
Inferring Room Geometries

Jason Filos

Communications and Signal Processing Group

Electrical and Electronic Engineering

Imperial College London

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2012 August



Abstract

Determining the geometry of an acoustic enclosure using microphone arrays

has become an active area of research. Knowledge gained about the acoustic

environment, such as the location of reflectors, can be advantageous for

applications such as sound source localization, dereverberation and adaptive

echo cancellation by assisting in tracking environment changes and helping

the initialization of such algorithms.

A methodology to blindly infer the geometry of an acoustic enclosure by es-

timating the location of reflective surfaces based on acoustic measurements

using an arbitrary array geometry is developed and analyzed. The start-

ing point of this work considers a geometric constraint, valid both in two

and three-dimensions, that converts time-of-arrival and time-difference-of-

arrival information into elliptical constraints about the location of reflectors.

Multiple constraints are combined to yield the line or plane parameters of

the reflectors by minimizing a specific cost function in the least-squares

sense. An iterative constrained least-squares estimator, along with a closed-

form estimator, that performs optimally in a noise-free scenario, solve the

associated common tangent estimation problem that arises from the geo-

metric constraint. Additionally, a Hough transform based data fusion and

estimation technique, that considers acquisitions from multiple source po-

sitions, refines the reflector localization even in adverse conditions.

An extension to the geometric inference framework, that includes the esti-

mation of the actual speed of sound to improve the accuracy under temper-

ature variations, is presented that also reduces the required prior informa-

tion needed such that only relative microphone positions in the array are

required for the localization of acoustic reflectors. Simulated and real-world

experiments demonstrate the feasibility of the proposed method.
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1

Introduction

T
HE word acoustic is derived from the Greek word ἀκουστικός (akoustikos),

meaning “pertaining to hearing,” from ἀκουστός (akoustos), meaning “heard,

audible,” in turn derived from ἀκούω (akouo), i.e. the verb “I hear.”

Acoustics, and more specifically room acoustics in this work, refers to the study

of sound propagation in closed spaces. Fundamentally, the topic of acoustics encom-

passes the production of sound, the propagation of sound, and the reception of sound.

Historically, the study of acoustics is an intrinsically interdisciplinary scientific area,

that draws together disciplines such as mathematics, physics, engineering, medicine,

psychology, physiology, architecture, general aesthetics, and musical theory.

According to the Physics and Astronomy Classification Scheme (PACS) [4], depicted

in Table 1.1, there are three main branches that deal with the study of acoustics, viz.,

physical acoustics, biological acoustics and acoustical engineering. The main emphasis

of the work presented here lies within the latter category, i.e. acoustical engineering,

and in particular the studies of room acoustics.

The main contribution of this work, is the development of a novel method for lo-

calizing acoustic reflectors, such as walls and furniture, in an acoustic environment,

e.g. a conference room, based on acoustic measurements using array signal processing

techniques.

1



1. INTRODUCTION

Table 1.1: PACS classification system: physical acoustics, biological acoustics and acous-

tical engineering [4].

Physical Acoustics Biological Acoustics Acoustical engineering

Acoustic theory Bioacoustics Acoustic measurements

Aeroacoustics Musical acoustics Acoustic signal processing

General linear acoustics Physiological acoustics Architectural acoustics

Nonlinear acoustics Psychoacoustics Environmental acoustics

Structural acoustics Speech communication Transduction

Underwater sound Ultrasonics

Room acoustics

Motivated by the echolocation that bats and dolphins use to navigate their sur-

roundings, a framework is established that uses three microphones (or correspondingly

four in 3-D) arranged at random (but known) positions inside a room to algorithmically

estimate the location of reflectors. In other words, the precise shape of the room is ob-

tained. The relationship between the physical surroundings and the echo-propagation

patterns of sound are formulated and analysed from a mathematically geometric view-

point. The sound emanating from a possibly moving sound source is captured with a set

of microphones that are placed at known but arbitrary positions. From the recording

of each channel timing information is extracted that relates the propagation patterns

to the geometric arrangement of the acoustic scene.

Specifically, a geometric constraint is developed, valid both in two and three-

dimensions, that converts time-of-arrival (TOA) and time-difference-of-arrival (TDOA)

information into elliptical constraints about the location of reflectors. Multiple con-

straints are combined to yield the parameters of the line or plane of reflectors by

minimizing a specific cost function in the least-squares sense.

Three different scenarios are considered: i) the source and receiver signals are syn-

chronized and the source signal is known, ii) the source and receiver signals are unsyn-

chronized and the source signal is known and iii) the source and receiver signals are

unsynchronized and the source signal consists of an unknown impulse-like sounds such

as finger-snaps or hand-claps.

2



When impulse-like signals are used (scenario iii), the estimation of TOAs and

TDOAs could be affected by errors, due to the not exactly impulsive nature of the

probing signal. TOAs or TDOAs could be affected by errors even in scenario i) and ii),

due to non-ideal emission and acquisition systems, thus degrading the accuracy of the

localization. In this work the impact of such errors is reduced by employing a template

matching filtering technique, which partially compensates for the non-impulsive nature

of the probing signal. An iterative localization method is proposed that works well

on simulated room impulse responses (RIRs). However, since it considers only a single

static source, it is often impossible to obtain a complete set of TOAs, i.e. a set that will

contain TOAs of all reflectors, in real acoustic environments. An alternate approach,

also proposed in this thesis, considers a space parametrization based on the Hough

transform and the data fusion of multiple sequential measurements, that is practical

for real environments in which higher-order reflections can arrive at the microphones

before the first-order reflections (e.g. corridor-style rooms) or when first-order reflec-

tions coming from different walls are hardly distinguishable in the impulse response

(e.g. square rooms). By considering acquisitions from multiple source positions, the

benefit of this method is studied in detail in terms of improved localization accuracy.

The methods outlined in this work are evaluated both using simulations and real-

world experiments. In both cases the proposed approach exhibits low errors with up

to millimetre accuracy. A theoretical analysis of the propagation errors is also given.

The rest of the thesis is organized as follows: the remainder of this chapter outlines

the historical development of the scientific field of acoustics along with an overview

of related state-of-the-art approaches in room acoustics, array signal processing and

geometry reconstruction. Chapter 2 outlines relevant background material regarding

system identification, room acoustics, sound source localization and line estimation

techniques. Chapter 3 introduces the problem formulation and the system model along

with the geometric constraint for reflector localization. Chapter 4 considers the problem

of reflector localization in two-dimensions and introduces the estimator along with

a theoretical error propagation analysis and experimental results. In Chapter 5 the

reflector localization estimator is described for the three-dimensional case along with

the appropriate error propagation analysis and experimental verification. Chapter 6

3



1. INTRODUCTION

discuss potential applications and suggest directions for future work. Finally, Chapter 7

summarizes the methods used in this work.

Relevant Publications

1. P. Annibale, F. Antonacci, P. Bestagini, A. Brutti, A. Canclini, L. Cristofore-

tti, E.A.P. Habets, J. Filos, W. Kellermann, K. Kowalczyk, A. Lombard, E.

Mabande, D. Markovic, P.A. Naylor, M. Omologo, R. Rabenstein, A. Sarti, P.

Svaizer and M.R.P. Thomas, “The SCENIC Project: Space-Time Audio Process-

ing for Environment-Aware Acoustic Sensing and Rendering,” the Proc. of the

Audio Engineering Society (AES) 131st Convention, New York, USA, October

20 - 23, 2011.

1.1 History of Acoustics

As noted by Robert B. Lindsay in his historical account of the science of acoustics in

[5], the insight of “the evolution of the concepts basic to a given branch of science can

often suggest useful ways of approaching current experience.” It is therefore of vital

importance to analyse the roots and evolution of the science of acoustics in order to

place the concepts presented in this manuscript into context.

According to [5], acoustics occupy a “somewhat anomalous position in the hierarchy

of the sciences.” The scientific area of acoustics, perhaps closely resembling the school

of musical thought, does not deal with a continuous and clearly marked out body of

source material and is “confronted instead with a bewildering diversity of ideas” [6].

In Ancient Greece, the study of music1, and consequently acoustics, was part of the

quadrivium2 consisting of arithmetic, geometry, astronomy and music. It can therefore

be seen as an interdisciplinary science, closely related to the other three mathematical

disciplines. The history of musical thought and acoustics coincide in part with num-

berless branches of historical study, including those more general disciplines such as

cultural history, the history of philosophy, and intellectual history [6]. This complex

1Music can be understood in this context as musica scientia, i.e. the science of music, or in other

words acoustics.
2The word is Latin, meaning “the four ways” and was referred to as such during the Renaissance

Period.
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1.1 History of Acoustics

state of affairs is “undoubtedly due to the peculiarities of music itself; existing in inti-

mate relationship with almost every aspect of human activity, music could hardly give

rise to an isolated or well-defined area of thought” [6]. Acoustics and music are in-

trinsically linked with historical and non-historical disciplines, subjective and analytic

and systematic ideas, and, perhaps like the design and construction of musical instru-

ments, is not only a “technical or scientific discipline but a sort of craft, or an ‘art’ in

the classical meaning of this word” [7]. During the past century, however, acoustics,

and more specifically room acoustics, have become an exact science. Consequently, the

work presented in this manuscript follows the practice of rigorous scientific analysis and

does not ponder the different historical interpretations of music and acoustics over the

centuries. The analogies to ‘art’ mentioned previously merely serve as a hint into the

intricacies surrounding the historical development of music and acoustics.

Historically speaking, the problems of acoustics are most conveniently divided into

three main groups: viz., the production of sound, the propagation of sound, and the

reception of sound [5]. The following two sections closely follow Lindsay’s historical

overview but expand on certain areas of the material given in [5] while omitting other

aspects enumerated in that work, most notably pertaining to the developments on the

reception of sound.

1.1.1 Production of Sound

It is usually assumed that the first Greek philosopher to study the origin of musical

sounds was Pythagoras of Samos (Πυθαγόρας ὁ Σάμιος) who established his school

in Crotone in southern Italy in the 6th century B.C. According to the knowledge in

the antiquity and the writings on music of the Roman philosopher Boethius in the

6th century A.D., it was Pythagoras who discovered the relationship between musical

notes and mathematical equations. This radical discovery paved the way for a scientific

approach of quantifying music using mathematical principles [8] and as claimed by

Werner Heisenberg ranks amongst the strongest impulses of scientific thought [8]. The

relationship between pitch and the frequency of vibration of the sound-producing object

in a modern scientific context dates back to the work of Galileo Galilei published in

1638 [9]. However, it is often argued that Galileo’s contribution to the mechanics of

vibration has been exaggerated and that Isaac Beeckman had published his work on the

vibration of strings as early as 1618 [5]. Even earlier than Beeckman was the Italian,
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Giovanni Battista Benedetti, who in a work on musical intervals, published in Turin in

1585, stated the equality between the ratio of pitches and the ratio of the frequencies of

the vibrating motions corresponding to the production of the sounds. More elaborate

studies, based on empirical observations of the vibrations of a stretched string, were

published by Marin Mersenne in 1625 [10].

Robert Hooke later experimentally showed the connection between the frequency of

vibration and pitch [11], further deepened by the studies of Joseph Sauveur in his sem-

inal work published in 1701 [12]. Sauveur also experimented with strings but the first

to provide a strictly dynamical solution of the vibrating string model was Brook Taylor

in [13]. Fundamental to the progress of acoustics as an exact science at the time was a

mathematical description of the motion of continuous media. This breakthrough came

in 1822 with J. B. J. Fourier’s analytical theory of heat that described the possibility

of expressing any arbitrary function in terms of an infinite series of sines and cosines

[14]. The problem of the vibrating string was also studied by J. L. Lagrange in the

18th century and his model was subsequently adopted by J. W. Strutt Lord Rayleigh

in his seminal work Theory of Sound [15, 16] that continues to live on in most modern

textbooks on the subject of mechanics and acoustics [5].

The mathematical scientists of that century of course realised that other solid bodies

besides strings emitted sound when disturbed. The theory of elasticity, including elastic

vibrations giving rise to sound, were studied by Leonhard Euler and Daniel Bernoulli

as early as 1734 [17]. The mathematical methods they used were later systemised and

extended by Lord Rayleigh in [15, 16]. The corresponding analytical solution for the

vibrations of a solid elastic plate were published by E. F. F. Chladni in 1787 [18]. Some

exact forms used in the work by Chladni defied analysis for many years and it was not

until 1850 that G. R. Kirchhoff gave a more accurate theory [19]. To this day, studying

the vibrational pattern of an airplane fuselage, for example, still supports research on

the vibrations of plates and solid shells of various shapes.

The ability to excite vibrations in media of arbitrary nature, size, and shape and

with arbitrary frequency over a wide range had to await the development of electroa-

coustics [20], largely a product of 20th-century research [5]. The historical account

of the production of sound continues at this point with the evolution of electroacous-

tics and the contributions of Lord Rayleigh that mark the end of the classical era in

acoustics and the beginning of the modern age of sound.

6



1.1 History of Acoustics

1.1.2 Propagation of Sound

From the earliest scientific records, dating back to the Greek philosopher and poly-

math Aristotle (Ἀριστοτέλης) of the 4th century B.C., the predominant idea of the

propagation of sound relied on some activity of the air from one point in space to the

other, i.e. involving actual motion of air. Aristotle understood that sound consisted

of contractions and expansions of air but failed to realize that the sound velocity was

independent of the pitch of the sound and consequently taught his following that high

pitched notes were transmitted faster than low pitched notes [5]. The Roman architec-

tural engineer, Marcus Vitruvius Pollio of the first century B.C., compared the wave

theory of sound to analogies that he drew with surface waves on water. Vitruvius wrote

a treatise on the acoustic properties of ancient theaters that included a discussion on

interference, echoes, and reverberation, and is credited for this as the forefather of

modern architectural acoustics.

Even during the Galilean period, Pierre Gassendi, [10], attributed the propagation of

sound to the emission of a stream of “very small, invisible particles from the sounding

body, which, after moving through the air, are able somehow to affect the ear” [5].

During that time, and until the 18th century, Gassendi [10], Mersenne [10] and W.

Derham [21], along with a group of scholars commissioned by the Academy of Sciences

of Paris, conducted experiments to estimate the propagation velocity of sound in air as

a sound-transmitting medium.

The measurement of the velocity of sound in solid media was first considered by

Chladni and the velocity of sound in liquids by Daniel Colladon in 1826. Although the

propagation of sound through air had already been compared with the motion of ripples

on the surface of water as early as the first century B.C. by Vitruvius, the first attempt

to theorize, in a mathematical form, the wave theory of sound came from Sir Isaac

Newton in his famous Principia mathematica [22]. Newton compared the transmission

of sound with pulses produced by a vibrating body moving the adjacent portions of the

surrounding medium that in turn move those adjacent to themselves and so forth. The

derivations of Newton earned heavy criticism by contemporaries such as Euler, John

Bernoulli and Lagrange and it became clear “that the problem of sound propagation

would never be completely solved until the wave equation for sound waves in a fluid

could be set up and solved” [5]. An analogy to the equation for a continuous string,
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but applied to sound waves, was given by Euler, who laid the foundation for the theory

of the propagation of sound waves in air. During the same time, Lagrange, in turn,

revised Newton’s reasoning and generalized it to the case of sound waves of arbitrary

character as distinct from simple harmonic waves [5].

The propagation of a compressional wave in a three-dimensional fluid medium was

first considered by S. D. Poisson in 1819 [23] but it remained, however, for Hermann

von Helmholtz to give in 1860 “a more thorough treatment of this whole problem” [5].

The problem of the reflection and transmission of a plane sound wave incident

obliquely on the boundary of two different fluids was solved by George Green in 1838

[24]. Note that all equations for the wave propagation up to this point are assumed

to be linear. It was not until the middle of the 19th century that nonlinear acoustic-

wave propagation was taken up by the German mathematician Georg F. B. Riemann

[25] and British mathematician and physicist S. Earnshaw [26] who both “more or less

independently investigated certain special cases” [5].

The historical account of the propagation of sound continues at this point with the

development of the theory of shock waves and the contributions of G. G. Stokes, J. Chal-

lis, W. J. M. Rankine, H. Hugoniot and Lord Rayleigh, amongst others. The interested

reader is referred to [27] for detailed bibliographical references of the aforementioned

authors and the 20th-century development on the subject of nonlinear acoustics.

1.2 Literature Review

Following the historical overview on the development of acoustics over the centuries, the

aim of this section is to summarise related research on the subject of modern acoustics

with particular emphasis placed on research related to room acoustics. Broadly speak-

ing, the cutoff point between what is considered modern era acoustics and the classical

era, is marked by Lord Rayleigh’s amalgamation of knowledge in the two volumes of the

Theory of Sound [15, 16] published in 1894 and 1896 respectively. The work described

in these two volumes is still relevant to this day, and as pointed out above, marks the

end of the classical era of acoustics and the dawn of modern acoustics.

8



1.2 Literature Review

1.2.1 Room Acoustics

The problems imposed on an audio system by the local environment in which it is

employed have long been acknowledged [28, 29]. One of the earliest publications re-

lated to modern-day room acoustics is Wallace C. Sabine’s groundbreaking work on

architectural acoustics [30] published in 1922. Sabine gathered extensive amounts of

data on existing acoustic spaces and from this information was able to derive empirical

guidelines to aid future design work. He is credited for the development of the theories

of reverberation leading to an equation for calculating the reverberation time that is

ultimately linked to the shape of the room. This was in part aided by the derivation

of the equation of decaying sound in a room by W. S. Franklin [31].

By 1930 the method of images was used to perform an analytical study of the

decay of sound energy in a room [32]. This approach, where enclosure boundaries are

treated as ‘acoustic mirrors,’ has been used extensively in the search for a “greater

understanding of the requirements of a space in which sound is to be controlled” [33].

The first pieces of research discussing the image-source approach for calculating sound

fields in simple rectilinear enclosures were given by Gibbs and Jones [34] and Allen and

Berkley [35] in 1972 and 1979 respectively. The image-source model was later extended

to the case of arbitrary polyhedra [36] and higher-order reflections [37].

An alternative, but closely related, approach called ray tracing, where sound ‘rays’

are considered to radiate from a source in all directions, was established following the

development of the method of images [38]. Examples of publications that estimate the

acoustical room response using ray tracing techniques are [39, 40].

More recently, image theory and ray theory methods were extended by finite-element

analysis that allow the modeling of more complex geometries, non-uniform absorption

and multiple sources [33, 41]. A more detailed overview of these studies is given in

Chapter 2.

Having described the simulation, or prediction, of room impulse responses, focus is

shifted towards the measurement of such room impulse responses, that are also referred

to as room transfer functions in this context. A comparative study of the various

measurement techniques is given in [42] that includes methods such as maximum-length

sequences and time-stretched pulses [43–48]. Additionally, other related approaches,

that include the modeling and signal processing of the sound source and the fusion of
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simulated or measured visual cues together with acoustic measurements, are given in

for example [41, 49–54].

Ultimately, both the simulation and measurement of the response of a room lead to a

better understanding of the effects the environment imposes on the wave propagation of

source signals and the behaviour of space-time processing algorithms such as acoustic

echo cancellers, speech enhancement algorithms or dereverberation algorithms. It is

often impossible to take such knowledge into account in an a priori way, such as when

the acoustics of an existing room need to be improved after its construction. Evidently,

the acoustic behaviour of an enclosure should be taken into account by the architect

before construction [55–57], however it is often important to achieve acoustic control

of an existing acoustic space by electroacoustic means. Such approaches are important

for repairing disturbing deficiencies in the acoustics of a given enclosure.

These approaches are based on “acoustic holography” where the sound field is re-

constructed using direct and reflected wave fields with desired wavefront properties at

each moment of time [58]. Ultimately, these reconstructed sound fields cannot be dis-

tinguished from true sound fields. Examples of such wave field synthesis approaches

are given in [58–62] and were first developed in 1988 by A. J. Berkhout. Contrary to

traditional spatialization techniques such as stereo or surround sound, the localization

of virtual sources in wave field synthesis does not depend on or change with the lis-

tener’s position. Other room-loudspeaker control techniques are generally referred to

as local room equalization [29].

1.2.2 Array Signal Processing

Sensor array signal processing emerged as an active area of research as a consequence of

the second world-war. It was centered on the “ability to fuse data collected at several

sensors in order to carry out a given estimation task (space-time processing)” [63].

The first such space-time processing tasks on an array of sensors were based on spatial

filtering or beamforming and later adaptive beamforming and time delay estimation

techniques [63]. The extension of the time-delay estimation methods to more than one

signal and the limited resolution of beamforming renewed interest in statistical signal

processing [64] and the emergence of the parameter estimation approach as an active

area of research [63]. Early applications focused on maximum likelihood estimators

(MLE) [65, 66]. The introduction of subspace-based estimation techniques, [67] such
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as MUSIC [68] and ESPRIT [69–71] that separate the signal and noise subspaces,

marked the beginning of a new era in the sensor array signal processing literature [63].

Alternative tracking and localization algorithms emerged, particularly in the area of

radar and sonar signal processing, suitable for tracking dynamic signals. These include

approaches based on Kalman filtering [72–76], particle filtering [77] and even H∞ filters

[78].

Delay estimation problems related to room acoustics using sensor arrays of arbitrary

form generally fall in two categories: viz. likelihood-based and least-squares using either

iterative or closed-form estimators [79, 80]. The first least-squares approach that solved

the hyperbolic fix problem [81], based on range difference measurements, appeared in

1972 using an estimator called plane intersection [82]. Maximum likelihood methods for

time delay estimation grew in popularity because of the proven asymptotic consistency

and efficiency of the MLE [83–85]. The derivations of the Cramer-Rao lower bound

for some of these delay estimation problems are presented in [85, 86]. Unfortunately,

because the number of microphones in an array is usually limited, the MLE is not

optimal since the large-sample problem turns into a finite-sample problem [80].

Later, closed-form estimators [87–89] gained wider attention because of their ap-

plicability for real-time applications [80]. On basis of the plane intersection estimator

a series of highly effective closed-form least-squares estimators appeared such as the

spherical-interpolation (SI) method [90–92]. However, these SI estimators were not

optimal in the least-squares sense. A noniterative SI estimator that approximated the

MLE was proposed in 1994 by Chan and Ho [93]. This method improved the SI es-

timation with a second LS estimator. A linear-correction LS approach [80] appeared

afterwards along with other constrained LS estimators [94]. Sensor placement and

acoustic source estimators relevant to room acoustics were studied in [95–97].

1.2.3 Geometry Reconstruction

Inferring the geometry of a room deals with the problem of localizing acoustic re-

flectors, such as the walls or furniture, in an enclosure using acoustic measurements.

Geometrical acoustic methods appeared relatively recently in the research literature.

First examples did not make use of acoustic signals in the audible range but focused

on ultrasonic transducers [98]. Often, more important than the estimation of the ge-

ometry of the acoustic enclosure were the acoustic parameters of the room [99, 100].
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Some initial room geometry reconstruction and analysis approaches relied on visual

cues such as visual cameras [101] or a mixed approach using both visual and audio

cameras [102]. The first room modeling or acoustic scene reconstruction methods using

controlled emissions appeared only in this decade [103]. The authors in [103] made use

of a loudspeaker rotating on a circular pattern emitting a controlled noise that was

in turn captured by a microphone in the centre of the circle. This allowed the infer-

ence of reflectors (one at a time) using a likelihood map. Alternative methods using

microphone arrays [104, 105] and spherical microphone arrays [106] followed. These

were most commonly based on beamforming approaches [107]. The authors in [108]

proposed the estimation of reflective surfaces from continuous signals as an alternative

to room impulse response measurements but later also adopted the impulse response

based approach [109]. Interestingly, the authors in [110] claimed that it was possible

to reconstruct the geometry of an acoustic enclosure from a single acoustic impulse

response (AIR), which is in contrast to most of the aforementioned works. While this

is indeed true for most convex polygonal geometries there are certain modeling assump-

tions that are not fully satisfiable. The key point in this paper is that the source and

sensor are co-located. It turns out to be a straightforward problem in this very special

case because one of the unknowns (the relative displacement of source and sensor) is

eliminated. The work in [110] was later extended in [111, 112].

A geometric approach on which this manuscript is based on, for localizing acoustic

reflectors in a room, was first proposed in [113]. A single microphone and a moving

sound source were used to obtain the time of arrivals (TOAs) of the reflections assum-

ing that the source and receiver were synchronized. The TOA information was used

to form a set of elliptical constraints on the possible locations of the reflector. The

common tangent of these constraints was shown to correspond to the reflector location

that can be found by minimizing a specific cost function in the least-squares sense. In

[114] the authors considered the case when measurements were unsynchronized. In this

case, the TOAs cannot be found directly, and an additional step was proposed that

estimates TOAs from the TDOA estimates. A technique for the estimation of multiple

reflectors from a single set of measurements was also proposed, that iteratively mini-

mizes a global solution space. More recently, the authors proposed a robust inference

method [115] utilizing a closed-form solution to minimize the cost function. In addi-

tion, a parametrization based on the Hough transform was introduced that increases

12



1.2 Literature Review

the robustness to errors in the TOA estimation. This work was extended in [3, 116] to

derive an exact solution for the minimization of a cost function combining an arbitrary

number of quadratic constraints and additionally outlining a method for the analytic

prediction of reflector localization accuracy.

The development of the geometric approach, outlined in the previous paragraph,

considers the problem of reflector localization in two-dimensions. An extension of the

geometric approach to three-dimensions was first proposed in [117]. This approach in

turn was complemented in [118] with the Hough transform parametrization and finally

in [119] with an exact minimization approach.
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1.3 Statement of Originality

The author believes the following points represent original contributions:

• A geometric constraint, formulated using linear algebra, that converts TOA and

TDOA information into elliptical constraints about the location of reflectors. The

ellipse parametrization contains a mathematical proof not found in the scientific

literature to date.

• The removal of necessary synchronization between source and receivers, due to

the estimation of the source position as a first step, and the subsequent conversion

of TDOA information into TOAs.

• The estimation of multiple reflectors, present in the acoustic environment, from

only one acoustic measurement that gives the exact solution using simulated RIRs.

• A robust inference method utilizing a closed-form solution to minimize the cost

function along with a parametrization based on the Hough transform that local-

izes multiple reflectors and increases the robustness to errors in the TOA estima-

tion when using real-world data.

• An extension of the geometric approach to three-dimensions by combining mul-

tiple two-dimensional orthogonal line parameters.

• An analytical prediction of the impact of errors on measurements on the reflector

localization error both in two and three-dimensions.

• An application of the geometric inference framework to environments that are

exposed to strong temperature variations. Variations in the ambient temperature

impair the accuracy of the TOA estimation process due to local variations in the

speed of sound.
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Background

Introduction

T
HE purpose of this chapter is to introduce the concepts of system identification,

simulation and measurement of room impulse responses, source localization

and line detection. The former three concepts are developed from a signal

processing perspective while the latter is based on a computer vision/image processing

paradigm.

In the system identification process, the single-input multiple-output (SIMO) case is

considered, adhering to a formulation that is related to speech processing in reverberant

environments. Broadly speaking, four different classes or semantics of system identifi-

cation are used throughout this work, viz., i) supervised identification using controlled

input signals (e.g. MLS, TSP); ii) supervised identification using uncontrolled input

signals (e.g. AEC algorithms); iii) unsupervised identification using controlled input

signals (e.g. BSI algorithms such as NMCFLMS); iv) unsupervised identification using

uncontrolled input signals (e.g. using an impulsive source signal, such as the snapping

of fingers, to directly estimate an impulse response by using a matched filter approach

that is not, strictly speaking, system identification but more of a blind deconvolution

approach aimed at improving the temporal spread caused by the unknown excitation

signal).

As a next step, the mathematical formulation of the wave equation is introduced.

The solution to the wave equation yields an impulse response as calculated between a

static sound source and a receiver. However, due to the analytical form of the wave
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equation, numerical methods need to be used to simulate a Room Impulse Response

(RIR) in a computer environment. An overview of different approaches for simulating

such RIRs is given and their appropriateness is discussed with respect to the methods

established in this work.

The concept of source localization is then introduced, based on two existing ap-

proaches found in the scientific literature. The source localization methodology can be

used to remove a priori assumptions about the estimated RIRs.

Finally, a line parameter estimation methodology is introduced, based on an ap-

proach originally developed in the field of image processing. Estimating the parameters

of a line segment by using the coordinate points or pixels of an image is achieved by

means of the Hough transform.

The chapter is organized as follows: Section 2.1 outlines the system identification

problem, where we distinguish between the supervised and unsupervised identification

case. Section 2.2 introduces the wave equation and discusses methods for approximating

the analytical solution. Particular emphasis is drawn towards the method of images,

for simulating RIRs and methods for obtaining Acoustic Impulse Responses (AIRs) in

a real room. Section 2.3 outlines the source localization problem, that can be used

to identify time-of-arrivals (TOAs) from unsynchronized measurements by considering

the more readily available time-difference-of-arrival (TDOA) information calculated

between sensor pairs. Finally, in Section 2.4 the Hough transform is introduced.

2.1 System Identification

System identification is the process of establishing a mathematical model of an un-

known dynamic system by analyzing the relationship between its input and output

data. This problem is at the core of a large variety of signal processing and commu-

nications applications. Identification essentially means developing an understanding of

how the input signal is transmitted, processed and distorted by the system [120, 121].

Since in practice the audio channel, representing the wave propagation of sound

inside an acoustic enclosure, is generally non-stationary and usually has a long impulse

response, determining its characteristics is not easy, even when the input signal is

known, such as in the case of acoustic echo cancellation. However, in many other cases,

e.g., acoustic dereverberation, wireless communications, time delay estimation, etc.,
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the input is either unobservable (i.e. it cannot be seen by the signal processor) or very

expensive to acquire; the choice inevitably comes down to a blind method, and as a

result, the channels are more difficult to estimate [121].
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Figure 2.1: Illustration of the relationships between the input s(n) and the observations

xi(n) in a single-input multiple-output FIR system.

Consider a Single-Input Multiple-Output (SIMO) Finite Impulse Response (FIR)

linear system as shown in Fig. 2.1. The ith channel output signal xi(n) at sample n is

the result of a linear convolution between the source signal s(n) and the corresponding

channel impulse response hi, corrupted by an additive background noise bi(n):

xi(n) = hi ∗ s(n) + bi(n), i = 0, 1, · · · ,M − 1, (2.1)

whereM is the number of observations (i.e. channels) and the additive noise is assumed

to be zero-mean and uncorrelated with the source signal. The ith impulse response with

L coefficients can be expressed as

hi(n) = [hi,0(n) hi,1(n) · · · hi,L−1(n)]
T , i = 0, 1, · · · ,M − 1, (2.2)

Since the the impulse responses are assumed to be slowly time-varying, hi is indepen-

dent of n [122]. The ith sensor signal (2.1) can be written in vector form as

xi(n) = His(n) + bi(n), (2.3)
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where

xi(n) = [xi(n) xi(n− 1) · · · xi(n− L+ 1)]T ,

Hi =











hi,0 · · · hi,L−1 · · · · · · 0
0 hi,0 · · · hi,L−1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · hi,0 · · · hi,L−1











,

s(n) = [s(n) s(n− 1) · · · s(n− 2L+ 2)]T ,

bi(n) = [bi(n) bi(n − 1) · · · bi(n− L+ 1)]T ,

with Hi(n) denoting the L × (2L − 1) convolution matrix (also referred to as the

Sylvester matrix) for the ith channel. By concatenating all M outputs of (2.3), a

system of equations [122]

x(n) = Hs(n) + b(n), (2.4)

can be obtained where x =
[

xT
0 xT

1 · · · xT
M−1

]T
, H =

[

HT
0 HT

1 · · · HT
M−1

]T
, and

b =
[

bT
0 bT

1 · · · bT
M−1

]T
. The problem of Blind System Identification (BSI) is to find

h = [hT
0 hT

1 · · · hT
M−1]

T using only x up to a nonzero scale factor across all channels

[1]. This scale factor is irrelevant in most acoustic signal processing applications. An

acoustic enclosure (i.e. room) can generally be regarded as a stable system with the

coefficients of h tending to zero with increasing tap number [2].

According to [123], two conditions are necessary and sufficient for blind identifica-

bility of a SIMO system using BSI algorithms [1]:

1. Channel diversity : The channel transfer functions do not share any common zeros

in their transfer functions [124], i.e., the polynomials formed by hi (0 ≤ i ≤ M)

are co-prime;

2. Full rank condition: The autocorrelation matrix of the input signalRss = E
{

s(n)sT (n)
}

is of full rank, where E { · } denotes the mathematical expectation operator, such

that the SIMO system can be fully excited. This can be understood by first

expressing, for the noiseless case [2],

S(n)hi(n) = xi(n), i = 0, 1, · · · ,M − 1, (2.5)
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where S(n) is defined as the L× L Hankel matrix given by

S(n) =











s(n) s(n− 1) · · · s(n− L+ 1)
s(n− 1) s(n− 2) · · · s(n− L)

...
... · · · ...

s(n− L+ 1) s(n− L) · · · s(n− 2L+ 2)











. (2.6)

If S(n) is rank deficient, then (2.5) will not have a unique solution even if the

source signal s(n) is known.

In this work we distinguish between supervised and unsupervised methods. Supervised

system identification methods rely on either the system function or the input signal

to be known while in unsupervised system identification methods the channel impulse

responses hi (0 ≤ i ≤ M) are estimated from the observations xi without utilizing the

source signal s(n) [121]. Supervised methods are presented in the next section, while

the interested reader should refer to [121, 125, 126] for an overview of blind adaptive

algorithms in the context of estimating acoustic channels such as the Normalized Mul-

tichannel Frequency Domain Least Mean Squares (NMCFLMS) algorithm [127] and

its robust implementation (RNMCFLMS) [128]. Other approaches to the BSI prob-

lem can be classified as least-squares methods [123, 129], subspace methods [130] and

maximum-likelihood methods [131].

2.2 Room Acoustics

The science of room acoustics offers an understanding of the physical process by which

sound waves propagate in enclosed spaces and the manner in which acoustic reflections

combine to give the effect of what is referred to as reverberation [2]. This section

aims to summarize some of the main concepts of room acoustics that are relevant to

geometric room inference.

In principle, any complex sound field is considered as a superposition of plane waves.

The propagation of such waves within a room can be considered to be a linear process

after applying several simplifications including the assumptions that the medium in

which the waves travel is homogenous, at rest, and that its characteristics are inde-

pendent of the wave amplitude [7]. Then the propagation of acoustic waves through a

material can be described by the second order partial differential wave equation. The
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wave equation describes the evolution of sound pressure p(q, t), without any driving

source, as a function of position q = (qx, qy, qx) and time t and is given by [2, 132]

∇2p(q, t)− 1

c
2

∂2p(q, t)

∂t2
= 0, (2.7)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.8)

is the Laplacian expressed in the Cartesian coordinates (x, y, z), and c is the speed of

sound. The wave equation accurately describes the pressure in a realistic sound field

provided that the wave amplitude is small such that |p(q, t)| ≪ ρ0c
2 where ρ0 is the

density of the propagation medium at equilibrium.

In order to calculate the sound field emanating from a source in a specific room

we need an additional source function in (2.7) and boundary conditions that describe

the sound reflection and absorption at the walls [133]. Let s(q, t) denote the source

function, then the wave equation is given by

∇2p(q, t)− 1

c
2

∂2p(q, t)

∂t2
= −s(q, t). (2.9)

The wave equation can also be considered in the frequency domain. The Fourier trans-

form of sound pressure p(q, t) is given by

P (q;ω) , F {p(q, t)} (ω) =
∫ ∞

−∞
p(q, t)e−jωt dt, (2.10)

where j =
√
−1. The Fourier transform of (2.7) gives rise to the time-independent

Helmholtz equation

∇2P (q;ω) + k2P (q;ω) = 0, (2.11)

where

k =
ω

c

=
2π

λ

is the wavenumber, ω is the angular frequency and λ is the wavelength.

If there is a harmonic disturbance which is producing the waves, for which the

source function is given by s(q, t) = S(q;ω)ejωt then the Helmholtz equation is given

by

∇2P (q;ω) + k2P (q;ω) = −S(q;ω). (2.12)
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2.2 Room Acoustics

It is often convenient to express the sound pressure at position q, originating from

a single source in a room, as the sum of the direct (Pd(q;ω)) and reverberant (Pr(q;ω))

components such that [7, 134]:

P (q;ω) = Pd(q;ω) + Pr(q;ω). (2.13)

Consider a plane wave-like approximation to the solution of (2.12) and write

P (ω) = Ae−jωτ , (2.14)

where A represents a slowly changing wave amplitude and ωτ represent the wavefronts;

analogously, the surfaces with constant τ are called timefronts (or phase function). By

placing (2.14) into the form of (2.12), considering the high frequency approximation

∇2A
A

≪ k2 and separating real and imaginary terms of the equation, one can obtain the

Eikonal equation

(∇τ)2 =
1

c
2
, (2.15)

and the transport equation

2 (∇A · ∇τ) +A∇2τ = 0. (2.16)

There are different ways to solve the eikonal equation. In this work we consider the ray

tracing approach. The limitation of this approach is that the phase function (τ) is given

only along the ray, not on a uniform grid. Furthermore, the equation is fundamentally

valid only in the limit ω → ∞. This implies that the eikonal equation (and many other

ray-tracing techniques) may only be used when variations in velocity are negligible on

spatial scales that are comparable to the wavelengths of the propagating waves.

2.2.1 Simulating Room Acoustics

The previous section describes, mathematically, the sound propagation in a room using

the wave equation. Solving the wave equation (2.9) yields an impulse response from a

source to a microphone. However, describing the impulse response in an analytical form

is often not possible and consequently the solution must be approximated numerically.

With reference to Figure 2.2, there are three classes of models that approximate the

impulse responses: wave-based models, ray-based models and statistical models.
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Computational Modelling 
of Room Acoustics

Wave based 
Modelling

Ray based 
Modelling

Statistical 
Modelling

SRARay Tracing
Image 
Source 
Method

Difference
Methods

Elements 
Methods

FEM BEM

Figure 2.2: Methods for modeling and simulating room acoustics [1].

Wave-based methods, such as the Finite Element Method (FEM) [135], Boundary

Element Method (BEM) [136], and Finite-Difference Time-Domain (FTDT) methods

[137], are generally the most accurate at a penalty of high computational complex-

ity. In wave-based methods it is usually highly challenging to incorporate appropriate

boundary conditions and geometrical descriptions of the objects within the acoustic

environment [2].

Ray-based methods are based on geometrical acoustics that can be simplified into

a form in which sound waves are represented by rays and reflections are specular. In

ray-tracing methods the sound power emitted by a sound source is described by a finite

number of rays. These rays propagate through space and are reflected after every

collision with the room boundaries [133]. It is advantageous to control the number of

rays used in a simulation, which can be of the order 105 or more, by limiting the model

to include only first and second order reflections in order to maintain the computational

requirement of the simulation at a modest level [2]. A discussion into the accuracy of

ray-tracing methods can be found in, for example [138].

Statistical Room Acoustics (SRA) considers amplitudes and phases of all reflected

acoustic plane waves in a room as randomly distributed, forming a diffuse sound field

22



2.2 Room Acoustics

at any point in the room. Statistical modeling methods have been widely used in

aerospace, ship and the automotive industry for high frequency noise analysis and

acoustic designs. They are not suitable for auralization purposes since these methods

do not model the temporal behaviour of a sound field [133].

In this work, ray-based methods are considered, such as the source-image method,

originally proposed by Allen and Berkley [35]. It is one of the most commonly used

techniques for simulating room acoustics in the context of speech dereverberation, shar-

ing a closely related system model with the approach in this work. The image model

can be used to simulate the impulse response in a room for a given source and mi-

crophone location. Usually, a single static sound source is considered and the SIMO

approach obtained by computing FIRs that model the acoustic channels between a

source and a receiver at different positions in a rectangular room. The image method

was extended to arbitrary polyhedra with any number of sides in [36]. An illustration

of the source-image method for a two-dimensional case is depicted in Figure 2.3, where

the room is indicated with a bold rectangle. Note that in practice, the images extend

over a three-dimensional lattice [2].

Image Method

Consider a rectangular room with length, width and height given by Lx, Ly, Lz. The

sound source is located at rs , [xs ys zs] and the microphone at r , [x y z] with

respect to the origin, i.e. [0 0 0], located at one of the corners of the room. The relative

positions of the images measured with respect to the receiver position and obtained

using the walls x = 0, y = 0 and z = 0 can be written as [133]

Rp = [(1− 2q)xs − x, (1− 2j)ys − y, (1− 2k)zs − z]. (2.17)

Each of the elements in the triple p = (q, j, k) can take on values 0 or 1, resulting in

eight different combinations that specify a set P, i.e., P = {(q, j, k) : q, j, k ∈ {0, 1}}.
When the value of p is 1 in any dimension, then an image of the source in that direction

is considered. Some of these images correspond to higher order reflections. In order to

take these into account, we add the vector Rm to Rp where [133]

Rm = [2mxLx, 2myLy, 2mzLz], (2.18)
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Figure 2.3: Example image sound sources for a rectangular room [2].

where mx, my, and mz are integer values. Each of the elements of the triple m =

(mx,my,mz) takes on values from −N to +N . The reflection order related to an

image at position Rp +Rm + r is given by

Op,m = |2mx − q|+ |2my − j|+ |2mz − k| . (2.19)

The distance d between any source image and the microphone can be evaluated as the

Euclidean distance corresponding to

d = ‖Rp +Rm‖ . (2.20)

The time delay of arrival of the reflected sound ray, corresponding to any source image,

can be expressed as

τ =
d

c

=
‖Rp +Rm‖

c

. (2.21)

The impulse response for this source and microphone location can now be written as

[133]

h(r, rs, t) =
∑

p∈P

∑

m∈M

β|mx−q|
x1

β|mx|
x2

β
|my−j|
y1 β

|my |
y2 β|mz−k|

z1
β|mz |
z2

δ(t− τ)

4πd
, (2.22)
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where M = {(mx,my,mz) : −N ≤ mx,my,mz ≤ N} denotes a set that contains all

desired triples m. The quantities βx1
, βx2

, βy1 , βy2 , βz1 , and βz2 are the reflection

coefficients of the six walls. For a given N , this method computes 8(2N +1)3 different

paths. Once the impulse response has been computed from (2.22), the source signal

can be convolved with the impulse response to simulate the signal picked up by the

microphone.

It is important to note that the delays given by (2.21) do not always fall at sampling

instants. In a modification to the original method by Allen and Berkley, Peterson

suggested in [139] that each impulse in (2.22) is replaced by the impulse response of a

Hanning-windowed ideal low-pass filter of the form

δLPF(t) =

{

0.5
(

1 + cos
(

2πt
Tw

))

sinc(2πfct), for −Tw

2 < t < Tw

2

0, otherwise
, (2.23)

where Tw is the width (in time) of the impulse response, often taken as Tw = 4fs
1000 , i.e. 4

ms, and fc is the cut-off frequency of the low-pass filter, often taken as fc = fs/2. Each

impulse δ(t− τ) in (2.22) is first replaced by δLPF(t− τ) and subsequently sampled. By

doing this, true delays of arrival of the reflected signals are simulated accurately even

at the original low sampling frequency [133].

2.2.2 Impulse Response Measurement Techniques

The impulse response of a linear system can be determined by exciting the system with

a source signal, and cross-correlating the input and output. A RIR is defined as the

time domain impulse response of a room from the acoustic source to the receivers [47].

It characterizes the effect of the sound emitted by the source reaching the receiver point

on a direct path and after having been reflected and diffused by the room boundaries.

Measurements of RIRs are mostly used in architectural and building acoustics, since

they give access to the acoustical properties of a room. A second interest for highly

accurate RIR measurements arises from its application in auralization, where recorded

signals are convolved with a RIR. Measurements made for auralization are usually done

using an artificial head as receiver, i.e. there are two receiving microphones and a pair

of RIRs referred to as a binaural room impulse response (BRIR).

A comparison of supervised impulse response measurement techniques, using a Max-

imum Length Sequence (MLS) or Time-Stretched Pulse (TSP), is given in [42]. In the
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following (with slight abuse of notation but keeping consistency with the referenced

works) a quick overview of MLS and TSP is presented.

Maximum Length Sequence

Binary maximum-length sequences have certain properties that make them attractive

as excitation signals for measurements of acoustical impulse responses. Several pub-

lications [43, 140] give detailed descriptions of the theory and the implementation of

MLS measurement systems [47].

A MLS is a periodic sequence of binary numbers (±1). The magnitude of a MLS

is the same at all frequencies except at DC. Using binary sequences as measurement

signals ensures the highest possible excitation level and therefore high noise immunity.

An MLS is created by reading from a linear shift register, where defined register outputs

are summed (modulo 2) and fed back to the shift register input. MLSs are pseudo-

random noise sequences known as m-sequences in coding theory. They are generated

by the primitive polynomials over Galois1 fields of 2m elements [47]. The coefficients

of the primitive polynomials determine, which registers are combined in the feedback

structure. The length of a MLS or rather its period is L = 2m− 1 where m is the order

of the sequence. There exists several primitive polynomials and thus several sequences

of each order, while they are different in the sense of being cyclically distinct, i.e. they

cannot be matched by linear rotation. The calculation of the primitive polynomials

over Galois fields is not trivial especially for high orders [47]. In general, the linear

transfer function of a system is calculated by a division in frequency domain,

H(ω) =
Y (ω)

X(ω)
. (2.24)

In this way the excitation signal, X, is deconvolved from the system output, Y , to obtain

the transfer function of the system, H. The division with X may cause problems if the

magnitude response of the signal displays very low values at some frequencies. Hence,

it is desirable to use an excitation signal that excites all frequencies equally much, such

as an MLS. A sequence order m has to be chosen in advance depending on the expected

length of the impulse response of the measured system. The length of the sequence

L should be chosen sufficiently long to avoid time aliasing. In order to minimize the

1In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field

that contains a finite number of elements.
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amount of computation required by the cross-correlation step, the system can be excited

by a binary maximal-length sequence, and the cross correlation performed using the

fast Hadamard1 transform. In this way, only additions are required, and the number of

additions is linearithmic, i.e. 2.5 m log2 m [43] compared to m2 multiplications using

straightforward cross-correlation techniques. Measuring the impulse response using

a noise-like excitation is capable of providing much greater dynamic range than can

be obtained using an impulsive excitation. When the noise-like excitation is chosen

to be a binary maximal-length shift register sequence, several advantages accrue [43].

Furthermore, since measurements are exactly repeatable, additional improvement in

the dynamic range can be achieved by averaging together the responses of several

measurements.

Time-Stretched Pulse

This method is based on a time expansion and compression technique of an impulsive

signal [45]. The aim of using an expansion process for the excitation signal is to increase

the amount of sound power emitted for a fixed magnitude of the signal and therefore

increase the signal-to-noise ratio without increasing the nonlinearities introduced by

the measurement system [42].

The time-stretched pulse sequence was first proposed by Aoshima (ATSP) to mea-

sure transfer functions of acoustic systems, which according to [45] can be written as:

H(k) =











G(k)eipk
2

, for 0 ≤ k < N/2

G(N/2), for k = N/2

H(N − k), for N/2 < k < N

, (2.25)

where N = 2m (m is an integer), G(k) defines the power spectrum of the pulse, and

p determines the stretch of the signal. The IDFT (inverse discrete Fourier transform)

of H(k), denoted h(n), gives the time domain representation of the pulse. In order to

use the pulse to measure the transfer function over the full frequency range from dc to

fs/2 (2.25) needs to be written as

H(k) =











eipk
2

, for 0 ≤ k < N/2

1, for k = N/2

H(N − k), for N/2 < k < N

. (2.26)

1The Hadamard transform is an example of a generalized class of Fourier transforms. It performs

an orthogonal, symmetric, involutional, linear operation on 2m real (or complex) numbers.
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The absolute value of this function is constant 1 for all k. The IDFT of (2.26), i.e.,

h(n) gives the signal in the time domain [45].

After the response of a system to this signal is measured, this stretched response is

compressed again by using an inverse filter of h(n), so that the impulse response of the

system is obtained. The frequency domain representation H−1(k) of the inverse filter

h−1(n) is defined as

H−1(k) =











e−ipk2 , for 0 ≤ k < N/2

1, for k = N/2

H × (N − k), for N/2 < k < N

. (2.27)

The steps to obtain the impulse response of the system are outlined as follows:

1. The DFT for the stretched response to the signal is calculated;

2. Then result of the DFT and the inverse H−1(k) from (2.27) are multiplied;

3. Finally, the IDFT for the products is calculated to obtain the desired impulse

response.

Note, that the inverse filter in the time domain is obtained by reading the signal in

reverse order, i.e. h−1(n) = h(N − n).

According to [42], there are certain advantages in choosing one method over the

other, e.g. the TSP method with its particular timbre and high optimum output signal

level, needed to mask out the ambient noise, make it unsuitable for occupied rooms.

The drawback of the MLS method, on the other hand, lies in the tedious calibration

that has to be carried out to obtain optimum results and in the appearance of spurious

peaks (distortion peaks) due to the inherent nonlinearities of the measurement system.

2.3 Source Localization

Estimating the relative distance between sensors and source, i.e. the source range, along

with the absolute position of the source (with respect to the receivers) is referred to as

source localization in this work. The motivation for discussing both source range and

position estimation is twofolds. Firstly, the range estimate, together with the TDOA

measurements, enable the extraction of TOA information directly from unsynchronized
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AIRs. Secondly, the source position estimate allows a fixed coordinate frame of refer-

ence, with respect to the system origin (which in this work coincides with the position

of a designated reference sensor).

We consider two closed-form source position estimators under an additive measure-

ment error model, which assumes that the errors are independent of the measurements.

The first, [93], is a least-squares approach that is an approximation of the ML estima-

tor when the TDOA estimation errors are small. It assumes knowledge of the TDOA

covariance matrix which may not be known in practice. It is therefore a suitable start-

ing point to highlight the effects of uncertainty and noise introduced to the TDOA

measurements. The second estimator, [80], is also a least-squares approach, but makes

no assumptions on the TDOA covariance matrix.

Both approaches use a two-step LS estimation procedure that exploits the indepen-

dent measurements of both source range and position to impose a known constraint

between the two to yield an improved position estimate. For ease of illustration we

outline both approaches in a 2-D plane and as a consequence the original 3-D case

outlined in [80] is adapted to 2-D.

- Source - Microphone

Figure 2.4: Localization in a 2-D plane.
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2.3.1 Quadratic-Correction Least-Squares

With reference to Figure 2.4, assume that there are M microphones distributed arbi-

trarily in a 2-D plane located at

ri , [xi yi]
T , i = 0, · · · ,M − 1. (2.28)

and a source located at rs , [xs ys]
T . The first microphone (i = 0), commonly designat-

ing the closest microphone to the sound source, is placed at the origin of the coordinate

system r0 = [0 0]T . The distances from the origin to all other microphones and source

are given by their respective Euclidean norm such that

‖ri‖ =
√

x2i + y2i , i = 1, · · · ,M − 1,

‖rs‖ =
√

x2s + y2s .

The TDOAs from all possible receiver pairs are used to calculate the Gauss-Markov

(weighted) estimate with respect to the first receiver [93], i.e. τGM
i,0 = τGM

i − τGM
0 for

i = 1, 2, · · · ,M−1. In other words, τGM
i,0 defines the TDOA of the direct-path coefficient

for the ith channel with respect to the channel having the earliest direct-path. The

TDOAs of the direct-path between microphones i and j are computed from

τGM
i,j =

∣

∣τGM
i,0 − τGM

j,0

∣

∣ , i, j = 1, · · · ,M − 1. (2.29)

Let τ
GM = [τGM

1,0 , τGM
2,0 , · · · , τGM

M−1,0]
T be the estimated TDOA vector. The covariance

matrix Ψ of τGM is given by [93]

Ψ =

{

2T

2π

∫ Ω

0
ω2 S(ω)2

1 + S(ω)Tr (Nω)−1)

×
[

Tr
(

N(ω)−1
)

Np(ω)
−1 −Np(ω)

−111TNp(ω)
−1

]

dω

}−1

,

(2.30)

where 0 to Ω is the frequency band processed and T is the observation time. S(ω) is

the signal power spectrum, N(ω) = diag{N1(ω), N2(ω), · · · , NM (ω)} is the noise power

spectral matrix, Np(ω) is the lower right M − 1 by M − 1 partition of the matrix N(ω)

and 1 is a vector of unity which has the same size as Np(ω). The trace of the noise

power spectral matrix, denoted Tr ( · ), is equal to the sum of its diagonal elements.

The squared distance between source and sensor i can be computed from

D2
i = (xi − xs)

2 + (yi − ys)
2

= Ki − 2xixs − 2yiys + x2s + y2s , i = 0, · · · ,M − 1,
(2.31)
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where we denote the squared norm of the microphone distances as

Ki , ‖ri‖2 = x2i + y2i . (2.32)

If c is the signal propagation speed then

di,0 = c τGM
i,0 = |Di −D0| . (2.33)

Based on this we can define a set of nonlinear equations whose solution gives (xs, ys).

We denote Rs as the unknown source range (i.e. Rs = ‖rs‖ ) and consequently define

θ = [xs ys Rs]
T as the unknown vector to be estimated. The elements of θ are related

to (2.32) which means there is a set of nonlinear equations in two variables x and y. The

approach to solve the nonlinear problem is to first assume that there is no relationship

among x, y and Rs. They can then be solved by least squares [93]. Solving for both

source location and range the generalized LS solution is then given by:

θ = (GT
aΨ

−1Ga)
−1GT

aΨ
−1h, (2.34)

h =
1

2









d21,0 −K1 +K0

d22,0 −K2 +K0

·
d2M−1,0 −KM−1 +K0









,Ga = −









x1,0 y1,0 d1,0
x2,0 y2,0 d2,0
· · ·

xM−1,0 yM−1,0 dM−1,0









,

where the symbols xi,0 and yi,0 stand for xi − x0 and yi − y0 respectively.

The proposed solution requires knowledge of the TDOA covariance matrix which

may not be known in practice. Given the assumptions on the TDOA covariance matrix

it is important to point out that this method yields an optimal estimator only when

TDOA estimation errors are small. If the noise power spectral densities are similar at

the sensors, the covariance matrix can be replaced by a matrix of diagonal elements σ2
d

and 0.5 σ2
d for all other elements, where σ2

d is the TDOA variance. We define Ψ̂ as an

approximation of the true covariance matrix of τGE. Solving for both source location

and range we obtain the following approximation:

θ̂ ≈ (GT
a Ψ̂

−1Ga)
−1GT

a Ψ̂
−1h, (2.35)

where

Ψ̂ = σ2
d









1 0.5 0.5 · · · 0.5
0.5 1 0.5 · · · 0.5
· · · · · ·
0.5 0.5 0.5 · · · 1









.
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This two-step procedure, with quadratic correction, is in fact an approximation of a

true ML estimator for emitter location. As a first step a weighted linear LS gives the

initial solution. As a second step another weighted LS computation, using the known

constraint between source coordinates and range, yields an improved position estimate.

For a more exhaustive overview of the QCLS method please refer to [93].

2.3.2 Linear-Correction Least-Squares

The source localization algorithm outlined in [80] is based on a least squares estimator

employing a spherical LS error criterion defined in a 3-D space. For our purposes this

algorithm is modified to a 2-D space. Consequently, the spherical LS error function is

simplified to a circular LS error criterion.

We again assume that there are M microphones distributed arbitrarily in a 2-D

plane located at positions ri with the reference microphone (i = 0) placed at the origin

of the coordinate system, i.e., r0 = [0 0]T , and a source located at rs, as shown in

Figure 2.4. The distances from the origin to the ith microphone and the source are

denoted by Ri and Rs, respectively, where

Ri , ‖ri‖ =
√

x2i + y2i , i = 1, . . . ,M − 1,

Rs , ‖rs‖ =
√

x2s + y2s .

The difference in the distances of microphones i and j from the source is the range

difference, di,j, and is proportional to the TDOA of the direct-path between the ith

and jth microphone:

di,j = c · τGM
i,j . (2.36)

We observe that the correct source location should be at the intersection of a group

of circles. The centre of each circle is equal to the location of the microphone and the

radius of each circle is related to the source-microphone distance. Therefore, the best

estimate of the source location will be the point that yields the shortest distance to

those circles defined by the range differences and the hypothesized source range. From

[80] we establish the distance Di from the ith microphone to the source

D̂i = Rs + d̂i,0, (2.37)

where ˆ( · ) denotes an observation based on the measured range difference. The error

function is then defined as the difference between the measured and true values, which
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when writing them in a vector form gives

e(rs) = Aθ − b, (2.38)

where

A ,

[

S | d̂
]

, S ,











x1 y1
x2 y2
...

...
xM−1 yM−1











,

θ ,





xs
ys
Rs



 , b ,
1

2













R2
1 − d̂21,0

R2
2 − d̂22,0

...

R2
M−1 − d̂2M−1,0













,

and S | d̂ indicates that S and d̂ are stacked side-by-side with d̂ = [d̂1,0, d̂2,0, . . . , d̂M−1,0]
T .

The corresponding LS criterion is then given by

J = eTe = [Aθ − b]T [Aθ − b] . (2.39)

The solution for θ is given by [80]

θ̂1 = A†b, (2.40)

where ( · )† denotes the pseudo-inverse. The estimate θ̂1 is an unconstrained global

least-squares minimizer of the circular error criterion. In the presence of measurement

errors in the range differences, it deviates from its true value and can be expressed as

θ̂1 = θ +∆θ. (2.41)

Finding the LS solution based on the circular error criterion (2.39) is a linear mini-

mization problem

min
θ

(Aθ − b)T (Aθ − b), (2.42)

subject to a quadratic constraint

θTΣθ = 0, (2.43)

where Σ , diag(1, 1,−1) is a diagonal and orthonormal matrix. Based on the circular

error criterion (2.39), an additional correction based on Lagrange multipliers can be
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used on θ̂1 to generate a second-pass corrected estimate θ̂2 of θ. Solving for θ the

constrained least squares estimate [80] is obtained such that

θ̂ = (ATA+ λΣ)−1ATb, (2.44)

where λ is yet to be determined. In order to find λ, we can impose the quadratic

constraint directly by substituting (2.44) into (2.43), so that

bTA(ATA+ λΣ)−1Σ(ATA+ λΣ)−1ATb = 0. (2.45)

By using eigenvalue decomposition, the matrix ATAΣ can be diagonalized as

ATAΣ = UΛU−1, (2.46)

where Λ = diag(γ1, · · · , γ3) and γi, i = 1, · · · , 3 are the eigenvalues of the matrix

ATAΣ. As shown in [80], by setting p = UTΣATb and q = UTATb we can write

the function of the Lagrange multiplier as

f(λ) , pT (Λ+ λI)−2q, (2.47)

which is a polynomial of degree four1. Numerical root searching methods, such as the

secant method, can be employed to obtain λ. Finally, using the first estimate of θ̂1

from (5.8) we can produce a corrected estimate θ̂2 using linear correction such that [80]

θ̂2 =
[

I+ λ(ATA)−1Σ
]−1

θ̂1, (2.48)

which is the final output.

2.4 Hough Transform

The Hough Transform (HT) is most commonly known as a feature extraction technique

used in image analysis, computer vision, and digital image processing [141]. A common

application of this technique is to detect geometrical shapes within a certain class by

a voting procedure. This voting procedure is carried out in a parameter space, from

which object candidates are obtained as local maxima in a so-called accumulator that

is explicitly constructed by the algorithm for computing the HT.

1Accordingly in three dimensions it is a polynomial of degree six.
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2.4 Hough Transform

The HT considers the following normal parametrization [142]

ρ = x cos θ + y sin θ, (2.49)

which specifies a straight line by the angle θ of its normal and its algebraic distance

ρ from the origin. A point in the cartesian space maps to a sinusoid in the Hough

parameter space that corresponds to all the lines passing through it. Conversely, points

in the parameter space are transformed into lines in the Cartesian coordinate space.

Given two points lying on a line with parameters (ρ, θ), in the Hough parameter space

the sinusoids corresponding to these two points intersect at ρ, θ. Therefore, given point

estimates (pixels) in the coordinate space, the parameters of a line corresponding to

the best-fit of these estimates can be found. Figure 2.5 shows how the horizontal line

that coincides with the positive x-axis (i.e. ρ = 0 and θ = 0) is found from a collection

of pixels. Let ρ ∈ R+ and θ ∈ [0, π]. For each point [xj yj]
T we calculate

ρ̂ = xj cos θ̂ + yj sin θ̂. (2.50)

The results are stored in an accumulator A, initially set to zero, which is incremented

at every step such that:

A

(

ρ̂, θ̂
)

= A

(

ρ̂, θ̂
)

+ 1. (2.51)

The position of the largest maximum of the accumulator given by

[

θ̂max, ρ̂max

]

= argmax {A (ρ, θ)} . (2.52)

Most HT techniques employ certain techniques for estimating the orientation of feature

points (edges) to restrict the ranges of values of θ a pixel may vote for. The estimation

of the orientation of each edge pixel is often uncertain due to: 1) image noise (e.g.,

positional errors from quantization and sensor errors); 2) small neighborhood associated

with the edge detection procedure and the inherent uncertainty with the procedure; 3)

the parametric representation used to define a line [143].

Although not explicitly mentioned in this work, the HT can also be used for the

detection of 3D objects in range data or 3D point clouds. The extension of classical

HT for plane detection is quite straight forward. A plane is represented by its explicit

equation z = axx+ ayy + ac for which we can use a 3D Hough space corresponding to

ax, ay and ac.
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Figure 2.5: The Hough space graph showing the largest maximum (red ‘+’ ).

In this work we consider the classical HT which was proposed by Duda and Hart

[142] and describes the process of identification of lines in an image. The standard HT

adopts a top hat strategy to compute the contribution of each point to a hypothesized

line. Specifically, the scheme assumes all feature points located within a close range

of the hypothesized line contribute equally to the line. The accumulator is, therefore,

incremented by a unit for those feature points [143].

Conclusion

In this chapter a system model, based on the SIMO case, was presented that forms

the foundation of the geometric inference framework. The mathematical formulation

of waves traveling in an enclosed (and reverberant) space has been outlined. Solving

the wave equation analytically is often impossible. A variety of numerical methods for

simulation and actual impulse response measurement techniques were discussed. Two

source localization methods, and their relevance to the system identification problem
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were analysed. Finally, a method for estimating the parameters of a line segment, based

on the Hough transform, was presented. The necessary background material given in

this chapter, forms the foundation of the geometric inference framework that will be

introduced in the subsequent chapters.
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3

Geometric Localization Approach

Introduction

I
N this chapter the geometric constraint, that permits the estimation of the line

parameters of the reflectors in an acoustic scene, is introduced. The geometric

constraint is developed in a two-dimensional plane, for illustration purposes.

The framework we consider makes use of time-of-arrival (TOA) and time-difference-

of-arrival (TDOA) information, along with source and microphone positions, to form

a set of elliptical constraints on the possible locations of the reflectors. The common

tangent of these constraints is shown to correspond to the reflector location that can

be found by minimizing a specific cost function in the least-squares sense.

We make no assumptions on how the TOA and TDOA information is obtained from

the acoustic impulse responses (AIRs), and assume that the estimated AIRs, given by

the vector ĥi(n), have been identified by either supervised or unsupervised techniques.

We defer the analysis of the peak-picking problem from estimated AIRs to subsequent

chapters.

Initially, the cost function for the single reflector case is developed and later ex-

tended to the case of multiple reflectors. We also highlight the permutation problem

in the TOA information matrix.

The remainder of this chapter is organized as follows: Section 3.1 formulates the

problem and the notation used in this work. Section 3.2 introduces the geometric

constraint used in the localization of line reflectors for the 2-D case. Section 3.3 outlines
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3. GEOMETRIC LOCALIZATION APPROACH

the common tangent estimation algorithm and extends the analysis and notation to the

case where multiple reflectors are present in the acoustic environment.
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3.1 Problem Formulation

Figure 3.1: Schematic illustration of first and second order reflections in a room.

When acoustic signals are obtained in an enclosed space by one or more microphones

positioned at a distance from the source, the observed signal consists of a superposition

of many delayed and attenuated copies of the signal due to multiple reflections from the

surrounding walls and other objects, as illustrated in Figure 3.1. We define the direct-

path as the acoustic propagation path from the source to the microphone without
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3.1 Problem Formulation

reflections. We also note that a delay of the superimposed copies arises because all

other propagation paths are longer than the direct-path and that additional attenuation

occurs at each reflection due to frequency dependent absorption [2].

With reference to Figure 3.2(a), a sound source located at rs , [xs ys]
T emits the

signal s(t). The signals xi(t) are observed by M microphones at positions

ri , [xi yi]
T , i = 0, . . . ,M − 1. (3.1)

3.1.1 Acoustic Impulse Responses

The Acoustic Impulse Response (AIR) characterizes the acoustics of a given enclosure.

This section will introduce the mathematical representation of the AIRs and discuss

specific characteristics and assumptions made. Note, that the term AIR is used to

refer to acoustic impulse responses in general, there are some cases where it is more

appropriate to limit the acoustic context to be within a room, in which case, the impulse

response is referred to as a Room Impulse Response (RIR). In this work, both terms

are used interchangeably.

The observed signals, i.e. xi(t), are given by the convolution of the source s(t) with

the corresponding acoustic room impulse responses hi(t), i = 0, . . . ,M − 1:

xi(t) =

∫ ∞

0
hi(t

′)s(t− t′) dt′ + bi(t), i = 0, . . . ,M − 1, (3.2)

where bi(t) is additive environmental noise assumed to be zero-mean and uncorrelated

with the source signal. Under the hypothesis of ideal reflections the AIRs are given by

hi(t) =

Q
∑

q=0

αi,qδ(t− τi,q), (3.3)

where Q is the total number of reflections of all orders, αi,q is an attenuation term and

τi,q is defined as the TOA associated with the ith microphone and the qth reflection.

Note that the TOA of the direct-path is defined with respect to the null reflector, i.e.

q = 0. With reference to Fig. 3.2(b) we can obtain estimates of the TOAs related to

the direct path and reflections by analyzing hi(t). For this we note that the first peak

in hi(t) is related to the time of propagation of the direct-path from rs to ri given by

τi,0. Any subsequent peak in hi(t) is related to the composite time of propagation of

the sound due to reflection. By defining rp,i as the reflection point on any reflector, we

obtain τi,k, k = 1, . . . ,K as the sum of the propagation times from rs to rp,i, and then

from rp,i to ri for any K reflectors present in our environment.
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Figure 3.2: Problem geometry and associated AIRs.

3.1.2 System Model

Let s(n), hi(n), xi(n) represent sampled versions of the source, channel and observa-

tion at microphone i respectively. From the system equation in (2.3), i.e. xi(n) =

Hi(n)s(n) + bi(n), we assume that the estimated AIRs, given by the vector ĥi(n),

have been identified by either supervised or unsupervised techniques. Peaks within the

AIR correspond to the direct-path from source to receiver and the summed reflective

paths from source to reflector and reflector to receiver. We assume that we have access

to the temporal location of these peaks, which are found as discrete times ni,k, with

ni,k = τi,kfs in the case of synchronized measurements. For illustration purposes, we re-

strict ourselves to first-order reflections, when in reality, in closed geometries, infinitely

many higher-order reflections occur.

We assume that in hi(n) the first echo after the direct-path is related to the same

reflector. This assumption is satisfied if i) rs is sufficiently close to the reflector of

interest and ii) microphones are compactly organized in space. If both conditions
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apply, then

hi(n) = αi,0δ(n − ni,0) + αi,1δ(n − ni,1) +
N
∑

k=2

αi,kδ(n − ni,k) , (3.4)

where αi,k is the attenuation along the direct (k = 0) or reflective (k ≥ 1) path.

Moreover, ni,0 < ni,1 < . . . < n
(k)
i,k for k ≥ 2. The direct and the shortest reflective

paths have been kept out the summation, as they constitute the input of the common

tangent algorithm introduced in this work.

Consequently, we define the M × (K+1) matrix τ containing TOA information for

K reflectors such that

τ ,
[

τ
DP | τRE

]

, (3.5)

where

τ
DP ,











τ0,0
τ1,0
...

τM−1,0











, τ
RE ,











τ0,1 τ0,2 · · · τ0,K
τ1,1 τ1,2 · · · τ1,K
...

... · · · ...
τM−1,1 τM−1,2 · · · τM−1,K











.

The M × 1 column vector τ
DP represents the direct-path TOAs, and is stacked side-

by-side with the M ×K matrix τ
RE, that contains all first-order reflective path TOAs.

Additionally we define τTDOA
i,j as the TDOA of the direct-path between the ith and

jth microphone:

τTDOA
i,j = |τi,0 − τj,0| . (3.6)

Single Reflector Case

We shall assume in the following, without loss of generality, that only a single reflector

(i.e. K = 1) is present in an otherwise anechoic environment. We make this assumption

in order to outline the reflector localization procedure based on the geometric constraint,

for ease of illustration and to point out an important challenge when estimating τ , and

more specifically τ
RE. Defining TOAs related to the direct-path and reflective-path

propagation separately, for the single reflector case we temporarily drop the index k

from τi,k such that τDP
i , i = 0, · · · ,M − 1 and τRE

i , i = 0, · · · ,M − 1 to denote the M

direct and reflective-path TOAs respectively. Evidently, τDP
i = [τ0,0 τ1,0 · · · τM−1,0]

T =

τ
DP, i.e. the direct-path TOA vector remains unchanged. On the other hand, τRE

i is

now a M×1 column vector chosen from theM×K matrix τ
RE such that all elements in
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the τRE
i correspond to TOAs estimated for a single and common reflector. It becomes

clear, that in the case where multiple reflectors are considered, the elements in τ
RE

need to be ordered in a column wise fashion, such that each column represents TOA

information related to the same reflector. Let π be the permutation operator that

acts on matrices, in such a way that if τRE is some matrix related to a room with K

reflectors, then π(τRE) is the matrix that we would get if we permute the elements

according to π. Consequently

Γπ = π(τRE), (3.7)

denotes the correctly permuted matrix of τRE such that each column contains TOA

information for the same reflector. For the case K = 1, the permutation problem

reduces to the trivial form τ
RE = [τ0,1 τ1,1 · · · τM−1,1]

T = τRE
i , i = 0, · · · ,M − 1.

3.2 Geometric Constraint

In this work we consider sound waves that can be represented by rays and reflections

are therefore assumed specular. Under these assumptions, the relationship between

Figure 3.3: Relationship between angles of incidence and refraction of a wave according

to Snell’s law.

angles of incidence and refraction for a wave impinging on an interface between two

media with different indices of refraction, i.e. m1 and m2, are given by Snell’s law, as

depicted schematically in Figure 3.3. The law follows from the boundary condition that

a wave be continuous across a boundary, which requires that the phase of the wave be

constant on any given plane, resulting in

m1 sin θ1 = m2 sin θ2, (3.8)
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where θ1 and θ2 are the angles from the normal of the incident and refracted waves

respectively.

We make the fundamental assumption that source and receivers lie on the same

plane and the lying plane of the reflector is orthogonal to this plane. In this scenario,

the geometry of the acoustic scene is described by the plane in which sources and

receivers lie. In a two-dimensional geometry a line is the collection of points [x y]T

such that

L =
{

(x, y) ∈ R
2|l1x+ l2y + l3 = 0

}

, (3.9)

which after setting the line parameter l = [l1 l2 l3]
T can be written as

lT [x y 1] = 0. (3.10)

We observe that τRE
i is the sum of two terms: the propagation time from the source

rs to the unknown reflection point rp,i on the reflector l and the propagation time rp,i

to the microphone position r0. The knowledge of τRE
i , rs and ri, therefore, bounds the

reflection point rp,i to lie on an ellipse with foci in rs and ri and whose major diameter is

ri = cτRE
i . We assume, moreover, that the reflection undergoes Snell’s law, therefore the

line perpendicular to l is also the bisector of the angle r̂srp,iri, as shown in Figure 3.5.

According to the properties of ellipses, this means that l is tangential to the ellipse.

We notice that the reflection point rp,i depends on the positions ri and rs, therefore if

Figure 3.4: The TOA of the reflective path is constituted by the time of propagation

from rs to rp,i and from rp,i to ri. Possible reflection points lie on an ellipse.

we consider another microphone in the set ri, i = 0, . . . ,M − 1, the reflection point on

the ellipse changes. However, what remains unchanged for all the ellipses is that they

are all tangential to the reflector. The common tangent estimation takes inspiration

from the observation: the reflector line is found as the line that is tangential to all M

ellipses. In order to accomplish this task, however, we need to parameterize the above

tangential constraint in such a way that the tangent lines directly appear in the ellipse

equation. This is where the projective geometry provides a convenient formulation.
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3.2.1 Ellipse Parametrization

The aim of this section is to find the parameters of the ellipse given the foci ri = [xi yi]
T

and rs = [xs ys]
T and the major axis Di. Using the parameters {a, b, c, d, e, f} the conic

can be expressed as [144]

C =
{

(x, y) ∈ R
2|ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

}

. (3.11)

A parametrization that is convenient for our purposes is based on the representation

of points using homogeneous coordinates. The homogeneous coordinates for the point

[x y]T are [λx λy λ]T , λ being a scalar different from zero. In such a representation

the point [x y]T in the Euclidean space is mapped into a three-dimensional space and

all points aligned on the direction [λx λy λ]T correspond to the same point in the Eu-

clidean space, thus defining an equivalence class between homogeneous and Euclidean

coordinates.

In homogeneous coordinates, the conic in (3.11) becomes

xTCx = 0 , (3.12)

where x = [λx λy λ]T and C is the conic matrix, using the coefficients from (3.11),

given by

C =





a b d
b c e
d e f



 . (3.13)

This defines an ellipse after constraining

det(C) 6= 0,

∣

∣

∣

∣

a b
b c

∣

∣

∣

∣

> 0, det(C)/(a+ c) < 0. (3.14)

Assigning values to the parameters a,b,c,d,e,f , can be done in two ways. The first

approach is to decompose the matrix in (3.13) as a product of translation, rotation and

scaling matrices. The second approach is by expanding the implicit equation of the

ellipse and comparing term by term with the parameters.

3.2.1.1 Matrix Decomposition

In order to justify a matrix decomposition of the conic in (3.13), we first note that the

points on a unit circle satisfy

xTCIx = 0, (3.15)
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where

CI =





1 0 0
0 1 0
0 0 −1



 .

We observe that for matrix CI the positive index of inertia is equal to two and that

the negative index of inertia is equal to one [145]. In other words CI has one negative

and two positive eigenvalues. We will show that this is the same for the matrix C.

By Sylvester’s law of inertia [145] we state that the negative index of inertia for C

is equal to the number of sign changes in the sequence

△0 = 1, △1 = a, △2 =

∣

∣

∣

∣

a b
b c

∣

∣

∣

∣

, △3 = det(C).

Assuming a > 0 and therefore c > 0 we obtain △1 > 1 and since ac− b2 > 0 it follows

that △2 > 0 because ac > 0 and therefore sgn {a} = sgn {b}, where sgn { · } is defined

as

sgn(x) =







−1 if x < 0 ,
0 if x = 0 ,
1 if x > 0 .

From det(C)/(a + c) < 0 it follows that △3 < 0. The sequence △0 > 0, △1 > 0,

△2 > 0, △3 < 0 has one sign change and therefore the positive index of inertia is equal

to two and the negative index of inertia is equal to one.

Proposition 1. Any matrix C, describing an ellipse, i.e. satisfying conditions (3.14),

can be represented as a translated, rotated and scaled version of a unit circle given by

diag {1, 1,−1}.

Proof. Because C is symmetric we can write it in the following form

C = UΛUT ,

with Λ = Λ
1

2 IcΛ
1

2 , where Λ
1

2 is defined as |Λ|
1

2 and Ic = diag {1, 1,−1} . From this it

follows that

C = (UΛ
1

2 )Ic(U
TΛ

1

2 ),

and by setting Φ = UΛ
1

2 we can justify the decomposition

C = ΦIcΦ
T .

Substituting into (3.15) and noting that Ic = CI this becomes

xTΦCIΦ
Tx = 0.
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Let T be a translation matrix, then

xTTT (T−1)TΦCIΦ
TT−1Tx = 0.

Setting w = Tx it follows that

wT (T−1)TUΛ
1

2CIΛ
1

2UTT−1w = 0.

and finally by z = Λ
1

2UTT−1w = Λ
1

2UTx it follows that

zTCIz = 0.

This means that the first two components of z belong to the unit circle. In other words

if (x, y) belongs to the ellipse, then there is a unique (x̃, ỹ) that belongs to the unit

circle with x̃ = (Λ
1

2Ux)1 and ỹ = (Λ
1

2Ux)2.

This justifies the following decomposition for the ellipse associated with the ith

microphone and a single common reflector

Ci = T−T
i R−T

i S−T
i CIS

−1
i R−1

i T−1
i , (3.16)

where we can define a translation, rotation and scaling matrix such that

Ti =





1 0 ∆xi
0 1 ∆yi
0 0 1



 , (3.17)

Ri =





cos γi − sin γi 0
sin γi cos γi 0
0 0 1



 , (3.18)

Si =





Qsmaj
i 0 0
0 Qsmin

i 0
0 0 1



 . (3.19)

The quantities ∆xi, ∆yi, γi, Qsmaj
i and Qsmin

i are defined as follows. The point at

(∆xi,∆yi) can be seen as the geographic midpoint between rs and ri and is defined by

∆xi , xs +
Di cos(γi)

2
;

∆yi , ys +
Di sin(γi)

2
,
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with γi , tan−1
(

ys−yi
xs−xi

)

. The scaling of the semi-major and semi-minor axes of each

ellipse is then given by

Qsmaj
i =

c · τRE
i

2
;

Qsmin
i =

√

(

c · τRE
i

)2 −D2
i

2
,

respectively.

3.2.1.2 Implicit Solution

The implicit equation of an ellipse with foci in (xs, ys) and (xi, yi) and with major

diameter ri = cτRE
i is

√

(x− xi)2 + (y − yi)2 +
√

(x− xs)2 + (y − ys)2 = ri . (3.20)

By expanding (3.20) and comparing term by term with a conic with parameters (ai, bi, ci, di, ei, fi)

we obtain

ai = r2i − (xs − xi)
2 ,

bi = −2(xs − xi)(ys − yi) ,

ci = r2i − (ys − yi)
2 ,

di = (xi − xs)(x
2
i + y2i − x2s − y2s − r2i )− xsr

2
i ,

ei = (yi − ys)(x
2
i + y2i − x2s − y2s − r2i )− ysr

2
i ,

fi = (x2sr
2
i + y2s r

2
i

y2i − y2s + x2i − x2s − r2i
4

.

More meaningful for our purposes is the definition of the line conic associated with

the point conic defined in (3.12) and (3.13). The line l passes through the point x iff

lTx = 0 and is tangential to the point ellipse Ci iff [144]

lTC∗
i l = 0, (3.21)

where C∗
i = det(Ci)C

−1
i is the adjoint of the conic matrix Ci. This formulation is

important for the common tangent estimation algorithm that is presented in the next

section.
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3.3 Common Tangent Estimation Algorithm

As mentioned previously, if we acquire multiple impulse responses from rs to ri, i =

0, . . . ,M − 1, the line l is tangent to all the ellipses Ci, i = 0, . . . ,M − 1 at points

rp,i, i = 0, . . . ,M − 1. Figure 3.5 shows an example where M = 3. Combining the

rs

r1 r2
r3

rp1 rp2 rp3

Figure 3.5: The reflector line is the common tangent to the ellipses traced for r1, r2 and

r3.

constraints in (3.21), the reflector line is the simultaneous solution of [113, 114]















lTC∗
0l = 0

lTC∗
1l = 0

. . .
lTC∗

M−1l = 0

. (3.22)

Since we have three unknowns (the parameters l1, l2, l3) we need at least M = 3.

From a geometrical standpoint, solving (3.22) corresponds to finding the line l, in

the line parameter space, that lies on all the manifolds representing constraints in (3.22).

The solution of a nonlinear system as in (3.22) is difficult when the measures of

τDP
i are affected by measurement errors and the positions rs and ri are known only up

to some uncertainty. We shall combine the individual equations in (3.22) into the cost

function [113, 114]

J
(

l, {Ci}M−1
i=0

)

=

M−1
∑

i=0

||lTC∗
i l||2 , (3.23)
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3.3 Common Tangent Estimation Algorithm

which is a multivariate fourth-order polynomial in l1, l2, l3. We notice that the cost

function admits the trivial solution l = 0. The solution for l is given by

l̂ = argmin
l

J
(

l, {Ci}M−1
i=0

)

. (3.24)

Multiple Reflector Case

We shall conclude our analysis of the geometric constraint for reflector estimation by

outlining the notation for the multiple reflector case. We do not, at this point, make

any assumptions on the ordering of the TOA matrix τ , which is postponed until the

next chapter. We extend the matrix decomposition of the ellipse given by (3.16) to the

case where Ci,k is associated with the ith microphone (i ∈ {0, · · · ,M − 1}) and the

kth reflector (k ∈ {1, · · · ,K}) such that

Ci,k = T−T
i R−T

i S−T
i,k CIS

−1
i,kR

−1
i T−1

i , (3.25)

where the translation, rotation and scaling matrices are given by

Ti =





1 0 ∆xi
0 1 ∆yi
0 0 1



 , (3.26)

Ri =





cos γi − sin γi 0
sin γi cos γi 0
0 0 1



 , (3.27)

Si,k =







Qsmaj
i,k 0 0

0 Qsmin
i,k 0

0 0 1






. (3.28)

Note that only the scaling of the semi-major and semi-minor axes of each ellipse changes

such that

Qsmaj
i,k =

c · τi,k
2

;

Qsmin
i,k =

√

(c · τi,k)2 −D2
i

2
.

Accordingly, the implicit equation of an ellipse with foci in (xs, ys) and (xi, yi) and with

major diameter ri,k = cτi,k is

√

(x− xi)2 + (y − yi)2 +
√

(x− xs)2 + (y − ys)2 = ri,k . (3.29)
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3. GEOMETRIC LOCALIZATION APPROACH

By expanding (3.29) and comparing term by term with a conic with parameters (ai,k, bi,k, ci,k, di,k, ei,k, fi,k)

we obtain

ai,k = r2i,k − (xs − xi)
2 ,

bi,k = −2(xs − xi)(ys − yi) ,

ci,k = r2i,k − (ys − yi)
2 ,

di,k = (xi − xs)(x
2
i + y2i − x2s − y2s − r2i,k)− xsr

2
i,k ,

ei,k = (yi − ys)(x
2
i + y2i − x2s − y2s − r2i,k)− ysr

2
i,k ,

fi,k = (x2sr
2
i,k + y2s r

2
i,k)

y2i − y2s + x2i − x2s − r2i,k
4

.

Consequently, the cost function to estimate the line parameters of a particular reflector

k ∈ {1, · · · ,K} is given by

Jm

(

l, {Ci,k}M−1
i=0

)

=

M−1
∑

i=0

∥

∥lT · adj(Ci,k) · l
∥

∥

2
, (3.30)

such that

l̂k = argmin
l

Jm

(

l, {Ci,k}M−1
i=0

)

. (3.31)

In a noise-free scenario, and neglecting the effects of machine precision, the global

minimum of (3.31) is also the true solution, so that all ellipses are perfectly aligned and

yield a single solution that is the common tangent to all ellipses considered. However,

due to errors in the TOA information, the ellipses are prone to mismatch and the

solution from (3.31) is not guaranteed to correspond to the true reflector. In the next

Section we present a method that robustly estimates the line parameters of a reflector.

3.4 Localization Using the Hough Transform

The Hough technique is particularly useful for computing a global description of a fea-

ture (where the number of solution classes need not be known a priori), given (possibly

noisy) local measurements. The motivating idea behind the Hough technique for line

detection is that each input measurement (i.e. coordinate point) indicates its contri-

bution to a globally consistent solution (i.e. the physical line which gave rise to that

image point).
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⋆

⋆

⋆ ⋆ ⋆

(a) Coordinate points

⋆

⋆

⋆ ⋆ ⋆

(b) Possible straight line fitting

Figure 3.6: Coordinate points and and possible straight line fitting.

As a simple example, consider the common problem of fitting a set of line segments

to a set of discrete image points (i.e. pixel locations obtained from an edge detector

on an image). Figure 3.6 shows a possible solution to this problem. Here the lack of

a priori knowledge about the number of desired line segments renders this problem

under-constrained and motivates the Hough transform approach.

The localization accuracy of piece-wise estimated reflectors can be improved by

introducing spatial variation in the position of the sound source (or equivalently the

microphones) and taking measurements at each step. Since the rigorous proof is beyond

the scope of this work, an intuitive justification will be given in the following.

With slight abuse of notation we define a random variable X ∈ R3 that represents

the three parameters of a particular line estimate from (3.31). By repeating the reflector

localization for N source positions, we claim that X converges almost surely to the

expected value, i.e. the true reflector parameters, by referring to the strong law of

large numbers (LLN) [146]. In other words,

X̄N
a.s.→ µ when N → ∞,

where X1,X2, · · · ,XN is an infinite sequence of i.i.d. integrable random variables with

expected value E {X1} = E {X2} = · · · = µ. That is,

Pr

(

lim
N→∞

X̄N = µ

)

= 1.
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3. GEOMETRIC LOCALIZATION APPROACH

The Hough transform, that acts on a sparse data point representation of localized

(a) N = 1 (b) N = 2 (c) N = 3

Figure 3.7: Increasing the measurements, or the evidence, one can observe intuitively

that the relector-line estimates cluster around the true solution (note the increasing line

weighting).

reflectors (more on this in the next Section), introduces an averaging effect (or smooth-

ing) on the observed data, as seen in Figure 3.7. It will be shown using numerical

simulations in Section 4.5.4 how this increases the robustness to (Gaussian) noise in

the TOA information.

Quantifying the noise sources and distributions is beyond the scope of this work.

Errors are introduced in the system in terms of (Gaussian) TOA measurement noise

and sensor noise, amongst others. Recently, it was shown that the Hough transform is

implicitly a Bayesian process [147]. This important fact allows the framework presented

in this work to be connected with other Bayesian techniques in a well-grounded and

principled way. In fact, shape detection can easily be regarded as a clustering problem:

assigning features to generating distributions. This suggests that, for an unknown

number of shapes, an infinite mixture model, which allows a prior distribution on the

number of shapes, may be appropriate [147].

Additionally, given the connection of the Hough transform with a Bayesian process,

and by adopting a hierarchical Bayesian network structure, in which the system learns

the parameters and number of classes in an unsupervised way online from the observed

data, one can motivate a process that offers the following two advantages:

1. The posterior distribution can be used to provide confidence information of the

observed data (i.e. “error bars”).
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3.4 Localization Using the Hough Transform

2. No a priori assumptions on the number of classes means that more complex room

geometries can potentially be taken into account and tied in with the existing

inference framework.

3.4.1 Relationship Between Line Estimates and Ellipses

The input measurements (i.e. coordinate points) are created based on the geometric

relationship between the set of ellipses and the line parameters of the most feasible

reflector for that set. In other words, TOA information is “mapped” to points in

the Hough space. Rather than establishing a direct parametrization of the TOAs we

adhere to the geometric framework of this chapter. Given M microphones and N source

positions, the aim is to define a set of candidate points to be used for the refinement

of the first estimate, i.e. from the case N = 1. These points are defined as

pj , [xj yj]
T , j = 0, . . . , P, (3.32)

where M N−1 ≤ P ≤ 2M N −1. The elements in P = [p0 p1 · · · pP ] are either points

of intersection, points of tangency, or closest coordinate points of an ellipse and the

initial reflector line estimate l. Consequently, for every ellipse C and reflector line l the

following hold:

• If l goes through C then we obtain two points of intersection.

• If l touches C at one point, or in other words if l is tangent to C, then we obtain

one point of tangency.

• If l does not go through C then we need to calculate the closest point on the line

with respect to the conic.

3.4.2 Analytical Framework

In homogenous coordinates, any line l cutting through the ellipseC intersects the ellipse

at the two points of intersection pα , [xα yα 1]T and pβ , [xβ yβ 1]T . Furthermore,

there exist two lines parallel to l, i.e. with slope m = − l1
l2
, that touch the ellipse at

the tangential points pᾱ , [xᾱ yᾱ 1]T and pβ̄ , [xβ̄ yβ̄ 1]T . Therefore the problem is
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3. GEOMETRIC LOCALIZATION APPROACH

constrained to finding the points on the ellipse for which the tangents have slope m.

This can be achieved by implicit differentiation of the ellipse, given by (3.11)

d

dx
(C) = 2 a x+ 2 b y + 2 b x

dy

dx
+ 2 c y

dy

dx
+ 2 d + 2 e

dy

dx
= 0 . (3.33)

After setting dy
dx

= m the line that goes through both tangential points can be expressed

as

lT = [(a+ bm) (b+ cm) (d+ em)]T . (3.34)

For any line l it is possible to find the two points pTα and pTβ
at which two lines

are both parallel to l, i.e. with slope m, and also tangential to the ellipse. Since

we can construct the line lT that goes through both points pTα and pTβ
from (3.34),

what remains is to compute the points of intersection of lT and the ellipse. First, the

methodology used for finding the general intersection points of a line and an ellipse is

elaborated and it is then shown how the points pTα and pTβ
can be computed.

Given a line l that goes through the ellipse C, the points of intersection pα , [xα yα]
T

and pβ , [xβ yβ]
T are given by

xα =
l2
√

(A+B+C)+D

E
, yα = −−l3 + l1 xα

l2
; (3.35)

xβ = − l2
√

(A+B+C)−D

E
, yβ = −−l3 + l1 xβ

l2
; (3.36)

with

A = b
(

b l23 − 2 d l2 l3 − 2 e l1 l3 + 2 f l1 l2
)

,

B = d
(

d l22 − 2 e l1 l2 + 2 c l1 l3
)

,

C = e2 l21 + 2 a e l2 l3 − c f l21 − a f l22 − a c l23 ,

D = b l2 l3 − d l22 − c l1 l3 + e l1 l2 ,

E = c l21 − 2 b l1 l2 + a l22 .

Instead of using l in (3.35) and (3.36) to find the general solutions pα and pβ , we can

replace [l1 l2 l3]
T with [lT1

lT2
lT3

]T , as given by (3.34), such that

l , [(a+ bm) (b+ cm) (d + em)]T , (3.37)

in order to find pTα and pTβ
. Since any line l will have two parallel lines that are

tangential to the ellipse, (3.35), (3.36) and (3.37) can be used to check whether l goes

through the ellipse, is tangential to the ellipse or does not go through the ellipse.
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3.4 Localization Using the Hough Transform

Remark 1. If l cuts through the ellipse, then there exists a line parallel to l that touches

the ellipse at point pᾱ and is either to the left or right, above or below l.

Proof. Substitution into (3.10) yields lTpᾱ 6= 0. If lTpᾱ > 0 and l passes through the

ellipse, then by definition lTpβ̄ < 0. Consequently if lTpᾱ < 0 then lTpβ̄ > 0.

Remark 2. If l is tangential to the ellipse, then lTpᾱ = 0 ∨ lTpᾱ 6= 0.

Proof. If lTpᾱ = 0, then lTpβ̄ 6= 0. Similarly if lTpβ̄ = 0, then lTpᾱ 6= 0.

Remark 3. If l neither intersects or is tangential to the ellipse, then the two parallel

lines touching the ellipse at points pᾱ and pβ̄ are either both below, above, left or right

of l.

Proof. If lTpᾱ > 0 then lTpβ̄ > 0. If lTpᾱ < 0 then lTpβ̄ < 0.

Consequently, in order to determine the relationship between l and the ellipse, it is

sufficient to compute

Φ =
∣

∣sgn
(

lTpᾱ

)

+ sgn
(

lTpβ̄

)∣

∣ , (3.38)

where sgn ( · ) is defined as

sgn(x) =







−1 if x < 0 ,
0 if x = 0 ,
1 if x > 0 .

If Φ < 1, then l goes through the ellipse. If Φ = 1, then l is tangential to the ellipse.

Finally, if Φ > 1, then l does not intersect the ellipse.

3.4.3 Obtaining Candidate Points

New candidate points are appended to P in the following way. First (3.38) is used to

classify the line into one of the three classes. In the first case it is sufficient to calculate

the two points of intersection and add the resulting points to P. In the second case the

single point of intersection is calculated to obtain one point of tangency and the result

stored in P. In the final case the two tangential points pᾱ and pβ̄ are used since one

of them will be the closest point on the line to the ellipse and the other the furthest.

Since we are only interested in the closest point, it is sufficient to compute the distance
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3. GEOMETRIC LOCALIZATION APPROACH

of points pᾱ and pβ̄ and the line, by projecting them both onto the line and selecting

the shortest distance from

min







∣

∣

∣
l1 xᾱ + l2 yᾱ + l3

∣

∣

∣

√

l21 + l22
,

∣

∣l1 xβ̄ + l2 yβ̄ + l3
∣

∣

√

l21 + l22







, (3.39)

and adding the corresponding coordinate point to P.

Discussion and Conclusion

A geometrical framework based on a study on projective geometry has been presented,

outlining a solution to the reflector localization problem that is used in the remainder

of this work. The problem can be summarized as follows: the reflective boundaries

of an acoustic enclosure are located based upon TOAs estimated from acoustic mea-

surements. The TOA information is used to form a set of elliptical constraints on the

possible locations of the reflectors. The common tangent of these constraints corre-

sponds to the reflector location that can be found by minimizing the objective function

in (3.30) in a least-squares sense. Initially an acoustic scene containing a single planar

reflector is considered. The cost function, whose minimum in an error-free scenario

corresponds to the line parameters of the reflector, was then extended to the case of

a more complex acoustic scene in which multiple reflectors are present. Finally, the

adoption of the Hough technique, for increasing the robustness to Gaussian noise in

the TOA information, was motivated.
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4

Room Geometry Estimation in

Two-Dimensions

Introduction

T
HE localization of reflectors, such as the walls enclosing a room, in a two-

dimensional (2-D) plane is presented in detail in this chapter. Specifically,

localization of multiple reflectors is achieved by estimation of the time-of-

arrival (TOA) of reflected signals by analysis of acoustic impulse responses (AIRs).

When multiple walls are present in the acoustic scene, an ambiguity problem arises,

which can be addressed using the Hough transform.

The reflector localization method can be summarised as follows: i) AIRs are ob-

tained by either supervised or unsupervised identification, with known or unknown in-

put stimulus; ii) TOAs are estimated from the estimated AIRs; iii) TOA information,

along with relative sensor positions, can be used to establish a geometric constraint;

iv) the geometric constraint can be used to estimate possible reflector locations in a

least-squares sense. An overview of the different methods outlined in this chapter, is

depicted in Figure 4.1.

The remainder of this chapter is organized as follows: Section 4.1 outlines the

system identification process. Specifically, the measurement and estimation of TOAs

from unsynchronized AIRs, obtained through either supervised, or unsupervised iden-

tification, is discussed. Section 4.2 presents the common tangent estimation algorithm

using a constrained LS estimator and an optimal closed-form estimator. Additionally,

59
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Peak
Detection Localization

Source

Estimation

Constraints

/Synchronized ID
Unsynchronized

Inference

TOA

Acoustic
Impulse

Supervised
System ID

Unsupervised
System ID

Hough
l̂HCni,k

τi,k

r̂s l̂

L̂

ĥ(n)

Figure 4.1: System diagram. An acoustic impulse response is generated, containing

peaks corresponding to sound from reflected boundaries. Peak picking from either the true

or estimated system yields TOAs if the measurements are synchronized, else TOAs are

estimated with the aid of source localization. TOAs, combined with an estimate of the

source and knowledge of the geometry of the receiver array, are used to parameterize a set

of ellipses. Geometric inference is performed with the ellipses by finding lines of common

tangency that correspond to the reflector locations.

the performance of the two estimators is compared theoretically and experimentally.

Section 4.3 introduces the ambiguity problem in the TOA information matrix and pro-

poses possible resorts. In particular, a representation based on the Hough transform is

developed. Adopting such framework offers advantages in both addressing TOA am-

biguity, and correction of reflector location data. The performance of the proposed

inference algorithm is evaluated through simulations, and by measurements made in

real conference rooms, in Section 4.5.
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4.1 Measurement and Estimation of TOAs

In this Section we illustrate the steps that, starting from the AIRs, lead to the esti-

mation of TOAs. In particular, we consider both the cases of synchronized and unsyn-

chronized AIRs. In the former case the TOAs are directly extracted from the impulse

response. In the latter situation, instead, TOAs can be estimated once the source has

been localized. In order to make the peak detection algorithm robust against non-

ideal acquisition and emission systems, we propose a template matching procedure to

improve the relevant temporal characteristics of the received source signal.

4.1.1 Estimation of TOAs from Unsynchronized AIRs

In order to estimate TOAs from unsynchronized AIRs, the time-difference-of-arrivals

(TDOAs) of the direct-paths are used to localize the acoustic source and consequently

estimate the propagation time of the direct sound from the source to a reference micro-

phone. The propagation times of all the other arrivals can then be inferred. As outlined

in Section 2.3.2, and reproduced here for convenience, a least-squares estimator can be

used to define the error function

e(rs) = Aθ − b,

where

A ,

[

S | d̂
]

, S ,











x1 y1
x2 y2
...

...
xM−1 yM−1











,

θ ,





xs
ys
Rs



 , b ,
1

2













R2
1 − d̂21,0

R2
2 − d̂22,0

...

R2
M−1 − d̂2M−1,0













.
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The corresponding LS criterion is then given by

J = eTe = [Aθ − b]T [Aθ − b] .

The solution for θ is given by [80]

θ̂1 = A†b,

We can now use the estimate of the distance from the ith microphone to the source

in order to estimate the TOAs of the direct-path for each of these microphones

τ̂i,0 =
D̂i

c

, i = 0, . . . ,M − 1. (4.1)

The TOAs of the reflective paths can be obtained from the above equation since both

τ̂i,0 and the TDOAs between the direct-paths and the reflective paths are known from

inspection of hi(t), even if the source and microphone signals are not synchronized.

4.1.2 Blind Identification of AIRs

AIRs measured in real acoustic environments present a challenging problem as the

source impulse-like emission hs(n) is convolved with the AIR hi(n). One of the chal-

lenges is accounting for fractional delays resulting from path lengths that are not multi-

ples of the distance propagated by sound in one sample period. Detection of impulsive

events can be achieved to within one sample by considering local centres of energy

with algorithms such as the sliding group delay function [148] and the findpeaks func-

tion [149].

4.1.2.1 Template Matching Procedure

Assuming supervised identification with which estimation error can be ignored, the

measured AIR is

ĥi(n) = hs(n) ∗ hi(n). (4.2)

An example impulse response for a measured system is seen in Figure 4.2 (a), showing

respectively the direct-path and three first-order reflections for a single channel. The

centres of each event are marked by ‘◦’, each of which are surrounded by nearby ripples

caused by hs(n). The ripples cause uncertainty in determining the exact time corre-

sponding to the peak and therefore a matched filter was proposed in [150] to alleviate

this problem.
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Figure 4.2: Direct-path and three first-order reflections for (a) measured impulse re-

sponse, (b) modified impulse response according to (4.4). Red ‘◦’ mark the estimated peak

locations.

The length of hs(n) is usually sufficiently short that it has decayed before the arrival

of the first-order reflections [151], as in the example. Therefore, hs(n) can be observed

from the first few nonzero taps in ĥi(n). Let n
DP
i be the propagation time of the direct-

path signal from the source to microphone i and N s be the approximate length of the

loudspeaker impulse response. An impulsive source emission, such as a hand-clap, can

be estimated by ĥsi(n) = ĥi(n + nDP
i )wi(n), where

wi(n) =

{

1 if 0 ≤ n < N s,

0 otherwise.
(4.3)

The filter ĥs(n) is equalized through the sliding correlation or matched filter [150],

h̃i(n) =

Ns−1
∑

j=0

ĥsi(j)hi(n + j), (4.4)

that equalizes ĥsi to a single peak as demonstrated in Fig. 4.2 for a measured AIR. In

(b) the mean group delay of ĥsi has been compensated. The detected peaks are denoted

by ni,k where i and k are the microphone and reflector index respectively.
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Figure 4.3: Capturing a hand clap: (a) impulse-like input stimulus, (b) filtered output.

The red ‘◦’ mark the true location.

Template Matching Procedure for Quasi-AIRs

Many existing geometric approaches rely upon the availability of acoustic impulse re-

sponses that may be impractical to obtain in a domestic setting. Supervised methods

such as MLS and TSP require 1) a loudspeaker system emitting the source sequence;

2) high output signal level to achieve adequate dynamic range.

For this reason we propose the use of uncontrolled impulsive acoustic sources, such

as a hand clap or the snapping of fingers, to obtain quasi-AIRs that approximate

(up to a certain number of taps) a true AIR. An example recording for a measured

system is seen in Figure 4.3 (a), showing respectively the direct-path and two first-order

reflections for a single channel. The estimated time instant of each event is marked

by a red ‘◦’, each of which is surrounded by nearby ripples from hs(n). The relatively

large temporal support of such acoustic stimuli presents an additional challenge as it

introduces uncertainty as to the exact temporal location of the peaks in the received

signal that correspond to both the direct-path and reflected TOAs. A preprocessor,

based on a matched filter to reduce the temporal support of the peaks in the quasi-

AIRs, is applied as a first step. The filter ĥs(n) could be equalized by finding a filter
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gs(n), such that ĥs(n) ∗ gs(n) ≃ δ(n) in a least-squares sense. Although this is an

optimal solution [150] it has been found unreliable in most practical situations. The

suboptimal but more practical (in practice) approach is again given by the matched

filter approach in (4.4), i.e. h̃i(n) =
∑Ns−1

j=0 ĥsi(j)hi(n+ j).

Figure 4.3 demonstrates this for a measured AIR showing the direct-path and two

first-order peaks in (a) ĥ1(n); and (b) h̃1(n), where the mean group delay of ĥsi has

been compensated.

4.2 Common Tangent Estimation

In this section we present three possible approaches to estimate the line parameters

of the common reflector between groups of microphones. First, the constrained least-

squares solution is presented, that is not guaranteed to give the optimal solution. As a

next step, a closed-form estimator is presented that solves the problem in an analytic

way. Finally, an equivalent exact solution is presented that reformulates the optimal

estimator.

4.2.1 Constrained Least-Squares Solution

As noted in the previous chapter, the cost function (3.23), i.e.

J
(

l, {Ci}M−1
i=0

)

=

M−1
∑

i=0

||lTC∗
i l||2 ,

is a multivariate fourth-order polynomial in l1, l2, l3 and admits the trivial solution

l = 0. This cost function can be solved using an iterative least-squares estimator such

that

l̂ = argmin
l

J
(

l, {Ci}M−1
i=0

)

.

The objective function is non-convex since the ellipse matrix is not positive definite or

semidefinite. Consequently, when employing an optimization algorithm to find l, it is

possible to get trapped in a local minimum rather than finding the global minimum.

As proposed in [113], this problem can be alleviated by imposing that l1 and l2 lie on

a circle of radius 1:

l1 = cos(α), l2 = sin(α). (4.5)
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We can find l̂α = [cos(α), sin(α), l3]
T by minimizing J in (3.23) using lα rather than l

J
(

lα, {Ci}M−1
i=0

)

=

M−1
∑

i=0

||lTαC∗
i lα||2 , (4.6)

such that

l̂α = argmin
lα

J
(

lα, {Ci}M−1
i=0

)

. (4.7)

4.2.2 Closed-Form Solution

In order to find the global minimum we resort to an analytical minimization technique

[115] by slicing the homogeneous coordinates space (l1, l2, l3) with the three planes

l1 = 1, l2 = 1 and l3 = 1. On these planes the cost function J(l) is not homogeneous

and the set of local minima can be found in an analytical way. By merging the minima

found on the three planes we obtain the global solution.

We denote the coefficients of the adjoint conic associated to the ith ellipse with the

matrix

C∗
i =





αi βi/2 δi/2
βi/2 γi εi/2
δi/2 εi/2 ζi



 .

Using this notation the cost function can be expanded as

J(l) =
M−1
∑

i=0

[α2
i l

4
1 + γ2i l

4
2 + ζ4i l

4
3 + 2αiβil

3
1l2 + 2αiδil

3
1l3 + 2βiγil1l

3
2 +

+2γiεil
3
2l3 + 2δiζil1l

3
3 + 2εiζil2l

3
3 + (2αiγi + β2

i )l
2
1l

2
2 +

+(2αiζi + δ2i )l
2
1l

2
3 + (2γiζi + ε2i )l

2
2l

2
3 + 2(αiεi + βiδi)l

2
1l2l3 +

+2(βnεn + γnδn)l1l
2
2l3 + 2(βnζn + δnεn)l1l2l

2
3] .

(4.8)

Slicing J(l) with the planes l1 = 1, l2 = 1 and l3 = 1 means computing J(l)|l1=1,

J(l)|l2=1 and J(l)|l3=1, respectively.

We proceed by finding the zeros of the gradient of J(l)|l1=1, J(l)|l2=1 and J(l)|l3=1,

so that we obtain the sets

L1 =

{

l :
∂J(l)

∂l2

∣

∣

∣

∣

l1=1

= 0 ∧ ∂J(l)

∂l3

∣

∣

∣

∣

l1=1

= 0

}

, (4.9)
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L2 =

{

l :
∂J(l)

∂l1

∣

∣

∣

∣

l2=1

= 0 ∧ ∂J(l)

∂l3

∣

∣

∣

∣

l2=1

= 0

}

, (4.10)

and

L3 =

{

l :
∂J(l)

∂l1

∣

∣

∣

∣

l3=1

= 0 ∧ ∂J(l)

∂l2

∣

∣

∣

∣

l3=1

= 0

}

. (4.11)

Notice that the partial derivatives of the slices J(l)l1=1, J(l)l2=1 and J(l)l3=1 are poly-

nomials of order 3, and therefore L1, L2 and L3 contain 9 solutions each. Some of them

are in the complex domain and do not admit a solution. We denote with L̄1, L̄2 and

L̄3 the subsets of purely real solutions of L1, L2 and L3, respectively. We then define

L̄ = L̄1 ∪ L̄1 ∪ L̄3 = {l1 . . . lKCS} , (4.12)

which contains KCS ≤ 27 candidate solutions. The global minimum of J(l) is selected

as

l̂ = argmin
lm

J(lm) , lm ∈ L̄ . (4.13)

Notice that the trivial solution l = 0 is inherently avoided by cutting the line parameter

space with the planes l1 = 1, l2 = 1 and l3 = 1. Note also that J(l)|l1=1, J(l)|l2=1 and

J(l)|l3=1 are no longer homogeneous.

Finally, Figure 4.4 shows an example of slices J(l)|l1=1 and J(l)|l3=1 (right-hand

side), for the configuration of microphones and sources on the left-hand side. The cor-

rect line parameters for the configuration under analysis are l1 = −0.14, l2 = −0.14, l3 =

1. We also notice that the minimum of J(l)|l3=1 has an asymmetric shape, and in par-

ticular is sharper along the radius of the circumference centered in l1 = 0, l2 = 0. As a

consequence, the distance of the reflector will be identified better than its orientation.

This fact depends on the mutual configuration of the source and the microphones and

cannot be attributed to the proposed methodology.

4.2.3 Exact Solution

The geometric constraint used in the previous section is modified to derive an exact

minimization of a constrained least-squares cost function. In particular, with reference

to Figure 4.5, the image source r′s is obtained by mirroring rs over l.

As shown in [113, 114], the TOA measures corresponding to the reflective paths

can be converted into quadratic constraints (in the homogeneous space) describing an

ellipse. More specifically, as shown in Figure 4.6, the ellipse has foci in ri and rs, and
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Figure 4.4: Example of cost functions J(l)|l1=1 and J(l)|l3=1 for a specific configuration

of microphones and sources [3].

r0

r1

ri

r0

r1

ri

l

rs
r′sx

y

Figure 4.5: An acoustic source located at rs is reflected over the line l to its image position

s
′. The microphones at r0, . . . rM−1 estimates their distances r0, . . . rM−1 from the image

source in r′s.

its major axis is ri. This ellipse is tangential to the reflector line l at the reflection

point rp,i. We modify the constraint on the implicit equation of the ellipse from the

previous section such that

√

(x− xi)2 + (y − yi)2 = ri −
√

x2 + y2 . (4.14)
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ri

l

rs r′s

rp,i

ri

Figure 4.6: The length of the reflected path ri from the image source in r′s to the

microphone at ri constrains the reflector line l to be tangent to an ellipse whose major axis

is ri and whose foci are rs and ri. rp,i is the reflection point on l.

After taking the square power of both sides of (4.14) we derive

√

x2 + y2 − 2xxi − 2yyi = r2i − x2i − y2i . (4.15)

Squaring again both the sides of (4.15), we compare the implicit form of the ellipse,

described by the homogeneous parameter vector [ai bi ci di ei fi]
T , and given by

aix
2 + bix+ ciy

2 + dix+ eiy + fi = 0 , (4.16)

term-by-term to obtain

ai = −4(r2i − x2i ) ,
bi = 8xiyi ,
ci = −4(r2i − y2i ) ,

di = 4[xir
2
i − xi(x

2
i + y2i )] ,

ei = 4[yir
2
i − yi(x

2
i + y2i )] ,

fi = r4i − 2r2i (x
2
i + y2i ) + (x2i + y2i )

2 .

The implicit equation (4.16) can be expressed in matrix form as

xTCix = 0 , Ci =





ai bi/2 di/2
bi/2 ci ei/2
di/2 ei/2 fi



 , (4.17)

where x = [λx λy λ]T is the homogeneous representation of a point lying on the ellipse

and Ci is the point-conic matrix. The dual form of the conic expresses the conic as line

l tangential to it, i.e. lTC∗
i l = 0, where l = [l1 l2 l3]

T is the homogeneous representation

of a line tangent to the ellipse; and C∗
i = det(Ci)C

−1
i represents the line-conic matrix.

In the following, we reformulate the cost function of Section 4.2.1. As noted in [152],

such problems are referred to as Generalized Trust Region Subproblems (GTRS), whose
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exact solution can be derived efficiently.

We first analyze the structure of the dual-conic, whose matrix

C∗
i =





αi βi/2 δi/2
βi/2 γi εi/2
δi/2 εi/2 ζi



 ,

is symmetric, and its parameters can be written as

α∗
i = 4r2i (r

2
i − x2i − y2i )

2 ,
β∗
i = 0 ,

γ∗i = α∗
i ,

δ∗i = 16r2i xi(r
2
i − x2i − y2i ) ,

ε∗i = 16r2i yi(r
2
i − x2i − y2i ) ,

ζ∗i = 16r2i (r
2
i − x2i − y2i ) .

(4.18)

By substituting eq. (4.18) into the cost function (4.6), after some manipulation we

obtain

J =

M−1
∑

i=0

[

α∗
i (l

2
1 + l22) + δ∗i l1l3 + ε∗i l2l3 + ζ∗i l

2
3

]2
. (4.19)

In order to find a unique minimum for J , we focus on the subspace defined by l′ =

[l1 l2 1]
T , and look for minima of the cost function lying on l3 = 1. This leads to

l̂′ = argmin
l′

M−1
∑

i=0

[

α∗
i (l

2
1 + l22) + δ∗i l1 + ε∗i l2 + ζ∗i

]2
. (4.20)

Notice that the condition l3 = 1 rules out the potential reflectors passing through the

origin. As the origin is the location of the source, this does not constitute a serious

limitation. The simple substitution w = l21 + l22 allows us to rewrite the vector of the

unknowns as w = [w l21 l22]
T , therefore the optimization problem can be written as

ŵ = argmin
w

{

‖Aw − b‖2 : wTDw + 2fTw = 0
}

, (4.21)

where

A =







α∗
0 δ∗0 ε∗0
...

...
...

α∗
M−1 δ∗M−1 ε∗M−1






, b =







−ζ∗0
...

−ζ∗M−1






,

and

D = diag(0, 1, 1) , f =
[

−0.5 0 0
]T

.

Assuming that A has full column rank, the problem can be solved efficiently, and the

exact solution is readily found using the approach described in [152]. In particular, the

minimum is found as

ŵ(λ) = (ATA+ λD)−1(ATb− λf) ,
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where λ is the unique solution of ŵ(λ)TDŵ(λ)+2fT ŵ(λ) = 0 on the interval for which

ATA + λD is positive definite [152]. From the solution ŵ = [ŵ l̂1 l̂2]
T , the estimated

reflector line is finally given by l̂′ = [l̂1 l̂2 1]
T .

4.2.4 Error Propagation Analysis

In this Section we propose a method for predicting the impact of the error on TOAs on

the localization of reflectors using a formulation based on Catastrophe Theory [153].

Let l0 be the true reflector and r0 the true propagation distance of the reflective paths.

In a real scenario the measurement of r0 is affected by an error expressed as δr, such

that noisy measurements are denoted by r = r0 + δr. Subsequently, the minimum of

J becomes l = l0 + δl. Assuming the error δr to be sufficiently small, we want to

find a relationship between δr and δl. We do so by computing the second-order Taylor

expansion of J centered about (l0; r0). The term (∇lJ)
T |l0,r0 is zero, as the function

with the true TOAs r0 has a minimum in l0. We can thus take the first-order derivative

of the Taylor expansion and set it to zero to obtain

Hl,l(J)|l0,r0δl+Hl,r(J)|l0,r0δr = 0 , (4.22)

where

Hl,l(J) =





Jl1l1 Jl1l2 Jl1l3
Jl2l1 Jl2l2 Jl2l3
Jl3l1 Jl3l2 Jl3l3



 , Hl,r(J) =





Jl1r1 . . . Jl1rN
Jl2r1 . . . Jl2rN
Jl3r1 . . . Jl3rN



 ,

and

Jlilj =
∂2J

∂li∂lj
, Jlirj =

∂2J

∂li∂rj
.

From (4.22) we finally obtain

δl = Gδr , (4.23)

where G = −Hl,l(J)|−1
l0,r0

· Hl,r(J)|l0,r0 . In a real scenario we cannot assume δr to be

known. However, some statistical information could be available in advance or could be

estimated from the data. It is therefore important to find a relation between statistical

descriptors of the noise δr and of δl. The relationship between the covariance matrix

Ml of the estimation, and the covariance matrix Mr of δr is

Ml = GMrG
T , (4.24)
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where

Ml =





σ2
l1

σl1σl2 σl1σl3
σl1σl2 σ2

l2
σl2σl3

σl1σl3 σl2σl3 σ2
l3



 , Mr =











σ2
r1

0 . . . 0
0 σ2

r2
. . . 0

...
...

. . .
...

0 0 . . . σ2
rN











,

under the assumption of statistical independence of the measurement errors.

4.2.5 Comparison Between Exact and Iterative Methods

In order to compare the exact and iterative methods, numerical simulation were con-

ducted with reference to the setup in Figure 4.7. The microphone array was made of

r0

r1

r2

r3

r4

ρ

α

l

rs x

y

30 cm

Figure 4.7: Simulation setup: the acoustic source is located in rs, corresponding to the

centre of a 5-element circular microphone array. The line reflector l is described by its

distance ρ and angle α from the origin.

5 sensors uniformly spaced on a circle of radius 30 cm centered in the origin of the ref-

erence frame (corresponding to the acoustic source). TOAs between microphones and

source were calculated. The simulations were performed on a set of 9000 test reflector

lines l = [cosα, sinα, −ρ]T defined by their distance ρ and angle α with respect to

the origin, as shown in Figure 4.7. The test reflectors were defined by distances in the

range [1 m ∼ 4 m] and angles in the range [0 ∼ 2π].

Using the above setup the performance of the exact and iterative methods for mini-

mizing the cost function of Section 4.2.3 are compared. The iterative method considered

for the comparison is enumerated in Section 4.2.1 [113, 114]. For each reflector position
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errors were introduced into the distance measurements using 1000 realizations of inde-

pendent identically distributed zero-mean Gaussian noise with standard deviation σ.

The performance was evaluated by considering the distance error ǫρ = |ρ− ρ̂| and the

angular error ǫα = |α− α̂| of the estimated reflector represented by the pair (ρ̂, α̂) with

respect to the true reflector position (ρ, α). Figs. 4.8-(a) and 4.8-(b) show the standard

deviation of the distance error and of the angular error as a function of σ, respectively,

averaged over all the tested locations and repetitions. As far as the distance error is
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Figure 4.8: Comparison between the iterative and the exact solutions.

concerned, the iterative and the exact solutions exhibit almost identical errors, which

were proportional to the standard deviation σ of the measurement error. As for the

angular error, for values of σ below 0.05 m, the two approaches had virtually equivalent

results, but for higher values of σ, the iterative method was affected by larger errors.

This was due to the presence of multiple local minima in the cost function. For large

measurement errors, the risk of encountering local minima increases as the cost function

becomes less smooth. Although this phenomenon occurs for some error conditions, its

impact on the standard deviation of the angular error is quite noticeable. The exact

solution is therefore preferable over the iterative one, especially for large measurement

errors.

4.2.6 Theoretical Error Analysis

We now validate the method for the error propagation analysis proposed in Section 4.2.4.

In this case the standard deviation of the measurement noise is kept to σ = 0.01 m. The
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standard deviation of the error predicted with the analytic method is compared with

the results of the simulations conducted on the same testing reflector positions. The

results shown in Figure 4.9 show the distance error for theoretical (a) and simulated (b)

analysis, respectively. Similarly, Figure 4.9 shows the theoretical (c) and simulated (d)

results relative to the angular error. The results of the simulations accurately match the
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Figure 4.9: Comparison between the theoretical standard deviation of the error (predicted

with the error propagation analysis) and simulation results.

theoretical ones: they present the same mean error of the expected values (2.5 mm for

the distance and 1.3◦ for the angle). The patterns of local maxima (i.e. diagonal white

lines) correspond to configurations where two or more reflective paths are collinear,

thus producing similar ellipses. In this situation, therefore, two measurements yield

the same information, thus reducing the robustness of the estimation.
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4.3 Disambiguation of TOA Information

The aim of this section is to introduce the methods for disambiguation of TOA infor-

mation. There inherently exist two major challenges, the permutation and the non-

uniqueness problem of TOA matrix. Both challenges are first described and analysed.

As a next step, possible solutions are outlined.

4.3.1 Permutation Problem

The permutation problem in the estimated TOA matrix, for the SIMO case, is outlined

in the following by considering two illustrative examples. One of the underlying
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Figure 4.10: TOA matrix permutation problem: Identifying a corner using a microphone

array composed of four elements and a single sound source.

Figure 4.11: Ordering of the TOA matrix for the problem in Figure 4.10.

assumptions used in this work, as developed in Section 3.1.2, was to assume that in hi(n)

the first echo after the direct-path is related to the same reflector. This assumption is

satisfied if i) rs is sufficiently close to the reflector of interest and ii) microphones are

compactly situated in space. We saw that if both conditions apply, then the AIR can
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be expressed as

hi(n) = αi,0δ(n− ni,0) + αi,1δ(n − ni,1) +
N
∑

k=2

αi,kδ(n − ni,k).

With reference to Figure 4.10, we depict an example, where four microphones and

a single source are used to localize the reflectors of a corner in a room. Assuming

an otherwise anechoic room, it is straightforward to see, that the two microphones

on the upper diagonal will capture an AIR that is composed of the TOAs in the

following order: 1) The direct-path propagation from source to microphone; 2) the

reflective-path propagation related to the the left wall (blue line); 3) the reflective-path

propagation related to the bottom wall (green line). Similarly, the two microphones on

the lower diagonal will capture an AIR that is composed of the TOAs in the following

order: 1) The direct-path propagation from source to microphone; 2) the reflective-path

propagation related to the bottom wall (green line); 3) the reflective-path propagation

related to the left wall (blue line). We revisit the notation of the TOA information

matrix used in Section 3.1.2, i.e.

τ ,
[

τ
DP | τRE

]

.

The first column of τ is always the same, and pertains to the direct-path propagation

vector, i.e. τDP, from the sound source to each microphone in turn. Since, there are two

reflectors present in the acoustic scene, consequently K = 2, there are two additional

columns in τ , namely the M × 2 matrix

τ
RE =











τ0,1 τ0,2
τ1,1 τ1,2
...

...
τM−1,1 τM−1,2











.

As illustrated in Figure 4.11, there exists an ordering problem along the column di-

mension of τ . Since ni,0 < ni,1 < ni,2, we note that each row in the TOA information

matrix is ordered in time. Because of the relative spatial displacement of each sensor

in the array, we can therefore not guarantee that the TOA sequence in each row (i.e.

for each microphone) matches the ordering of all other rows. The situation becomes

even more complicated if we consider more reflectors, such as all four reflectors in a

rectangular room depicted in Figure 4.12, i.e. K = 4. In this case, we also violate con-

dition ii), stating that microphones be compactly organized in space. The column-wise
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Figure 4.12: TOA matrix permutation problem: Identifying all four reflectors in a rect-

angular room, measuring 3 × 4 m, using four randomly placed microphones and a single

sound source. Reflectors and their corresponding ellipses are drawn in the same color.

Figure 4.13: Ordering of the TOA matrix for the problem in Figure 4.12.

ordering problem for each row in τ becomes even more complicated, as illustrated in

Figure 4.13. Estimating the correct permutation Γπ that re-orders the elements in the

TOA information matrix, such that every column corresponds to the same reflector,

becomes a challenging problem.

4.3.2 Non-uniqueness Problem

There exist some methods in the scientific literature that address the disambiguation

of TOA information, such as [110, 154], from which we can take inspiration. These are

discussed in greater detail in Chapter 6. Let us note for the moment, that a single room

impulse response (RIR) (i.e. a 1-D function of time), uniquely describes the geometry

of a planar polygonal room, if we consider both first-order and second-order reflections
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[110]. The RIR is therefore a unique signature of a room. This is indeed the case

for the assumptions considered in [110], stating that a colocated source and receiver

(i.e. the Single-Input Single-Output (SISO) case) are used to identify a unique AIR,

i.e. h0(n), which contains all first and second-order generation delays that provide a

mapping between the geometry of a polygonal room and h0(n).

While the method outlined in [110] approaches the problem of geometric inference

in a mathematically elegant way, we note the following important fallacy. Identifying

TOAs that are related to all first and second-order reflections is straightforward to

obtain in simulation, but often impossible in real reverberant environments. This is

mainly due to the fact that a sound source, such as a loudspeaker, does not exhibit

an ideal omnidirectional directivity pattern but also because of other effects such as

occlusion, non-ideal reflectivity of the building materials and interference. Even more

importantly, consider the following scenario: A colocated omnidirectional source and

microphone emit and capture a source signal, that is used to identify the RIR, in a

square room defined in a 2-D plane. Consider, for illustration purposes, that both

source and microphone are located in the centre of this square room. The reflective-

path TOAs coincide for all four reflective boundaries of the room. In other words, the

RIR only contains a single peak, that is the superposition of all reflective-path peaks.

There are many cases, in which peaks in the AIRs seemingly overlap, i.e. one cannot

distinguish between them. Note, that this is not only the case for a colocated source

and microphone arrangement.

In addition to the permutation problem outlined in the beginning of this section,

we therefore also note a non-uniqueness problem in the peaks of the TOA information

matrix. In other words, for a convex planar K-polygonal room, we define the set

Γ0 = {τ0,j}1≤j≤K
, that contains first-order TOA information related to theK reflectors

for a single receiver (i = 0). We denote by Γ̂0 = {τ̂0,j}1≤j≤K , the set that contains

the estimated TOAs, as identified from the RIR. Evidently it follows that Γ̂0 ⊆ Γ0.

However, based on the illustrative example given earlier, it is possible that Γ̂0 ⊂ Γ0,

i.e. the inseparability of certain peaks in the RIR lead to Γ̂0 being a proper subset of

Γ0.

The disambiguations of TOA information proceeds as follows. We note that there

exists both a permutation and non-uniqueness problem in the TOA information matrix.

We address these two challenges by considering the more readily available delays related
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to first-order reflections and do not, for the moment, include second and higher-order

reflections. The motivation for this arises from the fact that we have so far outlined a

framework that keeps a priori assumptions on the source signal to a minimum, viz., i)

AIRs can be obtained from either supervised or unsupervised methods; ii) the source

signal used for excitation can either be a carefully designed pulse or an unknown signal

(such as speech, music, the snapping of fingers or the clapping of hands, etc.); iii) source

and receivers do not have to be synchronized and no restrictions on the location of the

source signal are imposed. In other words, while we limit our model of the AIRs to

direct-path and first-order reflection delays, we can consider multiple measurements,

for different source positions, in order to disambiguate the TOA information.

We approach the multi-reflector case by performing an exhaustive search using an

iterative version of the common tangent algorithm. We adhere to the SIMO case, and

only consider a static sound source. While this approach generally produces the desired

results it is computationally expensive.

4.3.3 Exhaustive Search

Consider the SIMO case with K reflectors and a single static sound source [114]. By

estimating the TOAs of the first order reflections, there exists a set of M×K ellipses. If

a subset of M ellipses are grouped together, extracted from every channel estimate and

associated with a particular reflector, then the line parameters of that particular reflec-

tor can be estimated using the notation for the cost function developed in Section 3.3,

i.e.

Je

(

l,
{

C∗
i,k

}M−1

i=0

)

=

M−1
∑

i=0

∥

∥lT C∗
i,k l

∥

∥

2
,

where M ≥ 3 and C∗
i,k = det (Ci,k)C

−1
i,k . The three unknown line parameters can be

estimated by minimizing the cost function

l̂k = argmin
l

Je

(

l,
{

C∗
i,k

}M−1

i=0

)

. (4.25)

There is a unique set of M ellipses for every kth reflector. However, prior knowledge is

needed to correctly group together related ellipses from the (K·M)!
M !(K·M−M)!combinations

of possible ellipses. Assuming that the channel estimates only provide TOAs due to

first-order reflections, then for a rectangular room in 2-D we can expect K = 4 dis-

tinct reflective path TOAs in each channel to construct a total of 4×M ellipses. The
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4. ROOM GEOMETRY ESTIMATION IN TWO-DIMENSIONS

problem then lies in finding the correct M ellipses corresponding to every kth reflec-

tor. Exhaustive computation of all combinations of groups of M to find the K optimal

line parameters is impractical when M is large. Additionally, if measurement errors

are introduced in the system, suboptimal solutions may give erroneous inference re-

sults. Under noisy conditions a group of M randomly selected ellipses from the set of
(K·M)!

M !(K·M−M)! combinations might produce a better minimum from the cost function than

the designated group associated to the kth specific reflector. We therefore propose an

iterative approach that groups the set of ellipses on a per-reflector basis [114]. Starting

with the geometrically closest reflector to the reference microphone, the total search

space is iteratively minimized by discarding ellipses associated with already localized

reflectors.

The reflective path TOA associated with the closest reflector to the reference mi-

crophone (r0) is described by τ0,1. The ellipse constructed from this TOA needs to

be grouped together with all combinations of ellipses due to other source-microphone

pairings and their associated TOAs

τi,k, i ∈ {0, · · · ,M − 1} ; k ∈ {1, · · · , 4} .

This results in (4M)!
M !(4M−M)! possible combinations. The combination with the smallest

value for Je is obtained when all ellipses belong to the same reflector. All ellipses

associated with that particular reflector can henceforth be discarded from the search

space for subsequent iterations. At the next iteration the search space is reduced to

the set of (3M)!
M !(3M−M)! different combinations, then (2M)!

M !(2M−M)! and finally until there are

only M ellipses left. Table 4.1 shows how the number of total combinations considered

decreases for each subsequent reflector. The Iterative Common Tangent Algorithm

(ICOTA) operates well under two conditions. The first condition is that the RIRs

Table 4.1: Algorithm table for estimating reflectors in a rectangular room.

Reflector Total combinations evaluated M = 5

1st (4M)!
M !(4M−M)! 15504

2nd (3M)!
M !(3M−M)! 3003

3rd (2M)!
M !(2M−M)! 252

4th M 1
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Input: Array of M ·K ellipses related to M microphones and K reflectors

Output: Array of 3 ·K line parameters of K reflectors

foreach Reflector k∗ do

Set C∗
0,k∗;

foreach Microphone i do

foreach Reflective path TOA k do

if Any C∗
i,k, i ∈ {0, · · · ,M − 1} ; k ∈ {1, · · · ,K} ellipses not

discarded then

Return minimum l for Je

(

l,
{

C∗
i,k

}M−1

i=0

)

;

end

Discard any C∗
i,k, i ∈ {0, · · · ,M − 1} ; k ∈ {1, · · · ,K} ellipses used;

end

end

Return optimal line parameter l associated with k∗-th reflector;

end

Algorithm 1: Iterative COTA estimation for multiple reflectors.

contain a complete set of TOA estimates (ideally of only first-order reflections). The

second condition is that K is small. Although the algorithm can operate when TOA

estimates of higher-order reflections are included in the RIRs, it quickly becomes ap-

parent that because of the way the algorithm scales, it is impractical for real-time

applications. For example, when M = 5 and K = 4, the algorithm would need to run

approximately 15500 iterations to localize the first reflector. Including second-order

reflections increases the number of iterations to approximately 2119000.

We note, that the ICOTA can be modified to account for the possible non-uniqueness

of peaks in the AIRs by not discarding previously used data and consequently perform-

ing a full exhaustive search. The motivation in doing this lies in the fact that a global

optimal solution exists, which can be estimated optimally. The practicality for such

approach, depends on the acquisition scenario considered.

4.4 Improving Robustness using the Hough Transform

In this paragraph the processing of the set of candidate points P = [p0 p1 · · · pP ] by

means of the Hough transform is considered with the purpose of refining the initial re-
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4. ROOM GEOMETRY ESTIMATION IN TWO-DIMENSIONS

flector estimate l. The Hough transform can be used for estimating the parameters of a

shape from its boundary points [142]. It considers the following normal parametrization

ρ = x cos θ + y sin θ, (4.26)

which specifies a straight line by the angle θ of its normal and its algebraic distance

ρ from the origin. A point in the cartesian space maps to a sinusoid in the Hough

parameter space that corresponds to all the lines passing through it. Conversely, points

in the parameter space are transformed into lines in the Cartesian coordinate space.

Given two points lying on a line with parameters (ρ, θ), in the Hough parameter space

the sinusoids corresponding to these two points intersect at ρ, θ. Therefore, given the

points pj in the coordinate space, the parameters of a line corresponding to the best-fit

of P can be found. Let ρ ∈ R+ and θ ∈ [0, π]. For each point [xj yj]
T we map

ρ̂ = xj cos θ̂ + yj sin θ̂. (4.27)

The results are stored in an accumulator A, initially set to zero, which is incremented

at every step such that:

A

(

ρ̂, θ̂
)

= A

(

ρ̂, θ̂
)

+ 1. (4.28)

The position of the largest maximum of the accumulator given by
[

θ̂max, ρ̂max

]

= argmax {A (ρ, θ)} , (4.29)

is then picked, which finally leads to the line parameters of the best-fit:

l̂H = [cos(θ̂max) sin(θ̂max) (−ρ̂max)]
T . (4.30)

By taking repeated measurements of TOAs, using a source that is placed at different

locations in the acoustic scene, it is possible to append additional data points to P

for a single reflector. True solutions will cluster around the same point in the Hough

space, while outliers will receive fewer votes in the accumulator space. There are many

robust evaluators available that dynamically remove contributions of backgrounds and

analyze voting patterns around peaks in the accumulator space [155]. However, when

considering a single reflector in the Hough space, it is often sufficient in practice to

estimate the single most voted bin to obtain l̂H. By computing local centers of energy

and discarding outliers in the Hough space, more accurate reflector results can be

obtained even when TOA measurements are affected by noise. It will be shown in the

following Section how this increases the robustness to noise in the TOA information.
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4.5 Experimental Verification

4.5 Experimental Verification

The performance of the proposed inference algorithm for multiple reflectors in 2-D

is evaluated through simulations and by using measurements made in real conference

rooms. Additionally, a robustness analysis, where a single reflector is considered, high-

lights the advantages gained by using the Hough transform parametrization. Experi-

ments 1–4 consider simulated impulse responses under a variety of different assump-

tions and in different scenarios. Specifically, Experiments 1–3 consider the practically

noise-less case (i.e. the transfer function of the measurement channel is negligible),

while Experiment 4 considers blindly-identified AIRs. In Experiments 5–7, impulse

responses are obtained from real-world measurements.

4.5.1 Evaluation Criteria

Given reference source location rs and estimated source location r̂s, the source local-

ization error is given by the Euclidian distance ǫs = ‖r̂s − rs‖. Let l and l̂ be the true

and estimated reflector lines, respectively. From these we can evaluate the distance d

from r0 to a point on each line and the orientation α. The distance can be evaluated

by projecting r0 onto the line such that

d =
|l1x0 + l2y0 + l3|

√

l21 + l22
, (4.31)

and the orientation from

α = arctan
l2
l1
. (4.32)

The accuracy of the reflector localization is measured using:

• distance error ǫd =
∣

∣

∣
d− d̂

∣

∣

∣
;

• angular error ǫa = |α− α̂|;

• alignment error ǫl =
l̂T l

‖̂l‖l‖
, where values closer to 1 indicate the angle between the

lines is small.
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4.5.2 Simulated AIRs

Simulated AIRs were obtained with the source-image method [35, 139], taking into

account that propagation delays may not be an integer number of sample periods. The

performance was assessed by averaging the results of 100 Monte Carlo runs (unless

specified otherwise). The mean and variance of ǫs, ǫd, ǫa and ǫl were calculated consid-

ering all located reflectors and individual reflectors ranked in order of error. In some

cases not all reflectors are identified with the same degree of accuracy; ranking the error

in this way provides insight into the distribution of errors as a function of the number

of identified reflectors.

We consider the SIMO case, such that for each Monte Carlo run the sound source

(rs) was randomly placed at a single static position inside the room. The microphone

positions (ri) were picked from a uniform distribution inside the room, constraining the

positions to be at a distance of at least 0.5 m from each wall and with each microphone

being kept at a minimum distance of 0.5 m from the source. We exclude those cases in

which the inference algorithm fails due either to the inseparability of neighbouring peaks

in the AIR, if a source position does not uniquely identify one of the four reflectors or if

the matrices involved in the source localization, particularly in (5.8), are rank deficient.

In other words, when four reflectors are considered in the acoustic environment, then

each AIR should exhibit four first-order peaks; otherwise such arrangement is not taken

into account. Furthermore, in the latter case when the microphones are arranged as

a linear array it might not be possible to estimate the source location, because of the

front-back ambiguity [7]. Additionally the simulation was limited to include only first-

order reflections. In all simulations, the sampling frequency is set to 44.1 kHz. We

consider unsynchronized AIRs, i.e. source position and range need to be estimated as a

first step. Source localization was applied as described in Section 4.1 to estimate TOAs

from the TDOAs.

Experiment 1

As an initial simulation, we consider a rectangular room in 2-D of dimensions 4 ×
3 m, using M = 5 microphones. The iterative method from Section 4.2.1, based

on a constrained least-squares estimator [113, 114] is used to localize the reflectors.

Disambiguation of TOA information is addressed using the iterative common tangent
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Figure 4.14: Experiment 1: A particular reconstruction result for a room of dimensions

4× 3 m.

algorithm. Figure 4.14 shows the estimated reflector lines and the associated ellipses.

The results and accuracy of the localization method are shown in Table 4.2. Monte

Carlo simulations using the constrained least-squares estimator, along with additional

reconstruction examples are given in [114].

Experiment 2

In this experiment we perform Monte Carlo simulations for random source and receiver

placement in a rectangular room of random dimensions of width and height (X ×
Y ), with X ∈ [3, 5] m and Y ∈ [4, 6] m, using M = 4 microphones. The reflector

localization is based on the analytic solution of the minimization problem. The Hough

transform correction approach is employed for disambiguation of TOA information and

quantization. The source localization accuracy is depicted in Table 4.3. We note at

this point, that the precision of the source localization plays only a minor role since the

error propagation between rs and the TOAs is linearly related. In other words, errors

in the source localization propagate linearly through the system affecting each channel
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Table 4.2: Experiment 1: Comparison of actual and estimated reflector localization results

for the room in Figure 4.14

Wall (α [◦] , l3[m]) (α̂ [◦] , l̂3[m]) ǫl

1 (90,0) (90.282, 0.015) 0.999

2 (180,4) (179.751, 3.998) 1.000

3 (-90,3) (-89.663, 2.991) 1.000

4 (0,0) (0.249,0.008) 1.000

Table 4.3: Source localization results for simulated AIRs

Exp. µ(ǫs) [cm] σ(ǫs) [cm]

2 0.92 1.62

3 0.92 1.62

Table 4.4: Experiment 2: Distance and angular error results for simulated AIRs

Walls µ(ǫd) [cm] σ(ǫd) [cm] µ(ǫa) [
◦] σ(ǫa) [

◦]

All 0.926 1.169 0.175 0.351

Best 0.206 0.210 0.036 0.033

2nd best 0.505 0.295 0.079 0.049

2nd worst 0.884 0.421 0.141 0.080

Worst 2.109 1.756 0.442 0.622

equally. The resulting localization error due to this scaling is manifested as a global

offset from the origin of the coordinate system. The distance and angular error for

the reflector inference are given in Table 4.4. Averaged across all walls our approach

achieves a µ(ǫd) and µ(ǫa) of around one cm and less than half degree respectively.

Experiment 3

We conclude our analysis of the reflector localization accuracy by comparing the iter-

ative least-squares estimator with the closed-form estimator. Disambiguation of TOA

information is achieved by means of the ICOTA in the former case, and using the Hough
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Table 4.5: Experiment 3: Iterative

LS estimator alignment error

Walls µ(ǫl) σ(ǫl)

All 0.996 0.055

Best 1.000 0.000

2nd best 1.000 0.005

2nd worst 0.996 0.033

Worst 0.987 0.105

Table 4.6: Experiment 3: Closed-

form estimator alignment error

Walls µ(ǫl) σ(ǫl)

All 1.000 0.000

Best 1.000 0.000

2nd best 1.000 0.000

2nd worst 1.000 0.000

Worst 1.000 0.000

Table 4.7: Experiment 3: Iterative LS estimator distance and angular error

Walls µ(ǫd) [cm] σ(ǫd) [cm] µ(ǫa) [
◦] σ(ǫa) [

◦]

All 3.720 16.580 0.799 3.258

Best 0.290 0.230 0.046 0.074

2nd best 1.390 6.130 0.264 1.606

2nd worst 3.820 12.300 0.956 3.544

Worst 9.400 29.490 1.931 5.048

Table 4.8: Experiment 3: Closed-form estimator distance and angular error

Walls µ(ǫd) [cm] σ(ǫd) [cm] µ(ǫa) [
◦] σ(ǫa) [

◦]

All 0.926 1.169 0.215 0.426

Best 0.206 0.210 0.034 0.030

2nd best 0.505 0.295 0.091 0.057

2nd worst 0.884 0.421 0.179 0.138

Worst 2.109 1.756 0.555 0.737

space approach in the latter. The source localization accuracy is shown in Table 4.3.

The results of the alignment, and distance and angular error are given in Tables 4.5–4.6

and Tables 4.7–4.8 respectively. In terms of alignment, the four walls are accurately

localized using the ICOTA [114]. The closed-form estimator on the other hand yields

a perfect alignment in all cases, µ(ǫl) = 1. In terms of distance and angular error

the closed-form estimator outperforms the original line estimator with lower mean and
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Figure 4.15: Blind system identification experiment: Alignment error (ranked by accu-

racy), shown as the left vertical axis, and source localization accuracy, shown as the right

vertical axis, as a function of SNR.

considerably smaller variance. Averaged across all walls the analytic line estimator

presented in this work achieves a µ(ǫd) and µ(ǫa) of less than one cm and one degree

respectively.

Experiment 4

We consider in this experiment, blindly-identified AIRs in order to analyse the be-

haviour of the reflector inference algorithm under varying SNR conditions. The simu-

lated AIRs are convolved with a WGN signal of duration 5 s and the channels estimated

with the RNMCFLMS algorithm [128] with parameters ρ = 0.2, λ = 0.98. In order to

prevent overmodeling of the AIRs, the effective length of the channels is estimated by

max(τi,k)−min(τi,k), where ground-truth τi,k are used; the observed signals xi(n) are

otherwise the only signals available to the BSI algorithm. Uncorrelated sensor noise

is added to give SNR {−5,−4, . . . , 40} dB, providing insight into the behaviour of the

inference algorithm with different levels of noise. The BSI numerical simulations were

conducted in 200 Monte Carlo runs.
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Figure 4.16: Blind system identification experiment: Distance, shown as the left vertical

axis, and angular reflector localization error (ranked by accuracy), shown as the right

vertical axis, as a function of SNR.

The results of Experiment 4 are shown in Figs. 4.15–4.17. Reliable localization of

all four walls can be achieved at input SNR values of 10 dB or greater. Errors begin

to occur at SNR < 10 dB although on average at least two walls can be identified

at SNR= −5 dB (ǫl ≥ 0.8). Existing applications of BSI, such as dereverberation by

channel equalization [2], usually require significantly high SNRs in order to be effective

as it is required that all taps be modeled well. The BSI problem is relaxed in the case

of inference as only the time of the early reflections, which tend to be of high amplitude

compared with neighbouring taps, need be known. Further work into BSI in the context

of inference is expected to exploit this relaxed requirement for the identified channels.

4.5.3 Real-World Results

The simulated experiments represent idealized environments in which the transfer func-

tion of the measurement apparatus is negligible and the floor and ceiling are perfectly

absorbing. In the case of real-world measurements, geometric inference is a much more

challenging problem. Two experiments were devised to demonstrate the applicability of
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Figure 4.17: Blind system identification experiment: Average distance, shown as the left

vertical axis, and angular reflector localization error (for all walls combined), shown as the

right vertical axis, as a function of SNR.

the reflector localization algorithm in a real-world environment. As a first example, the

corner of a rectangular conference room is estimated at four different source locations

using a linear microphone array. As a next step, all four walls of different conference

room are estimated by combining up to 16 independent source position measurements

in the Hough parameter space.

Experiment 5

The red ∗ in Fig. 4.18 show a microphone array consisting of four DPA 4063 microphones

spaced by 16 cm in a linear configuration. A fifth microphone was placed in the centre

of the array, displaced 5 cm perpendicular to the array line on the horizontal plane.

This aids in resolving the front-back ambiguity. The array was placed in the corner

of a 4.77 × 5.92 m room at a height of 1.2 m parallel to one wall with the reference

microphone (i = 0) displaced (1.0, 0.5) m relative to the corner. In the coordinate

system of Figure 4.18, the corner of the room lies at (0.0, 0.0) m and the walls extend

in the positive x and y directions. A Genelec 8030A loudspeaker was placed sequentially
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Figure 4.18: Inference in a real-world environment. Five microphones (red ‘∗’ ) and

a single loudspeaker placed at 4 sequential points (black ‘◦’) were used to estimate two

perpendicular reflectors passing through (0, 0) m. The elliptical constraints are shown

pertaining to source location (1.5, 1) m. The estimated source locations are depicted ‘×’

and the estimated reflectors for all 4 source positions are overlaid around x = 0 and y = 0.

at four positions: (2.0, 0.5), (1.5, 0.5), (2.0, 1.0) and (1.5, 1.0) m as marked by black

◦. The array and source locations were placed square to the reflectors simply to aid

their placement within the room as this is not expected to have an impact upon the

inference algorithm. At each source location, the AIRs were measured with the MLS

method [140]. No effort was made to synchronize the recorded signals with the input

stimulus.

The AIRs in Experiment 5 were analysed assuming unsynchronized AIRs and an

unknown source location. In each case, the three largest peaks in the AIRs were

assumed to correspond to the direct-path signal and 1st-order reflections due to the

nearby walls. The black × in Figure 4.18 show the estimated locations of the sources,
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exhibiting a mean error of 3.4 cm. The thick horizontal and vertical lines in Figure 4.18

depict the estimated reflectors overlaid for all four source locations. For clarity, the

ellipses shown pertain to an arbitrarily selected example of source location (1.5, 1.0) m

only. The inference results are summarized in Table 4.9 and show that the reflectors

were localized to within 2.8 cm and 0.7 degrees. The low inference error suggests that

the source location error was due in part to the difficulty in estimating a point source

from a loudspeaker by physical measurement. These preliminary results suggests that

the proposed algorithm is suitable for real-world measurements.

Table 4.9: Experiment 5: Reflector localization results with real-world data

Walls µ(ǫl) µ(ǫd) [cm] µ(ǫa) [
◦]

All 0.999 2.753 0.714

Best 0.999 1.236 0.326

2nd Best 0.999 4.270 1.103

Experiment 6

An experiment was devised in a small conference a room measuring 3.31×3.58×3.00 m,

with concrete walls and two flush-mounted wooden doors in the south and east walls. A

microphone array consisting of four microphones spaced by 0.5 m in a ‘+’ configuration

and a fifth placed in the centre was positioned at (1.75,1.50) m from the south-west

corner. A Genelec 8030A loudspeaker was positioned around the array in 16 equiangle

positions at a range of 1 m from the array centre, ensuring that the loudspeaker was

always faced towards the array. The loudspeaker positions used in this experiment

are similar to those used in a 2-D wave field synthesis array. The microphone signals

were sampled at 44.1 kHz. At each position, the acoustic impulse response between

the source and microphone array was estimated using the MLS method [140]. The

recorded signals were not synchronized with the input stimulus. The line estimates

were combined using the Hough transform and the parameters corresponding to the

top four bins were used to estimate the bounding line reflectors.

We proceeded to evaluate the improvement in localization accuracy when an in-

creasing number of source positions is employed. First, the sound source was arranged
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Table 4.10: Experiment 6: Reflector localization results with real-world data

N = 4 N = 8 N = 12 N = 16

Wall ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦]

All 2.358 0.812 1.580 0.603 1.025 0.309 0.853 0.205

North 2.240 0.751 2.240 0.751 0.700 0.253 0.700 0.253

East 1.780 0.720 0.850 0.751 0.610 0.504 0.500 0.252

South 2.960 0.877 1.780 0.419 1.680 0.226 1.560 0.126

West 2.450 0.899 1.450 0.490 1.111 0.252 0.650 0.188

in a ‘+’ configuration, i.e. displaced on the north, west, south and east directions with

respect to the array. As a next step, four further source positions are considered at a

rotation of 45◦, i.e. including measurements coming from the north-west, south-west,

south-east, north-east. Finally, two further rotations of +22.5◦ and −22.5◦ yield re-

sults for 12 and 16 source positions. Table 4.10 shows the localization accuracy for each

of the walls along with the average accuracy for all the four configurations described

above. Notice that the accuracy improves as the number of sources increases. Even for

the case of 4 source positions an error of only a few centimeters is observed, which is

suitable for many application scenarios. Using 16 source positions, effectively mimick-

ing a wave field synthesis array, the localization accuracy approaches the limits of the

hand-measured ground truths. Localization results for the 16 sources case are shown

in Figure 6.1. The error between the intended and estimated positions is due, in part,

to the manual measurement of the position of the loudspeaker. This is not problematic

as the system makes no prior assumptions about the source location. The Hough data

points, marked as ‘+’, lie very close to the room boundaries and are well-fitted by the

estimated line reflectors. Some erroneous data points are due to the source positions

near multiples of 45◦ in which no single reflector is dominant; they are however treated

as outliers by the algorithm and do not affect the estimated reflectors. Reflections from

the walls were always dominant over those arising from the floor and ceiling as they

are less reflective than the walls, i.e. any reflections from the floor and the ceiling were

negligible because of their construction material.
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Figure 4.19: Room inference results using a microphone array, placed centrally in a small

conference room, capturing a MLS sequence from 16 source positions in turn.

Experiment 7

In this experiment the Hough transform based inference approach is validated in a

medium sized conference room. The crux in this experiment lies in the fact that the

room impulse response is identified using an unsupervised approach with an unknown

signal: a test person is snapping their fingers while moving around the room.

The finger-snaps were captured with a microphone array that consisted of four DPA

4063 microphones spaced by 16 cm in a linear configuration and a fifth microphone that

was placed in the centre of the array, displaced 5 cm perpendicular to the array line on

the horizontal plane. The array was placed in the corner of the room at a height of 1.2

m facing the south wall with the leftmost microphone displaced (0.61, 0.95) m relative

to the corner. The arrangement is shown in Figure 4.20.

A test person performs a “random walk” in the vicinity of the microphone ar-
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Figure 4.20: Localization of the corner walls in a medium sized conference room. The

arrows depicted the approximate trajectory of the “random walk” of a test person that is

snapping their fingers at different spatial locations.

ray snapping their fingers at different spatial positions. The direct and the dominant

reflective-path TOAs were extracted from each channel at every position where a finger-

snap was localized and captured. At each step, the line parameters of the single domi-

nant reflector were found using the closed-form estimator. From this localized reflector,

Hough input data points were constructed. These input data points were accumulated

for every finger-snap captured. After post-processing the data in the Hough parameter

space the largest two local maxima were picked. Note that in this example, the num-

ber of maxima are set in a priori way - this is because we have purposely placed the

microphone array close to the corner of the room. From these two maxima the line

parameters of the actual reflectors are estimated robustly.

Given more measurements, or evidence, it can be seen that the accuracy of the

reflector localization improves. The Hough input points cluster around the true reflector

location, as seen in Figure 4.20. Data points that deviate from the true reflector
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Table 4.11: Experiment 7: Reflector localization results with real-world data

5 Measurements 15 Measurements

Wall ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦]

All 2.765 1.714 1.530 0.857

South 1.020 0.900 0.640 0.453

West 4.510 2.528 2.420 1.261

location can be suppressed using thresholding methods in the Hough space and by

applying thinning to the isolated clusters of bright spots in the accumulator array

image. Table 4.11 shows the reflector localization accuracy when 5 and 15 finger-snaps

are captured.

Interestingly, not only has this real-world experiment shown that a room corner

can be localized accurately using an unknown source signal (finger-snap), furthermore

measurements at random source positions in the proximity of the microphone array

lead to the creation of “hot-spots” in the Hough parameter space. Theoretically, this

could lead to the mapping of more reflectors and more complex geometries (i.e. not

restricted to rectangular rooms). However, restricting the algorithm to probe for only

dominant “hot-spots” (in this case two) yields important information about the local

environment of the measurement apparatus. For example, the microphone array could

be a teleconferencing system. Knowing the location of the two dominant reflectors close

to the teleconferencing system, and improving their location estimate over time, can be

of significant advantage for acoustic echo cancellation algorithms. The speaker would

merely walk around the room and talk and the system could automatically improve

the localization accuracy of the offending reflectors (and possibly reduce their impact).

4.5.4 Robustness Analysis

In order to study the robustness of our method with respect to noise, additional white

noise was added to the TOA estimates of a single reflector:

n⋆
i,1 = ni,1 + ξ, (4.33)

where ξ is zero-mean Gaussian noise with standard deviation variable between 0 and 5

samples.
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Figure 4.21: Average distance, shown as the left vertical axis, and angular reflector

localization error, shown as the right vertical axis, for a single reflector using five linearly

arranged source positions, as a function of additive noise to the TOA estimates for the

estimate without the Hough transform (without correction) and with the Hough transform

(with correction).

Two arrangements of source positions were considered: a linear and circular ar-

rangement. In the first case the source was placed 0.5 m behind the centre of the

microphone array (with respect to the wall) and moved at five equidistant intervals

between [−10, 10] cm along the length of the room. In the second case the source was

moved on a half circle of diameter 1 m from the centre of the array at five equiangle

positions between [−270◦, 90◦].

The performance was assessed by averaging the results of 50 Monte Carlo runs. In

each run five source positions were used. For each source position the line parameters

of the reflector were calculated using the initial estimate (4.13) and the Hough data

points. At the end of each run the average error of the COmmon TAngent (COTA)

method was computed along with the best fit, obtained from the analysis of the Hough

parameter space, of the five repetitions combined.

The results for both arrangements are shown in Figures 4.21–4.22 respectively. In

97



4. ROOM GEOMETRY ESTIMATION IN TWO-DIMENSIONS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Error standard dev iat i on (Sample s)

D
is
ta

n
c
e
e
rr
o
r
(c

m
)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4
0.6
0.8
1
1.2
1.4

A
n
g
u
la
r
e
rr
o
r
(◦
)

ε
d
 without correction

ε
a
 without correction

ε
d
 with correction

ε
a
 with correction

Figure 4.22: Average distance, shown as the left vertical axis, and angular reflector

localization error, shown as the right vertical axis, for a single reflector using five circularly

arranged source positions, as a function of additive noise to the TOA estimates for the

estimate without the Hough transform (without correction) and with the Hough transform

(with correction).

both cases it is observed that the robustness to errors in the TOAs is improved by

clustering multiple measurements. When the source positions are close to each other,

i.e. yielding a low spatial variation, such as in Fig. 4.21, we see that the angular error

(and also to some extent the distance error) increases rapidly with added errors to the

TOA information. Consequently, enough spatial variation should be introduced in the

positioning of the source if high accuracy is desired, especially in adverse conditions,

i.e. when TOA estimates are noisy.

Conclusion

The concepts developed in this chapter outline the problem of reflector line parameter

estimation from AIRs. Specifically, inference of the geometry of an acoustic environ-

ment in 2- D from AIR estimates has been considered in this chapter. Peaks in the

AIRs correspond to the TDOAs related to the dominant reflections in a room, from
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which the location of the source relative to the receivers can be estimated. The TOA

corresponding to each peak can then be used in conjunction with the relative source

and receiver locations to parameterize an ellipse that describes the locus of possible

reflector locations. The common tangent between multiple ellipses corresponds to the

location of a particular reflector. An algorithm has been proposed that automatically

locates multiple reflectors in a 2-D plane from estimates of the AIR. Monte Carlo sim-

ulations reveal that the proposed method works reliably even when the source location

is unknown and the AIRs are unsynchronized. Further simulations show that, by using

the Hough transform and taking repeated measurements at different source positions,

the robustness to noise in the TOA information can be improved. Real-world measure-

ments show that the proposed technique provides reliable results in a practical setting.
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5

Room Geometry Estimation in

Three-Dimensions

Introduction

W
E extend the reflector localization framework outlined in Chapter 4 to the

three-dimensional (3-D) case. Instead of dealing with line reflectors the

aim is now to estimate the parameters of a reflector plane. As a first step,

the notation of the system model is extended to the 3-D case where multiple acoustic

impulse responses (AIRs) are captured at different spatial positions. Since we do not

impose any a priori assumptions on the system identification process, whether it is su-

pervised or unsupervised, the source localization algorithm, enabling the identification

of time-of-arrivals (TOAs) from unsynchronized measurements, is outlined in 3-D. We

then introduce the planar reflector estimation procedure.

We consider two methods. First, we introduce a method that estimates planar re-

flector parameters by combining multiple orthogonal line parameters. More specifically,

we adopt a 3-D array accommodating seven microphones. Microphones are organized

in three sub-arrays, each composed of five microphones. All the microphones in a spe-

cific sub-array are characterized by the fact that they are co-planar. Each sub-array is

devoted to the localization of the portion of reflectors lying on its plane. By intersecting

line-reflectors estimated from multiple sub-arrays, the proposed methodology estimates

the actual lying plane of each reflector.

Second, the approach in Section 4.2.3, that was proposed in [116], is extended to 3-D
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geometries. Additionally, the analytical prediction of the impact of errors on measure-

ments on the reflector localization error is extended to the 3-D case. This research theme

is becoming increasingly important, as demonstrated by recent publications (e.g. [156]

and [157]) where the authors study the problem of the propagation of error measure-

ments into the estimation process, taking inspiration from the Information Geometry

[158].

The remainder of this chapter is organized as follows: Section 5.1 introduces the

notation of the system model. Section 5.2 outlines the source localization algorithm

in 3-D. The first reflector localization method, that combines multiple line reflectors

to estimate the planar reflectors, is introduced in Section 5.3. Section 5.4 presents the

constrained least-squares and exact estimator. Finally, Section 5.5 gives experimental

results.

Relevant Publications

1. J. Filos, A. Canclini, F. Antonacci, A. Sarti and P. A. Naylor, “Localization of

Planar Acoustic Reflectors from the Combination of Linear Estimates,” Proc.

European Signal Processing Conf. (EUSIPCO), Bucharest, Romania, August 27

- 31, 2012.

2. A. Canclini, F. Antonacci, J. Filos, A. Sarti and P. A. Naylor, “Exact Localization

of Planar Acoustic Reflectors in Three-Dimensional Geometries,” International

Workshop on Acoustic Echo and Noise Control (IWAENC), Aachen, Germany,

September 4 - 6, 2012.

5.1 System Model

We will consider from now on M sensors that are distributed in a 3-D volume at

positions ri , [xi yi zi]
T , i = 0, . . . ,M − 1. We assume N source positions and

extend our notation by adding the source location index m such that it is given by

rs,m , [xm ym zm]T , m = 1, . . . , N . The received signal, as formulated in Section 2.1,

at the ith sensor and related to the mth source, is then given by the extension of (2.1),

i.e.

xi,m(n) = hi,m ∗ sm(n) + bi,m(n), (5.1)
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which can be written in vector form as

xi,m(n) = Hi,m(n)sm(n) + bi,m(n), (5.2)

where

xi,m(n) = [xi,m(n) xi,m(n− 1) · · · xi,m(n− L+ 1)]T ,

Hi,m(n) =











hi,m,0(n) · · · hi,m,L−1(n) · · · · · · 0
0 hi,m,0(n) · · · hi,m,L−1(n) · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · hi,m,0(n) · · · hi,m,L−1(n)











,

sm(n) = [sm(n) sm(n − 1) · · · sm(n− 2L+ 2)]T ,

bi,m(n) = [bi,m(n) bi,m(n − 1) · · · bi,m(n− L+ 1)]T .

The impulse response of each channel hi,m(n) is now related to a particular source

position such that

hi,m(n) = αi,m,0δ(n − ni,m,0) + αi,m,1δ(n − ni,m,1) +

N
∑

k=2

αi,m,kδ(n − ni,m,k) , (5.3)

where αi,m,k is the attenuation along the direct (k = 0) or reflective (k ≥ 1) path for

every mth source position. Consequently, we extend the notation for the TOA informa-

tion matrix using the additional index m, i.e. τm,m = 1, · · · , N , for M microphones,

N source positions and K reflectors such that

τm =











τ0,m,0 τ0,m,1 τ0,m,2 · · · τ0,m,K

τ1,m,0 τ1,m,1 τ1,m,2 · · · τ1,m,K

...
...

... · · · ...
τM−1,m,0 τM−1,m,1 τM−1,m,2 · · · τM−1,m,K











. (5.4)

Note, that we never acquire τm for all source positions at one point in time, i.e. we

do not consider the MIMO case, but rather estimate the M ×K TOA matrix multiple

times for N source positions. This is why the notation τm is convenient, as we measure

the AIRs in the same way as before, but collect m = 1, · · · , N instances. Consequently,

we reflect the above changes to τTDOA
i,j which is now defined as the time-difference-of-

arrival (TDOA) of the direct-path between the ith and jth microphone for every mth

source position such that

τTDOA
i,m,j = |τi,m,0 − τj,m,0| . (5.5)
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5.2 Source Localization in 3-D

In this section, we briefly outline the original source localization formulation used (that

is defined in 3-D in [80]), that extends the notation developed for the 2-D case in

Section 2.3.2. For notational convenience, but without loss of generality, we consider

only a single static source, i.e. rs,m becomes rs , [xs ys zs]
T .

The reference microphone (i = 0) is placed at the origin of the new coordinate

system, i.e. [0 0 0]T and the distances from the origin to the ith microphone and the

source are given by

Ri , ‖ri‖ =
√

x2i + y2i + z2i , i = 0, . . . ,M − 1,

Rs , ‖rs‖ =
√

x2s + y2s + z2s .

We observe that the correct source location should be at the intersection of a group of

spheres, analogously to the circular criterion in Section 2.3.2. The centre of each sphere

is equal to the location of the microphone and the radius of each sphere is related to

the source-microphone distance. Therefore, the best estimate of the source location

will be the point that yields the shortest distance to those spheres defined by the range

differences and the hypothesized source range. The error function is then defined as

the difference between the measured and true values, which when writing them in a

vector form gives

e(rs) = Aθ − b, (5.6)

where

A ,

[

S | d̂
]

, S ,











x1 y1 z1
x2 y2 z2
...

...
...

xM−1 yM−1 zM−1











,

θ ,









xs
ys
zs
Rs









, b ,
1

2













R2
1 − d̂21,0

R2
2 − d̂22,0

...

R2
M−1 − d̂2M−1,0













.

The corresponding spherical LS criterion is then given by

J = eTe = [Aθ − b]T [Aθ − b] . (5.7)
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The solution for θ is given by [80]

θ̂1 = A†b, (5.8)

where ( · )† denotes the pseudo-inverse.

5.3 Reflector Plane Localization from Combination of Lin-

ear Estimates

Many techniques have appeared in the last few years, which aim at localizing princi-

pal reflectors in a room. Relevant examples are [104, 108, 110, 113, 114]. All these

techniques, however, specifically address the estimation of 2-D geometries. There are

many scenarios where reflections from floor and ceiling are relevant and can affect the

accuracy and outcome of the space-time processing. In [117] the authors generalize the

approach in [113, 114] to 3-D geometries. In this section we start once again from the

approach introduced in [113, 114] but propose a rather different approach to the esti-

mation of simple 3-D geometries, which transforms the localization of planar reflectors

into the estimation of multiple linear reflectors. More specifically, we adopt a 3-D array

accommodating seven microphones. Microphones are organized in three sub-arrays,

each composed of five microphones. All the microphones in a specific sub-array are

characterized by the fact that they are co-planar. Each sub-array is devoted to the

localization of the portion of reflectors lying on its plane. By intersecting line-reflectors

estimated from multiple sub-arrays, the proposed methodology estimates the actual

plane of each reflector.

An AIR acquired in an ordinary room can be richly populated with peaks related

to reflective paths, only some of which are related to first-order reflections. We con-

sider these first-order echoes as the only acoustic events useful for the localization of

reflectors in this scenario, as a simplifying assumption. A preliminary step that selects

only the useful acoustic events, i.e. the TOAs related to the direct-path propaga-

tion and the first-order reflective paths, is therefore necessary. For this purpose we

propose a technique based on the Hough transform. The Hough transform for the

detection of reflectors was first introduced in [115]. Based on the assumption that all

the cartesian sections of the room are rectangular, we select the reflective paths in the
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impulse response which are organized on a rectangular pattern in the Hough param-

eter space. This rectangle detection technique is inspired by the solution to a similar

problem adopted in computer vision [141]. It is worth noticing that this approach can

be generalized to convex polygonal rooms [159].
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Figure 5.1: 7-element microphone array inside a room: Full 3D array (a) and decompo-

sition into three 2D sub-arrays (b)–(d).
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5.3.1 Proposed Method

In this section, we aim to obtain the full TOA set τm,m = 1, · · · , N , i.e. the set

that allows the identification of all reflectors (i.e. walls) that define the boundaries of

the acoustic enclosure, by considering multiple source positions. This is achieved by

capturing the AIRs at different source locations. For each source location the multi-

channel impulse response, hi,m, is identified. The TOA information matrix τm is created

by picking the peaks from hi,m, that represents the impulse responses from each source

(rs,m) to each microphone (ri) in the array.

Two limitations are considered. First, the number of source positions, N , is chosen

a priori to correspond to the total number of reflectors present in the environment.

Secondly, the source is placed in a controlled position at each step, meaning that the first

two peaks in hi,m always correspond to the direct-path and first-order reflection, with

respect to each particular source position, microphone array and reflector arrangement.

Evidently, hi,m contains information related to more than one reflector. Exploiting such

redundancy is indeed possible, such as proposed by the authors in [114]. However, for

the purposes of this manuscript we do not aim at exploiting redundancy or the reduction

of the amount of source positions probed.

The 2-D reflector localization techniques outlined in [113–115] are extended to the 3-

D case in a straightforward yet effective way. A 3-D microphone array, such as depicted

in Figure 5.1(a), is employed to capture hi,m. The 3-D space is decomposed into three

orthogonal 2-D regions by considering three subsets of microphones. Let rxy, rxz, ryz

denote the subsets lying on the xy, xz and yz-planes, as shown in Figures 5.1(b)–

5.1(d) respectively. Each subset is used to identify the line parameters of the reflectors

coincident with the plane it can observe. By combining the measurements from all three

planes, each reflector plane is represented by a pair of lines lying on two orthogonal

planes. By first estimating the line parameters of the reflectors it is possible to then

calculate the parameters of the planes that are coincident with the actual reflectors in

3-D. In the following section we will outline the estimation of the line parameters of

the reflectors followed by the reflector plane estimation methodology.
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5.3.2 Disambiguation of Rectangular Patterns in the Hough Space

Consider the Hough parameter space representation of the estimated line reflectors.

Let H1 = (ρ1, θ1),H2 = (ρ2, θ2), · · · ,Hv = (ρv, θv) denote the v peaks of A
(

ρ̂, θ̂
)

[141].

Peaks Hm and Hn are paired together if they satisfy:

|θm − θn| ≈ Tθ, (5.9)

where Tθ is an angular threshold, and determines if peaks Hm and Hn correspond to

orthogonal lines (i.e. Tθ ≈ π/2).

For every microphone sub-array the peaks in the Hough accumulator are sorted with

respect to (5.9). In this way the TOAs that are not related to a particular sub-array,

and its respective plane, can be discarded. The disambiguation approach above is only

valid for rectangular geometries. The interested reader is referred to [159] where other

geometrical relationships are considered in order to perform disambiguation in more

complex geometries.

5.3.3 Reflector Plane Estimation

The estimation process outlined in the previous Section leads to 6 pairs of reflector

lines, one pair for each wall. In particular, each wall is represented by a pair of lines

lying on two orthogonal planes. The reflector, therefore, has to be estimated as the

plane which best fits the two lines.

We proceed as follows. With reference to Figure 5.2, let us consider two arbitrary

lines l1 and l2. We aim at estimating the plane P = [n, d]T that best fits l1 and l2,

where the unit vector n is the normal of the plane, and d is its distance from the origin.

For each line we select two arbitrary points lying on it, namely p1 and q1 on l1; and

p2 and q2 on l2. We organize the point coordinates in the matrix

G =









p1 1
q1 1
p2 1
q2 1









. (5.10)

The searched plane is then estimated, in the least-squares sense, as

P̂ = [n̂, d̂]T = argmin
n,d

‖G[n, d]T ‖2 s.t. ‖n‖ = 1 . (5.11)

The result of the above minimization yields the parameters of the plane that best

describes the actual location of the reflector.
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Figure 5.2: Plane estimation from two skew lines.

5.4 Direct Reflector Plane Localization

The following approach follows the derivation first presented in [117]. Reflectors are

represented in 3-D by the coordinates of the plane on which they lie. Points on the

plane P = [p1 p2 p3 p4]
T satisfy the equation p1x + p2y + p3z + p4 = PTx = 0, where

x = [λx λy λz λ]T , λ 6= 0, are the homogeneous coordinates for the point [x y z]T lying

on the plane. Using the parameters {a, b, c, d, e, f, g, h, k, l} a quadric can be expressed

as [144]

Q =
{

(x, y, z) ∈ R
3|ax2 + bxy + cy2 + dxz + eyz + fz2 + gx+ hy + kz + l = 0

}

.

(5.12)

The more compact matrix representation of (5.12) is given by

xTQx = 0, (5.13)

where the quadric matrix is defined as

Q =









a b d g
b c e h
d e f k
g h k l









.

The problem of localizing reflectors in 3D corresponds to finding the parametersP of the

planes on which the reflectors lie, given estimates ĥi,m(n). When multiple reflectors
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are present in the acoustic scene, multiple independent estimations are performed,

by sequentially placing the source in the proximity of each wall to be localized. We

momentarily drop the index m, that describes each independent measurement, and

focus only on the reflector planes of the ith channel. The aim now is to derive the

equation for an ellipsoid that is tangential to the unknown reflector plane.

The implicit equation of an ellipsoid with foci in (xs, ys, zs) and (xi, yi, zi) and with

major diameter ri = cτRE
i is

√

(x− xi)2 + (y − yi)2 + (z − zi)2 +
√

(x− xs)2 + (y − ys)2 + (z − zs)2 = ri . (5.14)

By expanding (5.14) and comparing term by term with a quadric with parameters

(ai, bi, ci, di, ei, fi, gi, hi, ki, li) we obtain

ai = 4
[

(xs − xi)
2 − r2i

]

,

bi = 8 [(xs − xi)(ys − yi)] ,

ci = 4
[

(ys − yi)
2 − r2i

]

,

di = 8 [(xs − xi)(zs − zi)] ,

ei = 8 [(ys − yi)(zs − zi)] ,

fi = 4
[

(zs − zi)
2 − r2i

]

,

gi = 4
[

r2i (xs + xi)− (xi − xs)(x
2
s − x2i + y2s + z2s − y2i − z2i )

]

,

hi = 4
[

r2i (ys + yi)− (xi − xs)(x
2
s − x2i + x2s + z2s − x2i − z2i )

]

,

ki = 4
[

r2i (zs + zi)− (xi − xs)(z
2
s − z2i + y2s + x2s − x2i − y2i )

]

,

li =
[

(x2s + y2s + z2s ) + (x2i + y2i + z2i − r2i )
]2 − 4(x2s + y2s + z2s )(x

2
i + y2i + z2i ) .

More meaningful for our purposes is the definition of the plane conic. The plane P is

tangential to the quadric Qi iff

PTQ∗
iP = 0, (5.15)

where Q∗
i = det(Qi)Q

−1
i is the adjoint of the quadric matrix Qi.
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5.4.1 Constrained Least-Squares Solution

Combining the constraints in (5.15), the reflector plane is the simultaneous solution of

[113, 114]














PTQ∗
0P = 0

PTQ∗
1P = 0

. . .
PTQ∗

M−1P = 0

. (5.16)

Since we have four unknowns (the parameters p1, p2, p3, p4) we need at least M = 4.

The cost function that combines the individual constraints is given by [117]

J
(

l, {Q∗
i }M−1

i=0

)

=

M−1
∑

i=0

∥

∥PT Q∗
i P

∥

∥

2
,

and the four unknown plane parameters can be estimated by minimizing the cost func-

tion

P̂ = argmin
P

J
(

P, {Q∗
i }M−1

i=0

)

s.t. ‖P‖ = 1 . (5.17)

Note, that in order to avoid the trivial solution P = 0, the unitary norm is imposed on

the solution.

The above estimator is equivalent to the constrained least-squares solution outlined

in section 4.2 and adopted in [113, 114].

5.4.2 Exact solution

The cost function, outlined in the previous section, is a fourth-order polynomial. It

will be shown that it is possible to reformulate it as a second-order polynomial with a

single quadratic constraint, that admits an exact solution. This approach guarantees

that the true reflector is found and local minima are avoided.

Without loss of generality, we now translate the reference frame at the source,

so that its position becomes rs = [0 0 0]T . This simple transformation will turn

out useful in determining an exact solution to the reflector localization problem. We

notice, however, that the resulting estimate P̂ of the reflective plane refers to the source

position, which changes for the different walls to be localized. Afterwards, therefore,

we convert the estimated plane vectors to the original coordinate system.

It is convenient to adopt the dual representation of the quadric, namelyPTQ∗
iP = 0,

which is satisfied by all the planes P = [p1 p2 p3 p4]
T of equation p1x+p2y+p3z+p4 = 0
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tangential to the ellipsoid. Computing Q∗
i = det(Qi)Q

−1
i we obtain

Q∗
i =











α∗
i 0 0

δ∗i
2

0 α∗
i 0

η∗i
2

0 0 α∗
i

ι∗i
2

δ∗i
2

η∗i
2

ι∗i
2 κ∗i











,

α∗
i = 16r4i (‖ri‖2 − r2i )

2 ,
δ∗i = 64r4i xi(‖ri‖2 − r2i ) ,
η∗i = 64r4i yi(‖ri‖2 − r2i ) ,
ι∗i = 64r4i zi(‖ri‖2 − r2i ) ,
κ∗i = 64r4i (‖ri‖2 − r2i ) .

Combining the TOA measurements leads to the definition of the minimization prob-

lem

P̂ = argmin
P

J(P) = argmin
P

M−1
∑

i=0

∥

∥PT Q∗
i P

∥

∥

2
, (5.18)

where the plane of reflection is estimated as the global minimum of the cost function

J(P), which is the sum of the squared residuals of all the quadratic constraints. Fol-

lowing the same approach proposed in [116] for reflector line estimation, we restrict

the search space to planes having p4 = 1. This means discarding all the planes passing

through the origin, which can not generate any reflective path since they contain the

source. As a result, we obtain

P̂ = argmin
P

M−1
∑

i=0

[

α∗
i (p

2
1 + p22 + p23) + δ∗i p1 + η∗i p2 + ι∗i p3 + κ∗i

]2
. (5.19)

By posing w = p21 + p22 + p23, (5.19) can be rewritten as [152]

ŵ = argmin
w

{

‖Aw − b‖2 : wTDw + 2fTw = 0
}

, (5.20)

where w = [w p1 p2 p3]
T and

A =







α∗
0 δ∗0 η∗0 ι∗0
...

...
...

...
α∗
M−1 δ∗M−1 η∗M−1 ι∗M−1






,
b = −[κ∗0 . . . κ∗M−1]

T ,
D = diag(0, 1, 1, 1) ,
f = [−0.5 0 0 0]T .

The exact solution ŵ = [ŵ p̂1 p̂2 p̂3]
T to (5.20) can be found efficiently as in [116, 152],

and the searched plane of reflection is given by P̂ = [p̂1 p̂2 p̂3 1]T , which is expressed

in the source reference system. The solution in the original reference system is finally

obtained as ˆ̄P = (T−1
s )T P̂, where

Ts =









1 0 0 xs
0 1 0 ys
0 0 1 zs
0 0 0 1









,

denotes the translation from the original reference frame to that centered at rs =

[xs ys zs]
T .
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5.4 Direct Reflector Plane Localization

5.4.3 Theoretical Error Analysis

The theoretical analysis has been performed using the setup shown in Figure 5.3. For

the sake of clarity in the analysis of the results, in this section we parametrize the reflec-

tive plane by its distance d from the origin; the azimuth φ; and the co-elevation θ. The

x

y

z

r0

r1

r2

r3

r4

r5

r6

φ

θ

n

P

r

r
r

d

rs

Figure 5.3: Evaluation setup

plane parametrization adopted in section 5.4.2 is related with the current parametriza-

tion through P = [nT , d]T , n = [cosφ sin θ , sinφ sin θ , cos θ]T being the unit vector

normal to the plane. The microphone array accommodates 7 sensors deployed as in

Figure 5.3. In particular, the central microphone is located at r0 = [0.5 0.5 0]T , and

the remaining sensors are all located at a distance r = 0.25m from r0. If d̂, φ̂ and θ̂

are the estimated plane parameters, then the localization accuracy is assessed in terms

of the distance error ǫd =
∣

∣

∣
d− d̂

∣

∣

∣
; the azimuth error ǫφ =

∣

∣

∣
φ− φ̂

∣

∣

∣
; and the co-elevation

error ǫθ =
∣

∣

∣
θ − θ̂

∣

∣

∣
.

The analysis has been carried out for a set of 1500 test reflector positions, whose

parameters vary on a multidimensional grid defined by: 25 values for the distance

d in the range [1m ∼ 4m]; 30 values for the azimuth φ the range [0 ∼ 2π]; and 2

points for the co-elevation, namely θ = π/2 and θ = π/6. We assumed the error on

TOA measurements to be zero-mean and Gaussian distributed with standard deviation
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5. ROOM GEOMETRY ESTIMATION IN THREE-DIMENSIONS

σ = 0.01m/c, independent on each microphone.

Figure 5.4 shows the resulting standard deviation of the distance error, for all the

tested reflector planes. In particular, Figure 5.4-(a) is relative to the case of θ = π/2;

and Figure 5.4-(b) to θ = π/6. Similarly, Figures 5.5–5.6 depict the theoretical standard

deviation of the azimuth error and the co-elevation error, respectively. Interestingly,
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Figure 5.4: Theoretical standard deviation of ǫd.
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Figure 5.5: Theoretical standard deviation of ǫφ.

for the setup under analysis, the localization accuracy is almost independent from the

distance d of the reflector, while being highly variable with the azimuth φ. In particular,

from Figure 5.4 we observe that, for planes having φ ∈ [0◦, 90◦] or φ ∈ [180◦, 270◦], ǫd

tends to be low while being higher for the other azimuth angles. Conversely, we notice

from Fig. 5.5 that ǫφ exhibits an opposite behaviour, being higher when φ ∈ [0◦, 90◦] or

φ ∈ [180◦, 270◦]. Figure 5.6 reveals that ǫθ has a smoother behaviour, but still presents

higher values for planes with φ ∈ [180◦, 270◦]. Finally, we observe that the accuracy

114



5.5 Experimental Verification

d [m]

φ 
[d

eg
]

 

 

1 2 3 4
0

90
180
270
360

       [°]

1.2
1.4
1.6
1.8
2
2.2

(a) θ = π/2

d [m]

φ 
[d

eg
]

 

 

1 2 3 4
0

90
180
270
360

       [°]

1.6
1.8
2
2.2
2.4

(b) θ = π/6

Figure 5.6: Theoretical standard deviation of ǫθ.

tends to decrease for elevated planes, especially for the azimuth error ǫφ, whose average

is 1.74◦ for θ = π/2 and 3.34◦ for θ = π/6.

5.5 Experimental Verification

The two planar reflector localization algorithms were verified by two experiments in a

real shoebox-shaped conference room measuring L×W ×H = 2.77m× 3.55m× 3.17m,

built with concrete walls and ceiling and floored with linoleum floor covering.

5.5.1 Evaluation Criteria

Regarding Experiment 1, the accuracy of the reflector localization is assessed in two

steps. First the estimated line parameters in each of the three planes are compared

to the hand measured ground truths in terms of a distance and angular error. As a

next step the estimated plane parameters are compared to the true planes in terms of

a point-plane distance and their dihedral angle.

Let l and l̂ be the reflector line and its estimate, respectively. From these we

can evaluate the distance d from r0 to each line and the orientation α. The dis-

tance and orientation can be evaluated by projecting r0 onto the line such that d =
|l1 x0+l2 y0+l3|√

l2
1
+l2

2

, α = arctan l2
l1
. The accuracy of the reflector localization is measured

in terms of distance error ǫd =
∣

∣

∣
d− d̂

∣

∣

∣
and angular error ǫa = |α− α̂|. The distance

and angular error results for the reflector lines in 2-D are shown for the xy, xz and yz

planes in table 5.1.
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Let P and P̂ be the true and estimated reflector planes respectively. From these

we can evaluate the distance d3D from r0 to each plane (point-plane distance) and

the angle between true and estimate planes (dihedral angle). The distance is given by

d3D = nT [x0 y0 z0] + d′, where n is the unit normal vector of P, and d′ is the constant

of the Hessian normal form. The distance error is calculated as ǫD =
∣

∣

∣
d3D − ˆd3D

∣

∣

∣
and

the dihedral angle is given by Φ = arccos(nT n̂).

Regarding Experiment 2, we assume that d̂, φ̂ and θ̂ are the estimated plane

parameters, then the localization accuracy is assessed in terms of the distance error

ǫd =
∣

∣

∣
d− d̂

∣

∣

∣
; the azimuth error ǫφ =

∣

∣

∣
φ− φ̂

∣

∣

∣
; and the co-elevation error ǫθ =

∣

∣

∣
θ − θ̂

∣

∣

∣
.

Experiment 1

The central microphone of the array is placed at a distance of 1.2m from the West

wall, 1.91m from the South wall and 1.59m from the floor. The array is composed

of 7 omnidirectional microphones. On the horizontal plane the extension of the array

is 0.5m × 0.5m, while the microphones on the vertical axis are kept 0.38cm apart.

The room impulse response was measured using the MLS method [43] from 6 different

locations using a sampling rate of 48 kHz. The sequence is then processed to extract

the impulse response from each position of the source to each microphone in the array.

The results for the plane localization in 2-D and 3-D are shown in Tables 5.1–5.2.

The ground-truth distances were measured to within an estimated measurement error.

Nonetheless, the localization for both the line reflectors and the planar reflectors is

to within a few cm accurate. It is important to note however that errors propagate

directly from the estimation of the linear reflectors to the localization of the planar

reflectors.

Experiment 2

The microphone array used in the experiment has the same geometry of that in Figure

5.3, and the central microphone was placed at a distance of 1.2m from the West wall;

1.91m from the South wall; and 1.59m from the floor. The room impulse response was

measured using the MLS method [43] from 6 different locations using a sampling rate

of 48 kHz. Consequently, N = 7 impulse responses are measured for each wall.

The experimental results are shown in Table 4.4, giving on a per wall basis, the

distance error ǫd; the azimuth error ǫφ; and the co-elevation error ǫθ. The results are
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Table 5.1: Experiment 1: Distance and angular error results in each plane

xy xz yz

Reflector ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦] ǫd [cm] ǫa [◦]

West 1.180 0.619 2.720 0.871

South 1.030 1.598 4.810 0.034

East 1.310 0.160 7.300 0.504

North 1.690 0.160 3.100 0.756

Ceiling 1.620 0.728 2.780 0.275

Floor 1.030 1.598 0.210 0.092

Table 5.2: Experiment 1: Distance and angular error comparison in 3-D

Reflector ǫD [cm] Φ [◦]

West 0.260 1.068

South 1.300 0.718

East 7.950 0.528

North 0.063 0.773

Ceiling 1.050 1.601

Floor 3.860 0.778

expressed with respect to the central microphone position r0. All the reflectors are

localized to within a few centimeters. On average, the distance error is 1.5 cm, the

azimuth error 0.87◦, and the co-elevation error is 0.76◦. It is important to note that,

for reflectors having θ = 0◦ and θ = 180◦ (ceiling and floor), the azimuth is not defined

and therefore the co-elevation error fully characterizes the angular accuracy.

Conclusion

This chapter extended the 2-D reflector localization approach introduced in Chapter 4

to the 3-D case. First, we presented an approach for estimating the geometry of an

acoustic enclosure by transforming the localization of planar reflectors into the esti-

mation of multiple linear reflectors. Experimental results in a real conference room
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Table 5.3: Experiment 2: Distance, azimuth and co-elevation error

Reflector (d , φ , θ) ǫd [cm] ǫφ [◦] ǫθ [
◦]

West (1.20m , 180◦ , 90◦) 1.3 0.49 0.62

South (1.91m , 270◦ , 90◦) 0.1 1.81 1.89

East (1.57m , 0◦ , 90◦) 1.1 1.09 0.22

North (1.64m , 90◦ , 90◦) 4.3 0.10 0.71

Ceiling (1.58m ,− , 0◦) 0.9 − 0.72

Floor (1.59m ,− , 180◦) 1.3 − 0.38

demonstrate the feasibility of the proposed method. As a second step, the problem was

solved entirely in 3-D using a closed-form estimator. The analysis of the data acquired

in a small conference room confirms that the proposed technique is able to localize the

reflectors with a distance error of a few centimeters and an angular error below one

degree.
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6

Applications and Future Work

Introduction

I
NFERRING information about the environment conditions in which space-time

processing algorithms operate is an emerging research topic. This information

can be useful for source identification [160], source localization [80], speech en-

hancement [161], dereverberation [2], echo cancellation [162] and wave field rendering

[61, 163, 164].

In summary, up to this point in the manuscript the required prior information

needed for the reflector localization method included: i) the relative array geometry, ii)

an estimate of the speed of sound, iii) a representation of the acoustic impulse responses

(AIRs) and related parameters (such as the sampling frequency). In practice, the AIR

capturing process is known and the sensors are placed at predefined, but arbitrary,

positions. The remaining missing information that needs to be inferred as a prerequisite

for robust time-of-arrival (TOA) estimation is the speed of sound.

The quintessential goal of geometric room inference, and environment parameter es-

timation in general, is to infer as much as possible about the acoustic environment from

as little information as possible (i.e. minimum prior assumptions). It is evident that

in the methods outlined so far, there exists a natural order of dependencies: acoustic

reflector localization methodologies rely on accurate time-difference-of-arrival (TDOA)

or TOA information that in turn dependent on accurate sound source localization and

consequently on an accurate estimate of the actual speed of sound. This hierarchical

top-down order can be reformulated from the bottom-up to state that accurate speed
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of sound estimation leads to accurate sound source position estimation which in turns

leads to accurate reflector localization. The estimation of the actual speed of sound is

consequently the vital first step on which all other procedures rely.

In this chapter, first a methodology for blindly estimating the speed of sound using

only TDOA measurements is outlined. Accurate estimates of the actual sound speed

are desired since environmental properties, such as the ambient temperature, directly

influence the propagation speed of the sound waves. Most acoustic processing algo-

rithms assume a known propagation speed, which is a reliable assumption only under

controlled laboratory conditions. Accurately estimating the speed of sound is therefore

highly desired. In uncontrolled environments, the use of the standard speed value might

lead to inaccuracy in the source localization due to temperature variations [165].

As a next step in this chapter, a discussion on the geometric inference algorithm is

presented that includes suggestions for future work. As outlined so far, the reflector

localization yields the position of the acoustic reflectors in the environment, however it

does not yield other important properties and characteristics of the acoustic reflectors.

First and foremost, the absorption on the reflectors and associated signal decay rates

are not considered. Additionally, scattering effects are not taken into account. A clear

discussion and plan of action regarding these issues is presented with possibilities for

future work.

The chapter is organized as follows: Section 6.1 introduces a geometric inference

methodology robust to variations in temperature and consequently TOA and TDOA

information. Section 6.2 discusses possible extensions to the geometric inference pro-

cess.
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6.1 Geometric Inference under Temperature Variations

The dependence of the speed of sound on the temperature of the propagation medium is

well known in acoustics. This dependence on average temperature and spatial tempera-

ture distributions has been investigated in many application areas. A few examples are

fault diagnosis of a liquid transmission system [166], ultrasound diagnosis [167], wind

velocity and speed of sound estimation with an acoustic ranging system [168], acoustic

propagation in oceanic environments [169], and the measurement of air temperature

and wind velocity by acoustic tomography [170]. In this section the geometric inference

framework is combined with a method that blindly and robustly estimates the velocity

of the speed of sound [171, 172].

Under temperature variations a standard value for the speed of sound might yield

an inaccurate estimation of the TOAs τi,k impairing the reflector localization, in this

case an estimate of the actual speed of sound is necessary. A novel method to estimate

the speed of sound was presented in [173]. Such a method relies merely on TDOA

measurements and therefore it is suited for geometric inference when no synchronization

between source and receiver is available.

6.1.1 Speed of Sound Estimation from TDOAs

Consider the two-dimensional inference problem, i.e. an acoustic source lies in an

unknown position rs and M sensors are distributed at the known positions ri with

i = 0, · · · , N and N = M − 1. From the M estimated AIRs a spherical set of N

TDOAs can be obtained as time differences between the direct-path peaks and the

direct-path peak of the reference microphone. If the first microphone r0 is chosen as

reference such a set may be represented by the following N -vector

τ =
1

fs









n1,0 − n0,0

n2,0 − n0,0

. . .
nN,0 − n0,0









. (6.1)

According to [173] the following scalar function of the assumed signal propagation speed

c can be written

δ(c) = ||Γb(c)|| − 1

c
Θb(c) , (6.2)
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where the constant matrices Θ, Γ and theN -vector b(c) depend only on the microphone

positions ri, , i = 1, · · · , N and the vector τ . The zero of the above function is an

estimate of the actual propagation speed, in this case the actual speed of sound.

Unfortunately such a function δ(c) involving the Euclidean norm of Γb(c) is non-

linear, therefore applying a root-finding algorithm might be intractable. This issue

can be overcome by linearizing δ(c) near to its zero-crossing as it has been shown to

be approximately linear in that range. In acoustic applications, the standard value of

speed of sound at 20 ◦C may be chosen as a reliable linearization point c̄, leading to

the following first order Taylor expansion

δ(c) ≈ δlin(c) = δ̄ + δ̄′(c− c̄) , (6.3)

with

δ̄ = δ(c̄) and δ̄′ =
dδ(c)

dc

∣

∣

∣

∣

c=c̄

. (6.4)

Finally, the estimated propagation speed value is given by the zero-crossing point

ĉ of the linearized function δlin(c), i.e.

ĉ =
δ̄ − δ̄′c̄

δ̄′
, (6.5)

where the value of the first order derivative δ̄′ at c̄ can be calculated with derivation

rules from (6.2).

6.1.2 Multiple Sources Approach

As reported in [173], the above speed estimate can be improved in noisy conditions by

exploiting the full TDOA set. However here the TDOAs are not obtained by signal

correlation, rather they are extracted from the M estimated AIRs. As a consequence

the construction of the full TDOA set will not add any useful information for the

speed estimation. Moreover the microphone array used for the geometric inference

experiments (see Section 6.1.3) uses only M = 5 microphones, i.e. only one microphone

provides redundant information to counteract the effect of the measurement noise since

the minimum number of sensors required for the two dimensional speed estimation

problem is 4. Nevertheless the robustness of the algorithm can be still improved by

assuming that for a small-size array the speed of sound in a reasonable time interval

is the same regardless of the source position. Following this idea the scalar function
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δ(c) in (6.2) can be built using TDOA sets generated by different acoustic sources.

For a rectangular room, four differently located acoustic sources are used, as shown in

Figure 6.1). Hence for each source rj (j = 1, 2, 3, 4) a function δj(c) is derived. In noisy

conditions a robust speed of sound estimate can be found form the minimization in the

least-squares sense of such functions. The corresponding cost function is given by

4
∑

j=1

δj(c)
2 =

4
∑

j=1

(

||Γjbj(c)|| −
1

c
Θjbj(c)

)2

, (6.6)

where the index j indicates that the matrices Θ, Γ and the vector b(c) are obtained

using the vector τj corresponding to the source rj. Again the linear approximation

described in Section 6.1.1 can be applied to perform the minimization efficiently.

The resulting speed of sound estimate can be now used to accurately estimate the

TOAs τi,k, by means of source localization algorithms [121], and then perform the

reflector localization.

6.1.3 Experimental Results

The effects of temperature variation on the speed of sound within the reflector local-

ization framework have been evaluated in a real conference room measuring 3.31 ×
3.58 × 3.00 m, with concrete walls and two flush-mounted wooden doors in the south

and east walls. A microphone array consisting of four microphones spaced by 0.5 m

in a ‘+’ configuration and a fifth placed in the centre was positioned at (1.75,1.5) m

from the south-west corner. A Genelec 8030A loudspeaker was placed at four distinct

source positions. The microphone signals were sampled at 96 kHz. At each position,

the acoustic impulse response between the source and microphone array was estimated

using the MLS method [140].

At first, geometric inference has been performed without knowledge of the true

speed of sound. As usual a value for the speed of sound has to be assumed to convert

estimated time differences into range differences. Here a value of c = 375 m
s has been

adopted corresponding to a temperature of ϑ = 72 ◦C. This rather high value has been

chosen to demonstrate the effect of an erroneous assumption.

Next the same set of TDOAs has been used for geometric inference, but this time the

speed of sound at the time of measurement has been inferred from these TDOAs. The

resulting speed of sound was ĉ = 345 m
s corresponding to a temperature of ϑ = 23 ◦C.
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Figure 6.1: Room inference results using a microphone array, placed centrally in a small

conference room, capturing a MLS sequence from 4 source positions in turn. Red lines:

assumed speed of sound c = 375 m
s
. Blue lines: estimated speed of sound c = 345 m

s
.

Dashed black rectangle: actual geometry of the room.

The results in Figure 6.1 and Table 6.1 show not only the increase of the distance

error ǫd and the angular error ǫa with an erroneously assumed temperature resp. speed

of sound. Figure 6.1 displays also clearly the effect of a temperature increase on the

inference of the wall positions: A higher value of the speed of sound virtually increases

the size of the room by upscaling all involved distances.

Note that the room available for the experiment in Figure 6.1 is rather small. Larger

rooms with a larger travel time of the reflections are more sensitive to speed of sound

variations and exhibit the same absolute errors at smaller temperature variations.

A technique for inferring the geometry of a room under temperature variations has

been presented. Since existing methods rely on either synchronized measurements or

often inaccurate estimates of the speed of sound, the propagation speed is estimated
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Table 6.1: Reflector localization results with real-world data

c = 345 m
s

Wall ǫd [cm] ǫa [◦]

North 1.890 0.056

East 0.770 0.388

South 5.220 0.429

West 0.650 0.138

c = 375 m
s

Wall ǫd [cm] ǫa [◦]

North 19.440 1.253

East 16.150 0.400

South 16.910 1.168

West 11.980 1.101

before the dominant reflectors are localized. In this way the room geometry can be

reconstructed even when there are fluctuations in the ambient temperature. Improve-

ments in accuracy are demonstrated in a real conference room that is exposed to strong

variations in temperature.

6.2 Future Work

The methods established in this thesis consider the geometric localization of reflectors.

Localizing the position of reflectors in turn yields the geometry, i.e. boundaries, of the

acoustic enclosure. One might ask the question if the information about the geometry

of the acoustic environment is enough to fully describe the propagation of sound in

such an enclosed space. The short answer is no, but perhaps surprisingly there is more

knowledge to be gained from the geometry of the acoustic scene than what initially

meets the eye.

As mentioned in the beginning of this chapter, the propagation of sound, originating

from a sound source inside an acoustic enclosure, depends primarily on the shape

of the room. Other dependencies include the uniform or nonuniform absorption and

scattering properties of the reflectors along with temperature, pressure and humidity

of the propagating medium, amongst others. One of the most prominent acoustic

characteristics of an enclosure is the reverberation time [2]. Its value can be used to

predict speech intelligibility for example, and is used by speech enhancement techniques

to suppress reverberation [161].

Determining absorption characteristics and sound source pressures in an enclosure

have been extensively studied in the scientific literature [160, 174]. The prediction of
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energy decay in room impulse responses has also been approached recently [175]. These

methods rely on either beam tracing methods or an image-source model to approximate

the energy-time curve. Given the geometry of the acoustic scene, the actual measured

room impulse responses (RIRs), and a simulated representation of the RIRs, obtained

by for example the image-method, our claim is that absorptions coefficients of surfaces

can be inferred. Consider matching the actual energy decay curve (that is observed

when a noise source is switched off) with the simulated energy decay curve of the

RIR [54], then one might employ an iterative optimization procedure that estimates

appropriate absorption coefficients of the reflectors. A similar methodology for blindly

estimating the reverberation time based on the distribution of signal decay rates has

already been proposed [161]. In summary, by inferring the geometry of the acoustic

enclosure, the energy decay in impulse responses can be simulated from which the

reverberation time and absorption characteristics can be inferred in turn.

Another important aspect that is only briefly mentioned in this manuscript involves

the disambiguation of TOA and TDOA estimates from AIRs. The permutation and

non-uniqueness problems in the TOA estimation have already been outlined in Sec-

tion 4.3. Recently, a disambiguation method based on graph theory [176] has been

proposed [154]. A possible extension of this work would be to employ the method in

[154] to perform disambiguation of TOA and TDOA estimates. This could be used in

conjunction with the disambiguation based on the Hough transform outlined in this

work.

Conclusion

In this chapter, first a technique for inferring the geometry of a room under temperature

variations was presented. Since existing methods rely on either synchronized measure-

ments or often inaccurate estimates of the speed of sound, the propagation speed is

estimated before the dominant reflectors are localized. In this way the room geometry

can be reconstructed even when there are fluctuations in the ambient temperature. Ex-

perimental results in a real conference room, that was exposed to strong variations in

temperature, demonstrated improvements in accuracy by blindly inferring the actual

speed of sound first. As a next step, possible extensions of the geometric inference

framework were considered. It was shown that additional acoustic characteristics, such
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as the reverberation time or energy decay curves, could be inferred by taking into

account the knowledge on the position of the reflectors in the acoustic environment.
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Conclusions

I
N this work, a novel methodology for inferring the geometry of an acoustic enclosure

was developed and analyzed. The knowledge inferred about the acoustic charac-

teristics of the environment can be advantageous for applications such as sound

source localization, speech enhancement, dereverberation and adaptive echo cancella-

tion by assisting in tracking environment changes and helping the initialization of such

algorithms.

Having reviewed a variety of array processing and acoustic parameter estimation

algorithms in Chapter 1, the concepts of system identification, room acoustics (i.e.

simulation and measurement of room impulse responses), sound source localization

and line estimation were introduced in Chapter 2.

As a first step, a geometric constraint [113, 114], that permits the estimation of

the line parameters of reflectors in an acoustic scene, was introduced in Chapter 3.

The geometric constraint was developed in a two-dimensional (2-D) plane, for illustra-

tion purposes. In this formulation time-of-arrival (TOA) and time-difference-of-arrival

(TDOA) information, along with source and microphone positions, formed a set of el-

liptical constraints on the possible locations of the reflectors. It was shown that the

common tangent of these constraints corresponds to the reflector location that was

found by minimizing a specific cost function in the least-squares sense.

The localization of reflectors, such as the walls enclosing a room, in a 2-D plane,

was presented in detail in Chapter 4. Specifically, the localization of multiple reflectors

was achieved through estimation of the TOAs of reflected signals by analysis of acoustic

impulse responses (AIRs) [3]. When multiple walls are present in the acoustic scene,
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an ambiguity problem arises, which was addressed using the Hough transform [115].

Monte Carlo simulations revealed that the proposed method worked reliably even when

the source location was not known and the AIRs were unsynchronized. Further simula-

tions showed that by using the Hough transform, and taking sequential measurements

for different source positions, the robustness to noise in the TOA information could

be improved. Additionally, the performance of the estimators used in the reflector lo-

calization were compared theoretically and experimentally. Real-world measurements

showed that the proposed technique provides reliable results in a practical setting in-

volving plane wall reflectors forming the room.

The localization of reflectors was then extended to the three-dimensional (3-D) case

in Chapter 5. Two methods were considered. First, a method that estimated planar

reflector parameters, by combining multiple orthogonal line parameters, was presented

[118]. More specifically, a 3-D array accommodating seven microphones was used.

Microphones were organized in three sub-arrays, each composed of five microphones.

All microphones in a specific sub-array are characterized by the fact that they are

co-planar. Each sub-array was devoted to the localization of the portion of reflectors

lying on its plane. By intersecting line-reflectors estimated from multiple sub-arrays,

the proposed methodology was shown to infer the actual lying plane of each reflector.

Second, the approach in Section 4.2.3, that was proposed in [116], was extended to

3-D geometries. Additionally, the analytical prediction of the impact of errors on

measurements on the reflector localization error was extended to the 3-D case [119].

Finally, in Chapter 6 a technique for inferring the geometry of a room under tem-

perature variations was presented [171, 172]. Since existing methods rely on either

synchronized measurements or often inaccurate estimates of the speed of sound, the

propagation speed was estimated before the dominant reflectors were localized. In this

way the room geometry could be reconstructed even when there are fluctuations in

the ambient temperature. Experimental results in a real conference room, that was

subject to strong variations in temperature with position, demonstrated improvements

in accuracy by blindly inferring the actual speed of sound first. As a next step, pos-

sible extensions of the geometric inference framework were considered. It was shown

that additional acoustic characteristics, such as the reverberation time or energy decay

curves, could be inferred by taking into account the knowledge on the position of the

reflectors in the acoustic environment.

130



7.1 Discussion

7.1 Discussion

This thesis has demonstrated that the geometry of an acoustic enclosure, along with

other related acoustic parameters, can be estimated using array processing techniques

using minimum prior information. Rigorous theoretical developments along with real-

world experiments demonstrated the high degree of accuracy achieved using the pro-

posed approach.

In this work we considered first the solution of the wave equation, using the ray

method, with low-frequency sound diffraction effects not taken into consideration. Un-

der the assumption of specular reflections, the acoustic reflectors exhibit a mirror-like

behaviour, motivating the derivation of a geometric constraint for localization. Using

only three microphones in a 2-D plane (or correspondingly four microphones in 3-D)

at arbitrary (yet known) positions inside a room, the location of acoustic reflectors was

accurately estimated. Furthermore, no restrictions were placed on the input stimulus

which could be a known signal (frequency sweep) or unknown source signal (hand clap

or finger snap). This lead to the determination of the precise shape of a room with

minimum prior assumptions. The repercussions of this work can potentially yield a

paradigm change in architectural acoustics, echo cancellation and dereverberation, 3D

sound reproduction and immersive reality applications.
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[14] J. B. J. Fourier, La Théorie analytique de la chaleur. Paris: F. Didot, 1822.

[15] J. W. S. Rayleigh, The theory of sound. Macmillan and co., 1894, vol. 1.

[16] ——, The theory of sound. Macmillan and co., 1896, vol. 2.

[17] C. Truesdell and L. Euler, The Rational Mechanics: Of Flexible Or Elastic Bodies, ser.

Leonhardi Euleri Opera Omnia. Orell Füssli, 1960.

[18] E. F. F. Chladni, Entdeckungen über die Theorie des Klanges. Leipzig: Weidmann,

Erben & Reich, 1787.
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