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Abstract—Tracking and recovering dynamic sparse signals
using traditional Kalman filtering techniques tend to fail. Com-
pressive sensing (CS) addresses the problem of reconstructing
signals for which the support is assumed to be sparse but is
not fit for dynamic models. This paper provides a study on the
performance of a hierarchical Bayesian Kalman (HB-Kalman)
filter that succeeds in promoting sparsity and accurately tracks
time varying sparse signals. Two case studies using real-world
data show how the proposed method outperforms the traditional
Kalman filter when tracking dynamic sparse signals. It is shown
that the Bayesian Subspace Pursuit (BSP) algorithm, that isat
the core of the HB-Kalman method, achieves better performance
than previously proposed greedy methods.

Index Terms—Kalman filtering; compressed sensing; sparse
Bayesian learning; sparse representations.

I. I NTRODUCTION

In this work we consider the problem of reconstructing
time sequences of signals that are assumed to be sparse in
some transform domain. Recent studies have shown that sparse
signals can be recovered accurately using less observations
than what is considered necessary using traditional sampling
criteria using the theory of compressed sensing (CS) [1],
[2]. However, there are a number of practical limitations.
First, the recovery of sparse signals using CS consists of
solving an NP-hard minimization problem [1], [3]. Secondly,
CS reconstruction is not fit for dynamic models. Existing
solutions that address the dynamic problem either treat the
entire time sequence as a single spatiotemporal signal and
perform CS to reconstruct it [4], or alternatively apply CS
at each time instance separately [5]. In [6] a non-Bayesian CS
reconstruction is presented that assumes known sparsity levels
and a non-dynamic model. A class of adaptive filters, based
on the least mean squares (LMS) algorithm, are presented in
[7] and [8]. The adaptive framework of the LMS is used in
these approaches for CS. However, these approaches are not
fit for dynamic sparse signal reconstruction.

For a single time instance, the problem of sparse signal
reconstruction was solved in [9] using a Bayesian network that
elegantly promotes sparsity. This learning framework, referred
to as the Relevance Vector Machine (RVM), results in highly
sparse models for the input and has gained popularity in the
signal processing community for its use in compressed sensing
applications [5] and basis selection [10]. Sparsity is rendered

possible with a hierarchy of prior distributions that intuitively
confines the space of all possible states. The key fact behind
this technique is that it provides estimates on full distributions.
Non-Bayesian sparse recovery algorithms do not take into
account the signals’ statistics making their use in tracking
sparse signals difficult. The resulting statistical information
can be used to make predictions for future states without the
risk of them not being sparse.

For multiple time instances the system state can be tracked
accurately using Kalman filtering. Unfortunately the classic
Kalman approach is not fit for sparse signals. A Kalman
filtering-based CS approach was first presented in [11] where
the filter is externally modified to admit sparse solutions.
The idea in [11] and [12] is to enforce sparsity by applying
threshold operators. Work in [13] adopts a probabilistic model
but signal amplitudes and support are estimated separately.
Finally, the techniques presented in [14] use prior sparsity
knowledge into the tracking process. All these approaches
typically require a number of parameters to be pre-set.

In this work a sparsity-promoting Bayesian network is
employed that extends the data model adopted in traditional
tracking. The problem of sparse signal recovery is tackled
efficiently by the hierarchical nature of the Bayesian model.
The statistical information that is obtained as a by-product
of the hierarchical model is then incorporated in updating
previous estimates to produce sparsity-aware state estimates.
Additionally, the automatic determination of the active com-
ponents solves the problem of having to assume fixed sparsity
levels and involves only the noise parameter as the unknown
parameter to be adjusted manually. The hierarchical Bayesian
Kalman filter (Section II) proposed in [15], [16], is tested on
real data: First, the time-domain signal of a real piano record-
ing is reconstructed using only25% of originally sampled
data (Section III). Second, incomplete satellite data, measuring
the distribution of ozone gas in the planets’ atmosphere, is
recovered to yield the original content (Section IV). On basis
of these two case studies, simulations show how the proposed
method outperforms both the traditional Kalman filter, when
dealing with dynamic sparse signals, and a state-of-the-art
greedy CS reconstruction algorithm.



II. SYSTEM MODEL

Let the random variablesxt andyt, at some timet, describe
the system state and observations respectively. The standard
Kalman filter formulation is given by

xt = xt−1 + qt, (1)

yt = Φtxt + nt, (2)

whereqt andnt denote the process and measurement noise
andΦt is a design matrix. We assume that the signalxt ∈
Rn is sparse in some transform domain and that the entries
Φt ∈ Rm×n are independently identically distributed Gaussian
random variables drawn fromN

(

0, 1

m

)

.
Based on the Gaussian assumption one hasp(xt|xt−1) =

N (xt−1,Qt) and p (yt|xt) = N
(

Φxt, σ
2I

)

, with p(qt) =
N (0,Qt) andp(nt) = N

(

0, σ2I
)

, so that the Kalman filter
continuously alternates between the prediction and updatestep.
The prediction step calculates the parameters ofp(xt|yt−1)
while the update step evaluates those ofp(xt|yt).

In order to address the sparsity of the state vector, an
additional level of parametersα is introduced to control the
variance of each componentxi [9]:

p (x|α) =

n
∏

i=1

N
(

0, α−1

i

)

= N
(

0,A−1
)

,

where matrixA = diag ([α1, · · · , αn]). By driving αi = +∞
it follows that p (xi|αi) = N (0, 0) and consequently it is
certain thatxi = 0.

A. Hierarchical Kalman filter

The principles behind the Kalman filter and SBL are put
together to derive the Hierarchical Bayesian Kalman (HB-
Kalman) filter. The proposed approach has several advantages.
First, by adopting the same system model as described in
Equations (1) and (2), one can track the mean and covariance
of the state vectorxt. Second, the employment of hyper-
parameters, to model state innovation, promotes sparsity.

The measurement noise is chosen to be Gaussian with
known covariance, i.e.n ∼ N

(

0, σ2I
)

. The state innovation
process is given byqt ∼ N

(

0,A−1

t

)

, with At = diag (αt) =
diag ([α1, · · · , αn]t) and the hyper-parametersαi are learned
online from the data, as opposed to the traditional Kalman
filter where the covariance matrixQ of qt is given.

Similar to the standard Kalman filter, two steps, prediction
and update, need to be performed at each time instance. In the
prediction step, one has to evaluate:

xt|t−1 = xt−1, Σt|t−1 = Σt−1 +A−1

t ,

yt|t−1 = Φtxt|t−1, ye,t = yt − yt|t−1. (3)

where the notationt|t − 1 means prediction at time instance
t for measurements up to time instancet − 1. In the update
step, one computes:

xt|t = xt|t−1 +Ktye,t,Σt|t = (I −KtΦt)Σt|t−1,

Kt = Σt|t−1Φ
T
t (σ

2I +ΦtΣt|t−1Φ
T
t )

−1.

Differently from the standard Kalman filter, one has to
perform the additional step of learning the hyper-parameters
αt. From Equation (3) we getye,t = Φtqt + nt where a
sparseqt is preferred to produce a sparsext. Following the
analysis in [9] and [17], maximising the likelihoodp(yt|αt)
is equivalent to minimising the following cost function:

L(αt) = log |Σα|+ yT
e,tΣ

−1

α ye,t, (4)

whereΣα = σ2I +ΦtA
−1

t Φ
T
t .

B. Bayesian Subspace Pursuit

The algorithms described in [17], that optimise cost function
(4), are greedy algorithms at heart. An important observation
can be made by deriving the scaled version of this cost
function with the noise variance. After some basic linear al-
gebra manipulation and for a single time instance the function
becomes:

σ2L = σ2 log
∣

∣σ2I +ΦIA
−1

I Φ
T
I

∣

∣+ (5)

yT
(

I −ΦI(σ
2AI +Φ

T
IΦI)

−1
Φ

T
I

)

y.

SubscriptI denotes the subset of columns ofΦ for which
0 < αi < +∞. By taking the limit of Equation (5) for when
noise variance approaches zero we obtain:

lim
σ2→0

σ2L (α) =
∥

∥

∥
y −ΦIΦ

†
Iy

∥

∥

∥

2

2

. (6)

This result suggests that the principle behind the optimisation
of the cost function is the same as the one used in Basis
Pursuit and subsequently many greedy sparse reconstruction
algorithms such as the OMP [18] and Subspace Pursuit [19].
In fact it can be shown that the proposed algorithm requires
more strict bounds on the mutual coherence of design matrix
Φ than the OMP algorithm. The proposed algorithm described
in Algorithm 1 adopts attributes from the Subspace Pursuit
into the optimisation procedure. The qualities of the inference
procedure are consequently improved. For a detailed analysis
of the mathematical derivations the interested reader is referred
to [16]. For clarity the fundamental quantities needed for
Algorithm 1 are listed below. These are the scaled versions
of the corresponding quantities derived in [17]:

σ2si = φT
i

(

σ2C−1

−i

)

φi, σ2qi = φT
i

(

σ2C−1

−i

)

y.

The motivation for deriving scaled versions of the quanti-
ties given in [17] is the poor performance of the original
derivations when the noise variance is knowna-priori. It is
simple to ascertain this fact by settingσ2 = 0 in [17]. This
is an important observation since in most real world tracking
scenarios the noise floor is usually estimated or labelled by
the sensor manufacturer.

III. A UDIO SIGNAL RECONSTRUCTION

We consider the problem of reconstructing a recording of
a classical piano piece in a real reverberant environment. The
recorded signal is highly non-stationary, broadband and con-
tains overlapping notes (that might be harmonically related).
To make things worse, the pedal on the piano is engaged



Algorithm 1 Bayesian Subspace Pursuit

Input: Φ,y, σ2

Initialise:
- Initialise iteration counter,k = 1.
- Calculateθi = |φT

i y| − 1 for i ∈ [1, n].
- Tk = {i ∈ [1, n] : θi > 0}.
- If |Tk| = 0 thenTk = {index i ∈ [1, n] for which |φT

i y|
is maximised}.
- Calculateαi =

1

|φT

i
y|

for i ∈ Tk.
Iteration:

- Storeαmax = argmaxi∈Tk
|αi| .

- Calculate valuesαi andθi = (σ2qi)
2 − (σ2si) for

i ∈ [1, n].
- Construct subsets:Tθi>0 = {i ∈ [1, n] : θi > 0} and
Tαi≤amax

= {i ∈ [1, n] : |αi| ≤ amax, |αi| < +∞}.
- If |Tθi>0| = 0 thens = |Tαi≤amax

|+ 1 else
s = |Tθi>0|+ |Tαi≤amax

|.
- T ′ = Tk ∪ {indices corresponding tos smallest values
of αi for i ∈ [1, n]}.
- Increase counter,k = k + 1.
- Compute covariance matrixσ−2

Σx andµx.
- Tk = {indices corresponding tos largest non-zero
values of|µx| for which αi > 0}
- If σ2Lk has reached a steady state then quit. Continue
otherwise.

Output:
- Estimated support setTk and sparse signal̂x with |Tk|
non-zero components,̂xT = µx.
- Estimated covariance matrixσ−2

Σx.

throughout, causing significant time-frequency smearing.The
piano recording is sampled at a frequency offs = 44.1 kHz
and split intoT non-overlapping frames of lengthn = 1024
samples.
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Fig. 1. Snapshot of the sparse frequency content in a single time-frame of
piano data.

A. Experimental setup

The support of each frame in the frequency domain is
assumed to be sparse i.e., there is only a small number of
frequencies present, as can be seen from Figure 1. For each
of these frames only a number ofm samples are kept. The set
It ⊂ [1, n] contains the time indices of the samples kept for
each block and is chosen uniformly at random. In analogy with
Equations (1) and (2),yt ∈ Rm denotes the random samples

taken from each block at time instancet, xt ∈ C
n denotes

the support of each frame in the frequency domain and matrix
Φt = F−1

It
∈ Cm×n is formed by keeping the rows of matrix

F−1 with indices in the setIt. Matrix F ∈ Cn×n denotes the
Fourier basis matrix.

B. Results

At each time instance an estimate for the supportxt is
recovered. Since the assumed basis is the Fourier basis the
support is tracked in the both the real and imaginary domain.
The measurement matrices now becomeℜ{Φt} andℑ{Φt}.
Note that these matrices belong inRm×n/2 because of the
symmetry of the Fourier transform for real-valued functions.
The simulation time for this experiment isT = 100 time
domain frames. At each time instancem = 256 samples are
kept. Measurement noise variance is set to the sufficiently
small value ofσ2 = 0.15 for the entire simulation time.

The root-mean-square error (RMSE) is evaluated at each
time instancet such that

RMSE=

√

√

√

√

1

n

n
∑

i=1

yi − ŷi,

whereyi andŷi are then individual elements of the recovered
time-domain signal and the original signal respectively. Three
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Fig. 2. Original time-domain representation (dotted line)of a frame of audio,
along with the reconstructed data using the HB-Kalman.

recovery algorithms are considered, viz. standard Kalman
filtering, BCS [5], and the proposed method [15], [16].

The resulting RMSE for the whole simulation timeT is
shown in Figure 3. As can be seen from the resulting graph,
the error levels are much lower for the HB-Kalman filter
when compared to the standard Kalman filter; this is a direct
consequence of the assumed sparse model. By comparing to
the repeated application of the BCS method, i.e assuming
independent, identically distributed data, we see that incorpo-
rating statistical information from previous estimates results
in lower reconstruction error. It is important to emphasise
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Fig. 3. Reconstruction error given over a time period of 100 frames. Each
frame containsn = 1024 samples from whichm = 256 are chosen at
random.

that the parameters are identical for both the BCS algorithm
and the HB-Kalman for a fair comparison; tuning certain
parameters individually for each algorithm can lead to better
reconstruction results depending on the specific application
scenario.

IV. OZONE DISTRIBUTION SIGNAL RECONSTRUCTION

Here, we aim to reconstruct an ozone distribution signal
from a limited number of samples. The satellite data for this
experiment is obtained from the Ozone Monitoring Instrument
(OMI) on the NASA Aura spacecraft [20], that provides near-
real-time measurements of ozone in the atmosphere. The test
data is taken during a one month period on January 2012.
The blue vertical strips, that can be seen in the top half of
Figures 4(a)–(b), represent missing ozone measurements. They
are due to the trajectory of the satellite around the rotating
earth.

A. Experimental setup

The original data is cropped to a square image and un-
dersampled by a factor of 8. The resolution of the resulting
map is75× 75 corresponding ton = 5625. The area covered
corresponds to Latitudes 90 degrees South to 90 degrees North
and Longitudes 180 degrees West to 180 degrees East.

We assume that the support of each block in the discrete
cosine transform (DCT) domain is sparse. For each block only
a number ofm samples are available, equal to approximately
75% of the observed data. The setJt ⊂ [1, n] contains the
indices of the samples that correspond to nonzero elements
in the originalincompletedata. Similar to the example in the
previous Section,xt ∈ C

n denotes the support of each block
in the DCT domain and matrixΦt = G−1

Jt
∈ Cm×n is formed

by keeping the rows of matrixG−1 with indices in the setJt,
where matrixG ∈ Cn×n denotes the DCT basis matrix.
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Fig. 4. Atmospheric ozone distribution measured in (normalised) Dobson
units. The original data, displayed on the top of each figure respectively,
includes missing data. Reconstructed data using the HB-Kalman (a) and the
BCS approach (b) displayed on the bottom respectively.

B. Results

At each day an estimate for the supportxt is recovered,
as can be seen in Figures 4(a)–(b). The simulation time for
this experiment isT = 31 days. At each time instancem =
4275 samples are observed from the data. Measurement noise
variance is set toσ2 = 0.16 for the entire simulation time.

The root-mean square error (RMSE) is evaluated at each
time instancet such that

RMSE=

√

1

|Jt|

∑

i∈Jt

yi − ŷi,

whereyi and ŷi are the|Jt| individual pixels of the original



and recovered ozone map, respectively, represented as a vector.
Note, that the error is calculated only for pixels that are present
in both the original and the reconstructed image; missing data
is ignored in the total RMSE since there are no ground-truths
to compare the predicted data to.
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Fig. 5. Reconstruction error given over a time period of one month for the
ozone distribution data.

The reconstruction accuracy is evaluated over the whole one
month time period. As can be seen from Figure 5, the standard
Kalman filter fails to accurately track the dynamic sparse
signal. Additionally, although not explicit from this figure,
the standard Kalman filter does not reconstruct the missing
data. By contrast, repeated application of the BCS method
and the HB-Kalman filter exhibit much lower error levels
and accurately reconstruct the missing data. Furthermore,it
can be seen that the HB-Kalman method outperforms the
BCS method since it incorporates statistical information from
previous days resulting in lower reconstruction error overthe
whole time period under analysis.

V. CONCLUSIONS

This paper presented a study on the performance of a
novel hierarchical Bayesian Kalman filter, first proposed bythe
authors in [15], [16], that succeeds in promoting sparsity and
accurately tracks time-varying sparse signals. Two case studies
using real-world data were used to experimentally verify the
performance of the proposed method. In the first experiment,
the time-domain waveform of a real-world piano recording
was reconstructed using only25% of originally sampled data.
In the second experiment, incomplete satellite data of the
ozone distribution in the atmosphere was accurately tracked
and recovered. In both cases, the sparsity of the signals in
the Fourier domain (first experiment) and the DCT domain
(second experiment) were exploited to show the suitabilityof
the proposed method for tracking dynamic sparse signals. On
basis of these two experiments it was shown that the proposed
method outperformed both the traditional Kalman filter and a
benchmark greedy method.
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