Segmentation of Multiview Data for Scene Analysis and Compression

Jesse Berent and Pier Luigi Dragotti
November 9th, 2006
Camera Sensor Networks

- Camera arrays provide samples of the plenoptic function (multiple viewpoints of a scene)
- Huge amount of data!
- The data is highly correlated and structured
- Unsupervised data analysis
 - Object or layer extraction
 - scene interpretation
 - layer based representations
 - Occlusion detection
 - innovation processes
- Applications
 - Computer vision: automatic scene interpretation
 - 3DTV
 - …
Talk Outline

1. Introduction to the plenoptic function
2. Different camera setups and the Epipolar-Plane Image (EPI)
3. A brief review of active contours
4. Derivation of ‘constrained’ evolution equations for the plenoptic function
5. Conclusion and future work
The Plenoptic Function

• 7D function that describes the intensity of each light ray that reaches a point in space [AdelsonB:91]

\[P_7 = I(V_x, V_y, V_z, \phi, \theta, \tau, \lambda) \]

• Assumptions can be made to reduce the high number of dimensions
 - 3 channels for RGB or 1 channel for grayscale
 - Static scenes
 - Viewing position constraints
Different camera setups

3D

2D

4D

[Stanford multi-camera array]

3D

5D

[Imperial College multi-camera array]
Plenoptic Functions

- [Images courtesy of Yizhou Wang]
The Epipolar-Plane Image (EPI) Volume

- First introduced in [BollesBM:87]
- Cameras are constrained to a line
- Points in space are mapped on to lines
- The slope of the line $\propto 1/\text{depth}$
- Objects correspond to 3D tubes

\[x - x' = (t - t') \frac{f}{z} \]
Object Tubes

- EPI is made of a collection of tubes
Occlusions

- A line with a larger slope will always occlude a line with a smaller one.
- Occlusions occur at line intersections.
- Occlusions are explicit.
- Object tubes can be ‘orthogonalized’

\[\mathcal{V}_1^\perp = \mathcal{V}_1 \quad \mathcal{V}_2^\perp = \mathcal{V}_2 \cap \overline{\mathcal{V}_1} \]
Some of the Related Work

- Extracting layers using EPI analysis: Criminisi et al. 2002
- Space-time video analysis, object and occlusion volumes: Konrad and Ristivojevic 2006
- Layered stereo with occlusions: Tomasi-Lin-Birchfield 1999
Object Tube Extraction

• We assume Lambertian and opaque surfaces
• Minimize a global cost function

\[E_{tot} = \sum_{n=1}^{N} E_n = \sum_{n=1}^{N} \iiint_{\mathcal{V}_n} f_n(\bar{x}) d\bar{x} \]

\(f_n(\bar{x}) \) is a measure of consistency with tube \(n \)

• Separated in 2 sub-problems:
 – Estimation of contours given the slopes of the lines
 – Estimation of the slopes given the contour
Estimation of the Region Boarders: Active Contours

- Consider a cost function of the type:
 \[E(\Gamma) = \iint_{\Omega(\Gamma)} f(x, y) \, dx \, dy + \iint_{\overline{\Omega}(\Gamma)} g(x, y) \, dx \, dy + \int_{\Gamma} \lambda \, ds \]

- Gradient [KassWT:88, CasellesKS:97, ChanV:01, Jehan-BessonBA:01]
 \[\frac{dE(\tau)}{d\tau} = \int_{\partial\Omega} [f(x, y) - g(x, y) + \lambda\kappa] (\vec{V} \cdot \vec{N}) \, ds \]

- Steepest descent
 \[\frac{\partial E(\tau)}{\partial \tau} = [f(x, y) - g(x, y) + \lambda\kappa] \vec{N} = F \vec{N} \]
Estimation of EPI Tube Contours

- We assume the slope of the lines are known
- In the case where there are 2 layers (i.e. 1 layer and the background)

\[
E_{\text{tot}}(\tau) = \iiint_{V_1^\perp(\tau)} f_1(\vec{x})d\vec{x} + \iiint_{V_2^\perp(\tau)} f_2(\vec{x})d\vec{x}
\]

\[
\frac{dE_{\text{tot}}(\tau)}{d\tau} = \iint_{\partial V_1^\perp} (f_1(\vec{x}) - f_2(\vec{x})) (\vec{W} \cdot \vec{M}) d\vec{\sigma}
\]
From 3D to 2D Using Epipolar Geometry

- The positions of the cameras are known
- The shape of the tubes are constrained
- Leads to ‘constrained’ surface evolution that can be implemented in a 2D subspace

\[\mathbf{W} \cdot \mathbf{M} = \alpha(s, t)(\mathbf{V} \cdot \mathbf{N}) \]

\[\int \int_{\partial \Omega} f_1(\mathbf{x})(\mathbf{W} \cdot \mathbf{M}) dt ds = \int_{\partial \Omega} (\mathbf{V} \cdot \mathbf{N}) \int_t \alpha(s, t) f_1(\mathbf{x}) dt ds \]
The speed function

• The gradient becomes ($\alpha=1$ for fronto-parallel planes)

\[
\frac{dE(\tau)}{d\tau} = \int_{\partial \Omega} (\vec{V} \cdot \vec{N}) \left[\int_{F_1(s)} f_1(\vec{x}) \, dt - \int_{F_2(s)} f_2(\vec{x}) \, dt \right] ds
\]

• The functional is set to be the normalized squared difference between the intensity and the mean of the line the layer belongs to

\[
f_n(\vec{x}) = \frac{[I(\vec{x}) - \mu_n(\vec{x})]^2}{L_n(\vec{x})}
\]

\[
\vec{V} = [F_1(x, y) - F_2(x, y)] \vec{N}
\]
Occlusion/Disocclusion

• It's not that simple...
• For an occluded layer, the functional depends also on τ and the evolution equation has additional terms that are extremely complex.
• We alleviate the problem by separating tubes into ‘to be occluded’ and ‘disoccluded’ regions (similar to [KonradR] for video)

$\mathcal{V}_2 \perp = \mathcal{V}_{2\text{occ}} \cup \mathcal{V}_{2\text{dis}}$
Dealing with Multiple Tubes

• Evolve one tube at a time
• By construction, tubes compete only with the other tubes they are occluding or disoccluding
• For example:

\[
\begin{align*}
\mathcal{V}_1^\perp & = \mathcal{V}_1 \\
\mathcal{V}_2^\perp(\tau) & = \mathcal{V}_2(\tau) \cap \overline{\mathcal{V}_1^\perp} \\
\mathcal{V}_3^\perp(\tau) & = \mathbb{R}^3 \cap (\mathcal{V}_1^\perp \cap \overline{\mathcal{V}_2^\perp(\tau)})
\end{align*}
\]

\[
E_{tot}(\tau) = \iint\int_{\mathcal{V}_2^\perp(\tau)} f_2(\vec{x})d\vec{x} + \iint\int_{\mathcal{V}_1^\perp} f_1(\vec{x})d\vec{x} + \iint\int_{\mathcal{V}_3^\perp(\tau)} f_3(\vec{x})d\vec{x}
\]

\[\int\int_{\mathcal{V}_2^\perp(\tau)} f(\vec{x})d\vec{x}\]
Estimation of Line Slopes (i.e. Disparity)

- Contours are fixed
- Find the slopes of the lines
- Done jointly over all the images
- Takes into account occlusions

\[E_{tot} = \sum_{n=1}^{N} E_n = \sum_{n=1}^{N} \int \int \int \nu_n f_n(\bar{x}) d\bar{x} \]

\[f_n(\bar{x}) = \frac{[I(\bar{x}) - \mu_n(\bar{x})]^2}{L_n(\bar{x})} \]

\[\mu_n(\bar{x}) = \mu(x, y, t, d_n(x, y)) \]

- Non-linear optimization problem
Layer Disparity Model

- Disparity map can be modeled as a bicubic spline [LinT:03]

\[d_n(x, y) = \sum_{i,j} D_n(i, j)b(x - i, y - j) \]
Overall optimization

• Initialize
• Iteratively alternate
 – Segmentation given layer depth maps
 • Evolve each contour iteratively with the level set method
 – Estimation of depth maps given segmentation
 • using classical optimization methods
• End when there is no significant decrease in energy
Simulation Results

- Slanted planes can be a problem in classical stereo since there is not a 1 to 1 mapping.
- Not a problem here since slanted planes are taken into account in the model
Preliminary Experimental Results

- Tiger image sequence (15 images covering 5 degrees)
Conclusions

• The plenoptic function provides a nice framework for multiview image analysis!

• New segmentation scheme for the Epipolar-Plane Image volume
 – Constrained surface evolution (uses knowledge of camera setup for added robustness)
 – Takes into account all the images simultaneously
 – Handles occlusions
 – Is scalable to higher dimensions
Ongoing and Future Research

• Extension to the 4D and 5D cases: More degrees of freedom to the camera locations
 – Segmentation of hyper-volumes
• Scene interpretation
 – What can we learn about the scene from the shape of the tubes?
• Compression
 – Layer based representations and/or linear transforms taking into occlusions and disparities (along the EPI lines)
Questions?