spectively, then xF and xI are 2Kp and 2Kq sparse, with the 2Kp

Fourier atoms appearing in complex conjugate pairs. The result fol-
lows Proposition 3 from [22] and Lemma 1 applied to (14). Note
that the size of this equivalent problem is 2N .

Remark 1. This condition is less restrictive than the uniqueness
bound (3) for the DCT-Haar case since limN→∞ µ(D) = 2/

√
N

(with µ ([U , H]) ≤ 2/
√
N ). This is illustrated in Figure 2.

4. UNION OF FRAMES

ProSparse can also be extended to the reconstruction of sparse vec-
tors expressed in a union of frames. We now consider the case where
the overcomplete dictionary D = [Φ, Ψ] is built from a frame Φ
and a basis Ψ. Specifically, we consider the case where Φ is given
by the firstN rows of a DCT matrix of size 2N ×2N and Ψ is built
as in (9).

In this setup we cannot apply circularity or duality concepts be-
cause the observed vector y is made of truncated versions of DCT
atoms. However, we can still recover these atoms since the frame Ψ
is localised and the truncated DCT atoms can still be expressed as
the sum of two complex exponentials.

5. SIMULATION RESULTS

We have performed a series of Monte Carlo simulations to measure
empirically the probability of success of ProSparse in the case of
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Fig. 4: Probability of success of ProSparse and Basis Pursuit. The overcom-
plete dictionary is formed by a DCT frame of sizeN×M and the Haar frame
of size N ×M , where N = 128 and M = 256. For each pair (Kp,Kq),
100 realisations of the sparse vector x have been generated with the locations
of the atoms uniformly distributed and the amplitudes drawn fromN (0, 1).

union of bases and union of frames and compared its performance
to Basis Pursuit. Figure 3 shows the results for the union of bases
case and Figure 4 shows the results for the union of frames case. In
both cases we have randomly generated 100 different sparse vectors
x = [xTΦ,x

T
Ψ]T for each pair of possible sparsity levels (Kp,Kq).

The x-axis corresponds to the number of non-zero elements in xΨ

and the y-axis the number of non-zero elements in xΦ. The locations
of these non-zero elements are randomly generated at each iteration
by picking the first Kp or Kq elements of random permutations of
the integers from 0 to N − 1 in the case of the union of bases and
from 0 to 2N − 1 in the case of the DCT frame. The amplitudes are
then independently drawn from a Gaussian distribution of zero mean
and unit varianceN (0, 1).

In the case of the union of bases, ProSparse succeeds when there
is a clean window of at least 3Kp samples in yext or when there is a
clean window of at least 8Kq samples in ŷext. Note that the existence
of these clean windows is performed by checking the spike locations
via the modulo 2N operator. In the case of the union of frames we
cannot apply circularity nor duality, and therefore the existence of
the clean gap is only checked in y (not yext nor ŷext).

The probability of success of Basis Pursuit is measured by re-
covering the sparse vector x from the measured vector y by solving
the following optimisation problem: argminx̃‖x̃‖1 s.t. y = D x̃.
The optimisation problem has been solved using the convex opti-
misation toolbox CVX in MATLAB. The success is measured by
computing the quantity ‖x̃− x‖22/‖x‖22, where x is the true sparse
vector, and checking that this quantity is below a negligible value of
10−5.

The results show that in the case of the union of frames, Basis
Pursuit is heavily penalised and fails to recover the sparse vector for
the majority of sparsity levels while ProSparse succeeds in a wider
region. In the case of the union of bases, Basis Pursuit performs bet-
ter when Kp and Kq have similar values, but ProSparse does better
in the unbalanced scenarios.

6. CONCLUSIONS

We have presented an extension of a polynomial complexity algo-
rithm, ProSparse, to the problem of finding sparse representations
in the union of DCT and Haar dictionaries. We have shown that
the deterministic bound of this algorithm goes beyond the unique-
ness bound of the `0 optimisation problem and therefore beyond the
deterministic bound of Basis Pursuit. We have also performed a nu-
merical average performance analysis that shows that this approach
does better than Basis Pursuit in a number of situations.
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