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Abstract—Tracking and recovering dynamic sparse signals possible with a hierarchy of prior distributions that irively
using traditional Kalman filtering techniques tend to fail. Com-  confines the space of all possible states. The key fact behind
pressive sensing (CS) addresses the problem of reconsting g technique is that it provides estimates on full distitns.

signals for which the support is assumed to be sparse but is Non-B - lqgorith d t take int
not fit for dynamic models. This paper provides a study on the on-bayesian sparse recovery aligorithms do not take Into

performance of a hierarchical Bayesian Kalman (HB-Kalman) account the signals’ statistics making their use in tragkin
filter that succeeds in promoting sparsity and accurately tacks sparse signals difficult. The resulting statistical infatian

time varying sparse signals. Two case studies using real-wd  can be used to make predictions for future states without the
data show how the proposed method outperforms the traditioal risk of them not being sparse.

Kalman filter when tracking dynamic sparse signals. It is shavn

that the Bayesian Subspace Pursuit (BSP) algorithm, that ist . . .
the core of the HB-Kalman method, achieves better performace For multiple time instances the system state can be tracked

than previously proposed greedy methods. accurately using Kalman filtering. Unfortunately the class
Index Terms—Kalman filtering; compressed sensing; sparse Kalman approach is not fit for sparse signals. A Kalman
Bayesian leamning; sparse representations. filtering-based CS approach was first presented in [11] where

the filter is externally modified to admit sparse solutions.
The idea in [11] and [12] is to enforce sparsity by applying

In this work we consider the problem of reconstructinthreshold operators. Work in [13] adopts a probabilisticelo
time sequences of signals that are assumed to be sparsbuinsignal amplitudes and support are estimated separately
some transform domain. Recent studies have shown thaespdisally, the techniques presented in [14] use prior sparsit
signals can be recovered accurately using less obsergatiknowledge into the tracking process. All these approaches
than what is considered necessary using traditional sampliypically require a number of parameters to be pre-set.
criteria using the theory of compressed sensing (CS) [1],
[2]. However, there are a number of practical limitations. In this work a sparsity-promoting Bayesian network is
First, the recovery of sparse signals using CS consists edhployed that extends the data model adopted in traditional
solving an NP-hard minimization problem [1], [3]. Secondlyftracking. The problem of sparse signal recovery is tackled
CS reconstruction is not fit for dynamic models. Existingfficiently by the hierarchical nature of the Bayesian model
solutions that address the dynamic problem either treat thke statistical information that is obtained as a by-praoduc
entire time sequence as a single spatiotemporal signal afdthe hierarchical model is then incorporated in updating
perform CS to reconstruct it [4], or alternatively apply C$revious estimates to produce sparsity-aware state d¢esma
at each time instance separately [5]. In [6] a non-Bayesian @dditionally, the automatic determination of the activarco
reconstruction is presented that assumes known spareéisle ponents solves the problem of having to assume fixed sparsity
and a non-dynamic model. A class of adaptive filters, baskxvels and involves only the noise parameter as the unknown
on the least mean squares (LMS) algorithm, are presentecparameter to be adjusted manually. The hierarchical Bagesi
[7] and [8]. The adaptive framework of the LMS is used ifKalman filter (Section II) proposed in [15], [16], is tested o
these approaches for CS. However, these approaches arergaitdata: First, the time-domain signal of a real piano mre&co
fit for dynamic sparse signal reconstruction. ing is reconstructed using onl§5% of originally sampled

For a single time instance, the problem of sparse sigrddta (Section Ill). Second, incomplete satellite data,sugag
reconstruction was solved in [9] using a Bayesian netwaak ththe distribution of ozone gas in the planets’ atmosphere, is
elegantly promotes sparsity. This learning frameworlemefd recovered to yield the original content (Section 1V). Onibas
to as the Relevance Vector Machine (RVM), results in highlgf these two case studies, simulations show how the proposed
sparse models for the input and has gained popularity in theethod outperforms both the traditional Kalman filter, when
signal processing community for its use in compressedisgnsdealing with dynamic sparse signals, and a state-of-the-ar
applications [5] and basis selection [10]. Sparsity is szrd greedy CS reconstruction algorithm.

I. INTRODUCTION



Il. SYSTEM MODEL Differently from the standard Kalman filter, one has to
Let the random variables, andy;,, at some time, describe perform the additional step of learning the hyper-paramsete

the system state and observations respectively. The standd+- From Equation (3) we geg., = ®.q; + n, where a
Kalman filter formulation is given by sparseg; is preferred to produce a sparse. Following the

analysis in [9] and [17], maximising the likelihogaly,|c.)
T, = X1+ q, (1) is equivalent to minimising the following cost function:

Y = Prxy + 1y, (2) E(at) =log |2a| + thE;IyE,ta (4)

Whel’eq% and n, .denote Fhe process and measure.ment no\?/ﬁereza — 2T+ ‘I’tA§1<I>tT.

and ®, is a design matrix. We assume that the signale

R™ is sparse in some transform domain and that the entri@s Bayesian Subspace Pursuit

®, € R™*" are independently identically distributed Gaussian The algorithms described in [17], that optimise cost fumtti

random variables drawn frotv’ (0, ;7). (4), are greedy algorithms at heart. An important obseovati
Based on the Gaussian assumption onegas|x;-1) = can be made by deriving the scaled version of this cost
N(xi-1,Q¢) and p (y;|@;) = N (®ay,0%I), with p(q) = function with the noise variance. After some basic linear al

N (0,Q;) andp(n;) = N (0,05°1), so that the Kalman filter gebra manipulation and for a single time instance the foncti
continuously alternates between the prediction and udefe pecomes:
The prediction step calculates the parameterg(af;|y:—1)
. 2p 2 2 —15T
while the update step evaluates thoseGt;|y;). oL =0’ log|o’I + BT AL @7 |+ ()
In order to address the sparsity of the state vector, an y" (I - ®7z(c°Az + 2787) ' ®7)y.
additional level of parameters is introduced to control the

variance of each component [9]: SubscriptZ denotes the subset of columns @f for which

0 < a; < +o0. By taking the limit of Equation (5) for when
- noise variance approaches zero we obtain:
p(ala) = [[NV (0,071 =N (0,47, i i
i=1 lim o2 (a) = Hy - <I>I<I>TIyH . (6)
where matrixA = diag ([a1,- -, ay]). By driving a; = 400 _ 70 o 2 o
it follows that p (z;]c;) = N (0,0) and consequently it is This result suggests that the principle behind the optitioisa
certain thatz; = 0. of the cost function is the same as the one used in Basis

Pursuit and subsequently many greedy sparse reconstructio
A. Hierarchical Kalman filter algorithms such as the OMP [18] and Subspace Pursuit [19].
The principles behind the Kalman filter and SBL are pdf fact it can be shown that the proposed algorithm requires
together to derive the Hierarchical Bayesian Kalman (HEDROre strict bounds on the mutual coherence of design matrix
Kalman) filter. The proposed approach has several advasitag® than the OMP algorithm. The proposed algorithm described
First, by adopting the same System model as described|mnA|gorithm 1 adOptS attl’ibutes from the Subspace Pursuit
Equations (1) and (2), one can track the mean and covariaH¥® the optimisation procedure. The qualities of the iafere
of the state vectow;. Second, the employment of hyperProcedure are consequently improved. For a detailed apalys
parametersy to mode| state innovation’ promotes Sparsity_ of the mathematical derivations the interested readefésres
The measurement noise is chosen to be Gaussian wWRh[16]. For clarity the fundamental quantities needed for
known covariance, i.en ~ A (0,52I). The state innovation Algorithm 1 are listed below. These are the scaled versions

process is given by, ~ A7 (0, A;1), with A, = diag (a;) = of the corresponding quantities derived in [17]:

diag([al, -+, ap],) and the hyper-parametess are learned o2s; = ¢iT(O_QC:i1)¢i’ o2q; = ¢ZT(O,QC:1_1)y.
online from the data, as opposed to the traditional Kalman
filter where the covariance matri@ of q; is given. The motivation for deriving scaled versions of the quanti-

Similar to the standard Kalman filter, two steps, predictiofies given in [17] is the poor performance of the original
and update, need to be performed at each time instance. Indgé&vations when the noise variance is knoaapriori. It is

prediction step, one has to evaluate: simple to ascertain this fact by settimﬁ = 0in [17]. This
o is an important observation since in most real world tragkin
Tyjpo1 = Tp1, By = D1 + A, scenarios the noise floor is usually estimated or labelled by
Yeji—1 = PeTyji—15 Yer = Yt — Yiji—1- (3) the sensor manufacturer.
where the notatiort|t — 1 means prediction at time instance [1l. AUDIO SIGNAL RECONSTRUCTION
¢ for measurements up to time instance 1. In the update e consider the problem of reconstructing a recording of
step, one computes: a classical piano piece in a real reverberant environmére. T

Top = Toj + Koo, Sop = (I — K ®) 5,1, re.corded signgl is highly non-st.ationary, broadpand amd co
T 9 1 tains overlapping notes (that might be harmonically refate
Ky =31 (071 + 20Xy 18, ) To make things worse, the pedal on the piano is engaged



Algorithm 1 Bayesian Subspace Pursuit

Input: ®,y, o>

Initialise:
- Initialise iteration counterk = 1.
- Calculatet; = |¢ly| — 1 for i € [1,n].
-Ty={ie[l,n]:6; >0}.
- If |T}.| = 0 thenT}, = {indexi € [1,n] for which |¢7 y|
is maximised.
- Calculateq; = —4— for i € T.

. [Tyl
Iteration:
- Store e, = argmax;er, || .

- Calculate valuesy; andd; = (0%¢;)? — (o2s;) for
i€[l,n].

- Construct subsetsy,~o = {i € [1,n] : §; > 0} and
Toi<amar = 18 € [1,n] ¢ || < @maa, o] < +o0}.

- If [Ty, >0l =0 thens = Ty, <aq,...| + 1 €lse

§= |T‘91>0| + |Tai§a7naz|'

- T" = Ty, U {indices corresponding te smallest values
of o; for i € [1,n]}.

taken from each block at time instancex; € C" denotes
the support of each frame in the frequency domain and matrix
P, = ff,l e C™*" js formed by keeping the rows of matrix

F~1 with indices in the sef,. Matrix 7 € C**" denotes the
Fourier basis matrix.

B. Results

At each time instance an estimate for the suppartis
recovered. Since the assumed basis is the Fourier basis the
support is tracked in the both the real and imaginary domain.
The measurement matrices now becoiieb,} and 3{®,}.
Note that these matrices belong Ri**"/? because of the
symmetry of the Fourier transform for real-valued function
The simulation time for this experiment i = 100 time
domain frames. At each time instange = 256 samples are
kept. Measurement noise variance is set to the sufficiently
small value ofo? = 0.1° for the entire simulation time.

The root-mean-square error (RMSE) is evaluated at each
time instance such that

- Increase countek = k + 1.

- Compute covariance matrix 23, and .

- Ty, = {indices corresponding te largest non-zero
values of|p,| for which «; > 0}

- If 2L}, has reached a steady state then quit. Continue Wherey; andg; are then individual elements of the recovered

RMSE =

otherwise. time-domain signal and the original signal respectiveljiree
Output:

- Estimated support séf;, and sparse signat with |Ty| 0.4 7 e

non-zero componentsiyr = . | A

- Estimated covariance matrix 2%, 03¢ | ‘ 1

0.27\ "N I I il \ i

throughout, causing significant time-frequency smearirige 0af/ 1 S T o |

piano recording is sampled at a frequencyfof= 44.1 kHz g ! [ YA
s . = | \ ' I [ \
and split intoT' non-overlapping frames of length = 1024 s o AN o | "
I | ]
samples. < Y | |
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= 0 100 200 300 400 500 600 700 800 900 1000
Time (samples)
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0 5 10 15 20 25 ) - . . . . .
Frequency (kHz) Fig. 2. Original time-domain representation (dotted linex frame of audio,
along with the reconstructed data using the HB-Kalman.
Fig. 1. Snapshot of the sparse frequency content in a singkftame of

piano data. recovery algorithms are considered, viz. standard Kalman

filtering, BCS [5], and the proposed method [15], [16].

The resulting RMSE for the whole simulation tini is
shown in Figure 3. As can be seen from the resulting graph,
The support of each frame in the frequency domain the error levels are much lower for the HB-Kalman filter
assumed to be sparse i.e., there is only a small numberwdfen compared to the standard Kalman filter; this is a direct
frequencies present, as can be seen from Figure 1. For eachsequence of the assumed sparse model. By comparing to
of these frames only a number of samples are kept. The setthe repeated application of the BCS method, i.e assuming

Z; C [1,n] contains the time indices of the samples kept fandependent, identically distributed data, we see thatrime-
each block and is chosen uniformly at random. In analogy withting statistical information from previous estimatesutés
Equations (1) and (2)y: € R™ denotes the random samplesn lower reconstruction error. It is important to emphasise

A. Experimental setup
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IV. OZONE DISTRIBUTION SIGNAL RECONSTRUCTION

BCS Reconstruction

Here, we aim to reconstruct an ozone distribution signe
from a limited number of samples. The satellite data for thi:
experiment is obtained from the Ozone Monitoring Instrutmer
(OMI) on the NASA Aura spacecraft [20], that provides near-
real-time measurements of ozone in the atmosphere. The t
data is taken during a one month period on January 201

0.8

0.6

0.4

Latitude (degrees)

0.2

The blue vertical strips, that can be seen in the top half ¢ E ngitude Qegreesy
Figures 4(a)—(b), represent missing ozone measuremdrdy. T

are due to the trajectory of the satellite around the ragatin (b) BCS

earth.

Fig. 4. Atmospheric ozone distribution measured in (noised) Dobson
. units. The original data, displayed on the top of each fig@spectively,
A. Experimental setup includes missing data. Reconstructed data using the HBl(a) and the

- . . BCS approach (b) displayed on the bottom respectively.
The original data is cropped to a square image and un- PP (b display P y

dersampled by a factor of 8. The resolution of the resulting

map is75 x 75 corresponding ta = 5625. The area covered g Resuylts

corresponds to Latitudes 90 degrees South to 90 degreds Nort ) _

and Longitudes 180 degrees West to 180 degrees East. At each day an estimate for the suppast is recovered,

We assume that the support of each block in the discr g can be seen in Figures 4(a)-(b). The simulation time for
i

cosine transform (DCT) domain is sparse. For each block o S experiment isT" = 31 days. At each time instanoe = .
a number ofm samples are available, equal to approximate 7_5 sam_ples are20bserv§d from the _data_. Mea_surement noise
75% of the observed data. The st C [1,n] contains the ariance is set te® = 0.1° for the entire §|mulat|on time.
indices of the samples that correspond to nonzero elementg—hf3 root-mean square error (RMSE) is evaluated at each
in the originalincompletedata. Similar to the example in theliMe Instancet such that

previous Sectiong, € C™ denotes the support of each block
in the DCT domain and matri®; = g;j e C™*" s formed
by keeping the rows of matrig—! with indices in the set7,,
where matrixg € C™*" denotes the DCT basis matrix. wherey; andg; are the|7;| individual pixels of the original

RMSE =
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Fig. 5. Reconstruction error given over a time period of oranth for the
ozone distribution data.

The reconstruction accuracy is evaluated over the whole one
month time period. As can be seen from Figure 5, the standard
Kalman filter fails to accurately track the dynamic sparse
signal. Additionally, although not explicit from this figeyr
the standard Kalman filter does not reconstruct the missing
data. By contrast, repeated application of the BCS method
and the HB-Kalman filter exhibit much lower error levels
and accurately reconstruct the missing data. Furtherniore,
can be seen that the HB-Kalman method outperforms the
BCS method since it incorporates statistical informatianf
previous days resulting in lower reconstruction error aer
whole time period under analysis.

V. CONCLUSIONS

This paper presented a study on the performance of a
novel hierarchical Bayesian Kalman filter, first proposedHzy
authors in [15], [16], that succeeds in promoting sparsityg a
accurately tracks time-varying sparse signals. Two casbes
using real-world data were used to experimentally verify th
performance of the proposed method. In the first experiment,
the time-domain waveform of a real-world piano recording
was reconstructed using ond$% of originally sampled data.

In the second experiment, incomplete satellite data of the
ozone distribution in the atmosphere was accurately tcicke
and recovered. In both cases, the sparsity of the signals in
the Fourier domain (first experiment) and the DCT domain
(second experiment) were exploited to show the suitakilfty

the proposed method for tracking dynamic sparse signals. On
basis of these two experiments it was shown that the proposed
method outperformed both the traditional Kalman filter and a
benchmark greedy method.
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