
Time-Domain Alignment of
Non-Stationary Signals

Jason FILOS

Final Year Project Report 2007

Digital Signal Processing

Department Electrical and Electronic Engineering

Imperial College London

England

June 2007

Dedicated to

My parents

Abstract

Time-Domain Alignment problems arise in various �elds of Digital Signal Processing

such as Audio Engineering and Speech Processing. Replacing a segment of audio

data from a large continuous waveform with an alternative passage intrinsically

holding near to perfectly similar data, is not as straightforward as it may appear,

and is often associated with cumbersome manual labor carried out by an audio edi-

tor or recording engineer. For a large collection of audio data where multiple edits

are needed manual segmentation and time alignment is impractical and expensive.

This report outlines research into an automated software implementation aiming to

optimally time align musically related audio data. The motivation for such an im-

plementation is that optimal solutions may be sought for more e�ciently for a large

set of data minimizing the decisional requirements of an external operator. Through

time and frequency domain feature extraction and analysis signi�cant performance

improvements can be achieved over the traditional manual segmentation.

Acknowledgements

I would like to thank my supervisor Dr. P. A. Naylor for his excellent guidance

and insightful criticisms throughout the course of this project. Furthermore I would

like to thank all my family, for showing me never to give up, but especially my

parents for their loving care and support. To each of the above, I extend my deepest

appreciation.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

2 Background 3

2.1 Introduction to Audio Alignment . 4

2.2 Extracting Audio Features . 5

2.2.1 Time Domain Analysis . 6

2.2.2 Frequency Domain Analysis 7

2.2.2.1 Spectral Analysis . 8

2.2.2.2 Cepstral Analysis . 9

2.2.2.3 Polyphonic Pitch Detection 12

2.3 Alignment through Dynamic Programming 14

2.4 Overview of VST Framework . 18

2.5 Applications of Audio Alignment . 18

2.6 Summary . 18

3 Audio Alignment 20

3.1 Notations . 20

3.2 Overview . 20

3.3 Feature Vector Extraction . 21

v

Contents vi

3.4 Distance Measures . 23

3.5 Dynamic Time Warping . 25

3.6 Summary . 28

4 Implementation 29

4.1 Overview . 29

4.2 Creating the Feature Vector . 29

4.3 Estimating the Alignment . 33

4.3.1 Similarity Matrix . 34

4.3.2 Dynamic Time Warping . 35

4.3.3 Estimating the regions of interest 38

4.3.4 Finding the target alignment point 40

4.4 Pitch Detection . 40

4.5 Summary . 41

5 Evaluation 42

5.1 Overview . 42

5.2 Target Values . 43

5.3 Model Evaluation . 44

5.3.1 First stage analysis . 44

5.3.2 Second stage analysis . 46

5.3.2.1 Purcell Analysis . 47

5.3.2.2 Mozart Analysis . 52

5.4 Overview of Results . 55

5.5 Additional Considerations . 56

5.6 Summary . 58

6 Summary 59

6.1 Summary of Results . 59

6.2 Suggestion for Further Research . 60

6.3 Concluding Remarks . 60

Bibliography 62

Contents vii

Appendix 64

A Basic and Auxiliary Results 64

A.1 Matlab Code . 64

A.1.1 Creating the feature vector (buildvec.m) 64

A.1.2 Alignment Model (alignment_model.m) 67

A.1.3 Pitch Detection (spectral.m) 69

A.1.4 Reducer (reducer.m) . 71

A.1.5 Pitch estimator (pitch_estinmator.m) 71

List of Figures

2.1 Introductory passage to Beethoven's �Für Elise.� 5

2.2 A, B,C and D-weighted SPL measurements. 10

2.3 Block Diagram of a typical MFCC extraction algorithm. 10

2.4 Frame blocking in a typical MFCC extraction algorithm. 11

2.5 Possible Alignment of four segments betwen two sequences 15

2.6 Finding the shortest path in a graph 16

2.7 Time-Domain Analysis Flowchart . 17

3.1 Overview of the processing blocks for audio alignment. 21

4.1 Snapshot of the elements of the feature vector. 30

4.2 Example waveform of a Beethoven music �le. 31

4.3 Short-term energy and �rst derivative of the waveform. 32

4.4 Spectogram of the input signal. 33

4.5 Similarity Matrix between two audio sequences. 34

4.6 Path Direction (Slope Constraint) in DTW. 35

4.7 Alignment or warping path between two Beethoven audio-takes. . . . 38

4.8 Gradient Detection function: Estimating the regions of interest. . . . 39

5.1 MFCC Alignment graph of Purcell take 3. 47

5.2 MFCC Error analysis for Purcell take 3. 48

5.3 MFCC Alignment graph of Purcell take 2. 49

5.4 FFT Alignment graph of Purcell take 4. 49

5.5 FFT Error analysis for Purcell take 3. 50

5.6 MFCC/FFT Error analysis for Purcell take 3. 51

viii

List of Figures ix

5.7 MFCC/FFT Error analysis for Purcell take 4. 52

5.8 MFCC Alignment graph of Mozart take 2. 53

5.9 FFT Alignment graph of Mozart take 2. 54

5.10 FFT Error analysis for Mozart take 1. 54

List of Tables

3.1 Nomenclature. 20

4.1 Coe�cients used in the feature vector. 30

4.2 Polyphonic Pitch Estimation. 41

5.1 A metric of success. 43

5.2 First stage analysis target values. 43

5.3 Second stage Purcell analysis target values. 44

5.4 Second stage Mozart analysis target values. 44

5.5 Preset Table for �rst-stage analysis. 44

5.6 Piano audio data results. 45

5.7 Guitar audio data results. 45

5.8 Speech data results. 46

5.9 Purcell - Error Table (64 MFCCs). 48

5.10 Purcell - Error Table (512-point FFT). 50

5.11 Purcell - Minimum error table for MFCC/FFT coe�cients. 51

5.12 Mozart - Error Table (128 MFCCs). 53

5.13 Mozart - Error Table (512-point FFT). 55

5.14 Ranking of each test data. 56

x

Chapter 1

Introduction

Ever since the introduction of computers in our world, their task has been to improve

on the way we carry out our work, helping us to complete even the most mundane

of tasks. The predicament of time-domain alignment of non-stationary signals, such

as audio data, is a problem which occurs in various working environments such

as music and TV/Radio broadcasting studios. It is part of a subset of problems

which have not been su�ciently addressed by today's standards. The creation and

performance of music is thought to be a pleasant experience. However not many

of us realize that it is associated with a lot of cumbersome and tedious work, such

as archiving the audio material and segmenting it. In this project we will outline a

methodology aimed at �nding the ideal alignment point between two sequences of

related audio data in an automatic and autonomous way, lifting the burden from

the tape operator (or audio editor) and transferring it the computer. This way not

only can the operator focus on more important things, but ultimately the cost and

overhead for the studio, and the audio industry in general, can be greatly reduced.

1.1 Motivation

The motivation for this project arises from the fact that no automatic method for the

procedure of time alignment of audio sequences has been presented yet. Drawing on

concepts encompassing areas such as digital signal processing in general, and speech

processing in particular, we wish to outline a methodology by which this problem

1

1.2. Objectives 2

can be solved in an objective and precise way.

1.2 Objectives

We will set the following objectives for this project:

• Outline a method for reading-in a variety of audio signals in a meaningful way.

• Provide a measure of similarity between two sequences of audio data.

• Realize a mapping of one sequence onto the other, based on which regions

coincide between the two.

• Force an alignment between the two if no linear mapping pattern is observable.

• Estimate the optimal alignment point at which both these sequences can be

interchanged without observing an audible di�erence.

• Provide an objective measure of the success of this alignment.

Chapter 2

Background

The idea of audio alignment and its context is perhaps best illustrated by an ex-

ample. When a piece of music is recorded in a digital audio studio environment

several passages of the score are performed and recorded numerous times. From this

collection of so called audio-takes a subset is selected as the resulting piece of music.

Traditionally each segment is auditioned by the recording engineer and manually

arranged (i.e. time aligned and placed in context with respect to the other audio-

takes) on a software/hardware host sequencer. For modern Pop/Rock productions

and especially electronic music of recent days this is a relatively straight forward

process since the music is recorded with a click-track or metronome, i.e. all indepen-

dent segments are synced or time aligned to a master tempo track. Classical music,

along with some other styles such as free-form Jazz, do not follow this pattern and

are of variable speed throughout. Consequently no clear time segmentation exists

and a manual patching and �xing method is employed to align each audio part into

context.

Thus in order to automate the procedure outlined above one would choose a

suitable segment from the set of audio-takes and compare it to the whole piece of

music, locating the time instant where the most similar segment (or even the same

albeit in a di�erent form) resides.

3

2.1. Introduction to Audio Alignment 4

2.1 Introduction to Audio Alignment

Consider Figure 2.1 depicting a musical audio �le. Within this �le a certain region

has been selected, containing an erroneous sequence. We wish to replace this erro-

neous passage with an alternative segment of audio data which was recorded at some

other time. One way to do this would be to manually listen to all existing recordings

of that passage and choose the best version. One would then proceed by �cutting�

out the region of interest from the optimal version obtained earlier, resulting in our

example in an audio snippet of approximately 2.5 seconds of length. The highlighted

passage depicted in �gure would then be removed (or muted) and replaced by the

new audio snippet. Traditionally this is done by creating a linear amplitude fade

between the two �les, called a crossfade, in order to prevent digital distortion or

clipping. Thus in order to summarize the above procedure the following steps need

to be made:

1. Choosing a region to be replaced by inserting a left and right (L+R) marker

in the audio track.

2. Auditioning the alternative audio takes.

3. Choosing the correct segment from the alternative take by placing new L+R

markers and e�ectively cutting out that region.

4. Replacing the old region with the new snippet using a linear crossfade.

As one can see from the above procedure four markers need to be manually placed

in two di�erent audio �les. As one can observe a lot of time and e�ort is associated

with this methodology. Furthermore the criteria for correctly placing these markers

are based on a subjective evaluation of browsing through the data and auditioning

the result. A more e�cient way of doing this would be to manually place the �rst

two L+R markers in the target �le and have an algorithmic representation aimed at

�nding the suitable snippet automatically and time aligning the result, e�ectively

making steps 3-4 obsolete. In order for this to work the various audio features or

semantics of the data need to be analyzed in an automated and autonomous process.

2.2. Extracting Audio Features 5

Figure 2.1: Introductory passage to Beethoven's �Für Elise.�

In other words, one needs to extract discrete features from the input data and store

them in an appropriate data structure. A suitable algorithm then employs this

information to automatically time-align a set of audio �les.

2.2 Extracting Audio Features

In order to �nd the means of comparing individual audio segments, a suitable global

feature vector needs to be implemented. This feature vector implemented at block

precision level of overlapping frames computed once every 10 ms over a window of 20

ms contains time and frequency domain information relative to the input waveform.

The temporal features contained reveal information about a note Onset, or other

events incurring a considerable rate of change in the input data. The time local-

ization of these events is build upon on a method involving the Short-term Energy

of the signal and its �rst time derivative. The spectral feature extraction is based

on a mel-cepstral analysis where a variable number of Mel Frequency Cepstrum

Coe�cients (MFCCs) are computed, and on a more traditional frequency analysis

involving the Fast Fourier Transform (FFT). Moreover other static features, such as

the A-weighting of the spectrum (as de�ned in IEC/CD 1672), along with dynamic

features, such as the local time derivatives of the short-term spectrum or cepstrum

(delta coe�cients), are included. In addition to that a scheme for a polyphonic pitch

detection function employing the Short-Time Fourier Transform (STFT) is outlined.

2.2. Extracting Audio Features 6

2.2.1 Time Domain Analysis

Time-Domain Analysis is conducted in multiple stages which are broken down into

the following categories (ref. Figure 2.7):

• Pre-processing of the Signal (Optional)

• Reduction based on the pre-processed Signal

• Peak-Picking by estimating the local maxima from the Detection Function

• Onset localization

Using a reduction method of the original audio signal based on temporal features

such as the Short-term energy (2.1) and its �rst time derivative, one is e�ectively

implementing an envelope follower revealing clear peaks in the detection function

at note onsets. According to [1] by rectifying and smoothing (2.2), where w(m) is

an N-point window or smoothing kernel, centered at m = 0, further enhancements

can be made to the detection function. Additionally according to [4] we de�ne

the logarithm of the detection function based on the Short-term energy, such that

d̃ = log[d(n)], where d(n) is the detection function.

E(n) =
1

N

∑
n

x2(n) (2.1)

E0(n) =
1

N

N
2
−1∑

m=−N
2

[
x(n + m)2

]
w(m) (2.2)

After a reliable reduction stage resulting in a suitable detection function the peak-

picking algorithm aims at localizing note onsets as discrete events. This peak-picking

stage is broken down into three stages itself:

• Post-Processing : DC Removal / Normalization

• Thresholding: Fixed or Median Thresholding

• Peak-Picking: Fixed Thresholding

2.2. Extracting Audio Features 7

Fixed thresholding methods de�ne onsets as peaks where the detection function

exceeds the threshold: d(n) ≥ δ, where δ is a positive constant and d(n) is the

detection function. Since we are dealing with non-stationary signals which might

evolve drastically di�erent over time we cannot simply rely on a �xed thresholding

stage. Hence we de�ne a thresholding function based on a median threshold (2.3).

δ̃(n) = δ + λ median {|d(n−M | , . . . , |d(n + M)|} (2.3)

Additionally to a median thresholding function one could check for local minima in

the reduction function.

As soon as the regions of interest have been de�ned, i.e. the onsets detected and

localized the algorithm proceeds to the �nal peak-picking stage. A �xed threshold

is employed here to de�ne the precision at which our model progresses through

the input data. According to the input data a variable order of magnitude can be

selected; a sensible value for a piano recording for instance would be between 10 -

12 dB. The resulting output data from our analysis now contains the discrete events

for which there is a considerable rate of change in our input audio, such as a new

note onset, a pause in the recording or the introduction of a further musical layer

such as a new voice or even a new instrumental layer. The methods outlined in

this section summarize the time domain information extracted from the input audio

data as one part of the global feature vector.

2.2.2 Frequency Domain Analysis

Spectral features are an important element to consider for a successful implementa-

tion of the audio alignment procedure. Previous commercial methods explored [6]

rely solely on a time-domain representation, however for a more general solution

to our alignment problem, a range of frequency domain based methods need to be

explored. Frequency dependent analysis is achieved by means of a suitable trans-

formation applied to the input data, such as the Fourier Transform and expansions

on the former including the A-weighting of the obtained spectrum and a parametric

representation of the acoustic signal such as the Mel-Frequency Cepstrum Coe�-

2.2. Extracting Audio Features 8

cients. These extensions take into account the auditory perception based on ear

physiology and other psychoacoustical phenomena.

2.2.2.1 Spectral Analysis

The concepts of the Fourier Transform (FT) and the Discrete Fourier Transform

(DFT) are widely known and recognized1. Followed is a quick overview as shown

by [8]: Consider a �nite duration signal

{x (n)} n = 0..N − 1

Its z-transform is

X(z) =
N−1∑
n=0

x(n) z−n

Evaluate at points on z-plane as

X(k) = X(z)|zk
=

N−1∑
n=0

x(n) e−j 2π
N

kn

We can evaluate N independent points

X(k) =
N−1∑
n=0

x(n) e−j 2π
N

kn

The above is known as the Discrete Fourier Transform (DFT) of {x (n)} which is

periodic in k, i.e. X(k+pN) = X(k). Multiply both sides of the DFT by ej 2π
N

kmand

add over frequency index k

N−1∑
k=0

X(k)e j 2π
N

km =
N−1∑
n=0

x(n)
N−1∑
k=0

e j 2π
N

k(m−n)

From which

x(n) =
1

N

N−1∑
k=0

X(k) e j 2π
N

kn

1Refer to [7] for an in-depth analysis.

2.2. Extracting Audio Features 9

This is the inverse DFT

x(n) =
1

N

N−1∑
k=0

X(k) e j 2π
N

kn x(n + qN) = x(n)

That is, on the one hand the DFT assumes that we deal with periodic signals in

the time domain, and on the other hand sampling in one domain produces periodic

behavior in the other domain. Computation of the DFT requires for every sample

N multiplications. There are N samples to be computed, i.e. N2 time consuming

operations. There are e�cient methods available for computing the DFT such as

the Fast Fourier Transform (FFT) which reduce the total computational e�ort to

N2

2
and beyond.

By computing the N-point FFT we obtain spectral information of the input data

with a normalized spacing of 1
N
Hz. It is important to point out however, that, as we

shall see at a subsequent section of the report, there is a trade-o� between a good

time and a good frequency resolution, as dictated by the Uncertainty Principle.

Another important aspect to point out is that a spectral analysis based on the raw

linearly-spaced FFT-bins does not take into account important physiological proper-

ties of the human ear. As outlined by [9] �sensations (hearing, seeing, smelling, etc.)

increase logarithmically as the intensity of the stimulus increases. Many experiment

have (...) veri�ed (at least approximately) this law and have led to the use of the

decibel scale.� In general the subjective listener response of loudness is a function of

the intensity, frequency, and quality of sound. The overall frequency response of the

human ear is highly non-linear, and has better frequency resolution at low frequen-

cies [10]. This frequency-dependent sensitivity lead to the development of di�ering

standards for sound-pressure-level meters such as A weightings (Figure 2.2), which

deemphasize low-frequency sounds.

2.2.2.2 Cepstral Analysis

For acoustic signals there are many di�erent parametric representation available,

among them the Mel-Frequency Cepstrum Coe�cients (MFCC) is the most widely

used. MFCCs are coe�cients that represent audio. They are derived from a type of

2.2. Extracting Audio Features 10

Figure 2.2: A, B,C and D-weighted SPL measurements.

cepstral representation. The cepstrum is de�ned as the Inverse Fourier Transform

(IFT) of the log spectrum (Bogert et al.). The mel scale relates perceived pitch to

frequency: it is linear at low f, and logarithmic at high f : mel(f) = 2595 log10(1+ f
700

)

where f is in Hz. According to [11] the MFCCs are extracted in the following way

(Figure 2.3):

1. First the audio data is separated into short segments (frames) of length 20 ms

with 10 ms overlap (i.e. 50% overlap) between adjacent frames (ref. Figure

Figure 2.3: Block Diagram of a typical MFCC extraction algorithm.

2.2. Extracting Audio Features 11

Figure 2.4: Frame blocking in a typical MFCC extraction algorithm.

2.4). For a sampling rate of 44100 Hz this would result in a frame length of

882 samples with 442 samples overlap. From a signal processing perspective

a frame can be seen as the result of a waveform (speech or audio), multiplied

by a rectangular pulse whose width is equal to the frame length. This will

therefore introduce signi�cant high frequency auxiliary components (noise) at

the beginning and end points of the frame because of the sudden level changes

from zero to the amplitude of the signal and vice versa. This edge e�ect can

be reduced by applying a suitable window to each frame. The length of the

window is set to equal the frame length. Typically a Hamming window is used

as shown in equation (2.4).

Ham(N) = 0.54− 0.46 cos
(
2π

n− 1

N − 1

)
(2.4)

where N is equal to 882 for a sampling rate of 44100 Hz and n is from 1 to N .

2. The FFT is then computed for each frame. To obtain a good frequency reso-

lution, a 256-point FFT is used [11]. Because of the symmetry property only

the �rst 128 coe�cients need to be calculated.

2.2. Extracting Audio Features 12

3. The resulting spectrum of each frame is then �ltered (smoothed) by a set of

triangular shaped band-pass �lters, and the power of each band is calculated.

This is referred to as a mel �lterbank which concentrates data values in the

more signi�cant part of the spectrum.

4. Finally the log of the mel spectrum is computed, along with the logged energy

of each frame as one of the coe�cients. Furthermore a range of dynamic

parameters such as the �rst and second time derivatives can be calculated, to

provide additional information about how the spectrum is changing with time.

These delta coe�cients are obtained from the following formula:

4Ci(n) =

∑N
k=−N kCi(n + k)∑N

k=−N k2

The result of the above computation, is a variable sized feature vector, typically

containing 39 elements in the context of speech processing [10]. Since MFCCs are

usually used for speech recognition a pre-emphasis �lter 1 − az−1 is employed at

the beginning of the chain, where �a� is between 0.9 and 1. In this case the speech

is �rst pre-emphasized to spectrally �atten the signal. However when dealing with

audio signals, such as music, this stage is omitted. Alternatively when dealing with

music, a high-pass �lter can be employed in order to eliminate the 50/60 Hz hum

originating from the AC electric power source.

2.2.2.3 Polyphonic Pitch Detection

Pitch Detection has been major subject of ongoing academic research throughout

the years. The following section illustrates the methodology used for this project,

while the suitability of a pitch detection algorithm for the time-alignment problem

is discussed at a later chapter.

The transformation used for the input audio in the context of pitch detection

is based on the Short-Time Fourier Transform (STFT) as shown in equation (2.5)

where x[n] denotes the signal and w[n] the window. The preferred window when

working with audio data is a Blackman-Harris window (2.6). By computing the

STFT over blocks of length between 20-100ms over the length of the whole input

2.2. Extracting Audio Features 13

data one can gain valuable insights into the variation of the spectral components

and their correlation. Using the STFT the global pitch of the various voices inherent

in a polyphonic instrumentation can be analyzed over time; discrete events can then

be localized as musical notes, opening the possibility of an additional interpretation

of the audio signal into a musical score or a direct Audio-to-MIDI translation.

X(m,ω) =
∞∑

n=−∞

x[n]w[n−m]e−jωn (2.5)

w(n) = a0 − a1 cos
(2πn

N − 1

)
+ a2 cos

(4πn

N − 1

)
− a3 cos

(6πn

N − 1

)
(2.6)

a0 = 0.35875; a1 = 0.48829; a2 = 0.14128; a3 = 0.01168

The pitch of the audio data is calculated in the following way according to [3]:

1. Select a sampling window from the incoming data.

2. Apply window for each block and perform Fast Fourier Transform (FFT).

3. Identify principal frequencies.

4. Identify the fundamental as a sub-multiple of the frequency of greatest ampli-

tude.

5. If necessary, re�ne window and repeat.

After identifying the most important frequency components for each block, by the

use of a local maximum search function a �xed threshold is employed to pick out the

frequencies, fi, with the largest amplitudes. This is almost certainly a true harmonic

of the fundamental we are seeking. In other words, the fundamental frequency is

F = fi/n where n is an integer. For each value of n from one to �ve we examine the

spectrum to see how many frequencies are potential harmonics of F . A frequency

is a potential harmonic if it is close to the ideal frequency of the harmonic. A pitch

deviation of ±5Hz is allowed for each candidate frequency. The resulting feature

vector contains the values (in Hz) of the determined pitch(es) for each block-frame.

2.3. Alignment through Dynamic Programming 14

2.3 Alignment through Dynamic Programming

In the above section we have analyzed the process of extracting suitable parameters

from the incoming audio data. It can be shown that two sequences of audio data can

be represented in the following way [12]: Let X and Y be two sequences of elements

xm and ym and of length M and N respectively:

X = x1, x2, . . . , xm, . . . , xM = {xm, m = 1, . . . ,M} (2.7)

Y = y1, y2, . . . , yn, . . . , yM = {yn, n = 1, . . . , N} (2.8)

The alignment of an element xmk with an element ynk is de�ned by a couple ak =

(mk, nk), 1 ≤ mk ≤ M and 1 ≤ nk ≤ N . An alignment of one sequence with the

other is de�ned by a sequence

A = a1, a2, . . . , ak, . . . , aK (2.9)

such that the sequences {mk, k = 1, . . . , K} and {nk, k = 1, . . . , K} are non decreas-

ing (mk−1 ≤ mk, nk−1 ≤ nk). If one considers a plane with indices m on the abscissa

and n on the ordinate, A also de�nes a 'path' in this plane (ref. Figure 2.5).

2.3. Alignment through Dynamic Programming 15

Figure 2.5: Possible Alignment of four segments betwen two sequences

As outlined in the early stages of the report we wish to estimate the time instant

at which two portions of audio data are (near) equivalent so that we can interpolate

smoothly between them. It is well known however that variation in the playing rate

(in the case of a musical performance) or variation in the speaking rate (in the con-

text of speech processing) causes a nonlinear �uctuation in a music/speech pattern

time axis. We wish to eliminate this �uctuation, referred to as time-normalization.

As outlined by [13] at an early stage, some linear normalization techniques were

examined, in which timing di�erences between (...) patterns were eliminated by

linear transformation of the time axis. Reports on these e�orts indicated that any

linear transformation is inherently insu�cient for dealing with highly complicated

�uctuation nonlinearity. In order to overcome these problems various algorithms

have been presented over the years which make use of dynamic programming (DP).

These algorithms aim at matching two sequences of audio data with a nonlinear

time-normalization e�ect. By [13] timing di�erences (...) are eliminated by warping

the time axis of one pattern so that the maximum coincidence is attained with the

2.3. Alignment through Dynamic Programming 16

Figure 2.6: Finding the shortest path in a graph

other. Then, the time-normalized distance is calculated as the minimized residual

distance between them. This minimization process is very e�ciently carried out

by use of the dynamic programming (DP) technique. By [14] the pattern matching

problem can be formulated as an optimal path �nding problem (optimal in the sense

of minimum path dissimilarity) over a �nite two dimensional grid (Figure 2.5).

The problem of �nding an optimal path or optimal trajectory and its solution

through DP, has been studied for decades2 (Bellman et al.). Figure 2.6 depicts an

example of the shortest path problem in a graph. A straight line indicates a single

edge; a wavy line indicates a shortest path between the two vertices it connects

(other nodes on these paths are not shown); the bold line is the overall shortest

path from start to goal3. In the context of speech processing the DP technique

outlined in this section is commonly referred to as Dynamic Time Warping (DTW).

It will be shown throughout the report that DTW can be applied to traditional

music signals as well as speech signals, albeit with a few modi�cations. The exact

constrains of the DTW and the algorithm itself will be presented in the next chapter.

Furthermore two distinct solutions will be presented over the course of the report.

On the one hand a solution to the alignment problem based on a static time shift

and on the other hand on a dynamic time warp. It will be shown that the time

shift method is NP-complete providing however a very �ne coarsed solution to the

alignment problem with minimal error, while the time warp method can be solved

in polynomial time. It will be shown that there is a trade-o� between computational

complexity and accuracy, and as a solution to that problem a hybrid model between

a static time shift and a dynamic time warp will be presented.

2Please refer to [15] (especially chapters IV, V and VI).
3Source: http://en.wikipedia.org/wiki/Dynamic_programming

2.3. Alignment through Dynamic Programming 17

Figure 2.7: Time-Domain Analysis Flowchart

2.4. Overview of VST Framework 18

2.4 Overview of VST Framework

A few words on the Software Development Kit (SDK) on which the implementation

of the above parts was initially speci�ed. The open-source Steinberg VST Plug-

ins SDK is a freely available (but subject to certain licensing conditions) software

environment aimed at working with audio data, through providing a suitable layer

of abstraction so as to facilitate development and deployment of an audio processing

algorithm. It is based on C/C++ but is architecture and compiler independent. The

preferred machine architecture chosen for the implementation of the project is an

i386 compatible architecture and can be compiled in a Microsoft Windows or GNU

Linux environment using an free/open-source compiler such as Microsoft Visual

C++ or the GNU Compiler Collection (GCC) respectively. The simulation of the

algorithm can be conducted on an open-source VST host, however it is preferably

evaluated using commercially available software, based on the VST architecture such

as Steinberg's own Cubase/Nuendo platform or any other 3rd party host.

2.5 Applications of Audio Alignment

What is outlined in this report can be applicable to many di�erent scenarios where

a time-domain alignment of various signals (such as audio) is sought-after. This

project aims to �nd the optimal time-domain alignment point for two (or more) audio

sequences speci�cally. It is thus aimed for the audio signal processing industry such

as recording studios or TV/Radio-broadcast stations. Through the introduction of

a novel way of automatically estimating the correct alignment point between various

audio sequences, we wish to reduce the burden associated with the manual method

as it is used today.

2.6 Summary

In this chapter we have introduced the notion of audio alignment and the various

problems associated with it. We have presented how time domain alignment prob-

lems are dealt with today, and introduced the fundamental concepts needed in order

2.6. Summary 19

to automate this process. In the following chapter we will establish a mathematical

framework for our alignment model, which will then be presented in greater detail

in chapter 4.

Chapter 3

Audio Alignment

3.1 Notations

Symbol De�nition

X Signal measurement matrix
Y Signal measurement matrix
Nx Total number of signal measurements for each frame
Ny Total number of signal measurements for each frame
x Signal parameter coe�cient
X Sequence of elements xm

Y Sequence of elements yn

A Warping function
D Weighted summation of distances
Nc Normalization coe�cient

Table 3.1: Nomenclature.

3.2 Overview

Since the input audio data can be classi�ed as a non-deterministic and non-stationary

signal, we need to obtain a parametric depiction of the di�erent properties encap-

sulated within the data. As shown in the previous chapter we analyse di�erent

parameters ranging from time domain to frequency domain representations with the

ultimate target of �nding a suitable classi�cation of our signal at discrete time in-

20

3.3. Feature Vector Extraction 21

Figure 3.1: Overview of the processing blocks for audio alignment.

stances; i.e. we represent the input data as a sequence of data points at discrete time

intervals. The creation of such a global feature vector will form the core data block

of the input signal on which a variety of processing can take place. An overview

of the di�erent elements performing computation on the input data are depicted in

Figure 3.1. Sequence X and Y represent the feature vector of two di�erent audio

�les. In the following section we will analyze the inner workings of a variety of these

processing blocks. We will start by mathematically de�ning the creation of the

global feature vector for both sequences and then turn our attention to the problem

of statistical transformation models for the signal parameters such as decorrelation

and normalization. A distance measure will then be explored and the principles of

Dynamic Time Warping (DTW) analyzed.

3.3 Feature Vector Extraction

By [16] let us de�ne a signal measurement matrix for signal X as follows:

3.3. Feature Vector Extraction 22

X =

x(0, 0) x(0, 1) · · · x(0, Nx − 1)

x(1, 0) x(1, 1) · · · x(1, Nx − 1)

· · · · · · · · · · · ·

x(Nf − 1, 0) x(Nf − 1) · · · x(Nf − 1, Nx − 1)

 (3.1)

where x(n,m) denotes the mth signal measurement at frame n, Nf denotes the

total number of frames in the signal, and Nx denotes the total number of signal

measurements for each frame. Similarly for signal Y:

Y =

y(0, 0) y(0, 1) · · · y(0, Ny − 1)

y(1, 0) y(1, 1) · · · y(1, Ny − 1)

· · · · · · · · · · · ·

y(Nf − 1, 0) y(Nf − 1) · · · y(Nf − 1, Ny − 1)

 (3.2)

The signal measurement matrices X and Y contain all measurements of the two

input signals for all time. Nx and Ny are of the same size for our analysis. Note

that the signal measurement matrix usually contains a mixture of measurements:

The short-term energy and its �rst time derivative, FFT coe�cients and a set of

cepstral coe�cients along with delta coe�cients d
dt
. Again as shown by [16] Nx

represents the dimension of the vector that is the composite of these measurements.

From this point on we will consider these measurements as a group, rather than

individually, and not refer to speci�c types of measurements. In some analyses, it

is nevertheless useful that common measurements be grouped together in adjacent

columns in X and Y (...). Additionally note that at this stage we mix quantities

such as energy/power and spectral/cepstral coe�cients together in the same feature

vector. These parameters all exhibit a di�erent numerical scale. If we compare two

parameter vectors using a simple operator such as the Euclidean distance, the result

will likely be dominated by the terms with large amplitude and variances, even

though the true information may lie in the smaller amplitude parameters. As shown

by Picone et al. the range and variance of the power term will be much larger than

the range and variance of a cepstral coe�cient. We will continue with a discussion

on how we can achieve normalization as a remedy to this observation.

3.4. Distance Measures 23

3.4 Distance Measures

Let us �rst de�ne the term distance measure. According to [17] a distance measure

should obey the following properties:

1. Nonnegativity:

D(x̄1, x̄2) > 0, x1 6= x2

D(x̄1, x̄2) = 0, x1 = x2

2. Symmetry:

D(x̄1, x̄2) = D(x̄2, x̄1)

3. Triangle Inequality:

D(x̄1, x̄3) ≤ D(x̄1, x̄2) + D(x̄2, x̄3)

The Euclidean distance measure is a metric which satis�es the above relations. For

our application we make use of the factored form of the Euclidean distance:

D(x̄1, x̄2) = ‖x̄1 − x̄2‖2 = (x̄1−x̄2)(x̄1−x̄2)
† = ‖x̄1‖2+‖x̄2‖2−2(x̄1·x̄2) (3.3)

The Euclidean distance thus is the sum of the magnitudes of the vectors minus

twice the dot product. This representation is particularly important when devising

a fast and e�cient implementation in order to create a similarity matrix between

two feature vectors.

As emphasized in the end of last section we need to provide for normalization

and decorrelation between the di�erent elements of the feature vector when choosing

a simple distance metric such as the Euclidean distance. Thus for each element in

the feature vector we derive the following expression for normalization:

x̃(n) =
x(n)− µ

σ
(3.4)

3.4. Distance Measures 24

where the standard deviation is de�ned as:

σ =

√√√√ 1

N

N∑
i=1

x2
i − x̄2

and the mean average µ as:

µ =
1

N

N∑
i=1

xi

There are other methods available for decorrelating and normalizing parameters

used extensively in the context of speech processing and recognition. By [16] there

is a straightforward method of decorrelating parameters in a statistically optimal

sense for a multivariate Gaussian process. This method is outlined below but is

not addressed in this project. Let us de�ne a multivariate Gaussian probability

distribution as

p(v̄) = N [v̄, ūv,Cv] =
1√

(2π)Nv |Cv|
e(−1/2)(x̄−ūv)C−1

v (x̄−ūv)†

We will assume that our parameters obey this type of statistical model. We can

compute a linear transformation that will simultaneously normalize and decorrelate

the parameters. Let us de�ne a transformed vector ȳ as

ȳ = Ψ(v̄ − µ̄v)

where v̄ denotes the input parameter vector, and µ̄v denotes the mean value of the

input parameter vector. We de�ne Ψ as a prewhitening transformation. (...) It can

be shown that Ψ is given by

Ψ = Λ−1/2Φ†

where Λ denotes a diagonal matrix of eigenvalues, and Φ denotes a matrix of eigen-

vectors of the covariance matrix of v̄. The eigenvalue and eigenvectors can be shown

to satisfy the following relation:

Cv = ΦΛΦ†

3.5. Dynamic Time Warping 25

where Cv is the covariance matrix for v. Each element in Cv, Cv(i, j), can be com-

puted as follows:

Cv(i, j) =
1

Nf

Nf−1∑
m=0

(vm(i)− µv(i))(vm(j)− µv(j))

The above method [16] has been applied in the �elds of speech processing. However

the creation of the transformation matrix Ψ is associated with an additional cost,

since it must be trained. This is done by collecting mean and covariance statistics

across a large amount of (...) data. The implications of this will be discussed in the

�nal stage of the report.

3.5 Dynamic Time Warping

Let us now focus on the mathematical framework of dynamic time warping as out-

lined by [13]. We will de�ne a sequence of points referred to as a warping function

which approximately realizes a mapping from the time axis of pattern X onto that

of pattern Y. For this we shall �rst simplify the notation of 3.1 and 3.2 as two

sequences of elements xm and yn of length M and N respectively:

X = x1, x2, . . . , xM = {xm, m = 1, . . . M} (3.5)

Y = y1, y2, . . . , yN = {yn, n = 1, . . . N} (3.6)

The alignment of one sequence (warping function) with the other is de�ned by a

sequence of points a = (x, y):

A = a1, a2, . . . , ak, . . . aK (3.7)

where by [12] the alignment of an element xmk with an element ynk is de�ned as a

couple ak = (mk, nk), 1 ≤ mk ≤ M and 1 ≤ nk ≤ N . A graphical interpretation

would see patterns X (3.5) and Y (3.6) developed along a m− n plane with indices

m on the abscissa and n on the ordinate (ref. Figure 2.5). Thus sequence A (3.7)

3.5. Dynamic Time Warping 26

can be seen as de�ning a path in this plane, i.e. a mapping from the time axis

of pattern X onto pattern Y . This warping function coincides with the diagonal

line n = m if no timing di�erence between the two sequences exists. It deviates

further from the diagonal line as the timing di�erence grows. We denote a measure

of the di�erence between two feature vectors xm and ym as d(mk, nk). Then, the

global distance along an alignment between xm and ym is the weighted summation

of distances along warping function A such that:

D(X, Y, A) =
K∑

k=1

d(mk, nk) · wk (3.8)

where wk is a nonnegative weighting coe�cient. 3.8 is a reasonable measure for

the goodness of warping function A and attains its minimum value when 3.7 is

determined so as to optimally adjust the timing di�erence. The time-normalized

distance between the two patterns X and Y is de�ned as follows:

D̃(X, Y, A) = min
F

[∑K
k=1 d(mk, nk) · wk∑K

k=1 wk

]
(3.9)

where the denominator of 3.9 is employed as to compensate for the e�ect of K, i.e.

the number of points on the warping function.

We have now established a mathematical framework for the de�nition of an

alignment between two sequences. There are some restrictions to consider for the

warping function however.

1. Endpoint constraints (also referred to as boundary conditions) force the points

ak to start and �nish in the opposite diagonal corner of the rectangle (m, n):

a1 = (1, 1)

aK = (M, N) (3.10)

2. Monotonic conditions:

mk−1 ≤ mk and nk−1 ≤ nk (3.11)

3.5. Dynamic Time Warping 27

3. Local Continuity Constraints force the possible steps in the warping path to

adjacent cells:

mk −mk−1 ≤ 1 and nk − nk−1 ≤ 1 (3.12)

As a result of these two restrictions, the following relation holds between two

consecutive points:

ak−1 =

(mk, nk−1),

(mk−1, nk−1),

(mk−1, nk).

(3.13)

4. Slope constraint condition: Neither too steep nor too gentle a gradient should

be allowed for the warping function A because such deviations may cause

undesirable time-axis warping. Too steep a gradient, for example, causes an

unrealistic correspondence between a very short pattern X segment and a

relatively long pattern Y segment. (...) Therefore, a restriction called a slope

constraint condition is set upon the warping function, so that its �rst derivative

is of discrete form. The slope constraint condition is realized as a restriction on

the possible relation among several consecutive points on the warping function.

The larger the e�ective intensity of the slope constraint P , the more rigidly

the warping function slope is restricted. When P = 0 there are no restrictions

on the warping function slope. When P = ∞ the warping function is restricted

to the diagonal line n = m.

Since the criterion function in 3.9 is a rational expression, its maximization is an

unwieldy problem [13]. If the denominator in 3.9

Nc =
K∑

k=1

wk

(called normalization coe�cient) is independent of warping function A, it can be

put out of the bracket, while simplifying the equation as follows:

D̃(X, Y, A) =
1

Nc

min
F

[
K∑

k=1

d(mk, nk) · wk

]
(3.14)

3.6. Summary 28

This simpli�ed problem can be e�ectively solved by use of the dynamic programming

technique. We will now consider two typical weighting coe�cient de�nitions which

enable this simpli�cation. Note that for this project only the �rst form (symmetric)

is considered.

1. Symmetric form:

wk = (mk −mk−1) + (nk − nk−1), (3.15)

then Nc = M + N, where M and N are lengths of patterns X and Y , respec-

tively [see 3.5 and 3.6].

2. Asymmetric form:

wk = (mk −mk−1), (3.16)

then Nc = M. (Or equivalently, wk = (nk − nk−1), then Nc = N .)

3.6 Summary

In this chapter we have provided a mathematical framework for the instantiation of

a feature vector (3.1 and 3.2) representing a sequence of coe�cients over time. An

appropriate distance measure was derived (3.3) and the problem of normalization

and decorrelation of the parameters adressed. Furthermore a model for the time-

alignment of two series (3.5 and 3.6) was outlined and simpli�ed so that it can be

solved by use of dynamic programming. In the following chapter we will show how

these di�erent models can be implemented and simulated.

Chapter 4

Implementation

4.1 Overview

In this chapter we will turn our attention to the individual processing blocks of the

algorithm, aimed at �nding the optimal time-alignment point between two audio

�les. We will outline the implementation of each block, starting by the parsing

of the input data, i.e. the creation of the global feature vector. We will then

show how a similarity matrix between two sequences is obtained and �nally derive

two implementations of the dynamic time warping procedure. Additionally we will

brie�y outline how the pitch of a sequence of audio can be estimated. Note that the

algorithm has been optimized for musical data, however because of a modular design

and a range of di�erent parameters explored, the implemented model can be just as

well used for speech data. The algorithm has been devised in MATLAB with special

emphasis placed on an e�cient and fast implementation within the restrictions of

the environment. We will start by going through each stage iteratively providing

pseudo-code and graphical output wherever applicable.

4.2 Creating the Feature Vector

The feature vector forms the core data block and contains various coe�cients rep-

resenting the audio signal. The total number of signal measurements (that is the

coe�cients we compute) varies throughout our analysis, and is dependant on the

29

4.2. Creating the Feature Vector 30

Elements Type

1 Short-term energy
1 First time derivative of above

1..512 FFT/A-weighted coe�cients
1..64 MFCC coe�cients
1..64 Delta coe�cients

Table 4.1: Coe�cients used in the feature vector.

Figure 4.1: Snapshot of the elements of the feature vector.

input signal. It is sometimes useful to omit FFT coe�cients completely in favor of

a more dominant cepstral analysis (or vice versa). The size of the vector consists

of typically around 62 elements: Two elements for the short-term energy and its

derivative, around 32 FFT/A-weighted coe�cients and another 13 MFCCs along

with 13 delta coe�cients. However as can be seen from Figure 4.1 the maximum

size of the feature vector amounts to around 642 elements. Nonetheless a more real-

istic (and computationally feasible) �gure of 62 elements can be used for most input

data. The evaluation of the parameter count is conducted in the �nal stages of the

report. We will begin by outlining the di�erent stages in order to create the feature

vector using Beethoven's �Fuer Elise� for Piano as our example input �le.

The routine devised for creating the feature vector has the following parameters:

4.2. Creating the Feature Vector 31

Figure 4.2: Example waveform of a Beethoven music �le.

• The input �lename.

• The cut-o� frequencies for the initial �ltering stage.

• The choice of a wide range of window types used for splitting the frames into

overlapping blocks.

• The frame length (in ms).

• A switch type to either use the logged energy or the default case.

• The number of FFT/A-weighted coe�cients to compute.

• The amount of MFCCs to compute.

We will now go through the di�erent stages of the algorithm and provide graphical

output wherever appropriate.

1. Read-in the audio �le (typically in WAV format). A snapshot of the waveform

is depicted in �gure 4.2.

4.2. Creating the Feature Vector 32

2. Normalization and �ltering stage: Here we optionally pre-emphasize the audio

�le with an FIR �lter 1 − az−1 in the case of a speech waveform or a simple

high-pass �lter in order to eliminate the 50/60 Hz hum originating from the AC

electric power source. Additionally we can choose to normalize1 the waveform

to a maximum range.

3. Frame-splitting stage: In this part of the algorithm we split the input data

into overlapping frames and window each frame appropriately.

Figure 4.3: Short-term energy and �rst derivative of the waveform.

4. Next we compute the time-domain features of the audio �le: The short-term

energy and its �rst derivative as shown in �gure 4.3.

1Audio normalization is the process of increasing the amplitude of a digital audio recording to
a maximum peak level of 100% (0 dB).

4.3. Estimating the Alignment 33

Figure 4.4: Spectogram of the input signal.

5. Embarking on the frequency-domain feature extraction we proceed with cal-

culating the FFT/A-weighted coe�cients (�gure 4.4).

6. Finally we compute the MFCC coe�cients and merge the results into one

feature vector2.

Having created the feature vector we can then optionally prefer to normalize or

decorrelate the di�erent parameters, since as emphasized in chapter 3 the parameters

all exhibit a di�erent numerical scale.

4.3 Estimating the Alignment

In this section we will outline the routine which aims at detecting the optimal time-

alignment point between two sequences. This procedure takes the feature vectors of

2This routine is available from [18].

4.3. Estimating the Alignment 34

Figure 4.5: Similarity Matrix between two audio sequences.

two audio �les and a marker region as input and returns the estimated alignment

point. The di�erent steps are outlined in the sections below.

4.3.1 Similarity Matrix

We compute the similarity matrix between the two �les using the Euclidean dis-

tance. We make use of the factored form (expression 3.3) for an e�cient and fast

implementation. Figure 4.5 shows the similarity between two audio sequences. The

similarity metric is proportional to the similarity of the frames. Values which ap-

proach 0 (dark blue region) depict similar frames while values which have a high

value (dark red region) can be identi�ed as dissimilar frames. As shown by [19] the

resulting checkerboard pattern corresponds to segment boundaries, and o�-diagonal

lines signifying repeated phrases. The presence of the strong diagonal line indicates

a good alignment between the two audio �les. The next stage in our procedure

attempts to �nd this alignment, on the one hand through dynamic time warping

4.3. Estimating the Alignment 35

Figure 4.6: Path Direction (Slope Constraint) in DTW.

the two sequences and on the other hand through a linear time shift (exhaustive

search).

4.3.2 Dynamic Time Warping

As mentioned above the aim of this stage is to evaluate the shortest path through

the similarity matrix. By use of the dynamic programming (DP) technique we

can e�ciently compute this path. Having established di�erent slope constraints in

chapter 3 we will derive two models based on the symmetric form (expression 3.15)

weighting coe�cient de�nition. Let us �rst present these di�erent slope constraint

conditions.

First consider the case where no slope constraint is employed (i.e. P = 0). As

can be seen in �gure 4.6 a. the path through which the DP-matching algorithm

progresses is not restricted. By [13] the basic algorithm for calculating the distance

between two patterns X and Y is written as follows:

Initial condition:

g1(ak) = d(ak) · w1 (4.1)

DP-equation:

gk(ak) = min
ak−1

[gk−1(ak−1) + d(ak) · wk] (4.2)

4.3. Estimating the Alignment 36

Such that the time-normalized distance is de�ned as:

D(X, Y) =
1

N
gK(aK) (4.3)

It is implicitly assumed here that ao = (0, 0). Accordingly, w1 = 2 in the symmetric

form (and likewise w1 = 1 for the asymmetric form). We can thus derive an algo-

rithmic representation for slope constraint (P = 0). Note that we will deviate from

the nomenclature of chapter 3 and use i and j as our indices instead of n and m

respectively.

Initial condition:

g(1, 1) = 2d(1, 1) (4.4)

DP-equation:

g(i, j) = min

g(i, j − 1) + d(i, j)

g(i− 1, j − 1) + 2d(i, j)

g(i− 1, j) + d(i, j)

 (4.5)

Thus the time-normalized distance is given as:

D(X, Y) =
1

N
g(I, J) (4.6)

where N = I +J . The DP-equation 4.5 must be recurrently calculated in ascending

order with respect to coordinates i and j, starting from the initial condition at (1, 1)

up to (I, J). The domain in which the DP-equation must be calculated is speci�ed

by 1 ≤ i ≤ I, 1 ≤ j ≤ J .

For the case where slope constraint P = 1 (�gure 4.6 b.) is employed, the same

basic conditions as outlined above hold. However now the second derivative of the

warping function is restricted, so that the point ak path does not orthogonally change

its direction. This new constraint reduces the number of paths to be searched and

4.3. Estimating the Alignment 37

Algorithm 1 Pseudocode for the DP-matching algorithm for P = 0.

[I,J] = size(similarity_matrix);
for i = 1:I
for j = 1:J
d = g(i,j);
[gmax, index] = min([g(i,j-1)+d, g(i-1,j-1)+2d, g(i-1,j)+d]);
g(i,j) = gmax;
slope(i,j) = index;
end;
end;
//Commence Traceback
i = I;
j = J;
while i > 1 & j > 1
if (index(i,j) == 1)
j = j - 1;
else if (index(i,j) == 2)
i = i - 1; j = j - 1;
else if (index(i,j) == 3)
i = i - 1;
X = [i,X];
Y = [j,Y];
end.

thus reduces the computational complexity. The DP-equation g(i, j) now becomes:

g(i, j) = min

g(i− 1, j − 2) + 2d(i, j − 1) + d(i, j)

g(i− 1, j − 1) + 2d(i, j)

g(i− 2, j − 1) + d2(i− 1, j) + d(i, j)

 (4.7)

The outcome of this section can be implemented in even the most basic programming

environment. An example pseudocode similar to the one used in this project is shown

in Algorithm 1. Having established the DTW procedure we obtain the alignment

or warping path between two sequences. This path is depicted in �gure 4.7. As can

be seen, two regions of maximum coincidence between the two audio sequences are

evaluated. These regions coincide with the strong diagonals lines of the similarity

matrix of �gure 4.5. We can formally de�ne these regions as a sequence of points

with near constant and maximum slope, i.e. a sequence of points or a path along

the graph where the derivative approaches its maximum value. In order to �nd the

alignment point between the two sequences it would be su�cient to trace back along

4.3. Estimating the Alignment 38

Figure 4.7: Alignment or warping path between two Beethoven audio-takes.

this slope and �nd the point where the path crosses the x-axis, however as pointed

out in chapter 3 this methodology can provide unsatisfactory results, especially when

dealing with large and complex data which is additionally corrupted by noise.

4.3.3 Estimating the regions of interest

In this section we will present how we can make use of the information obtained

through DTW analysis to re�ne the regions of interest (ref. �gure 3.1) by means of

a gradient detection function. This gradient detection procedure locates the maxima

of the �rst derivative of the slope in �gure 4.7 and returns the regions of interest,

i.e. the possible alignment points. As can be seen in �gure 4.8 two global maxima

are estimated from our example data. This is in accordance with what we have

previously established (ref. �gures 4.5 and 4.7). The sequence on the abscissa of the

graph represents the master audio �le sequence X on which we wish to align slave

sequence Y. Note that sequence Y is in fact a subset of sequence X, i.e. it contains

4.3. Estimating the Alignment 39

Figure 4.8: Gradient Detection function: Estimating the regions of interest.

a portion of the same musical data recorded at a di�erent time. The reason why

two global maxima are estimated is because the �rst few seconds of the introductory

passage to Beethoven's �Fuer Elise� (which we have chosen in our example) are in fact

repeated. Please note however that these passages are not exactly repeated twice,

i.e. the second passage contains a variation towards the end. Audio �le sequence Y

contains the passage with this variation, and therefore as can be seen from �gure

4.8 the algorithm correctly classi�es the second global maximum as the one with the

higher magnitude. Additionally note that this information is not known a priori, and

that it is possible that when dealing with larger instrumentations or orchestrations

there might be many sequences which are identically repeated. For this reason the

algorithm demands an estimate, i.e. a marker region, to roughly locate itself into

context. This marker is set by the user before running the algorithm, nonetheless

this approximate region estimate needs to be only accurate within 2-4 seconds of

the target alignment point. Having formally estimated the regions of interest for

our alignment algorithm we can proceed to the �nal stage of the implementation.

4.4. Pitch Detection 40

4.3.4 Finding the target alignment point

As mentioned brie�y above we could naively trace-back the gradient of the warping

function to �nd the ultimate alignment point. In practice however this does not

appear as straightforward as it may appear. We have mentioned in chapter 3 (ref.

�gure 3.1) that through DTW we obtain a region estimate, i.e. an interval of con�-

dence localizing the target alignment point. This region estimate is used in the �nal

block of the alignment algorithm where a time-consuming albeit local exhaustive

search is employed to accurately determine the correct alignment point between the

two audio sequences. The procedure is outlined below:

1. Initialize bounds of time shift to the regions estimated by DTW.

2. Perform local exhaustive search on the similarity matrix.

3. Compare estimated sequence with the ideal alignment sequence.

4. Return point of maximum coincidence.

Using this hybrid model of a global dynamic time warp and local exhaustive search

we can locate the ultimate alignment point with great precision. The ideal alignment

sequence is in fact the diagonal line i = j. The maximum coincidence between our

estimate and the ideal path formally guarantees that we can give an estimate of the

correct ideal alignment point between two sequences.

4.4 Pitch Detection

In this section we will brie�y outline how to implement a pitch detection function

for an arbitrary input audio �le. The method has been formally de�ned in chapter

2.

1. First split data into overlapping frames of about 100ms with 50% overlap and

window each individual frame. A Blackman-Harris is employed here preferably.

We use the same routine for this part as for the feature vector extraction and

therefore many di�erent window types can be used.

4.5. Summary 41

Pitch (Hz) estimated every 50 ms.

90 100 260 260 260 260 260 180 180 260 590 260 260 260 260
260 260 220 590 590 590 590 590

450 260

Table 4.2: Polyphonic Pitch Estimation.

2. Compute FFT. Here the size of the FFT is set to equal the framesize or the

next integer power of two.

3. Find peaks in the spectrum and sort them in descending magnitude order.

4. Discard FFT-bins which are below a prede�ned threshold.

5. Estimate the pitch of the remaining components. Here we can specify how

many harmonics should be considered for each estimate. A suitable value has

been empirically estimated to amount to �ve harmonic components for each

fundamental frequency. Furthermore we accept each candidate pitch estimate

as a harmonic component of the fundamental frequency if it deviates not more

than 10Hz from the predicted value.

6. Sort the result by pitch (in Hz) and output the result as a matrix.

An example input �le in which �rst the note C4 (260Hz) and then the note D5

(590Hz) is played on a Piano, produces the following result (ref. table 4.2).

4.5 Summary

In this chapter we have seen how the individual methods outlined in chapter 2 and

formally de�ned in chapter 3 have been implemented. We have shown how to create

a global feature vector from an input audio �le, encompassing various parameters

and coe�cients. A similarity matrix based on the Euclidean distance between two

points was then instantiated. We then showed how to obtain an estimate for the

region of interest by use of the dynamic programming technique and more speci�cally

through dynamic time warping. Additionally it was pointed out how to re�ne this

region and obtain a more accurate target alignment point by use of an exhaustive

search function. This hybrid model will be evaluated in the following chapter.

Chapter 5

Evaluation

5.1 Overview

As outlined in chapter 2 we wish to provide an automatic alignment method so as

to reduce the decisional requirements of an external operator. This means that tra-

ditionally the time-domain alignment problems have been resolved through manual

auditioning of the audio data and a subjective evaluation of the optimal alignment

point. The importance of this observation leads us to the main problem when evalu-

ating the success of this project. It means that we will evaluate an objective measure

of the ideal time-alignment point and compare it against a subjective ideal value. We

will therefore assume the manual estimation of the di�erent time-alignment points

as our ideal target value - although this is not entirely true. However the man-

ual segmentation has been done by industry professionals and can be subjectively

considered as perfect1 or ideal.

In the following we will present the results of the evaluation of the algorithm

established in chapter 4, conducted on various di�erent types of input audio data.

We will start the evaluation on two solo acoustic instruments, namely Piano and

classical guitar and an example speech �le. We will then increase the complexity of

the data by considering a range of live recordings of acoustic (orchestral) instruments

made in a concert-hall. On the one hand we will consider an arrangement of Baroque

1Perfect in this context means that we cannot distinguish any audible di�erence.

42

5.2. Target Values 43

Error Range (ms) Meaning

≤ 5 Perfect
≤ 10 Inaudible
≤ 30 Good
≤ 100 Useful

Table 5.1: A metric of success.

music for recorders by Henry Purcell, and on the other hand a classical arrangement

for a string-section with horn by Wolfgang Amadeus Mozart. We will then present

the di�erent parameter variations considered. These are namely the size of the

MFCC and FFT coe�cients considered, along with observations about the e�ect of

statistical normalization. First however we will give an overview of the metric of

success and provide the appropriate ideal target values for each example data.

5.2 Target Values

Consider table 5.1 depicting the permissible error range for each alignment point

obtained. An alignment estimation that deviates not more than 5ms from the ideal

target value can e�ectively be considered perfect. Anything within 10ms is con-

sidered virtually inaudible and thus almost perfect. An alignment which deviates

at most 30ms from the ideal value can be considered good and in some cases not

audible. If the error is within 100ms then the result can still be considered useful

however manual 'tweaking' by the user would be needed.

Source Data Target Value (s)

Piano 7.483
Guitar 5.400
Speech 4.577

Table 5.2: First stage analysis target values.

Having established the constraints within which we can classify a successful align-

ment we can pursue with our �nal analysis. Table 5.2 shows the ideal target align-

ment values for the �rst stage analysis that we will consider, while tables 5.3 and

5.4 depict the ideal target values for the second stage Purcell and Mozart analysis

respectively.

5.3. Model Evaluation 44

Purcell Take # Target Value (s)

Take 1 16.753
Take 2 16.852
Take 3 20.958
Take 4 28.300

Table 5.3: Second stage Purcell analysis target values.

Mozart Take # Target Value (s)

Take 1 16.912
Take 2 31.038
Take 3 7.637

Table 5.4: Second stage Mozart analysis target values.

5.3 Model Evaluation

In this section we will evaluate the behavior of our model for three distinctly di�erent

data-sets. We will examine the e�ect of a normalized feature vector as opposed to

an un-normalized one, and additionally vary our parameters (namely FFT/MFCC

coe�cients and the e�ects of the logged energy evaluation) in order to obtain better

accuracy with respect to the ideal values. We will provide �ve di�erent presets for

our �rst stage data and conduct a more thorough analysis for the second stage data.

5.3.1 First stage analysis

We will go through each of the preset �les for our three di�erent �rst stage audio

�les. Note that we always use a framesize of 20ms (with 50% overlap), since this

is the lowest value we can use for achieving satisfactory results while permitting

theoretically the most precise alignment.

First we will consider the e�ect of the di�erent presets for the piano data. As

Preset # Window type FFT coe�cients MFCC coe�cients Framesize (ms)

1 Hamming 128 13 20
2 Hamming 64 39 20
3 Hamming 128 39 20
4 Hamming 0 256 20
5 Hamming 512 0 20

Table 5.5: Preset Table for �rst-stage analysis.

5.3. Model Evaluation 45

Preset # Result (s) Error (ms) Normalized Result (s) Normalized Error (ms)

1 7.460 23 7.460 23
2 7.460 23 7.460 23
3 7.460 23 7.460 23
4 7.460 23 7.460 23
5 7.470 13 7.450 33

Table 5.6: Piano audio data results.

Preset # Result (s) Error (ms) Normalized Result (s) Normalized Error (ms)

1 5.430 30 5.480 80
2 5.440 40 5.380 20
3 5.440 40 5.400 0
4 5.420 20 5.400 0
5 5.460 60 5.400 0

Table 5.7: Guitar audio data results.

can be seen from table 5.6 there is not much variance between the output. For most

presets the result is the same. This is due to the simple nature of the input audio

�le, where only a limited amount of notes are played. Furthermore this example

�le is recorded in a studio environment with a very low noise �oor. The overall

minimum error for this type of input data is established with preset 5 (without

statistical normalization).

Next we shall estimate the e�ect of our presets on the guitar data. The results

are shown in table 5.7. For this type of data we can observe that preset 4 performs

best. However the question that arises here is as to why this is the case. In fact

the guitar data was recorded in a noisy environment. This explains on the one

hand that the results vary throughout for each preset and on the other hand that

the MFCC based analysis (as employed in preset 4) performs better here, since

this method is more robust to noisy data. We can additionally observe that in

presets 3-5, with statistical normalization of the feature vector, the error reduces

to 0 ms. This would lead us to think that statistical normalization of the feature

vector is preferable before computing the optimal alignment path. We shall leave

this discussion however for a later stage before jumping to quick conclusions.

Finally we will compute the optimal alignment for the speech data. The results

for this analysis are shown in table 5.8. In the case of an unnormalized feature vector

5.3. Model Evaluation 46

Preset # Result (s) Error (ms) Normalized Result (s) Normalized Error (ms)

1 4.520 57 4.500 77
2 4.480 97 4.530 47
3 4.480 97 4.530 47
4 4.580 3 4.530 47
5 4.560 17 4.530 47

Table 5.8: Speech data results.

we can observe how closely the parameter count is tied with obtaining a good result.

The larger feature vectors obtained from presets 4 and 5 far outperform the other

three cases. Especially the MFCC only analysis (preset 4) strikes out with an error

of only 3 ms for the case of an unnormalized feature vector. This was expected,

since the MFCC analysis was introduced in the context of speech processing and

thus veri�es the choice of this representation for speech signals.

In this section we gave a quick overview into the variation of the alignment

results based on how many and more importantly which parameters to consider.

Leaving out any considerations about statistical normalization for the moment, we

can observe that the minimum error for each case of the example audio data, namely

piano, guitar and speech reaches reasonable values (as dictated by table 5.1) of 13

ms, 20 ms and 3 ms respectively. It can be shown (at the expense of generality)

that this error can be reduced further by adapting the parameters of the algorithm

for di�erent types of data. Accordingly this is why the analysis of this section is

presented on the basis of �ve preset mixtures. Since we are dealing with a wide

range of signals, no one combination of parameters is perfect for every type of data.

Nonetheless for the three distinct types of test data preset 4 (MFCC only approach)

gives on average the best results. It is important to note however, that as we shall

also see in the next section, that opting for an only FFT or only MFCC (and not a

combination of the two) based feature vector extraction seems to give better results.

5.3.2 Second stage analysis

In this section we will examine a range of live orchestral recordings with many

instruments playing at the same time. We will provide an error analysis in graphical

form for a wider range of parameters than explored in the �rst stage analysis. We will

5.3. Model Evaluation 47

begin with an investigation using a MFCC coe�cient only approach and then present

the results for an FFT only analysis. Finally we will combine both approaches and

discuss the results. Note that since there is a plethora of data for this stage, we will

only select a subset for our analysis, the complete data can be found nonetheless in

the appendix.

5.3.2.1 Purcell Analysis

In this section we will give an overview of the results accumulated by means of an

analysis on the di�erent recordings of the arrangement by Purcell.

• MFCC Analysis

Figure 5.1: MFCC Alignment graph of Purcell take 3.

As can be seen in �gure 5.1 we evaluate the optimal alignment point over a range

of di�erent MFCC coe�cients. The blue line depicts the standard case, i.e. an

alignment point estimation based on an unnormalized feature vector, while the green

line shows the e�ect on the alignment by normalizing the feature vector. The dashed

red line shows the value of the ideal case as shown in table 5.3. We can see that

the blue line approaches the ideal value when more than 16 MFCCs are used for

5.3. Model Evaluation 48

Figure 5.2: MFCC Error analysis for Purcell take 3.

Take # Ideal (s) Result (s) Error (ms)

1 16.753 16.760 7
2 16.852 16.910 58 (8)
3 20.958 20.960 2
4 28.300 28.290 10

Table 5.9: Purcell - Error Table (64 MFCCs).

the feature vector. It deviates however from the ideal estimate if more than 64-128

MFCCs are computed. We can plot the error with respect to the ideal function as

shown in �gure 5.2. From this �gure it is also clear that the error converges towards

zero but then increases again. As we can see from table 5.9 the deviation from

the ideal value is within very reasonable bounds when using 64 MFCC coe�cients.

There is one exception however, take 2 seems to have a much higher error than the

other three takes. We can plot the alignment graph for this particular take (ref.

�gure 5.3). In this particular case we can observe a similar pattern than in �gure

5.1. However here 128 MFCCs need to be evaluated to reduce the error within

reasonable limits, i.e. 8 ms. Taking this new value as our result we can deduce that

the average error for the four audio takes using 64 MFCCs amounts to 6.75 ms,

which according to 5.1 is inaudible and an almost perfect alignment.

5.3. Model Evaluation 49

Figure 5.3: MFCC Alignment graph of Purcell take 2.

Figure 5.4: FFT Alignment graph of Purcell take 4.

5.3. Model Evaluation 50

Figure 5.5: FFT Error analysis for Purcell take 3.

• FFT Analysis

Take # Ideal (s) Result (s) Error (ms)

1 16.753 16.780 27
2 16.852 16.850 2
3 20.958 20.950 8
4 28.300 28.270 30

Table 5.10: Purcell - Error Table (512-point FFT).

Next we will focus on an FFT based analysis in order to see if a similar pattern to

the analysis above is observable. As can be seen in �gures 5.4 and 5.5 the estimated

alignment point converges towards the ideal value when the size of the FFT is set to

512. This example is a bit of an extreme case, and as can be seen in the appendix,

for other takes the alignment can converge earlier towards the ideal value. However

for all four takes the ideal estimate is reached when the size of the FFT is 512 (table

5.10). The alignment results given when a 512-point FFT is used can be deemed as

good (table 5.1) and in some cases literally inaudible (takes 2 and 3). The average

error in this analysis amounts to 16.75 ms.

• MFCC/FFT Analysis

5.3. Model Evaluation 51

Figure 5.6: MFCC/FFT Error analysis for Purcell take 3.

Take # Min. Error (ms) MFCC/FFT coe�cients

1 100 32
2 2 32
3 18 256
4 7 64

Table 5.11: Purcell - Minimum error table for MFCC/FFT coe�cients.

We will now brie�y turn our attention towards an alignment estimation based on

both MFCC and FFT coe�cients. As we can see from �gure 5.6 the error does seem

to converge towards a minimum value, however it stays well above 50 ms for the

most part and as can be seen from �gure 5.7 well above 150 ms. It is nonetheless

true that for some takes the error can amount to much smaller values. As can be

seen from table 5.11 the minimum deviation from the ideal value is achieved with

a di�erent number of MFCC/FFT coe�cients throughout. Based on the results of

this analysis we can say that using a mixture of MFCC and FFT coe�cients seems

to give unpredictable results. This is easily explained by the fact that MFCC and

FFT coe�cients virtually represent the same frequency domain information. It is

therefore important

5.3. Model Evaluation 52

Figure 5.7: MFCC/FFT Error analysis for Purcell take 4.

to use only one representation of the frequency domain and not both methods

simultaneously.

5.3.2.2 Mozart Analysis

In this section we will consider three audio takes from the performance based on the

arrangement by Mozart.

• MFCC Analysis

As can be seen in �gure5.8 the estimate of the alignment point quickly converges

towards the ideal value. The results of the MFCC based analysis exhibit a similar

behavior for this test data as in the previous case. However note that for the

Mozart arrangement a bigger parameter value needs to be estimated. Instead of 64

MFCCs as shown in the case of the Purcell data. we need to compute around 128

MFCCs to obtain an optimal estimate. The explanation for this is based on the fact

that this data exhibits a larger spectral range. The recorders used for the Purcell

interpretation are more limited from a spectral point of view. For our test data in

this case however more instruments (and of di�erent type) are used. This explains

5.3. Model Evaluation 53

Figure 5.8: MFCC Alignment graph of Mozart take 2.

Take # Ideal (s) Result (s) Error (ms)

1 16.912 16.920 8
2 31.038 31.010 27
3 7.637 7.640 3

Table 5.12: Mozart - Error Table (128 MFCCs).

why we need to increase the parameters of our model. Table 5.12 shows the error

estimates for each individual audio take when employing 128 MFCCs. The average

error amounts to around 12.6 ms for this con�guration. This is an almost inaudible

timing di�erence, and proves to be a satisfactory result for this kind of complex

data.

• FFT Analysis

From �gures 5.9 and 5.10 we can deduce that we need to compute 256-512-point

FFT coe�cients to obtain a good alignment. This is in accordance with what has

been established earlier for the Purcell data. Table 5.13 shows the error estimates for

a 512-point FFT evaluation. Take 2 stands out as larger than the other two. This is

similar to the result obtained from table 5.12. It is di�cult to give an explanation

for this, but it is either a passage in the musical data which the algorithm cannot

5.3. Model Evaluation 54

Figure 5.9: FFT Alignment graph of Mozart take 2.

Figure 5.10: FFT Error analysis for Mozart take 1.

5.4. Overview of Results 55

Take # Ideal (s) Result (s) Error (ms)

1 16.912 16.920 8
2 31.038 31.130 92
3 7.637 7.640 3

Table 5.13: Mozart - Error Table (512-point FFT).

track properly (i.e. a boundary segment or a point at which a substantially low

frequency sound is occurring), or a marker which has been manually placed in the

wrong place to start with. By looking at the musical score we cannot detect any

anomalies, thus we can deduce that it is either a wrongfully placed initial marker or

just a local inconsistency with our evaluation. Nonetheless the analysis on the three

regions of the Mozart arrangement, using an FFT based analysis, seems acceptable

(with the exception of alignment #2) producing an average error of about 34.3 ms.

Having established the superiority of an exclusive FFT or MFCC evaluation in

the previous section we will not include data for the mixed case.

5.4 Overview of Results

We will now give an overview of the results so far and rank each estimation obtained

according to table 5.1.

Starting by the �rst stage analysis we can observe that using only a limited

amount of di�erent features (5 presets) can provide satisfactory results. However

as pointed out earlier, we need to adapt the parameters of the algorithm to the

di�erent audio data. Detailed a priori knowledge about the type of data used, needs

to be considered before the optimal alignment point can be evaluated. We showed

that in the case of Piano data the error reduced to 13 ms when using preset 5.

This depicts an almost inaudible timing di�erence. On the other hand the noise

corrupted classical guitar data had a minimum error of 20 ms when using preset 4

which we can objectively rank as a good alignment. Using an MFCC based analysis

we showed that for the speech data the error amounted to only 3 ms, which is a

perfect alignment.

In the second stage analysis we �rst established the superiority of the MFCC and

5.5. Additional Considerations 56

Audio Data Ranking

Piano Good/Inaudible
Guitar Good
Speech Perfect

Purcell #1 Inaudible
Purcell #2 Inaudible
Purcell #3 Perfect
Purcell #4 Inaudible
Mozart #1 Inaudible
Mozart #2 Good
Mozart #3 Perfect

Table 5.14: Ranking of each test data.

FFT based evaluations respectively and deemed the combined MFCC/FFT method

as inferior. For the Purcell test data employing 64-128 MFCCs we evaluated an

error of 7, 8, 2 and 10 ms for takes 1, 2, 3 and 4, ranking the timing di�erence for

each case as virtually inaudible. Using similar parameters for the Mozart data we

evaluated an error of 8, 27 and 3 ms for takes 1,2 and 3 respectively. Table 5.14

depicts the ranking for each test data considered. Out of the ten di�erent alignments

four can be classi�ed as good, three as inaudible and another three as perfect.

5.5 Additional Considerations

Additional considerations which have not been fully addressed in the above sections

include the following:

• E�ects of using di�erent frame-lengths.

• Computing the logged energy as opposed to the normal energy.

• Statistical Normalization of the feature vector.

• Window types used.

• Run-time behavior (execution speed etc.)

We will now go through each of these di�erent considerations starting with the frame-

length (framesize). In the evaluation of the algorithm we used a framesize of 20 ms

5.5. Additional Considerations 57

(with 50% overlap) throughout. Ultimately one should evaluate the e�ects observed

when changing the frame-length, however this was not done in this evaluation. The

reason for this is that using a frame-length of more than 20 ms increases the minimum

theoretical value of the maximum error estimation. Because we are working on a

frame-precision level, and not on a sample precision level we can only provide a

certain theoretical precision range. For example if an optimal alignment point is

de�ned at time instant 4.005 s and we are computing an alignment every 10 ms (as

used in this project) then we can either choose to provide an estimate at time 4.000

or 4.010. The minimal value of maximum error thus becomes 5ms. If we increase

our framesize then this theoretical min-max error increases as well.

Computing the logged energy as opposed to the normal energy didn't prove to

make any di�erence. The alignment results are exactly the same for each case.

The reason for this being that we are focusing on a more frequency-domain based

method. However as will be shown at a later stage if we were to weight each type

of parameter di�erently, we could emphasize the time-domain features. In this case

the logged energy could theoretically play a more central role.

We have included the estimation of the time-alignment point based on statis-

tical normalization in our plots in this chapter. However the results for statistical

normalization are inconclusive. Sometimes they give similar results than when not

using any normalization at all, rarely better, and most times worse and unpre-

dictable results. This is possibly due to the fact that the normalization was either

not applicable in our case or that it was not properly implemented.

The di�erent window types used can theoretically prove to enhance our results.

However during the implementation and evaluation stages throughout the course

of this project their e�ect has been deemed negligible. Therefore we have outlined

results based only on the Hamming window.

Run-time behavior is an important aspect to consider when developing an algo-

rithm for signal processing. However the environment used for the implementation

(MATLAB) is not a good measure of performance, and therefore we have excluded

any run-time considerations in this evaluation.

5.6. Summary 58

5.6 Summary

In this chapter we have evaluated the programming model outlined in chapter 4. We

�rst de�ned a measurement metric by which we could objectively de�ne and interpret

our results. We then derived an optimal parameter set for each di�erent input

data. We veri�ed this parameter set and then classi�ed our results according to the

measurement metric developed. Finally additional considerations were enumerated

and possible short-comings noted. In the next chapter we will summarize what has

been done and where future enhancements can be made.

Chapter 6

Summary

This chapter summarizes the material presented in this report and the results of

this investigation. First we will outline the results we have obtained throughout the

course of this project and analyze potential topics and areas of further research.

6.1 Summary of Results

We embarked on this project with the aim of �nding an automatic algorithmic repre-

sentation for the solution of the time-domain alignment problem. First the problem

was de�ned and the existing manual solution presented and analyzed. A mathe-

matical framework was then devised based on academic work in related areas. This

mathematical background was used in order to obtain a parametric representation

of non-stationary audio signals. We then derived a framework for the alignment of

two distinct sequences and showed that the resulting alignment problem could be

solved by use of the dynamic programming technique. We devised two forms for

computing the dynamic time warping path between these two audio sequences and

implemented a two stage model within the MATLAB programming environment.

The outcome of this model was then estimated and its correctness con�rmed by

evaluating it against existing manually segmented data. In the following section we

will describe the potential weaknesses and short-comings of the model and provide

an overview on possible areas of further research.

59

6.2. Suggestion for Further Research 60

6.2 Suggestion for Further Research

First and foremost it was initially assumed that the obtained model would be im-

plemented as a VST plugin. However because of a recent upgrade to the VST SDK,

support for a few vital components seemed to have been dropped. In particular the

O�ine-VST Interface, which was present in version 2.3 but removed in 2.4 (current

version), would greatly facilitate the development of the algorithm outlined in this

report. By coding a new host or by modifying the source of the VST SDK one could

e�ectively implement an algorithm similar to the one used in this project yielding

direct deployment on a vast variety of target computer architectures and operating

systems.

One of the problems not thoroughly addressed in this project is that of statistical

normalization and decorrelation of the feature vector. The success of the alignment

procedure is sensitive to the parameters and coe�cients in the feature vector, which

in turn are dependent on the input data. By providing a rigorous statistical nor-

malization, decorrelation and weighting of each individual coe�cient the alignment

procedure can be greatly improved. Various methods can be explored here similar

to those incorporated in Hidden Markov Models (HMM), since the main strength

in HMMs lies in their ability to integrate, through training, multiple example in-

stances into a single probabilistic model. Since we are not dealing with a real-time

realization a priori statistical information can be obtained for the given input signal.

Furthermore in this project a two stage model was devised for �nding the correct

target alignment. This simpli�cation in the last stage of the algorithm is prone to

errors (and especially noise). By using an appropriate DTW model incorporating a

cost function penalizing certain movements in the warping function one can greatly

improve the alignment estimation of two sequences.

6.3 Concluding Remarks

The investigation outlined in this report has illustrated that an automatic time-

domain alignment of two audio sequences is possible. This type of algorithm (when

implemented in a suitable environment) could drastically improve on the methodol-

6.3. Concluding Remarks 61

ogy used in audio and TV/Radio-broadcasting studios throughout the world today.

Bibliography

[1] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies and M. B. Sandler,

�A Tutorial on Onset Detection in Music Signals,� IEEE Trans. Acoust., Speech,

Signal Process., vol. 13, no. 5, 2005.

[2] P. McLeod and G. Wyvill, �Visualization of Musical Pitch,� IEEE Proceedings

of the Computer Graphics International, 2003.

[3] G. Peeters, �Music Pitch Representation By Periodicity Measures Based On

Combined Temporal And Spectral Representations,� in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Processing (ICASSP-06), 2006.

[4] T. Jehan, �Musical Signal Parameter Estimation,� M.S. thesis, Univ. of Cali-

fornia, Berkeley, CA, 1997.

[5] O. Deshmukh, C. Y. Espy-Wilson, A. Salomon, and J. Singh, �Use of Temporal

Information: Detection of Periodicity, Aperiodicity, and Pitch in Speech,� IEEE

Trans. Acoust., Speech, Signal Process., vol. 13, no. 5, 2005.

[6] Synchro Arts Limited VocALign, Unique Automatic Audio Alignment,

http://www.synchroarts.com/products/vocalign/vocalign.asp.

[7] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Al-

gorithms, and Applications, Prentice-Hall International, Inc., 1996.

[8] A. G. Constantinides, Digital Signal Processing and Digital Filters, Course

Notes, Imperial College London, UK, 2007.

[9] B. Gold and N. Morgan, Speech and Audio Signal Processing: Processing and

Perception of Speech and Music, John Wiley & Sons, Inc., 2000.

62

Bibliography 63

[10] P. A. Naylor, Speech Processing, Course Notes, Imperial College London,

UK, 2007.

[11] W. Han, C.-F. Chan, C.-S. Choy and K.-P. Pun, �An E�cient MFCC Extraction

Method in Speech Recognition,� Proc. IEEE Int. Symp. Circuits and Systems

(ISCAS 2006), 2006.

[12] H. Kaprykowsky and X. Rodet, �Globally Optimal Short-Time Dynamic Time

Warping Application to Score to Audio Alignment,� in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Processing (ICASSP-06), 2006.

[13] H. Sakoe and S. Chiba, �Dynamic Programming Algorithm Optimization for

Spoken Word Recognition�, IEEE, Trans. ASSP-26, 1, pp.43-49, 1978.

[14] R. Yaniv and D. Burshtein, �An Enhanced Dynamic Time Warping Model for

Improved Estimation of DTW Parameters�, IEEE Trans. Speech and Audio

Process., vol.11, no. 3, 2003.

[15] R. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton Uni-

versity Press, 1962.

[16] J. W. Picone, �Signal Modeling Techniques in Speech Recognition�, Proc. IEEE,

vol. 81, no. 9, 1993.

[17] R. O. Duda and P. E. Hart, Pattern Classi�cation and Scene Analysis, New

York: Academic Press, 1973.

[18] D. P. W. Ellis, Online web resource, PLP and

RASTA (and MFCC, and inversion) in MATLAB,

http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/, 2005.

[19] R. J. Turetski and D. P. W. Ellis, �Ground-Truth Transcriptions of Real

Music from Force-Aligned MIDI Syntheses�, LabROSA, Columbia University,

USA, 2003.

Appendix A

Basic and Auxiliary Results

A.1 Matlab Code

A.1.1 Creating the feature vector (buildvec.m)

function [output] = buildvec(data, varargin)

%BUILDVEC builds a feature vector of an input audio file.

%F=BUILDVEC(DATA,VARARGIN)

% data: Input data ('filename.wav')

% varargin parameters (default):

% 'len' (20): Window length in ms

% 'premph'(0): Pre-emphasis filter (default off)

% 'logged'(0): Turn on logged computation (default off)

% 'wtype'('hamming'): Window Type

% 'nsize'(64): FFT size (note: half of the values are discarded)

% 'msize'(13): Number of cepstra to return

%

% Jason FILOS, Imperial College London.

[len,wtype,premph,logged,nsize,msize] = ...

process_options(varargin, 'len', 20, 'wtype', 'hamming', 'premph', 0, ...

'logged', 0, 'nsize', 64);

64

A.1. Matlab Code 65

%% Read in the file

[X,Fs]=wavread(data);

X_len = length(X);

disp(sprintf('### WAV File Read ###\n'));

%% Pre-emphasis (optional)

if premph ~= 0

X = preemph(X,premph);

disp(sprintf('### Pre-emphasis Completed ###\n'));

end

%% Split signal up into overlapping frames

frames = splitframe(X,Fs,len,wtype);

disp(sprintf('\n### Frame-Splitting Completed ###\n'));

disp(sprintf('Window Used: %s', wtype));

disp(sprintf('Block length: %d ms\n', len));

%% Calculate Short-term Energy and 1st derivative

[ste,ste_deriv]= ste7(frames,logged);

if (logged==1)

disp(sprintf('### Logged Short-term Energy Computed ###\n'));

else

disp(sprintf('### Short-term Energy Computed ###\n'));

end

%% Calculate FFT bins

[fftbins] = abs(spectralfft(frames,nsize));

disp(sprintf('### %d-point FFT bins Computed ###\n',nsize/2));

%% Calculate MFCC and 1st derivative

A.1. Matlab Code 66

%% Merge results into one Feature Vector (FV)

ste_rows = size(ste,1);

ste_deriv_rows = size(ste_deriv,1);

fft_rows = size(fftbins,1);

total_cols = size(frames,2);

total_rows = ste_rows+ste_deriv_rows+fft_rows;

fv = zeros(total_rows,total_cols);

% fv(1,:) = ste;

% fv(2,1:total_cols-1) = ste_deriv;

% fv(3:fft_rows+2,:) = fftbins;

% % fv(35:ceps_rows+34,:) = cepstra;

% % fv(48:60,1:total_cols-1) = cepstra_deriv;

% fv(67:ceps_rows+66,:) = cepstra;

% fv(80:92,1:total_cols-1) = cepstra_deriv;

icol = ste_rows;

fv(icol,:) = ste;

icol = icol + ste_deriv_rows;

fv(icol,1:total_cols-1) = ste_deriv;

icol = icol + 1;

fv(icol:fft_rows+(icol-1),:) = fftbins;

icol = icol + fft_rows;

disp(sprintf('### Feature Vector Initialized! ###'));

output = fv;

A.1. Matlab Code 67

A.1.2 Alignment Model (alignment_model.m)

function [output] = alignment_model(fv, fv2, marker)

%ALIGNMENT_MODEL(fv,fv2,marker)

% This routine estimates the optimal alignment point between to feature

% vectors fv and fv2 representing a sequence of audio over time.

% Additionally a marker (int) needs to be parsed as input to refine the

% region of interest.

%

% Jason FILOS, Imperial College London.

%% Compute Similarity Matrix (SM)

SM = dist(fv,fv2); % euclidean distance

% figure; imagesc(SM); % plot 2-D SM

%% Compute Shortest Path through Similarity Matrix

t=cputime;[p,q,D] = dp2(SM); cputime-t % compute shortest path through dynamic programming

path = zeros(1, size(fv,2));

for i = 1:length(path); path(i)=p(min(find(q >= i))); end

% figure; plot(path);

%% Estimate Regions of Interest (Gradient detection)

for i = 1:length(path)-100; dx_dy(1,i)=std(path(1,i:i+100)); end

% figure; plot(dx_dy);

%% Compute Possible Alignment Points

[xmax, imax]=extreme(dx_dy);

regions = zeros(3,length(xmax));

for i=1:length(imax); pre_align(:,i)=(imax(i)-path(imax(i))); end

regions(1,:) = imax; % location of maxima (sorted)

regions(2,:) = xmax; % magnitude of maxima

regions(3,:) = pre_align; % preliminary alignment points

A.1. Matlab Code 68

%% Refine Region of Interest

temp = regions;

temp(3,:)=0.02*temp(3,:)/2;

j=1;

match=(marker*2)/0.02;

while j<length(temp)

res = abs(temp(3,j)-marker);

if (res<=2) % refine region if within +- 2 seconds

match = regions(3,j) % matching frame

break;

else

j = j+1;

end

end

%% Perform Exhaustive Search bounded by new Region

alignment = zeros(1,length(fv));

len1 = match-length(fv2);

len2 = match+length(fv2);

% Avoid getting out of range values

if (len1<=1);len1=1;end

if (len2>=length(fv));len2=length(fv);end

temp_alignment = align_exhaust(SM,len1,len2); % exhaustive search

alignment(len1:len2)= temp_alignment(len1:len2);

% figure; plot(alignment);

A.1. Matlab Code 69

%% Return Optimal Alignment Point

output = simple_compare2(alignment,length(fv),length(fv2));

A.1.3 Pitch Detection (spectral.m)

function [output, xmax_array, imax_array,deriv_array] = spectral5(frames, Fs)

%SPECTRAL5 computes the fundamental pitch(es) for each block

% frames: Input Array ;

% Fs: Samplerate (Hz) ;

%

% Jason FILOS, Imperial College London.

%% Data setup and initialization

[framesize, blocks] = size(frames)

deriv_array = zeros(framesize,blocks);

%% Compute FFT and first derivative

u = fft(frames);

deriv_array = diff(frames,1,2);

%% Find peaks in spectrum and output in descending order

for l = 1 : blocks

[xmax imax] = extreme(abs(audib_clean(u(:,l))));

xmax(end:-1:1);

fliplr(xmax);

imax(end:-1:1);

fliplr(imax);

imax = imax * (Fs/framesize)-(Fs/framesize); % Offset correction and translation

A.1. Matlab Code 70

xmax_array(1:length(xmax),l) = xmax;

imax_array(1:length(imax),l) = imax;

end

%% Temporary graphical output (Debugging)

% col = 20;

% temp = abs(u(:,col));

%

% ax=0:(44100/framesize):44100-(44100/framesize);

% subplot(2,1,1), plot (ax,20*log10(abs(u(:,col))),'g')

% xlabel('frequency');

% ylabel('magnitude (dB)');

% AXIS ([0 3000 0 50]);

%% Reduce FFT output to look for dominant peaks only

for m = 1 : blocks

[reduced] = reducer(imax_array(:,m),xmax_array(:,m),5);

reduced_array(1:length(reduced),m) = reduced;

end

%% Estimate Pitch

for n = 1 : blocks

[pitch] = pitch_estimator2(reduced_array(:,n),10);

pitch_array(1:length(pitch),n) = pitch;

end;

%% Print output

output = pitch_array;

subplot(2,1,2), bar(output(1,:),'stacked')

A.1. Matlab Code 71

end

A.1.4 Reducer (reducer.m)

function [output_positions, output_mags] = reducer(input_pos, input_mag, threshold)

%Reducer: Reduces the results of the peak-picking algorithm to values higher

%than the specified threshold.

%INPUT: input_pos = vector containing location of peaks (Hz); input_mag =

%vector of associated magnitudes for each peak (dB); threshold = threshold value (dB)

% Jason FILOS, Imperial College London.

len_mag = length(input_mag);

end_point = 0;

for i = 1 : len_mag

if (input_mag(i) > threshold)

end_point = end_point + 1;

end

end

output_positions = input_pos(1:end_point);

output_mags = input_mag(1:end_point);

end

A.1.5 Pitch estimator (pitch_estinmator.m)

function [output] = pitch_estimator2(reduced_positions_array,threshold)

%UNTITLED1 Summary of this function goes here

% Detailed explanation goes here

A.1. Matlab Code 72

%

% Jason FILOS, Imperial College London.

output = [];

pitch_array = [];

harmonics = 5; % Set number of harmonics to check, i.e. fc*1, fc*2 .. fc*harmonics

len_data = length(reduced_positions_array);

for l = 1:len_data

candidate_freq = reduced_positions_array(l);

for j = 2:harmonics

candidate = j*candidate_freq;

for i = 1:len_data

if (abs((candidate)-reduced_positions_array(i))<=threshold) % Set pitch deviation to +- threshold (Hz)

reduced_positions_array(i) = candidate_freq;

end

end

end

end

pitch_array = reduced_positions_array;

len_data = length(pitch_array);

for m = 1:len_data

A.1. Matlab Code 73

candidate_freq = pitch_array(m);

count = 0;

for i = 1:len_data

if (pitch_array(i)==candidate_freq)

count = count + 1;

end

end

if (count >= 2 && candidate_freq ~= 0)

output = [output, candidate_freq];

end

output = unique(output);

end

