
 
Radar Shadow and Superresolution Features for Automatic 

Recognition of MSTAR targets 
 

Jingjing Cui, Jon Gudnason, Mike Brookes. 
Imperial College London 

 
Key Words: Hidden Markov Model, Target Recognition, High Range Resolution, Synthetic Aperture Radar, Multiple Signal 
Classification, Feature Extraction, Moving and Stationary Target Acquisition and Recognition (MSTAR) 
 

ABSTRACT 
 

Automatic target recognition from high range resolution 
radar profiles remains an important and challenging problem. 
In this paper, we present a novel feature set for this task that 
combines a noise-robust superresolution characterisation of 
the target scattering centres derived using the MUSIC 
algorithm with a representation of the target's radar shadow 
shape. To obtain the shadow shape features, three alternative 
spectral estimation methods are investigated. Using a Hidden 
Markov Model to represent aspect dependence, we 
demonstrate that the inclusion of the shadow features results in 
a significant improvement in recognition performance. Using 
azimuth apertures of 3° and 6° in a 10-target classification task 
from the MSTAR database, we obtain overall classification 
error rates of 1.3% and 0.2% respectively. These results are 
significantly better than those obtained by other published 
methods on the same database. 

 
1.  INTRODUCTION 

 
The automatic detection and classification of targets from 

their radar signatures is an important and difficult problem that 
has attracted considerable research effort. Algorithms for 
target recognition from high range resolution (HRR) radar 
signals generally use as their primary input either a synthetic 
aperture radar (SAR) image or else a sequence of one or more 
one-dimensional HRR range profiles. The image-based 
approaches generally have higher performance but are less 
robust to target motion because of their long data acquisition 
time. Some image-based algorithms use the pixel values of the 
image as their recognition features [1, 2, 3] while others first 
transform the image to another domain [4, 5]. An alternative 
approach for targets that are large compared with the radar 
wavelength is to model the radar return as emanating from a 
discrete set of orientation-dependent points known as 
scattering centres [6]. In this approach, the SAR image is 
processed to generate an explicit list of scattering centre 
positions and associated radar cross sections on which the 
recognition features are based [7, 8]. In the same way, systems 
that act on the HRR range profiles can either use the raw [9] or 
transformed [10] profile values as their features or else can 
process the profiles to estimate the scattering centre locations 
and cross sections [11]. Both SAR images and HRR profiles 
can exhibit large variations for small changes in target 

orientation. Target recognition systems must account for this 
aspect-dependency by using a rotation invariant transform [4] 
or by having multiple, orientation-dependent, target 
representations which may conveniently be embedded in a 
Hidden Markov Model (HMM) [5, 11, 12]. 

In this paper, we present a novel feature set for automatic 
target recognition from a sequence of radar range profiles. Our 
feature set uses a noise-robust super-resolution technique for 
identifying scattering centre locations and combines this 
information with additional features that characterise the shape 
of the radar shadow. Fig. 1(b) shows a SAR image of a T72 
tank taken from the MSTAR [13, 14] dataset. This image may 
be divided into three regions having significantly different 
characteristics: (a) the target itself, (b) the target shadow and 
(c) a clutter region surrounding the target. As can be seen in 
this example, the shape of the shadow region gives potentially 
useful information about the vertical profile of a target when it 
is sited on level ground. This information is not available from 
the direct target returns which are insensitive to vertical 
displacement. The shadow information has been used by 
others to improve target detection [15] but is not generally 
used explicitly in target recognition. We showed in [16] that 
the shadow information can be effective in radar target 
recognition and we present further improvements in 
performance in the present paper. 
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Fig.1. (a) HRR profiles (b) SAR image of T72 tank 

 
In Section 2 of this paper, we describe our proposed 

feature set in detail and in Section 3, we describe the Hidden 
Markov model that we use to represent the aspect dependency 
of the radar returns. In Section 4, we evaluate the performance 
of our target recognition system using observation data from 
the MSTAR database [14] and compare its performance with 
that of other systems from the literature that use the same 
database. Finally, we summarise our results in Section 5. 



 
2.  RECOGNITION FEATURE SET 

 
The features that we use for target recognition are derived 

from the sequence of complex-valued HRR profiles, ),( knx , 
obtained by applying a discrete Fourier transform (DFT) to the 
windowed phase history radar returns. Here n  is the profile 
index and k  is the range-bin index covering the region of 
interest. Fig. 1(a) shows a typical plot of  ),( knx  and Fig. 1(b) 
shows the SAR image that results from windowing ),( knx  
and taking the DFT with respect to n . Visible in the image are 
the target itself, with signal levels well above the clutter noise 
level and also a well defined shadow region with very low 
signal levels. For each value of the profile index n , we obtain 
two feature vectors: )(nu  characterizes the positions and 
intensities of the scattering centres within the target while 

)(nw  characterises the shape of the shadow area. Both these 
feature vectors are derived from 12 +P  consecutive profiles 
centred on profile n . We therefore define the data 
matrix ),(),( kpnxkpxn += , where },...,{ PPp −∈ . The 
procedures to obtain )(nu  and )(nw  are described below. 
 
2.1 Target features 

The derivation of )(nu  is illustrated in Fig. 2 and the 
processing steps are described below where, for clarity, we 
omit the profile index, n .  
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Fig.2. Procedure to calculate target features from HRR profiles 

 
Each scattering centre in range bin k  gives rise to a 

complex exponential term in ),( knx  and the first step in 
obtaining u  is to identify these terms. We do this by applying 
the MUSIC algorithm [17] which uses the data model: 

 ∑
=

+=
M

m

pj
km kpekpx km
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, ),(),( , εα ω  (1) 

where km,α  and km,ω  are the complex amplitudes and 
frequencies of the scattering centre terms and ),( kpε  is 
assumed to be white noise. The reasons for using the MUSIC 
algorithm are that it is resistant to noise, does not require 
windowing of ),( knx  and is able to estimate km,ω  with high 
resolution independently of P . Within range bin k , each of the 
M  components in (1) corresponds to a scattering centre 
whose cross-range displacement is proportional to km,ω . The 
maximum number of scattering centres, M , could be chosen 
adaptively for each range bin but we have, in the experiments 
below, fixed it for each range bin according to the number of 
HRR profiles used.   

After discarding any scattering centres whose cross-range 
displacement lies outside the target mask, we convert the 

continuous displacements, km,ω , to discrete values.  We create 
a continuous signal containing an impulse for each scattering 
centre which we then low-pass filter and sample to give:  
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where )33.0sin()33.0()( 1 lllh ππ −=  is the low-pass filter 
response and 1)2(5.0 −∆∆= rφπλβ  is a constant with λ , φ∆  
and r∆ , the wavelength, azimuth increment and cross range 
resolution, respectively. Finally, the image information is 
compressed by taking the 2-dimensional discrete cosine 
transform (DCT) of ),(log kly and we form a 54-element 
feature vector u , retaining only the coefficients in the low 
frequency triangle of size 10-by-10 and excluding the DC 
term. Fig. 3(a) shows an example of ),( kly  corresponding to 
the central portion of the image shown in Fig. 1(b) and Fig. 
3(b) shows the reconstructed logarithmic image using only the 
coefficients for u .  
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Fig. 3 (a) The image ),( kly of the T72 tank (b) The reconstructed 
logarithmic image using u  

 
2.2 Shadow features 

The shadow area of the SAR image consists of deep 
valleys corresponding to the shadow and broad peaks 
representing the clutter. Unlike the target area of the SAR 
image, the shadow region contains no sharp peaks from 
scattering centres and we wish to characterise the shape of its 
boundary. The procedure for obtaining the shadow feature 
vector, w , is shown in Fig. 7. Following a range mask, we 
perform spectral estimation in the cross-range direction using 
one of three methods described below. We then identify the 
shadow region using an adaptive threshold and, as with the 
target features, compress the information using a DCT. 
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Fig.7 Procedure to calculate shadow features from HRR profiles 
using one of the three spectral estimation methods 

 
2.2.1 Fourier Transform spectral estimation 

The first method of spectral estimation is to apply a 
Hamming window to ),( kpx  and then to take the DFT in the 
p  direction. The shape of the spectrum is thus estimated for 

each range bin k  and the image ),( klI is formed in the same 



way as a SAR image. A drawback of this method is that the 
cross-range resolution is limited by the windowing operation. 
 
2.2.2 Autoregressive spectral estimation 

A better spectral estimate is achieved by deriving the 
parameters of a model of the cross range profile. First we 
apply the autocorrelation method of autoregressive (AR) 
spectral estimation to ),( kpx using the model: 
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where )(kam  are complex AR coefficients and ),( kpu is a  
white input driving sequence of zero mean and unit variance. 
We then form the image ),( klI  by converting the AR 
coefficients M

mm ka 1)( =   to the spectrum in the p  direction: 
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The AR model is an all-pole model and the model order, M , 
is fixed at 25 in the experiments below. The model order is 
high because the peaks in the resulting spectrum will model 
the clutter around the shadow even though the recognition is 
not done on these peaks but on the shape of the shadow. 
 
2.2.3 Moving average spectral estimation 

We can also estimate the spectrum of ),( kpx by applying 
a Moving Average (MA) model:   
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where )(kbm  are complex MA coefficients and  ),( kpu is the 
input driving sequence. The MA model is an all-zero model 
which characterises the shadow. The model order M , in the 
experiments below, fixed at 2, in order to locate edge of 
shadow. We form the image ),( klI  by converting the MA 
coefficients M

mm kb 0)( = to the spectrum in the p  direction: 
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To estimate the MA coefficients, we first convert the process 
to a high-order AR process [18] and then use standard AR 
estimation procedures to obtain the MA coefficients. The 
method uses the following model: 
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In our implementation we used MN ×= 4 . 
 
 
 
 

2.2.4 Binary Image Formation 
After obtaining the image ),( klI  from the shadow mask, 

we threshold it to give a binary-valued shadow image ),( klb  
shown in Fig. 5 for each of the spectral estimation methods.  
The pixel values representing the clutter region in ),( klI  have 
a large spread whereas the shadow pixels are concentrated in 
lower values.  This allows us to determine the threshold from 
the histogram by choosing it to be above the highest value of 
the bins containing the most pixels. 

The shadow images in Fig. 5 are obtained from the data 
shown in Fig. 1 using (a) the Fourier transform, (b) AR 
spectral estimation and (c) MA spectral estimation. The 
figures show that the shadow is featured prominently as a 
large black area while the clutter is shown as mixed points of 
black and white. As with the target features, we compress the 
shadow image by taking a 2-dimensional DCT and retaining 
54 low frequency coefficients to form the shadow feature 
vectors denoted by Fw , Aw  and Mw  respectively for the 
three methods. The reconstructed images using Fw , Aw  and 

Mw  are shown in Fig. 6. The shapes of the shadows are all 
well retained except that the MA method introduces some 
horizontal steaks. 
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Fig. 5 The image ),( klb  using (a) Fourier transform, (b) AR 

spectral estimation, (c) MA spectral estimation. 
 

Reconstruced Shadow Image using FFT
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Fig. 6 Reconstructed images from (a) Fw , (b) Aw , (c) Mw  

 
The number, 12 +P , of HRR profiles used to form the 

feature vector has a direct effect on the cross-range resolution 
of Fw  and Aw but not on that of Mw . However although AR 
spectral estimation can achieve superresolution, its error 
criterion concentrates on the high energy features in the clutter 
region and so does not find the shadow edges accurately. In 
contrast the MA approach represents the shadow region well 
even using only a 2nd order model. We compare the 
classification performances using the three kinds of features in 
the Section 4. 
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3.  AZIMUTH HIDDEN MARKOV MODEL 

 
HRR profiles exhibit significant variability with target 

orientation. We model this for each target using an HMM 
containing S  states which correspond to different target 
aspects. Within an observation sequence, consecutive HRR 
profiles correspond either to the same or to adjacent states. 
Thus the only allowable state transitions are from a state to 
itself or to the adjacent state in the direction of sensor motion. 

We initialise the states to correspond to equal aspect 
increments of 1360 −S and for each state we train a Gaussian 
mixture model (GMM) [19] using all available training data 
from the corresponding range of aspects of a particular target. 
The transition probability between adjacent states is initialised 
to be 360/φ∆S where φ∆  is the azimuth increment between 
successive feature vectors. Using these initial values, we then 
re-estimate the GMM parameters and the HMM transition 
probabilities using embedded Baum-Welch training [20]. 

The azimuth interval represented by a state can change 
during re-estimation as is illustrated in Fig. 8(a). This figure 
shows the log likelihood of test feature vectors as a function of 
azimuth angle for each of three consecutive model states. The 
three model states were initially trained with data from 
consecutive 6  azimuth intervals in the region of 60 . We see 
from Fig. 8(a) that the log likelihood does indeed peak at a 
target orientation of 60  and that there is a second, smaller, 

peak at around 
250  due to target 
symmetry. An 
enlarged view of 
the primary peak is 
shown in Fig. 8(b) 
which shows that 
each state has 
retained clearly 
defined boundaries. 
State 10 is however 
much broader than 
its initial width of 
6 and now covers 
about10 , state 11 
covers a relatively 
narrower angular 
extent about 2 and 
state 12 becomes 
broader again.  

 
Fig. 8 State decomposition (a) from 0  to 360  (b) from 

25 to 100  
 

4. EXPERIMENTAL RESULTS 
 
4.1 MSTAR database 
      The experimental evaluations make use of the Moving and 
Stationary Target Acquisition and Recognition (MSTAR) 

database collected by the Sandia National Laboratory using an 
X-band SAR sensor in 3.0 m resolution spotlight mode [14, 
13]. The database contains complex valued SAR image chips 
of 10 confusable targets and their variants. For each target, the 
images cover a full 360 azimuth range at depression angles of 
15 and17  for test and training data respectively. The SAR 
images have a resolution of 3.0=∆r m in both the range 
(horizontal) and cross range (vertical) directions. 

For our experiments, the SAR image chips were 
converted into a sequence of HRR profiles by taking an 
inverse Fourier transform, removing the zero padding and 
finally undoing the Taylor window in the P  direction. The 
steps of this procedure are summarised in Fig. 9. Each image 
chip covers an azimuth interval of approximately 3  [9] with 
successive HRR profiles separated by an angular increment 
of 03.0=∆φ . 

 

 

Fig.9. Procedure to convert MSTAR images to HRR profiles.  
The operations are in cross-range. 

 
4.2 Experimental procedure 

For our experiments we used an HMM containing  
60=S  states each corresponding to an initial azimuth interval 

of 6 . Within each state, feature vector distributions are 
represented by a diagonal-covariance Gaussian. We used a 

m9m9 ×  target mask and a 18m×9m shadow mask.  A total 
of 3000 image chips containing 17 depression angle data was 
used to train a separate HMM for each of the targets. For 
testing, we used a total of 5000 15 depression angle images 
without any compensation for the slight mismatch in 
depression angle. 

We evaluated three alternative feature sets: the target 
features u , the shadow features w and the concatenation of 
the two wu + .The first two sets contain 54 elements while 
the last has 108. The feature vectors were formed using 

25=P  corresponding to an aperture of 5.1 .The maximum 
number of scattering centres, M , is fixed at 10 for each range 
bin.  We formed a sequence of HRR profiles covering 3° 
azimuth aperture from one image chip and a sequence 
covering 6° from two adjacent image chips. We then 
determined the model with the highest likelihood. Model 
training and recognition were performed using the HTK 
recognition software [20]. 

We are interested in knowing what method to use for 
extracting the shadow features. On their own, the shadow 
features do not perform well, but in conjunction with the 
target features, they can improve the recognition results 
significantly. Table 1 shows a closed-set identification results 
using the target features u , and three proposed shadow 
features Fw , Aw  and Mw  used both on their own and 
concatenated with u to form a 108 element feature vector. The 
table presents the percentage misclassification rates for each 



individual target, the overall test set misclassification rate 
(MCR) and the standard deviation of the test set 
misclassification rate (St.Dev) using test sequences which 
each cover a 3 azimuth aperture. We can see that if used on 
their own, the AR derived shadow features perform best with 
7.3 % MCR. However, when used with the target features, the 
MA derived shadow features produce the best performance of 
1.3% MCR. The reason for this is that the shadow mask 
overlaps the target region and both Fw  and Aw  manage to 
include information that is already in u . The MA features on 
the other hand concentrate on the shadow, giving relatively 
poor performance on their own but giving the greatest 
improvement when combined with the target features, u . We 
will use Mw  to represent the shadow features in the following 
discussions.  
Table 1: Recognition error rates with different shadow features (%) 

Target u wF u+wF wA u+wA wM u+wM 
BMP2 3.6 34.6 3.1 19.1 0.5 42.8 1 

BRDM2 12.8 14.9 6.2 11.7 4.7 17.5 3.7 
BTR60 0 14.5 0 6.7 0 33.2 1.6 
BTR70 4.1 26.8 8.3 17 4.6 27.8 2.1 

D7 1.8 1.8 1.1 1.1 0.7 3.7 0.4 
T62 6.6 1.8 1.1 2.9 1.5 8.1 0.4 
T72 1.6 18 1.6 17.5 0.5 30.4 0 

ZIL131 1.8 0 0 0.4 0 0 0 
ZSU234 1.5 0.4 0.4 0.7 0.4 8.4 0.7 

2S1 5.8 4 2.9 5.1 2.9 12.4 2.9 
MCR 4.2 10.1 2.4 7.3 1.6 16.4 1.3 

St.Dev. 0.4 0.6 0.3 0.5 0.3 0.8 0.2 

 
We now present the recognition results based on 3° and 

6° sequences, respectively. Table 2 shows the recognition 
error rate for each of the three feature sets for the two cases. 

In the 6°-sequence observation based recognition, the log 
likelihood of two adjacent test sequences are added and the 
recogniser chooses the one with the highest sum. We see that 
used on their own the u  and w parameter sets give MCR of 
1.5% and 10.9% which is in both cases an improvement over 
the one-sequence results. When the two feature sets are 
combined to form wu + we find that the MCR is reduced to 
0.2% with seven of the ten targets error-free. 

 

Table 2: Recognition error rates of two observations (%) 

 3° azimuth aperture  6° azimuth aperture 
Target u w u+w u w u+w 
BMP2 3.6 42.8 1 2 30 0.5 

BRDM2 12.8 17.5 3.7 3.3 9.2 0 
BTR60 0 33.2 1.6 0 26 0.5 
BTR70 4.1 27.8 2.1 1 16.1 1 

D7 1.8 3.7 0.4 1.1 0.7 0 
T62 6.6 8.1 0.4 2.2 2.9 0 
T72 1.6 30.4 0 1 25.4 0 

ZIL131 1.8 0 0 0 0 0 
ZSU234 1.5 8.4 0.7 1.1 4.8 0 

2S1 5.8 12.4 2.9 2.6 9.5 0 
MCR 4.2 16.4 1.3 1.5 10.9 0.2 

St.Dev. 0.4 0.8 0.2 0.3 0.6 0.08 

 
For both the 3°-sequence and 6°-sequence tests, the 

addition of the w features improves the recognition rate for all 
targets except one, the BTR60 which is considerably 
worsened. This indicates that, for this target at least, the 

assumption that the feature vector follows a multivariate 
Gaussian distribution is a poor one. 

The error rate of 1.3% obtained using a 3 aperture can be 
directly compared with other published results based on the 
MSTAR database with the same recognition task.  In [21], the 
authors obtained error rates of 4.1% using an approach based 
on the SAR image and in [11] an error rate of 17.8% was 
obtained when performing recognition on the HRR profiles 
directly. 

The MSTAR database contains 11 variants of the T72 
tank and 3 variants of the BMP2 vehicle, manifested by 
different realisations of the fuel tank, antenna, etc [11]. To 
evaluate the robustness of our recogniser to these variations, 
we trained models on two BMP2 variants, four T72 variants 
as well as the eight other targets using the wu +  feature set. 
We then conducted recognition tests on all 22 targets in the 
database using two images. If the recogniser identified an 
incorrect variant of the correct tank model, it was counted as 
an error in the “Strict” column of Table 3 but as a correct 
identification in the “Class” column. 

For targets included in the training set, the MCR is 0.4 % 
and in most cases the precise variant of a particular target is 
identified correctly. For the unseen variants listed in the lower 
section of the table, the MCR was 8.6% with more than half of 
the errors arising from the T72-s7 and T72-812 targets. 

The final column of Table 3 shows the “Class” error rates 
reported in [11] for the same task. We see that for all targets 
except T72-s7 the recognition performance for our proposed 
feature set is considerably better. We note however that since 
[11] bases its recognition on individual HRR profiles, it will 
be less sensitive to target motion than when the feature set 
described here is used with a large value of P . 

Table 3: Recognition error rates with unknown targets (%) 

Target Strict Class Class from 
[11] 

BMP2-c21 13 4.7 6.1 
BMP2-9563 7.3 0 7 

BTR70 1 ─ 14.1 
BRDM2 0 ─ 8.6 
BTR60 0.5 ─ 13.7 

D7 0 ─ 4.8 
T62 0 ─ 9 

T72-a04 1.5 0 2.9 
T72-a10 0.4 0 3.4 
T72-a62 0.4 0 3.9 
T72-132 4.1 0 7.6 
ZIL131 0 ─ 10.3 
ZSU234 0 ─ 8.5 

2S1 0 ─ 4.7 
BMP2-9566 ─ 0.5 37.5 

T72-a05 ─ 7 14.5 
T72-a07 ─ 2.6 16.1 
T72-a32 ─ 1.5 22.9 
T72-a63 ─ 1.8 15.9 
T72-a64 ─ 5.1 31.7 
T72-s7 ─ 27.3 17.1 

T72-812 ─ 23.4 29.6 
 

5.  CONCLUSIONS 
 
This paper has presented a novel radar target recognition 

technique combining two-dimensional target and shadow 
information. The new technique complements the SAR-ATR 
and HRR-ATR techniques by using a feature extraction 



method that is robust to noise and that can extract target and 
shadow information accurately with limited azimuth aperture 
length. Three methods to obtain the shadow features are 
investigated. The experimental results using MSTAR database 
indicate that although they perform relatively poorly on their 
own, the shadow features derived using the MA method 
perform exceptionally well when combined with MUSIC-
derived target features. Using azimuth apertures of 3° and 6° 
in a 10-target classification task, they give overall 
classification error rates of 1.3% and 0.2% respectively. These 
results are considerably better than other published techniques 
using the same dataset. 
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