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Abstract

In the last few years, several new methods have been developed for the sampling and

exact reconstruction of specific classes of non-bandlimited signals known as signals with

finite rate of innovation (FRI). This is achieved by using adequate sampling kernels and

reconstruction schemes. An example of valid kernels, which we use throughout the thesis,

is given by the family of exponential reproducing functions. These satisfy the generalised

Strang-Fix conditions, which ensure that proper linear combinations of the kernel with its

shifted versions reproduce polynomials or exponentials exactly.

The first contribution of the thesis is to analyse the behaviour of these kernels in the

case of noisy measurements in order to provide clear guidelines on how to choose the ex-

ponential reproducing kernel that leads to the most stable reconstruction when estimating

FRI signals from noisy samples. We then depart from the situation in which we can choose

the sampling kernel and develop a new strategy that is universal in that it works with any

kernel. We do so by noting that meeting the exact exponential reproduction condition is

too stringent a constraint. We thus allow for a controlled error in the reproduction for-

mula in order to use the exponential reproduction idea with arbitrary kernels and develop

a universal reconstruction method which is stable and robust to noise.

Numerical results validate the various contributions of the thesis and in particular show

that the approximate exponential reproduction strategy leads to more stable and accurate

reconstruction results than those obtained when using the exact recovery methods.
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QSVD quotient singular value decomposition

RMSE root mean square error

SNR signal-to-noise error

SVD singular value decomposition

TLS total least square
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Notations and definitions

Tables 1, 2 and 3 provide notations, definitions and symbols that we use throughout the

rest of the thesis. We summarise them here for ease of read and also for the reader to

have a compact reference.

Table 1: Notations

Continuous time signals

fptq P L2 Real or complex-valued continuously defined signals with t P R,

typically included in L2pRq, which is the Hilbert space of finite-

energy functions [1].

f prqptq rth derivative of fptq. We note that the zero order derivative coin-

cides with the function itself f p0qptq � fptq. We may equivalently

use dpRq

dtpRq
pfptqq.

fptq�1 Multiplicative inverse or reciprocal of fptq, i.e. fptq�1 � 1
fptq . This

should not be confused with the inverse function f�1ptq.
〈fp�q, gp�q〉 Inner product in L2pRq, defined as 〈fp�q, gp�q〉 � ³8

�8 fptqg�ptqdt,
where g�ptq is the complex conjugate of gptq.

}f}L2 L2-norm of fptq, defined based on the inner product as }f}L2 �a
〈f, f〉. When the context is clear we may simply use }f}.

pf 
 gqptq The convolution of two continuous-time functions fptq and gptq is

pf
gqptq � ³8�8 fpxqg�pt�xqdx which is equal to the inner product

〈fp�q, gpt� �q〉.
f̂pωq Fourier transform of fptq, given by f̂pωq � ³8

�8 fptqe�jωdt for fptq
absolutely- and square- integrable. The inverse Fourier transform

is hence defined as xptq � 1
2π

³8
�8 f̂pωqejωdt.

f̂psq Bilateral Laplace transform, defined as f̂psq � ³8�8 fptqe�sdt. When

f̂psq is analytical along s � jω then the bilateral Laplace transform

at s � jω coincides with the Fourier transform.
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Notations and definitions

Discrete time signals and vectors

an P `2 Real or complex-valued discrete time signals with n P Z, included

in `2, which is the Hilbert space of square-summable sequences. [1].

We sometimes use arns which is the same as an.

pa � bqrns The convolution of two sequences an and bn is defined as pa�bqrns �°
kPZ arksbrn� ks.

âpzq z-transform of the sequence an defined as âpzq � °
nPZ anz

�n. Its

discrete Fourier transform is obtained by setting z � ejω.

~α, u, S We mark vectors with an arrow to represent N -tuples, i.e., ~α �
pα1, . . . , αN q. Also, we write them in boldface lowercase, such as

u, whereas we use boldface uppercase to indicate matrices, S. We

usually work with column vectors.

〈u,v〉 Inner product in `2, defined as 〈u,v〉 � °
n unv

�
n, where v�n is the

complex conjugate of vn.

}u}`2 `2-norm of u, defined based on the inner product as }u}`2 �a
〈u,u〉. When the context is clear we may simply use }u}.

p�qT , . . . , p�q: p�qT indicates transpose, p�q� represents element-wise conjugate,

p�qH means Hermitian or conjugate transpose, p�q�1 refers to the

inverse and p�q: to the Moore-Penrose pseudo-inverse.

diagp�q Diagonal operator. It transforms a vector p�q into a diagonal matrix

with elements p�q in its main diagonal.

I Identity matrix. If the size of the matrix is not clear from the

context we will denote by IN the identity matrix of size N �N .

Table 2: Definitions

Functions

sincptq We use the sinc function with the definition sincptq � 1 for t � 0 and

sincptq � sinpπtq
πt elsewhere, with Fourier transform f̂pωq � rect

�
ω
2π

�
.

rectptq We define the rectangular function as rectptq � 1 for |t|   1
2 , also

rectptq � 1
2 at |t| � 1

2 and 0 elsewhere.

δptq The delta Dirac δptq is a distribution function that satisfies³8
�8 fptqδprqpt � t0qdt � p�1qrf prqpt0q, where fptq it r times con-

tinuously differentiable [2].
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Useful formulae

Poisson summation ¸
nPZ

fpt� nT q � 1

T

¸
kPZ

f̂

�
2πk

T



ej2πk

t
T (1)

.

Table 3: Symbols

xptq Continuous-time input signal.

K Number of degrees of freedom.

ptk, akq Innovation parameters of a train of Diracs.

hptq Sampling filter.

ϕptq Sampling kernel.

yptq Filtered input.

yn Samples.

N Number of samples.

T Sampling period.

fs Sampling frequency.

τ Sampling interval.

sm Exponential moments.

αm Exponential parameters.

P � 1 Number of moments.

puk, xkq Parameters of the power sum sequence.

hm Annihilating filter.

cm,n Coefficients for the exponential reproducing

property.

y Vector of samples y � py0, . . . , yN�1qT .

s Vector of moments s � ps0, . . . , sP qT .

C Matrix of coefficients C � rcm,nsP,N�1
m�0,n�0.

εn Additive white Gaussian noise samples.

bn Noise in the moments domain.

ỹn Noisy samples.

s̃m Noisy moments.

pt̂k, âkq Estimate of ptk, akq.

R Covariance matrix of the additive white

Gaussian noise vector R � EtεεHu � σ2I.
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σ2 Additive white Gaussian noise variance.

Rb Covariance matrix of the noise vector b, i.e.

Rb � EtbbHu
RB Covariance matrix of the Toeplitz noise B,

i.e. RB � EtBHBu

ω Angular frequency (radians per second).

B Bandwidth [Hz].

dB Decibels.

Hz Hertz.

j Imaginary unit j � ?�1.

kHz Kilohertz.

ρ Rate of innovation.

s Seconds.

V Volts.

C Set of complex numbers.

Z Set of integer numbers.

Zzt0u Set of integer numbers except for 0.

R Set of real numbers.

| � | Absolute value.�
n

k



Binomial coefficient (n choose k).

r�s Ceil function.

Et�u Expectation operator.

p�q! Factorial of the non-negative integer p�q.
t�u Floor function.

Imt�u Imaginary part.

Ret�u Real part.

r�s Round function.
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Chapter 1

Introduction

1.1 Motivation

Sampling, or the conversion of real-life continuous signals into discrete sequences of num-

bers that represent the original signals, plays a vital role in signal processing. Consider

the typical sampling setup shown in Figure 1.1 where the original continuous-time phe-

nomenon xptq is filtered before being (uniformly) sampled with sampling rate fs � 1
T . The

filtering may be a design choice or may be due to the acquisition device. If we denote with

yptq � hptq
 xptq the filtered version of xptq, the samples yn are given by

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�
» 8

�8
xptqϕ

�
t

T
� n



dt, (1.1)

where the sampling kernel ϕptq is the scaled and time-reversed version of hptq.

xptq hptq � ϕ
�
� t

T

� T
yn

yptq

Figure 1.1: Traditional Sampling scheme. The continuous-time input signal xptq is
filtered with hptq and sampled every T seconds. The samples are then given by yn �
px
 hqptq|t�nT .

Two basic questions arise in the context of the sampling scheme of Figure 1.1. First,

under what conditions is there a one-to-one mapping between the measurements yn and

the original signal xptq? Second, assuming such a mapping exists and given the samples

yn, how can a practical algorithm recover the original signal?

Sampling is a typical ill-posed problem in that one can construct an infinite number

of signals that lead to the same samples yn. To make the problem tractable one then

has to impose some constraints on the choice of xptq. Typically, the assumption made is

that the bandwidth of xptq is limited to a maximum known frequency. In this case it is

well known that a proper choice of the sampling kernel leads to a unique reconstruction

formula (for instance by Shannon [3,4] Whittaker [5] or Kotelnikov [6,7]) In fact, the whole
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sampling process can be interpreted as an approximation procedure in which the original

signal is projected onto the shift-invariant subspace of bandlimited functions and only

this projection can be reconstructed. This subspace interpretation has then been used to

extend Shannon’s theorem to classes of signals that belong to shift-invariant subspaces,

such as uniform splines [8].

More recently, more general classes of signals have been considered and this includes

signals that belong to union of subspaces. In particular in [9], the authors provide a

general formulation of the multiple-subspace interpretation. The theories of Finite Rate

of Innovation [2, 10] and Compressed Sensing [11, 12] are specific examples of complete

procedures to sample and perfectly reconstruct some classes of signals living in a union of

subspaces. The former provides an effective way to reconstruct parametric continuous-time

signals from their samples, using adequate sampling kernels. The latter asserts that it is

possible to recover certain types of discrete-time signals from less samples than traditional

methods, relying on two principles: sparsity of the signals of interest, and incoherence of

the sampling [13]. Interestingly, in both cases, the sampling procedure remains linear, but

at the expense of non-linear reconstruction algorithms.

Even though finite rate of innovation (FRI) theory has evolved considerably over the

last few years, its potential remains to be fully exploited. This is likely due to the fact

that the reconstruction of these types of signals is a non-linear problem and some scenarios

are potentially unstable in the presence of noise. Interestingly, the finite rate of innova-

tion framework not only offers a sub-Nyquist alternative to the sampling paradigm, it

also provides a parametric signal modelling that can accommodate many existing signals.

However, finite rate of innovation theory has found its place only for a few applications.

Again, improvements in the stability of the reconstruction are key to the development of

the theory for real life scenarios.

1.2 Problem Statement

In this thesis we present an in-depth study of sampling and reconstruction of finite rate of

innovation signals in the presence of noise. Specifically, we address the problem of making

the FRI recovery stage as accurate and stable as possible in two different scenarios: First,

when we have full control on the design of the sampling kernel and second when the

sampling kernel is fixed but we have enough information about its shape to reconstruct

the signal.

For the first part of the thesis we consider that the sampling kernel belongs to the family

of exponential reproducing functions. Within this context, we analyse the behaviour of

these kernels in the case of noisy measurements and provide clear guidelines on how to

choose the exponential reproducing kernel that leads to the most stable reconstruction

when estimating FRI signals from noisy samples. We then depart from the situation in

which we can choose the sampling kernel and develop a new strategy that is universal in

that it works with any kernel. We do so by noting that meeting the exact exponential
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1.3. Outline of the thesis

reproduction condition is too stringent a constraint. We thus allow for a controlled error in

the reproduction formula in order to use the exponential reproduction idea with arbitrary

kernels and develop a universal reconstruction method which is stable and robust to noise.

Specifically, we compare our recovery method with the current state-of-the-art prior to

our work for polynomial reproducing kernel and Gaussian kernels.

1.3 Outline of the thesis

The outline of the thesis is as follows. In Chapter 2 we review the noiseless scenario.

We begin the chapter by formalising the notion of signals with finite rate of innovation.

We then give some examples of FRI signals and explain the various types of sampling

kernels used in the literature. We mainly concentrate on exponential reproducing kernels

and introduce the generalised Strang-Fix conditions, for which we provide a simple proof.

Finally, we describe how to sample and perfectly reconstruct the prototypical FRI signal:

a train of Diracs. Moreover, we also explain how to sample and perfectly reconstruct other

types of FRI signals using exponential reproducing kernels.

In Chapter 3 we treat the more realistic setup where noise is present in the acquisition

process. Here, we describe practical techniques to retrieve a train of Diracs from samples

obtained by an exponential reproducing kernel. We then adapt the main algebraic methods

explained in the literature to work with coloured noise, which appears in the recovery

process when working with exponential reproducing kernels. In addition, we present the

Cramér–Rao bound (CRB) for the estimation problem related to the retrieval of the

parameters of the input from the noisy samples. We also introduce a CRB formulation

based on the exponential moments of the input that is better suited to measure the

accuracy of the reconstruction for exponential reproducing kernels.

In Chapter 4 we design a family of exponential reproducing kernels that is most resilient

to noise. We begin the chapter by considering the main sources of instability for FRI

recovery. Moreover, we provide a practical method to select the proper parameters in

order to design exponential reproducing kernels that are robust to noise. This new family

of kernels extends the types of exponential reproducing kernels that have been used in

the FRI literature. To end, we validate the stability and accuracy of these kernels with

simulations.

In Chapter 5 we elaborate on the approximate FRI framework and develop the basic

ideas to sample FRI signals with any kernel. The new approach is universal since it can

be used with any sampling kernel. Furthermore, even though the recovery of FRI signals

using this method is by definition only approximate, we show how to make the recon-

struction error arbitrary small. Interestingly, we also show that with the new approximate

framework we can improve the accuracy of the reconstruction associated to sampling ker-

nels for which existing exact recovery methods become unstable in the presence of noise.

In this chapter we provide extensive sets of simulations to demonstrate the potential of

our method.

27
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Finally, in Chapter 6 we present an application of FRI theory in Neuroscience. We

first propose a simple parametric model for the neuronal activity signals. Based on this,

we design an iterative reconstruction algorithm that can estimate a neuronal signal from

FRI samples that have been obtained using an exponential reproducing kernel at reduced

sampling rates. Our main contribution is that we show that state-of-the-art spike sorting

performances can be reached with from recovered signals from samples taken at sub-

Nyquist sampling rates.

1.4 Original Contributions and Publications

The material presented in this thesis has resulted in the following publications:

Journal papers

� J. A. Urigüen, P.L. Dragotti and T. Blu. “FRI Sampling with Arbitrary Kernels,”

to be published in IEEE Transactions on Signal Processing, 2013.

Book chapter

� J. A. Urigüen, P.L. Dragotti, Y. C. Eldar and Z. Ben-Haim. “Sampling at the

Rate of Innovation: Theory and Applications” in “Compressed Sensing: Theory and

Applications”, edited by Yonina C. Eldar and published by Cambridge University

Press, 1st edition (June 29, 2012).

Conference papers

� J. A. Urigüen, P.L. Dragotti and T. Blu. “Approximate FRI with arbitrary ker-

nels,” in Proceedings of the Tenth International Conference on Sampling Theory

and Applications (SampTA’13), Bremen (Germany), July 1–5, 2013.

� J. Oñativia, J. A. Urigüen and P.L. Dragotti. “Sequential local FRI sampling of

infinite streams of Diracs,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), May 2013. Vancouver (Canada).

� J. Caballero, J. A. Urigüen, S. R. Schultz and P. L. Dragotti. “Spike Sorting at Sub-

Nyquist Rates,” in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), March 2012. Japan.

� J. A. Urigüen, P.L. Dragotti and T. Blu. “On the Exponential Reproducing Ker-

nels for Sampling Signals with Finite Rate of Innovation,” in Proceedings of the

Ninth International Workshop on Sampling Theory and Applications (SampTA’11),

Singapore, May 2–6, 2011.

28



1.4. Original Contributions and Publications

Conference Abstracts

� S. R. Schultz, J. Oñativia, J. A. Urigüen and P. L. Dragotti. “A Finite Rate of

Innovation Algorithm for Spike Detection from Two-Photon Calcium Imaging,” in

Neuroscience 2012, October.

� J. A. Urigüen, P. L. Dragotti and T. Blu. “Exponential Reproducing Kernels for

Sparse Sampling,” in Signal Processing with Adaptive Sparse Structured Represen-

tations (SPARS) conference 2011. June 27-30. Edinburgh.
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Chapter 2

Sampling signals with finite rate of

innovation

In this chapter we review the theory of sampling and reconstructing finite rate of innovation

in the absence of noise. We begin the chapter by introducing the notion of signals with

finite rate of innovation (FRI) in Section 2.1. In addition, we provide some examples of

FRI signals that can be sampled and perfectly reconstructed at their rate of innovation. In

Section 2.2 we give an overview of the history of FRI, concentrating mostly on the noiseless

FRI setting. We explain the more realistic noisy setup in Chapter 3. In Section 2.3

we describe the main types of sampling kernels that can be used for FRI. We end the

section explaining exponential reproducing kernels in detail, since the theory of exponential

reproduction is at the heart of our work. Then, in Section 2.4 we give a brief overview of the

main techniques that have been developed in spectral estimation and related fields since the

first high resolution method appeared. The reason, as explained in the following section, is

the direct relation between spectral estimation and algebraic retrieval of signals with FRI.

In Section 2.5 we review the canonical setting of sampling and perfectly reconstructing a

train of K Diracs, from which many other sampling results can be derived. We also explain

how to sample and perfectly reconstruct other types of FRI signals using exponential

reproducing kernels. To conclude, in Section 2.6 we give some remarks for the specific

exponential reproducing kernels that we use in the thesis, in Section 2.7 we anticipate

some results to motivate our research further, and we end the chapter in Section 2.8.
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Chapter 2. Sampling signals with finite rate of innovation

2.1 Signals with finite rate of innovation

A signal bandlimited to
��B

2 ,
B
2

�
can be expressed as an infinite sum of properly weighted

and shifted versions of the sinc function:

xptq �
¸
nPZ

xrns sinc pBt� nq , (2.1)

where xrns � 〈xptq, B sincpBt� nq〉 � xp nB q. We may also say that the signal xptq has

B degrees of freedom per second, since it is exactly defined by a sequence of numbers

txrnsunPZ spaced T � B�1 seconds apart, given that the basis function sinc is known [14].

Equivalently, the signal xptq has a rate of innovation ρ � B. This idea can be generalised

by replacing the sinc with the generating function ϕptq that defines an approximation

space by linear combinations of its shifted versions [8]. More specifically, the set of signals

xptq �
¸
nPZ

xrnsϕ pBt� nq , (2.2)

defines a shift-invariant subspace, which is not necessarily bandlimited, but that again has

a rate of innovation ρ � B. Such functions can be efficiently sampled and reconstructed

using linear methods [8]. Note that now xn � xrns is the discrete representation of xptq in

the approximation space, however it may differ from the samples in (2.1) since ϕptq can

be quite different from sincptq.
Consider now the prototypical continuous-time sparse signal: a sum of Diracs located

at instants of time ttkukPZ and weighted with amplitudes takukPZ. Moreover, suppose that

the average distance between consecutive Diracs is 1
λ . This happens for example when the

signal is generated from a Poisson process where the inter-arrival time is exponentially

distributed with parameter λ [14]. Then, since the only degrees of freedom are the am-

plitudes and locations of the Diracs, we can calculate the rate of innovation of the signal

as ρ � 2λ [14]. Note that this class of signals no longer belongs to a single subspace, but

rather to a union of subspaces [9]. In fact, observe that once we fix the delay values tk

(i.e. they are known), but let the amplitudes be unknown, then the train of Diracs lives

in a linear subspace, spanned by tδpt � tkqukPZ. Therefore, the entire signal class can be

modelled as a union of subspaces, each of which corresponds to a set of possible delays

ttkukPZ. The estimation of these types of signals is clearly a non-linear problem, hence

traditional sampling theory does not hold any more.

Is there a sampling theorem for this type of sparse signals? That is, can we acquire

such signal by taking about ρ samples per unit of time, and perfectly reconstruct the

original signal, just as the Shannon sampling procedure does? As it turns out, the answer

is yes. Finite rate of innovation theory demonstrates that there are many types of signals

that belong to a union of subspaces which can be sampled and perfectly reconstructed at

the rate of innovation [2, 10, 14, 15]. In the rest of the section we give a formal definition

of signals with FRI and provide several examples of such signals.
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To easily navigate through the thesis, the reader can find the most frequent notations

that are used in the sequel in Table 2.1.

Table 2.1: Frequently used notations

Symbol Meaning

xptq, τ train of Diracs, sampling interval

tk, ak, K innovation parameters of the train of Diracs, number of
Diracs

ϕptq antialiasing filter prior to sampling (typically an exponen-
tial reproducing kernel)

yn, N , T samples, number of samples, sampling period

sm, P � 1 exponential moments, number of moments (normally order
of the kernel) N ¥ P � 1 ¥ 2K

hm, M � 1 annihilating filter of length K � 1, extended length of the
filter

2.1.1 Formal definition of FRI signals

The concept of FRI is intimately related to parametric signal modelling. If a signal

variation depends only on a few unknown parameters, then we can see it as having finite

rate of innovation. Consider a signal of the form:

xptq �
¸
kPZ

R�1̧

r�0

γk,rgrpt� tkq. (2.3)

If the set of functions tgrptquR�1
r�0 is known, then clearly the only degrees of freedom of

the signal are the arbitrary shifts tk and amplitudes γk,r. It is convenient to introduce a

counting function Cxpta, tbq that counts the number of parameters of xptq over an interval

of time rta, tbs. Then the rate of innovation of the signal xptq is defined as [2, 10]:

ρ � lim
τÑ8

1

τ
Cx

�
�τ

2
,
τ

2

	
. (2.4)

A signal with finite rate of innovation is a signal whose parametric representation is given

by (2.3) and with a finite ρ as defined by (2.4). Given a signal xptq with finite rate of

innovation ρ, we expect to be able to recover xptq from ρ measurements per unit time.

Another useful concept is that of a local rate of innovation over a sliding window of
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Chapter 2. Sampling signals with finite rate of innovation

size τ . The local rate of innovation at time t is given by [2, 10]:

ρτ ptq � 1

τ
Cx

�
t� τ

2
, t� τ

2

	
.

Note that ρτ ptq tends to ρ as τ tends to infinity.

2.1.2 Examples of FRI signals

As a motivation for the forthcoming analysis, we illustrate several examples of finite du-

ration FRI signals in Figure 2.1. For simplicity, these examples are signals defined over

the range r0, 1q, but the extension to other intervals and FRI models is straightforward.

An important example that we have introduced before is the stream of Diracs of

Figure 2.1 (a). A stream of K Diracs with amplitudes takuK�1
k�0 located at different instants

of time ttkuK�1
k�0 , can be written as

xptq �
K�1̧

k�0

akδpt� tkq, (2.5)

where tk P r0, 1q for all k. This signal has 2K degrees of freedom in total. The train

of Diracs (2.5) can be easily generalised as a stream of pulses by simply replacing the

Dirac shape δptq by a known pulse shape pptq. An example of this more realistic signal is

depicted in Figure 2.1 (e).

A signal is a nonuniform spline of degree R with amplitudes takuK�1
k�0 and knots at

locations ttkuK�1
k�0 where tk P r0, 1q, for all k, if and only if its pR � 1qth derivative is a

stream of K weighted Diracs (2.5). Consequently, a nonuniform spline of order R consists

of K � 1 segments (K transitions), each of which is a polynomial of degree R, such that

the entire function is continuously differentiable R � 1 times. The pR � 1qth derivative

then turns the knots into Diracs. This signal also has 2K degrees of freedom: the K

amplitudes and K locations of the Diracs. An example is shown in Figure 2.1 (b) and its

second derivative is the train of Diracs illustrated in (a).

We now recall the definition of derivative of Diracs, which is useful to introduce piece-

wise polynomial signals. The Dirac function is a distribution function whose rth derivative

satisfies
³8
�8 fptqδprqpt� t0qdt � p�1qrf prqpt0q, where fptq is r times continuously differen-

tiable. A stream of differentiated Diracs with amplitudes tak,ruK�1,Rk
k�0,r�0 and time locations

ttkuK�1
k�0 is a linear combination of properly displaced and weighted differentiated Diracs,

i.e.:

xptq �
K�1̧

k�0

Rk�1¸
r�0

ak,rδ
prqpt� tkq.

In this case, the number of degrees of freedom of the signal is determined by K locations

and K̃ � °K�1
k�0 Rk different weights.

A signal xptq is a piecewise polynomial with K segments of maximum degree R � 1
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(a) Train of Diracs.
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(b) Nonuniform spline.
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(c) Piecewise polynomial.
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(d) Piecewise sinusoidal.
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(e) Stream of pulses. (f) 2D set of bilevel poly-
gons.

Figure 2.1: Examples of FRI signals that can be sampled and perfectly reconstructed
at their rate of innovation.
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(R ¡ 0) if and only if its Rth derivative is a stream of differentiated Diracs, that is

xpRqptq �
K�1̧

k�0

R�1̧

r�0

ak,rδ
prqpt� tkq.

The signal has K � K̃ � K � RK � KpR � 1q degrees of freedom. An example of this

type of signal is shown in Figure 2.1 (c). The difference with a nonuniform spline is that

the piecewise polynomial is not differentiable at the knots.

Piecewise sinusoidal functions are a linear combination of truncated sinusoids, with

unknown amplitudes akd, angular frequencies ωkd and phases θkd [16]. Mathematically:

xptq �
K�1̧

k�0

D�1̧

d�0

akd cospωkdt� θkdqξdptq,

with ξdptq � upt � tdq � upt � td�1q, where td are locations to be determined, and uptq is

the Heaviside step function. Fig. 2.1(d) shows an example of such a signal.

Finally, it is also possible to consider FRI signals in higher dimensions. For instance,

a 2D stream of Diracs can be written as

fpx, yq �
K�1̧

k�0

akδpx� xk, y � ykq. (2.6)

In Fig. 2.1(f) we show another type of two-dimensional signal, a 2D set of bilevel polygons.

As shown in [2,10,16] all these are FRI signals for which we can derive exact sampling

and reconstruction results.

2.2 History of FRI

Sampling signals with finite rate of innovation was first proposed by Vetterli et al. in [2].

The main focus of the paper was on sampling and perfectly reconstructing τ -periodic

streams of K Diracs using a sinc kernel in the absence of noise. The authors show that

recovery of the input is equivalent to finding the frequencies and amplitudes of a sum of

complex exponentials. The latter is a standard problem in spectral analysis [17] and can

be solved using conventional techniques, such as the annihilating filter method [14,17], as

long as the number of samples is at least 2K� 1. Other classes of FRI signals are treated,

such as nonuniform splines, streams of differentiated Diracs and piecewise polynomials.

Even though periodic inputs are convenient to analyse, in practice signals can often

be modelled as finite or infinite streams of pulses. The first treatment of finite streams

of Diracs appears in [2], using a Gaussian sampling kernel. Perfect reconstruction is

achieved in the noiseless setting, but this approach is subject to numerical instability

caused by the exponential decay of the kernel. A different method, based on calculating

the moments of the input signal, was developed in [10], where the sampling kernels have
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compact support in time and are able to reproduce polynomials or exponentials. The input

can be determined from the signal moments by using again standard spectral estimation

tools. In [15] the authors propose a similar scheme using a more complicated, but stable,

exponential reproducing sampling kernel [18, 19]. Infinite streams of pulses with finite

local rate of innovation have also been considered in the literature. For instance, in [10]

sufficient conditions are derived to recover an infinite stream from a sequence of separate

finite problems. A similar technique is employed in [15].

There has also been some work on FRI setups departing from the simple single channel

one-dimensional scheme of Figure 1.1. Multichannel setups are considered in [20–22].

Some forms of distributed sampling have been studied in [23]. There has also been work

on multidimensional FRI signals, such as images [24, 25]. To conclude, the applications

of FRI theory include image super-resolution [26, 27], ultrasound imaging [15], multipath

medium identification [28], super-resolution radar [28] and wideband communications [29,

30], among others.

A somewhat related field that has gained even greater attention in the last few years

is Compressed Sensing (CS). Initially developed in parallel by Candes et al. [11] and

Donoho [12], CS asserts that it is possible to recover certain types of discrete-time signals

from less samples than traditional methods, relying on two principles: sparsity of the

signals of interest, and incoherence of the sampling [13]. Interestingly, in both CS and FRI,

the sampling procedure remains linear, but at the expense of non-linear reconstruction

algorithms. In CS, the retrieval problem is addressed using convex relaxation techniques

or greedy methods and, in the absence of noise, the signal is recovered with “overwhelming”

probability [13] using M measurements, where M satisfies M Á OpK logpN{Mqq [31].

Compressed sensing has recently been extended to working with continuous-time sig-

nals, for instance by Romberg, with the random convolution [32]: convolution with a

random waveform followed by random time domain subsampling. The technique has been

further elaborated from the perspective of random filtering in [33]. The random demodu-

lator [34] and the modulated wideband converter (MWC) [35] are two recently proposed

CS techniques for the acquisition of continuous-time spectrally-sparse signals [36]. More-

over, Xampling [37] is a design methodology for sub-Nyquist sampling of continuous-time

analog signals that extends the MWC by proposing a digital algorithm which extracts

each band of the signal from the compressed measurements.

Interestingly, neither CS or FRI are limited to uniform measurements (for instance,

see [32] for CS and [38] for FRI) and either approach can potentially accommodate ar-

bitrary sampling kernels. In particular, we present novel theory for FRI sampling and

reconstruction with arbitrary kernels in this thesis [19].

2.3 Sampling kernels

The FRI acquisition process of Figure 1.1 is usually modelled as a filtering stage of the

input xptq with a smoothing function ϕptq (or sampling kernel), followed by uniform sam-
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Chapter 2. Sampling signals with finite rate of innovation

pling at a rate fs � 1
T [Hz]. According to this setup, the measurements are given by

yn �
〈
xptq, ϕ � tT � n

�〉
. The sampling kernel ϕptq is therefore central to signal acquisition

and, as we show in Section 2.5, also to signal reconstruction. The fundamental problem

in sampling theory is to recover the original waveform xptq from the samples yn. Equiv-

alently, this is to say that the input xptq can be completely characterised by the set of

samples yn.

In the literature of FRI there exist two main types of filters: kernels of infinite dura-

tion [2], such as the sinc and the Gaussian functions, and kernels of compact support [10]

like polynomial and exponential reproducing functions. In this section we review these

kernels and highlight their main characteristics when used for FRI sampling.

2.3.1 Kernels of infinite support

The first kernel used for FRI was the traditional ideal low-pass filter of bandwidth B, i.e.

hptq � sincpBtq. In [2] and [14] the authors show that sampling a τ -periodic train of K

Diracs with a sinc kernel of bandwidth B[Hz] leads to samples yn that are the inverse

discrete Fourier transform (IDFT) of 2M � 1 � Bτ consecutive Fourier series coefficients

x̂m of the input. And these coefficients can in turn be expressed as a power sum series,

from which the 2K parameters of the Diracs can be estimated using the annihilating

filter [14, 17]. The scheme is equivalent to that of sampling a finite stream of K Diracs

with a τ -periodic sinc function (or Dirichlet kernel). This setup has shown to be very

stable in noisy conditions [14].

The fundamental limit of the above sampling methods, as well as of the classical

Shannon reconstruction scheme, is that the choice of the sampling kernel is very limited

and the required kernels are of infinite support. As a consequence, the reconstruction

algorithm is usually physically non-realisable (e.g., realisation of an ideal low-pass filter)

or, in the case of FRI signals, becomes complex and unstable. The complexity is in fact

influenced by the global rate of innovation of xptq.

2.3.2 Kernels of compact support

Building upon previous work, new kernels of finite duration in time where presented by

Dragotti et al. [10], to provide more practical and stable setups for sampling finite and

infinite duration FRI signals. These kernels are known as polynomial and exponential

reproducing kernels.

An exponential reproducing kernel is any function ϕptq that, together with a linear

combination of its shifted versions, can reproduce functions of the form eαmt, with param-

eters αm that can be complex valued. This can be expressed mathematically as follows:

¸
nPZ

cm,nϕpt� nq � eαmt, (2.7)

for proper coefficients cm,n and where m � 0, . . . , P and αm P C. Exponential reproducing
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kernels for which (2.7) is true satisfy the so-called generalised Strang-Fix conditions [39]

(see also Appendix A.1 for a proof). Specifically, Equation (2.7) holds if and only if

ϕ̂pαmq � 0 and ϕ̂pαm � 2jπlq � 0, for m � 0, . . . , P and l P Zzt0u, (2.8)

where ϕ̂pαmq represents the double-sided Laplace transform of ϕptq evaluated at αm.

Moreover, the coefficients cm,n in (2.7) are given by

cm,n �
〈
eαmt, ϕ̃pt� nq〉 �

» 8

�8
eαmtϕ̃ pt� nqdt, (2.9)

where the function ϕ̃ptq forms a quasi-biorthonormal set [10,40] with ϕptq. One particular

case of this is when ϕ̃ptq is the dual of ϕptq, i.e. 〈ϕ̃pt� nq, ϕpt�mq〉 � δm�n. We also

note that the coefficients cm,n are discrete-time exponentials. This fact can be shown by

making a change of variable in (2.9):

cm,n �
» 8

�8
eαmtϕ̃ pt� nqdt �

» 8

�8
eαmxeαmnϕ̃pxqdx � eαmncm,0, (2.10)

where cm,0 � ³8
�8 eαmxϕ̃pxqdx. We now show how to find a closed form expression for

cm,n. We first combine (2.10) and (2.7) to get

¸
nPZ

eαmncm,0ϕpt� nq � eαmt,

which can also be written as

cm,0
¸
nPZ

e�αmpt�nqϕpt� nq � 1.

Consequently the coefficients take the form:

cm,n � eαmncm,0 � eαmn°
kPZ e�αmpt�kqϕpt� kq . (2.11)

An alternative way of calculating the coefficients can be derived from the generalised

Strang-Fix conditions. We do this in Chapter 4 and conclude that cm,n � eαmnϕ̂pαmq�1,

i.e. c�1
m,0 is the Laplace transform of the kernel evaluated at αm for m � 0, . . . , P .

Cardinal exponential splines

A function βαptq with Fourier transform β̂αpωq � 1�eα�jω

jω�α is called cardinal exponential

spline of first order, with α P C [1]. The time domain representation of such function is

βαptq � eαt for t P r0, 1q and zero elsewhere. The function βαptq is, therefore, of compact

support: βαptq � 0 for t R r0, 1q, and a linear combination of its shifted versions reproduces

the exponential eαt.

Higher order cardinal exponential splines (E-Splines) can be obtained through convo-

39



Chapter 2. Sampling signals with finite rate of innovation

lution of first order ones, so that for instance β~αptq � pβα0 
 βα1 
 . . .
 βαP q ptq, where

~α � pα0, α1, . . . , αP q, is an E-Spline of order P �1. This can also be written in the Fourier

domain as follows:

β̂~αpωq �
P¹

m�0

1� eαm�jω

jω � αm
. (2.12)

The higher order E-Splines are of compact support P�1 and their regularity increases with

P (i.e. they have P�1 derivatives). These functions, combined with their shifted versions,

can reproduce any exponential in the subspace spanned by teα0t, eα1t, . . . , eαP tu [1, 10].

We also note that the family of E-Splines is a generalisation of that of B-Splines, in that

when αm � 0 for m � 0, . . . , P , the function β~αptq reduces to a B-Spline and no longer

reproduces exponentials but polynomials up to order P . Furthermore, the exponential

reproduction property is preserved through convolution [1, 10]. Thus, any function

ϕptq � γptq
 β~αptq, (2.13)

where γptq is an arbitrary function, even a distribution, and β~αptq is an E-Spline, is still

able to reproduce the exponentials in the subspace spanned by teα0t, eα1t, . . . , eαP tu.
We conclude by showing some examples of real valued E-spline functions of orders P�1

equal to 2, 6 and 11 in Figure 2.2. Kernels illustrated in (a, b, c) are built with αm,1 �
j π

2pP�1qp2m� P q and those illustrated in (d, e, f) with αm,2 � �1 � αm,1, m � 0, . . . , P .

Note that, contrary to the former, the latter are not symmetric around the middle point

of the support P�1
2 due to the constant real part of the exponential parameters.
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Figure 2.2: Examples of E-Splines. In (a,b,c) we show real valued E-Spline kernels
built using (2.12) with αm,1 � j π

2pP�1q p2m� P q for m � 0, . . . , P . In (d,e,f) we show real

valued E-Spline kernels built using (2.12) with αm,2 � �1 � αm,1 for m � 0, . . . , P .
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Generalised cardinal E-Splines

In [41] Unser defines a more general form of the E-Spline functions introduced so far.

Consider the Fourier domain expression:

β̂~αpωq �
P¹

m�0

1� eαm�jω

jω � αm

M¹
`�0

pjω � γ`q, (2.14)

which characterises a generalised E-Spline kernel, that is well defined as long as M   P

and γ` � αm for all ` and m. This is a much richer class than the one introduced before

and it includes some known functions such as the family of maximum order, minimum

support (MOMS) kernels that has been characterised in [42]. These correspond to the

parametrisation αm � 0 for m � 0, . . . , P , and γ` P R for ` � 0, . . . ,M . In addition,

generalised cardinal E-Splines also include the family of exponential MOMS (eMOMS)

of [18,19], which correspond to αm existing in complex conjugate pairs and being different

from each other, and γ` P R for ` � 0, . . . ,M . We study eMOMS in detail in Chapter 4.

Generality of exponential reproducing kernels

We conclude by highlighting the generality of exponential reproducing kernels. First, when

αm � 0, any exponential reproducing kernel reduces to a kernel satisfying the Strang-Fix

conditions [43]. These are still valid sampling kernels but reproduce polynomials rather

than exponentials. Moreover, functions satisfying Strang-Fix conditions are extensively

used in wavelet theory and the above result provides a connection between sampling of

FRI signals and wavelets. In addition, it is possible to show that any device whose input

and output are related by linear differential equations can be turned into an exponential

reproducing kernel and can therefore be used to sample FRI signals [10]. This includes

for example any linear electrical circuit. Given the ubiquity of such devices and the fact

that in many cases the sampling kernel is given and cannot be modified, FRI theory with

exponential reproducing kernels becomes even more relevant in practical scenarios.

2.4 A note on spectral estimation

As we will show in the next section, the parameters that characterise FRI signals that

have been sampled by appropriate sampling kernels can be recovered by transforming the

set of measurements yn into a sequence of moments sm equivalent to:

sm �
K�1̧

k�0

xku
m
k , (2.15)

for m � 0, . . . , P . Here we are interested in retrieving xk and uk given only sm and the

knowledge that they are in a power series form (2.15). Equation (2.15) is common to

problems such as decomposing a signal built from a linear mixture of complex exponential
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(spectral estimation), estimating the direction of arrival of sources (array processing) or

obtaining a polygonal shape from its complex moments (computed tomography, geophysi-

cal inversion, and thermal imaging) [44]. In the context of this thesis we always assume K

is known beforehand, the same as for the survey of the current section. The case with K

unknown is a related but completely different problem, the model order selection, that is

dealt with in a wide variety of papers (see Appendix C in [17] and also [45] and references

therein). Evidently, not knowing K would deteriorate the parametric estimation, however

we do not delve into the problem since it is as hard as that of solving (2.15) and the

interested reader can easily find considerable literature on the subject.

The first solution to (2.15) was given by Gaspard de Prony in 1795 [46]. His formulation

is also known as the annihilating filter method, which is a standard tool in high-resolution

spectral estimation [17]. In short, Prony’s method reformulates (2.15) into:

Sh � 0 (2.16)

where S is a matrix built with the moments sm and presents either Toeplitz or Han-

kel structure, and where the elements of h are the annihilating filter coefficients. Using

Prony’s method one can find the values uk of (2.15) exactly using the minimum number

of measurements P � 1 � 2K. Then, xk are obtained directly from (2.15) in a variety of

ways, such as ordinary or total least-squares [44].

When using noisy moments, one should expect to deviate from the exact relationship

and having a greater number of moments P�1 ¡ 2K should improve the estimation of the

parameters. Then, the simplest idea for solving the set of equations (2.16) given by Prony’s

method is to use least-squares [44]. Nevertheless, a total-least-squares (TLS) alternative

should be preferred since all complex moments are perturbed and error in the equations

appear on both sides. Numerically, the TLS problem is solved using the singular value

decomposition (SVD). In any of the aforementioned variants of Prony’s method, as well

as in the original approach, the solution of the proposed system of equations leads to the

coefficients of the annihilating filter. Then, the values uk can be obtained by calculating

the roots of the filter. An efficient and stable method for finding the roots is the companion

matrix method [44], that converts a root-finding problem into an eigenvalue one.

Applying the SVD directly is suboptimal because we are in fact interested in a con-

strained SVD operation that reduces the rank of the matrix but also retains its Toeplitz

structure. In his paper, Cadzow [47] suggested a simple numerical algorithm that attempts

to solve this structured SVD problem by alternatively reducing the rank of S and then

imposing the Toeplitz structure of the resulting matrix. The problem can be thought of

as a structured-total least-squares one, which has been extensively analysed in [48, 49].

To conclude the methods based on Prony, we remark that the estimation problem can

be made consistent by posing it as a statistical estimation one, for instance in terms of

maximum-likelihood [44].

Starting again from (2.15), another useful relation leads to the matrix pencil method [50,
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51]. It is possible to show that the following pencil relation holds:

S0v � λS1v, (2.17)

from which we obtain the values uk as the eigenvalues of (2.17). Here, S1 is matrix S

with either the first row or column removed and S0 is matrix S with either the last row or

column removed. The matrix pencil method hence consists in build matrices S1 and S0

from the measurements and then finding the values uk directly by solving the pencil (2.17).

Note that this relation is true for the noiseless moments, and even weak noise may lead

to no direct solution for the pencil.

The method “generalized pencil of function” (GPOF) [52] is designed for the noisy

context. A perturbation analysis seems to indicate its near-optimality with respect to the

Cramér Rao Bound [44]. Interestingly, a relationship between this method and several

variants of the ESPRIT method [53, 54] is derived in [50]. ESPRIT is an advanced tech-

nique for solving the problem of direction of arrival (DOA) estimation, with performance

and computational advantages over the well known MUSIC approach. Later work further

improved the GPOF results by forcing the Hankel structure [55].

To conclude, we note that the subspace estimator method that we explain in Chapter 3

is based on a key algebraic property derived from the pencil (2.17) that is also used for

the ESPRIT algorithm. Specifically, the noiseless matrices S1 and S0 satisfy the shift

invariance property, i.e. S1 � S0Φ where Φ is a K � K diagonal matrix with uk in its

main diagonal. The matrices U and V containing the left or right singular vectors of the

SVD decomposition of S also satisfy such property. Consequently, the values uk can also

be obtained as the eigenvalues of an operator that maps U0 onto U1 or V0 onto V1.

2.5 Sampling FRI signals in the noise-free setting

In this section, we first present the canonical setup of sampling and perfectly reconstructing

a finite stream of Diracs with an exponential reproducing kernel of compact support, as

discussed in [10]. In general, recovery is achieved by linearly combining the samples

in order to obtain a new set of measurements, and then by retrieving the FRI signal

parameters from the new sequence. The second stage is always equivalent to the problem

of determining the amplitudes and frequencies of a signal formed by a sum of complex

exponentials. This problem has been treated extensively in the array processing literature,

and can be solved using conventional tools from spectral estimation theory [17] such as

the annihilating filter [14] and subspace-based methods [50,56–58].

Then, we explain how to sample and reconstruct other types of FRI signals treated

in [2] using the Dirichlet kernel (or periodic sinc), and in [10] with polynomial reproducing

kernels. These are nonuniform splines, streams of differentiated Diracs and piecewise

polynomials. In [10] the authors provide sampling results for these signals, however no

detailed derivations like the ones we include in the present section have appeared so far.
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2.5.1 Sampling a train of K Diracs

Assume that the input signal xptq is a stream of K Diracs (2.5) and that we want to

retrieve the innovation parameters ttk, akuK�1
k�0 from the samples

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�

K�1̧

k�0

akϕ

�
tk
T
� n



, (2.18)

where n � 0, 1, . . . , N�1. Here, ϕptq is an exponential reproducing kernel. The acquisition

process is modelled in Figure 2.3.

hptq � ϕ
�
� t

T

� T
yn

xptq yptq

Figure 2.3: Sampling a train of Diracs. The continuous-time input signal xptq, a train
of Diracs, is filtered with ϕ

�
� t
T

�
and sampled every T seconds. The samples are then

given by yn �
〈
xptq, ϕ

�
t
T � n

�〉
.

Now, assume that all the locations satisfy tk P r0, τq, that they are different from each

other and that the interval τ is an integer multiple of sampling period T , i.e. τ � NT .

Throughout the thesis we always restrict our analysis to parameters of the form

αm � α0 �mλ (2.19)

for m � 0, . . . , P , where α0, λ P C.

In order to show that the input can be unambiguously retrieved from the set of N

samples yn, we first linearly combine them with the coefficients cm,n of (2.7), to obtain

the new measurements:

sm �
N�1̧

n�0

cm,nyn, (2.20)

for m � 0, . . . , P . Then, combining (2.20) with (2.18) and taking into account the expo-

nential reproducing property (2.7), we have [10]:

sm �
〈
xptq,

N�1̧

n�0

cm,nϕ

�
t

T
� n


〉
�
» 8

�8
xptqeαm t

T dt (2.21)

�
» 8

�8

K�1̧

k�0

akδpt� tkqeαm
t
T dt

�
K�1̧

k�0

ake
αm

tk
T �

K�1̧

k�0

xku
m
k ,

for m � 0, . . . , P and with xk � ake
α0

tk
T and uk � eλ

tk
T for k � 0, . . . ,K�1. Here, it is the

choice (2.19) that makes sm have a power sum series form, which is key to the recovery

of the innovation parameters of the input. The values sm are precisely the (exponential)
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moments of the signal xptq, and are equivalent to the projection of xptq onto the subspace

spanned by teαm t
T uPm�0. Notice also that sm represents the bilateral Laplace transform of

xptq at αm.

The new pairs of unknowns tuk, xkuK�1
k�0 can then be retrieved from (2.21) by using con-

ventional tools from spectral analysis [17] such as Prony’s method or the annihilating filter

method [2, 14]. More specifically, in order to find the values uk in (2.21), let hm for m �
0, . . . ,K denote the filter whose z-transform is ĥpzq � °K

m�0 hmz
�m �±K�1

m�0

�
1� ukz

�1
�
.

That is, the roots of ĥpzq equal the unknown values uk to be found. Then, it follows that:

hm � sm �
Ķ

i�0

hism�i �
Ķ

i�0

K�1̧

k�0

xkhiu
m�i
k �

K�1̧

k�0

xku
m
k

Ķ

i�0

hiu
�i
klooomooon

ĥpukq�0

� 0 (2.22)

where the last equality is due to the fact that we evaluate the z-transform of the filter at

its zeros. The filter hm is called an annihilating filter, since it nulls out the signal sm. Its

roots uniquely define the set of values uk, provided that the locations tk are distinct. The

identity (2.22) can be written in matrix-vector form as:

Sh � 0 (2.23)

which reveals that the Toeplitz matrix S is rank deficient. Assuming without loss of

generality that h0 � 1 we may also write

�
�����

sK sK�1 � � � s0

sK�1 sK � � � s1

...
...

. . .
...

sP sP�1 � � � sP�K

�
����

�
�����
h1

h2

...

hK

�
����� �

�
�����

s0

s1

...

sK�1

�
���� (2.24)

which is a Yule-Walker system of equations that reveals we need at least 2K consecutive

values of sm to solve the above system. This implies that P � 1 ¥ 2K, which indicates

that the order P � 1 of the exponential reproducing kernel depends on the number of

degrees of freedom of the input signal xptq. Once the filter has been found, the locations

tk are retrieved from the zeros uk of the z-transform of hm. These in turn are given by

root finding for the polynomial generated by ĥpzq. Given the locations, the weights xk

can then be obtained by considering K consecutive equations in (2.21). For example, if

we use the coefficients for k � 0, 1, . . . ,K � 1, then we can write (2.21) in matrix-vector

form as follows:

�
�����

1 1 � � � 1

u0 u1 � � � uK�1

...
...

. . .
...

uK�1
0 uK�1

1 � � � uK�1
K�1

�
����

�
�����

x0

x1

...

xK�1

�
�����

�
�����

s0

s1

...

sK�1

�
����. (2.25)
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This is a Vandermonde system of equations that yields a unique solution for the weights

xk since the uks are distinct. We thus conclude that the original signal xptq is completely

determined by the knowledge of 2K consecutive values sm. We detail the main steps of

the annihilating filter method in Algorithm 1.

Algorithm 1 Annihilating filter method.

Retrieve the parameters ttk, akuK�1
k�0 of a train of Diracs (2.5) from the samples (2.18) taken

by an exponential reproducing kernel.

1: Calculate the sequence sm � °N�1
n�0 cm,nyn for m � 0, . . . , P , from the N samples yn

of (2.18).

2: Build the system of equations (2.24) using the exponential moments sm.

3: Retrieve the annihilating filter coefficients hm, for m � 0, . . . ,K, by performing the
singular value decomposition (SVD) [59] of the Toeplitz matrix S of (2.23) and choos-
ing the singular vector corresponding to the zero singular value.

4: Compute the roots uk � eλ
tk
T of the z-transform ĥpzq � °K

k�0 hmz
�m and obtain

ttkuK�1
k�0 .

5: Calculate takuK�1
k�0 as the least square solution of the N equations

yn �
K�1̧

k�0

akϕ

�
tk
T
� n



� 0.

If the measurements yn are noisy, then it is necessary to denoise them by using the methods
of Chapter 3.

The case of sampling and perfectly reconstructing streams of Diracs can be easily

extended to any pulse satisfying p̂psq � 0 for s � αm, where p̂psq is the Laplace transform

of the pulse. This is due to the fact that sampling a stream of pulses with the kernel

ϕptq is equivalent to sampling a stream of Diracs with φptq � pptq 
 ϕptq. The above

condition guarantees that the resulting kernel φptq is still able to reproduce the original

set of exponentials.

We end the above discussion by noting that all FRI reconstruction setups proposed so

far ( [2,10,14,15]) can be unified as shown in Figure 2.4. Here, the samples are represented

with the vector y � py0, y1, . . . , yN�1qT and the moments are given by s � Cy. The matrix

C, of size pP � 1q �N with coefficients cm,n at position pm,nq, depends on the sampling

kernel and its role becomes pivotal in noisy scenarios as discussed throughout the thesis.

Techniques that are better suited to dealing with noise are discussed in Chapter 3.
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2.5. Sampling FRI signals in the noise-free setting

ϕx y C s AFM {tk, ak}K−1k=0

(y0, . . . , yN−1) (s0, . . . , sP )

cm,n

Figure 2.4: Unified FRI sampling and reconstruction. The continuous-time input
signal x is filtered with ϕ and uniformly sampled. Then, the vector of samples y is
linearly combined to obtain the moments s � Cy. Finally, the parameters of the input
are retrieved from s using the annihilating filter method (AFM).

More on annihilation

We now briefly revisit (2.22). First, notice that any filter thmuMm�0 with M ¥ K having uk

as zeros satisfies the equation and, conversely, any filter that annihilates the coefficients

sm is also such that the values uk are among its zeros. Now, using the fact that we can

calculate sm for m � 0, . . . , P , we can rewrite (2.22):

M̧

k�0

hksm�k � 0, m � 0, . . . , P (2.26)

where the sum runs from 0 to M . Expanding the equation in matrix form, we have:

�
�����

sM sM�1 � � � s0

sM�1 sM � � � s1

...
...

. . .
...

sP sP�1 � � � sP�M

�
����

�
�����
h0

h1

...

hM

�
�����

�
�����

0

0
...

0

�
���� (2.27)

which has P � M � 1 equations and M � 1 unknowns, where M ¥ K. We may also

write Sh � 0 and we do not require h0 � 1 anymore. Moreover, when M ¡ K there are

M � K � 1 independent polynomials of degree M with zeros at tukuK�1
k�0 . Thus, there

are M � K � 1 vectors h that satisfy (2.27). Interestingly, the rank of S never exceeds

K, which is key to solve (2.27) using the total least squares [14] or subspace estimator

methods [60] that we present in Chapter 3.

2.5.2 Nonuniform splines

We now consider a nonuniform spline of order R with knots at ttkuK�1
k�0 P r0, τq charac-

terised by its pR� 1qth derivative being a stream of K weighted Diracs:

xpR�1qptq �
K�1̧

k�0

akδpt� tkq. (2.28)

In this case, we need to be able to relate the moments sm � °n cm,nyn �
〈
xptq, eαm t

T

〉
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Chapter 2. Sampling signals with finite rate of innovation

with the sequence

spR�1q
m �

〈
xpR�1qptq, eαm t

T

〉
�

K�1̧

k�0

xku
m
k ,

for m � 0, . . . , P , since the latter can be expressed in a power sum series form. Here,

again, we have that xk � ake
α0

tk
T and uk � eλ

tk
T . In order to do so, we note that

spR�1q
m �

〈
xpR�1qptq, eαm t

T

〉
(2.29)

paq�
〈
xptq,

�αm
T

	pR�1q
eαm

t
T

〉

�
�αm
T

	pR�1q
sm,

for m � 0, . . . , P , where paq is due to the fact that the Dirac delta function satisfies

xptq
 δpR�1qptq � p�1qR�1xpR�1qptq, and explains the equivalence of both inner products.

Therefore, we may obtain s
pR�1q
m from sm by using (2.29). Since s

pR�1q
m is in a power sum

series form, the retrieval of the innovation parameters is now straightforward using the

annihilating filter method.

2.5.3 Streams of differentiated Diracs

Consider a finite stream of K differentiated Diracs with amplitudes tak,ruK�1,Rk�1
k�0,r�0 and

time locations ttkuK�1
k�0 , which can be expressed as:

xptq �
K�1̧

k�0

Rk�1¸
r�0

ak,rδ
prqpt� tkq. (2.30)

The number of degrees of freedom of the signal is K � K̃, determined by K locations and

K̃ � °K�1
k�0 Rk different weights. Assume that the signal is filtered with an exponential

reproducing kernel to obtain measurements (2.18) for n � 0, . . . , N � 1. In this case, the

exponential moments of the signal xptq can be simplified as follows:

sm �
¸
mPZ

cm,nyn
paq�
» 8

�8
xptqeαm t

T dt (2.31)

pbq�
K�1̧

k�0

Rk�1¸
r�0

ak,r

» 8

�8
eαm

t
T δprqpt� tkqdt

pcq�
K�1̧

k�0

Rk�1¸
r�0

ak,rp�1qr
�αm
T

	r
eαm

tk
T

�
K�1̧

k�0

Rk�1¸
r�0

xk,rpαmqrumk

for m � 0, . . . , P , where paq follows from the linearity of the inner product and the

exponential reproduction formula (2.20), pbq is due to the definition of xptq, and pcq follows
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2.5. Sampling FRI signals in the noise-free setting

from the application of the rth derivative property of the Dirac distribution function. Here,

we have defined uk � eλ
tk
T and xk,r � akrp�T q�reα0

tk
T .

The annihilating filter method can be applied to the sequence sm. We are looking for

the filter hm with z-transform ĥpzq �±K�1
k�0 p1�ukz�1qRk that can annihilate pαmqrumk �

pα0�λmqrumk for r � 0, . . . , Rk�1 [2] (see also Appendix A.2). Now, the K coefficients of

hm can be found solving a Yule-Walker system of equations, by considering the annihilating

filter equation ph � sqrms � 0. We need at least K equations to find the coefficients hm

(hence N ¥ P � 1 ¥ 2K � 1), from which the roots uk and thus the time locations tk can

be calculated. Finally, the generalised Vandermonde system obtained using K̃ equations

in (2.31) yields the amplitudes xk,r. The solution is unique provided the time locations

are different from each other.

2.5.4 Piecewise Polynomials

A signal xptq is a piecewise polynomial, with K pieces of maximum degree R� 1 (R ¡ 0)

if and only if its Rth derivative is a stream of differentiated Diracs:

xpRqptq �
K�1̧

k�0

R�1̧

r�0

akrr!δ
pR�r�1qpt� tkq.

The number of degrees of freedom for this signal is K � K̃ � K �RK. Assume that the

signal is filtered with an exponential reproducing kernel to obtain measurements (2.18)

for n � 0, . . . , N � 1.

The retrieval of the input is more involved than for the examples treated so far. How-

ever, using the Rth finite difference z
pRq
n , which is defined as:

zpRqn �
Ŗ

k�0

p�1qk
�
R

k



yn�k

we show that it is possible to relate the piecewise polynomial case with the derivative of

Diracs scenario explained before. We also need to consider that, for any function ϕptq
with Fourier transform ϕ̂pωq, the following is true:

Ŗ

k�0

p�1qk
�
R

k



ϕ

�
t

T
� k



FTÐÑ (2.32)

Ŗ

k�0

p�1qk
�
R

k



T ϕ̂ pTωq e�jωkT

paq� T pjωT qRϕ̂ pTωq
�

1� e�jωT

jωT


R

where paq follows from Pascal’s rule, which states px�yqn � °n
k�0

�
n
k

�
xn�kyk, using x � 1

and y � �e�jωT . As a consequence, we have that

Ŗ

k�0

p�1qk
�
R

k



ϕ

�
t

T
� k



� TR�1 dpRq

dtpRq

�
ϕ

�
t

T




 βR�1

�
t

T


�
, (2.33)
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by just calculating the inverse Fourier transform of the right hand side of (2.32). Here

βR�1ptq Ø
�

1�e�jω

jω

	R
is the B-spline of order R� 1.

Then, we can relate the Rth finite difference z
pRq
n with the Rth derivative of the signal

xpRqptq as follows:

zpRqn �
Ŗ

k�0

p�1qk
�
R

k



yn�k

paq�
〈
xptq,

Ŗ

k�0

p�1qk
�
R

k



ϕ

�
t

T
� n� k


〉

pbq�
〈
xptq, TR�1 dpRq

dtpRq

�
ϕ

�
t

T
� n




 βR�1

�
t

T


�〉

pcq� p�1qRTR�1

〈
xpRqptq, ϕ

�
t

T
� n




 βR�1

�
t

T


〉

where paq comes from the definition of the samples yn and the linearity of the inner product,

pbq is due to equation (2.33), and pcq follows from integration by parts. Thus, the Rth

finite difference of the samples yn, that we call z
pRq
n , is equivalent to the measurements

that would be obtained sampling xpRqptq with the kernel φptq � ϕptq 
 βR�1ptq. The

advantage of this equivalent formulation is that the Rth derivative of the input is a stream

of differentiated Diracs, which we showed how to sample and perfectly reconstruct in

the previous section. Note, moreover, that φptq is able to reproduce the original set of

exponentials teαmtuPm�0, and is of compact support S �R, provided ϕptq is of support S.

2.6 Remarks on real valued exponential reproducing kernels

In this thesis we work with real valued sampling kernels ϕptq � γptq
β~αptq. Therefore, we

require that γptq and β~αptq be real valued. This second condition (i.e. β~αptq real valued) is

satisfied when the parameters αm are real or appear in complex conjugate pairs. We also

restrict the exponential parameters to be of the form αm � α0 �mλ with m � 0, . . . , P .

Therefore, we require that λ � α�0�α0

P � �2j Impα0q
P for the kernels to be real. As a

consequence, the parameter λ is always purely imaginary and the roots uk � eλ
tk
T are

periodic and lie on the unit circle. Since λ is purely imaginary and the values uk are

periodic, then it is necessary that tk satisfy 0 ¤ tk   2π T
|Imtλu| for k � 0, . . . ,K � 1 in

order to retrieve all the locations unambiguously.

Consider now the following equivalent way of writing the exponential parameters in

order for them to exist in complex conjugate pairs:

αm � α� j
π

L
p2m� P q, m � 0, . . . , P. (2.34)

This is like saying α0 � α� j πPL and λ � j 2π
L . In this situation, the locations need to be

such that 0 ¤ tk   LT for k � 0, . . . ,K � 1, and we can control the retrieval interval by
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simply modifying L in (2.34). For instance, if we want to sample a train of Diracs in an

interval of duration τ , such that tk P r0, τq for all k then we need that L ¥ τ
T .

2.7 Preliminary results

In this section we present a simple example that anticipates some results derived from

the techniques we have developed in this thesis. Without entering into the details of

the sampling and reconstruction setup, which will be described in the following chapters,

in Figure 2.5 we illustrate the values uk and Diracs that are reconstructed from noisy

samples taken by an E-Spline kernel of parameters αm � 1 � j 2m�P
2pP�1q with m � 0, . . . , P

and P � 15. The SNR is 50dB, which is very high, but already shows the instability of

the retrieval based on the state-of-the art [10].

In Fig. 2.5 (a, b) we use the annihilating filter method of Section 2.5 with no additional

filter coefficients or preconditioning step of any kind to provide robustness with noise. In

Fig. 2.5 (c, d) we employ the modified subspace estimator of Section 3.3.2 which already

improves the results notably. Finally, in Fig. 2.5 (e, f) we use the approximate FRI recovery

of Section 5.2 to further improve the stability of the reconstruction and the accuracy of

the retrieval.

2.8 Summary

In this chapter we have introduced the notion of signals with finite rate of innovation

(FRI) as those characterised by a finite number of degrees of freedom. We have also given

a brief overview of how noiseless FRI was developed, and we have presented various types

of FRI signals and kernels. Then, we have focused on exponential reproducing kernels

and shown how to perfectly reconstruct various FRI signals from noiseless samples. In the

remaining of the thesis, we still mainly concentrate on exponential reproducing kernels.

We no longer consider other FRI signals, but only the canonical case of a stream of Diracs,

the retrieval of which we have linked to the classical problem of estimating the parameters

of a sum of complex exponentials.

Exponential reproducing kernels are important for us for various reasons: (i) Any other

kernel of compact support that has been used in the FRI literature is an instance of an

exponential reproducing kernel. (ii) They are physically realisable and can accommodate

many existing filtering devices. (iii) As we show in Chapter 4, other stable FRI setups

such as the original one based on the Dirichlet kernel can be reduced to the case of using

adequate exponential reproducing kernels and periodic sampling. (iv) Finally, as we show

in Chapter 5, the exponential reproducing property becomes key in the generalisation of

the FRI framework to sampling with arbitrary kernels.
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Figure 2.5: Comparison of the methods proposed in the thesis with the state-of-the-art.
(a,b) Basic annihilating filter method based on the state-of-the art. (c,d) Modified
subspace estimator of Section 3.3.2. (e,f) Approximate FRI recovery of Section 5.2.
The SNR is 50dB in all cases.
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Chapter 3

Sampling and recovery of FRI

signals in the presence of noise

In the previous chapter we have introduced the basic ideas on FRI, mainly the definition

of FRI signals and sampling kernels, and the noiseless setup for various types of signals.

In this chapter, we study the noisy scenario and review existing techniques to deal with

non-ideal measurements. Moreover, we adapt the main subspace based techniques used in

the FRI literature [14,60] to work with coloured noise, which appears when sampling with

exponential reproducing kernels. Our formulation is general, so that the methods can be

easily used for other types of sampling kernels. In addition, in this chapter we employ a

standard tool for evaluating parametric estimation problems [17]: the Cramér–Rao lower

bound (CRB) [61, 62]. We not only use the CRB to determine the best accuracy with

which the train of Diracs may be recovered from the samples yn, but we also introduce

a new bound based on the sum of exponentials model of equation (2.21). This chapter

should also serve to identify the main sources of instability in the retrieval process of FRI

signals. Equipped with the conclusions of the current chapter, we elaborate denoising

further in Chapters 4 and 5 in an attempt to optimise FRI reconstruction in the presence

of noise when using exponential reproducing kernels.

We should note that the way we modify the TLS-Cadzow routine of [14] has not been

used for FRI before, but is common in the spectral estimation literature (for example [63,

64]). On the other hand, the way we modify the subspace estimator of [60] is a unique

contribution of this thesis. Also, the CRB for the estimation of the innovation parameters

from the samples has already been used in the FRI literature [14], but the new bound

based on the sum of exponentials model is novel.

To begin, we explain the noisy setting in Section 3.1. Next, in Section 3.2 we review

existing methods in the FRI literature that have been successfully used to combat additive

white Gaussian noise. Then, in Section 3.3 we present modifications of some of the methods

in order to properly deal with coloured noise. To conclude, in Section 3.4 we discuss the

Cramér–Rao lower bound associated to the samples and the moments. Finally, we validate

the algorithms discussed in Section 3.5 to then conclude the chapter in Section 3.6.
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3.1 The noisy FRI setting

“Noise”, or more generally model mismatch, is present in data acquisition, making the

solution presented in Chapter 2 valid only in ideal circumstances. In the presence of noise

the acquisition process may be modelled as illustrated in Figure 3.1. In general, we may

assume the signal is corrupted in the continuous-time domain by analogue noise and in

the discrete-time domain by digital noise.

x(t) h(t) = ϕ
(
− t

T

)
ỹn

Analogue noise

T

Digital noise

Acquisition device

Figure 3.1: Noise perturbations in the sampling set-up. The continuous-time signal
xptq can be corrupted either in the analog or the digital paths. In this thesis we
consider only the perturbation due to digital noise.

For simplicity, we assume that the noiseless samples yn are corrupted only by digital

additive noise and that we have access to the measurements

ỹn � yn � εn �
K�1̧

k�0

akϕ

�
tk
T
� n



� εn, (3.1)

with n � 0, . . . , N � 1. We further assume εn are i.i.d. Gaussian random variables of zero

mean and standard deviation σ. Equation (3.1) is valid when the input xptq is a finite

stream of K Diracs (2.5) and the noise is additive. When the samples are corrupted by

noise, the set of measurements sm of Equation (2.20) changes, and perfect reconstruction

is no longer possible. Specifically we now have the noisy (exponential) moments:

s̃m �
N�1̧

n�0

cm,nỹn �
N�1̧

n�0

cm,nynlooooomooooon
sm

�
N�1̧

n�0

cm,nεnlooooomooooon
bm

(3.2)

�
K�1̧

k�0

xku
m
k � bm,

for m � 0 . . . , P and where xk � ake
α0

tk
T and uk � eλ

tk
T with k � 0, . . . ,K � 1.

Note that the retrieval procedure for FRI signals is based on calculating measure-

ments (2.20) from the samples yn. This is the case for any FRI setup, only that the values

cm,n change with the choice of the sampling kernel. For instance, if the sampling kernel

is the τ -periodic sinc or Dirichlet kernel [2, 14], the coefficients cm,n take the simple form

of being the entries of the inverse discrete Fourier transform (IDFT) matrix. Another

example is the Gaussian function [2, 29], for which the coefficients cm,n are equal to the

diagonal entries of a matrix with eαn
2

along its main diagonal and zeros elsewhere. When

the samples are corrupted by noise, the ideal measurements sm of Equation (2.20) be-
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3.2. Retrieval of FRI signals in the presence of AWGN

come (3.2). Moreover, the statistics of the noise measurements bm depend directly on the

original noise distribution and on the coefficients cm,n.

Note also that equation (3.2) may be written in matrix-vector as follows:

s̃ � Cyloomoon
s

� Cεloomoon
b

, (3.3)

where we remind the reader that matrix C, as introduced in Chapter 2, is a matrix of

dimensions pP � 1q � N with coefficients cm,n at location pm,nq; y and ε are vectors of

length N with the noiseless samples and the noise measurements respectively; and s, b and

s̃ are vectors of length P � 1 containing the noiseless moments, the noise measurements

and the noisy moments, respectively.

3.2 Retrieval of FRI signals in the presence of AWGN

As we already highlighted in the previous chapter, the FRI recovery problem parallels

that of line spectra estimation. Consequently, most of the methods used in the spectral

estimation literature may be adapted to the FRI setting. A comprehensive review of the

spectral estimation literature can be found in the book [17]. We also refer the reader to

other relevant publications on the subject such as [44,45].

In this section we first review some methods that have been used for FRI and that

allow to retrieve the innovation parameters of a train of K Diracs “optimally” in the

presence of additive white Gaussian noise (AWGN). Optimality should be understood in

the sense that the methods reach the Cramér–Rao lower Bound (CRB), which indicates

the best achievable performance of an unbiased estimator. We explain how to deal with

non-white additive Gaussian noise later on in the chapter. We conclude the section with

a brief literature review including other approaches that deal with the noisy FRI setting.

3.2.1 Total least squares and Cadzow algorithm

When noise is present in the acquisition process, the annihilating equation (2.27) is not

satisfied exactly. The reason is that, now, we have the following Toeplitz matrix of mea-

surements:

S̃ �

�
�����

s̃M s̃M�1 � � � s̃0

s̃M�1 s̃M � � � s̃1

...
...

. . .
...

s̃P s̃P�1 � � � s̃P�M

�
����,

where each s̃m � sm�bm. Equivalently, we may write that S̃ � S�B and therefore (2.27)

becomes

S̃h � pS�Bqh � 0. (3.4)
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Here, B is also Toeplitz, and its elements are the noise components associated to each

element of S. Note that the matrices in (3.4) are all of size pP �M �1q�pM �1q, subject

to P � 1 ¥ 2M ¥ 2K. Typically, the noise matrix B is full rank, which makes the noisy

matrix of measurements S̃ become full rank. This is in contrast to the original matrix S

that is rank deficient and of rank K. To be more precise, the conditioning of B is related

to that of C, even though the relation in between both matrices is rather cumbersome (see

Appendix C.5). If C is close to rank deficient so is B, fact that emphasises the importance

for having a well conditioned matrix of coefficients C.

Even though (2.27) no longer holds, it is still possible to obtain the annihilating filter

by solving (3.4) approximately. One way of doing so is to assume h0 � 1 and M � K, then

move the first column of S̃ to the right-hand-side of the equation. The solution to (3.4)

is the vector h that minimises the `2 norm of the error, but considering the only source

of noise appears on the vector of the right-hand-side. This is the least-squares solution,

that can be computed using the pseudoinverse of the matrix of the left-hand-side times

the vector of the right-hand-side.

However, since noise is present in all measurements, it is more appropriate to search

for the solution that minimises the norm }S̃h}2 under the constrain }h}2 � 1. This

is a classical total least square (TLS) problem that can be solved using singular value

decomposition (SVD) [14]. In order to do so, first the matrices U, ∆ and V that satisfy

S̃ � U∆VH , have to be found. Then, the annihilating filter coefficients h are given by the

right singular vector corresponding to the smallest singular value of S̃ or, in other words,

the last column of V. When M � K and since V is of size pM � 1q � pM � 1q, then there

is only one vector in the noise space of S̃ and using SVD we directly determine it is the

last column of V. Also, this vector is of length M � 1 � K � 1 and its roots correspond

to the estimated values for ûk. However, whenever M ¡ K then there are M � K � 1

vectors that form the noise space of S̃ and they are the last M �K � 1 columns of V. In

this case, it is possible to select h as any single one of the vectors of the noise subspace, or

even combine all of them [65]. The solution is now of length M � 1 and the K estimated

values for ûk are among the M roots. We know from Chapter 2 that the noiseless uk lie

on the unit circle, therefore we may choose the K out of the M possible roots that lie

inside or on the unit circle [45,66].

By only applying TLS we are not solving the noisy system of equations (3.4) optimally,

since if we use SVD and keep the last right singular vector we are equivalently finding h

such that S̃Kh � 0, where S̃K is the rank-K approximation of S̃. This implies that

S̃K does not maintain the original Toeplitz form of S̃. In fact, we really want to solve

what is known as the structured low-rank approximation problem [67] that attempts at

finding the rank-K Toeplitz matrix Ŝ that is closest to S̃ in the sense that it minimises

the distance }Ŝ � S̃}, for some matrix norm. This problem is linked to structured total

least squares [48,49].

Therefore we do better by solving a constrained SVD problem that retains the Toeplitz

structure of S̃ and at the same time reduces its rank. In his paper, Cadzow [47] suggests
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3.2. Retrieval of FRI signals in the presence of AWGN

a simple approach that attempts at refining the solution given by the TLS method by

solving the structured SVD problem. The idea is to first apply a rank-reduction operation

by keeping the K largest singular values and replacing the smallest singular values by

zero. Then, the Toeplitz structure is forced by making the diagonals entries equal to the

average value along the elements of the diagonals of the low rank approximation. Iterating

between these two operations, Cadzow’s algorithm converges to a local minimum of the

function defined by the distance to the closest reduced-rank Toeplitz matrix [44]. This

procedure works best when S̃ is as close as possible to a square matrix [14], and so a good

choice would be using M � P
2 . Even though this algorithm works well in practice [44], De

Moor showed that the process does not guarantee the optimum rank-K Toeplitz matrix

is obtained [67, 68]. To conclude, we summarise the TLS-Cadzow routine in the box

Algorithm 2.

3.2.2 The subspace estimator method

The subspace estimator is a robust parametric estimation algorithm that directly estimates

uk without the need of calculating the annihilating filter coefficients hm. As such, it

achieves comparable denoising performance to the TLS-Cadzow routine, but it is not

iterative. The subspace estimator is based on the shift-invariance property derived from

the pencil (2.17) that also holds for the matrices U and V containing the left or right

singular vectors of the SVD decomposition of S in (2.17). The method obtains the SVD

decomposition of such matrix and estimates uk as the eigenvalues of an operator that

maps either U0 onto U1 or V0 onto V1.

To be more specific, consider the Hankel (equivalent to Toeplitz) matrix of ideal mea-

surements

S �

�
�����

s0 s1 � � � sM

s1 s2 � � � sM�1

...
...

. . .
...

sP�M sP�M�1 � � � sP

�
���� (3.5)

where sm are as in (2.20) for m � 0, . . . , P . Then, this matrix can be decomposed as

S �

�
�����

1 1 � � � 1

u0 u1 � � � uK�1

...
...

. . .
...

uP�M0 uP�M1 � � � uP�MK�1

�
����

loooooooooooooooooooomoooooooooooooooooooon
U

�
�����
x0 0 � � � 0

0 x1 � � � 0
...

...
. . .

...

0 0 � � � xK�1

�
����

loooooooooooooomoooooooooooooon
∆

�
�����

1 u0 � � � uM0
1 u1 � � � uM1
...

...
. . .

...

1 uK�1 � � � uMK�1

�
����.

loooooooooooooooomoooooooooooooooon
VH

This factorization is not unique, in fact S � pUPqpP�1∆QqpQ�1VHq is another possibil-

ity, for any P and Q of size K �K that are invertible.

In order to be precise, we introduce some notation that we use throughout the section.

Assume the noiseless matrix S is as in (3.5) of dimensions pP �M�1q�pM�1q � d1�d2,
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Algorithm 2 TLS-Cadzow algorithm.

Retrieve the parameters ttk, akuK�1
k�0 of a train of Diracs (2.5) from noisy moments using

TLS and Cadzow’s iterative routine.

1: Calculate the sequence

s̃m �
N�1̧

n�0

cm,nỹn for m � 0, . . . , P ,

from the N noisy samples ỹn given by (3.1).

2: Form the Toeplitz matrix (3.4) using the measurements s̃m. The matrix is of dimen-
sions pP �M � 1q � pM � 1q where P � 1 ¥ 2M ¥ 2K.

3: Calculate the SVD decomposition of the matrix S̃ � US̃∆S̃VH
S̃

. We can write the
SVD components:

S̃ � �UK UM�K�1

� � �∆K 0
0 ∆M�K�1



�
�

VH
K

VH
P�M�K�1



.

4: Truncate S̃ to rank K by using S̃K � UK∆KVH
K . There are more sophisticated

versions of this operation, see [64] for further details.

5: Compute the Toeplitz approximation S̃av to S̃K by averaging over the diagonals. Make
this new matrix be S̃ and repeat from step 3 until some optimality criterion is met.
For example the criterion may be that the ratio between the Kth and the pK � 1qth
singular values of S̃ is above a certain threshold.

6: Obtain the annihilating filter coefficients by solving the system S̃avh � 0.

7: Calculate the roots of the polynomial formed by the filter coefficients ĥpzq �°M
k�0 hmz

�m. These yield directly the estimated values tûkuK�1
k�0 by imposing M � K.

Otherwise, select the K roots inside or on the unit circle for M ¡ K.

8: Compute the estimated time locations of the Diracs by using t̂k � T
λ lnpûkq.

9: Finally, obtain the estimated amplitudes âk as the least square solution of the N
equations

ỹn �
K�1̧

k�0

âkϕ

�
t̂k
T
� n



� 0 n � 0, . . . , N � 1.

The algorithm assumes the noise added to the moments is white and Gaussian, otherwise
see Algorithm 3.
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3.2. Retrieval of FRI signals in the presence of AWGN

then the SVD decomposition can be written as follows:

S �
�
UK UM�K�1

	
loooooooooomoooooooooon

USpd1�d2q

�
�

∆K 0

0 0

�
looooomooooon
∆Spd2�d2q

�
�

VH
K

VH
P�M�K�1

�
loooooooomoooooooon

VH
S pd2�d2q

(3.6)

since S is of rank K. Here UK is d1 � K, ∆K is K � K and VH
K is K � d2. The

columns of UK and of VK span the signal subspace. The remaining vectors characterise

the orthogonal complement of the signal subspace (or the null space of S). Note also that

the noiseless matrix satisfies S � UK∆KVH
K .

Importantly, U and V satisfy the shift-invariance subspace property [60]. This means

that U � UΦ and V � VΦH , where the operations p�q and p�q are for omitting the first

and last rows of p�q respectively 1, and Φ is a K �K diagonal matrix with uk in its main

diagonal. This is also true for any of the matrices UP and VQ of the other possible

factorisations of S. Specifically, UP � UPP�1ΦP and VQ � VQQ�1ΦHQ. Since

P�1ΦP is a similarity transformation on Φ, the new matrix has the same eigenvalues uk
2.

Both noiseless matrices UK and VK are of rank K, the same as U and V, hence

there exist K �K non-singular matrices P and Q such that UK � UP and VK � VQ.

Thus, matrices UK and VK satisfy the shift-invariance property, and the values uk are

the eigenvalues of an operator that maps UK onto UK or VK onto VK . This operator is

either Z � U�
KUK or Z � pV�

KVKq�. The minimum required size of the data matrix S

in the noiseless case is pK � 1q � pK � 1q.
We have already mentioned that a key feature of matrix S is that it is of rank K,

property that changes in the presence of noise. Therefore the components of the SVD

decomposition of the noisy matrix S̃ do not satisfy the shift-invariance property. However,

consider the presence of additive white Gaussian noise (AWGN) on the measurements.

Since this has little effect on the principal singular vectors [69, 70], those corresponding

to the K dominant singular values (that is ŨK and ṼK) will be good estimates of the

singular vectors of the original, noiseless matrix S (UK and VK). In the presence of noise,

the pole estimating operator becomes either Z � Ũ
�
KŨK or Z � pṼ�

KṼKq�.

Furthermore, the subspace estimator can be used to improve the accuracy on the

estimation of the locations tk � T lnpukq
λ . The Vandermonde structure of U and V allows

for a more general version of the shift-invariance property [60], since it is also true that

U
p � UpΦ

p and V
p � VppΦHqp, with p a positive integer and where p�qp and p�q

p
are

for omitting the first and last p rows of p�q. The main difference is that now matrix Φp

has elements upk � eλ
ptk
T on its main diagonal. Therefore, the advantage of using values

of p larger than one is that the separation among the estimated time delays is increased

p times. This enhances the resolution capabilities of the original method. However, note

1Here U is exactly U1 when the first row is removed, and U is exactly U0 when the last row is
removed. The same would apply if columns were removed, but we keep derivations consistent with [60].

2From the original relation Φx � λx it is also true that ΦPx1 � λPx1 where x � Px1 with P invertible.
Finally, P�1ΦPx1 � λx1, which means Φ are the eigenvalues of P�1ΦP.
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Chapter 3. Sampling and recovery of FRI signals in the presence of noise

that for each computed eigenvalue upk, there exists a set of p possible time delays tk � lT
p ,

where l � 0, 1, . . . , p � 1. This ambiguity may be removed by successive approximations

of the locations given by using increasing values of p [60].

3.2.3 Other approaches

Noisy FRI has also been treated in [10]. The authors present a simple algorithm that

reduces the noise in the moments and, hence, the estimation error by oversampling. Their

idea consists in first separating the samples into their polyphase components, to then

calculate the moments of the input from each component independently and average the

obtained values. This method is adapted by Berent et al. in [16] to the case of sampling

piecewise sinusoidal signals, but without the explicit need for oversampling.

The problem has also been examined from a stochastic modelling perspective by Tan

and Goyal [71], using Gibbs sampling. Unlike previous approaches, the sampling ker-

nel plays no fundamental role in the reconstruction algorithm. The authors use Gibbs

sampling in order to extract the innovation parameters from their posterior distribution,

assuming the noise can be fully modelled, with the goal of minimising the mean square

error of the estimated parameters. Their motivation is that their approach effectively

circumvents the ill-conditioning of the problem that algebraic methods do not. Erdozain

and Crespo build upon Tan and Goyal’s work in [72] by embedding Gibbs sampling within

the framework of a genetic algorithm, the rationale being that genetic algorithms bring

mechanisms to escape local minima in optimisation problems.

Up to our work, using state-of-the-art algebraic techniques [2, 60] for recovering a

stream of Diracs from noisy samples taken by a Gaussian kernel led to a reconstruction

stage that was very unstable. This normally resulted in inaccurate estimation of the

innovation parameters via algebraic methods, even with the help of the preconditioning

matrices proposed in [60]. The inaccuracy of the estimation was in part alleviated by

the stochastic procedures explained before, but at the expense of requiring much longer

execution times. With the use of a better form of prewhitening that we introduce in the

next sections and, moreover, with the use of the universal FRI recovery of Chapter 5, we

are able to achieve optimal accuracy as well as minimal execution times given by algebraic

solutions. Note also that the simple alternatives by Tan and Goyal [71] and Erdozain and

Crespo [72] are difficult to generalised for kernels other than the Gaussian function and

noises other than additive, white and Gaussian.

3.3 FRI reconstruction in the presence of coloured noise

Consider again Equation (3.2) and assume that the noise measurements bm are not i.i.d.

Gaussian random variables. As a consequence, the entries of the Toeplitz noise matrix

B may no longer have the same variance and may even be correlated. That is, the

covariance matrix RB � EtBHBu is not a multiple of the identity. In this situation,
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3.3. FRI reconstruction in the presence of coloured noise

SVD is not guaranteed to correctly separate the signal and noise subspaces. Nevertheless,

we may still solve the problem if we know or can estimate the covariance matrix of the

noise RB. The reason is that we can recover the appropriate subspaces by considering the

SVD of the matrix S̃1 � S̃W, where W is a whitening matrix such that WHRBW � I.

“Pre-whitening” is a well known approach proposed by various authors in the spectral

estimation community (for instance by De Moor in [63] or Jensen et al. in [64]). A

form of preconditioning was also successfully used in the context of FRI by Maravic and

Vetterli [60].

There exist various ways to modify the original covariance matrix of the coloured

noise. Provided RB is positive definite, we can factor it using Cholesky decomposition:

RB � QTQ. This gives a weighting matrix equal to W � Q�1 [64]. If the matrix is

not positive definite, or is almost rank deficient, we may use a weight equal to the square

root of the pseudoinverse of the covariance matrix, i.e. W � R
:{2
B [73]. We can perform

the operation via the SVD of the noise covariance matrix RB by calculating the square

root of the inverse of the values (that are greater than zero) of the diagonal matrix of

the decomposition. To end, another possibility consists in looking for two matrices F and

G such that S̃1 � FSG is contaminated by noise B̃1 � FBG with a covariance matrix

with constant diagonal elements [60]. This means that we can think of the entries of the

weighted noise FBG as being samples of Gaussian noise, with the same variance, but

not necessarily uncorrelated. The authors use diagonal matrices so that their method is

simple: it involves only averaging along rows/columns and avoids matrix inversion, while

achieving the desired goal. We do not deal with this approach any further for various

reasons: It works well for the Gaussian kernel of [60], since the diagonal matrices are

easy to find, however it is not straightforward to use for exponential reproducing kernels.

The noise is not de-correlated in general, hence we cannot guarantee that FRI algorithms

work optimally on S̃1 � FSG. And last, TLS-Cadzow and the subspace estimator are

more easily adapted to the case of having only a post-multiplication weight: S̃1 � S̃W, as

shown next.

3.3.1 Modified TLS-Cadzow algorithm

Suppose we use TLS and Cadzow on the weighted matrix S̃1 � S̃W. Then, once we modify

the singular values of S̃1, we need to revert the effect of weighting. If we need to obtain an

approximation to S̃, we can reconstruct S̃ � S̃1W�1. If, on the other hand, we just want

to find the vector h solution to the minimisation problem, we can find the vector h0 of the

null-space of S̃1 and then compute h � W�1h0. In any case, the explicit use of W and

its inverse may result in inaccurate data calculations [63]. This can be avoided by using

the quotient singular value decomposition (QSVD) of the pair pS̃,W�1q [63, 64]. This

decomposition is also known as generalised singular value decomposition (GSVD) [59].

QSVD has the advantage that it allows us to use the TLS-Cadzow routine such that

the use of the weighting matrix itself W is not needed. In fact, if we perform the QSVD
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Chapter 3. Sampling and recovery of FRI signals in the presence of noise

on the pair pS̃,W�1q we obtain unitary matrices U and V and also a non-singular matrix

X so that the following holds [64]:

S̃ � U∆XH

W�1 � VΣXH
(3.7)

where ∆ � diagpδ1, . . . , δM�1q and Σ � diagpσ1, . . . , σM�1q, with δi ¥ δi�1, i � 1, . . . ,M�
1 and σi ¤ σi�1, i � 1, . . . ,M � 1. Then, we can show that formulation (3.7) is equivalent

to calculating the SVD of S̃1 � S̃W, by noting that:

S̃W � U∆XHpVΣXHq�1 � U∆XHpXHq�1Σ�1VH � Up∆Σ�1qVH . (3.8)

Here, we have used V�1 � VH . The matrices U, ∆Σ�1 and V are identical to those of

the SVD of S̃1 � UDVH , with D � ∆Σ�1. Thus, working with the QSVD of pS̃,W�1q is

mathematically equivalent to working with the SVD of S̃1. In fact, the whitening operation

is now an integral part of the algorithm, by means of the QSVD operation, and we can

apply TLS-Cadzow to S̃ � U∆XH as explained in the box Algorithm 3.

3.3.2 The modified subspace estimator method

We begin the section by noting that, to the best of our knowledge, the way we now modify

the subspace estimator of Section 3.2.2 to include prewhitening is a novel contribution to

FRI and spectral estimation. We apply a prewhitening transform to the Hankel matrix

of moments S̃ and show that finding the values uk can be performed directly without the

need of reverting prewhitening. It is important to highlight that this modification can be

used only when we post-multiply (or pre-multiply) S̃ by a whitening transform. It can thus

not be used with the preconditioning step of [60] since the authors employ a modification

equal to S̃1 � FSG.

Moreover, according to our experience, the modified versions of the TLS-Cadzow rou-

tine and of the subspace estimator method are similarly effective in the noisy FRI setting,

the advantage of the latter that it is not iterative. Therefore, we choose the modified

subspace estimator as our retrieval method for the rest of the thesis.

We have already described the subspace method when the measurements are corrupted

by AWGN: we obtain the SVD decomposition of S̃ � UΛVH , keep the K columns of

U corresponding to the dominant singular values and compute uk as the eigenvalues of

U�
KUK , where p�q and p�q are operations to omit the last and first rows of p�q.

Consider now the more general case of B being due to non-white Gaussian noise. In

such situation, we have seen that it is necessary to work with a pre-whitened version of

the noisy matrix, i.e. S̃1 � S̃W̃. We note that we can still recover the appropriate signal

poles uk by applying the subspace estimator directly to S̃1. In order to verify this fact,

first note that the matrix S1 � SW is still of rank K, provided W is full-rank. Second,
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Algorithm 3 Modified TLS-Cadzow algorithm.

Retrieve the parameters ttk, akuK�1
k�0 of a train of Diracs (2.5) from noisy moments using

TLS and Cadzow’s iterative routine. This algorithm assumes the noise added to the
moments is coloured.

1: Calculate the sequence

s̃m �
N�1̧

n�0

cm,nỹn for m � 0, . . . , P ,

from the N noisy samples ỹn given by (3.1).

2: Choose M P rK,P s and build the rectangular Toeplitz matrix (3.4) using the mea-
surements s̃m.

2: Calculate or estimate the noise covariance matrix RB. Then choose a weighting matrix
such as the inverse of the Cholesky factor W � Q�1 of RB � QTQ or the pseudo-

inverse of the square root of the covariance matrix W � R
:{2
B .

3: Perform the QSVD decomposition of pS̃,W�1q, to obtain matrices U, ∆, Σ, V and
X as in (3.7). Build the diagonal matrix ∆K keeping only the K largest elements of
∆, and deduce the total least-squares approximation S̃K � UK∆KXH

K .

4: Construct the best Toeplitz approximation S̃av by averaging the diagonals of S̃K . At
any iteration, this new matrix gives a denoised set of moments, s̃1m. Make S̃ � S̃av

and repeat from step 3 until, for instance, the pK � 1qth largest diagonal element of
D is smaller than the Kth element by a predefined factor.

5: Obtain the annihilating filter coefficients by solving the system S̃avh � 0.

6: Calculate the roots of the polynomial formed by the filter coefficients ĥpzq �°M
k�0 hmz

�m. These yield directly the estimated values tûkuK�1
k�0 by imposing M � K.

Otherwise, select the K roots inside or on the unit circle for M ¡ K.

7: Compute the estimated time locations of the Diracs by using t̂k � T
λ lnpûkq.

8: Finally, obtain the estimated amplitudes âk as the least mean square solution of the
N equations

ỹn �
K�1̧

k�0

âkϕ

�
t̂k
T
� n



� 0 n � 0, . . . , N � 1.
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we have seen that matrix S can be decomposed as

S �

�
�����

1 1 � � � 1

u0 u1 � � � uK�1

...
...

. . .
...

uP�M0 uP�M1 � � � uP�MK�1

�
����

loooooooooooooooooooomoooooooooooooooooooon
U

�
�����
x0 0 � � � 0

0 x1 � � � 0
...

...
. . .

...

0 0 � � � xK�1

�
����

loooooooooooooomoooooooooooooon
∆

�
�����

1 u0 � � � uM0
1 u1 � � � uM1
...

...
. . .

...

1 uK�1 � � � uMK�1

�
����,

loooooooooooooooomoooooooooooooooon
VH

then, S1 � U∆VHW � U∆V1H , where V1 � WHV. Moreover, since S1 is still of rank

K, then its SVD should look like:

S1 �
�
U1
K U1

M�K�1

	
loooooooooomoooooooooon

US1

�
�

∆1
K 0

0 0

�
looooomooooon

∆S1

�
�

V1H
K

V1H
P�M�K�1

�
looooooooomooooooooon

VH
S1

. (3.9)

Equivalently, the SVD may be written in an “economic” form as S1 � U1
K∆1

KV1H
K .

Then, it is possible to find matrices P and Q of size K �K that are invertible such

that the following holds:

S1 � pUPqloomoon
U1
K

pP�1∆Qqloooomoooon
∆1
K

pQ�1pWHVqHqlooooooooomooooooooon
V1H

K

. (3.10)

Note that now it is only U that still satisfies the shift-invariance property: U � UΦ. The

same relation does not apply to V1 � WHV any more.3 Consequently, also UK � UP

satisfies the property, i.e. UP � UPP�1ΦP.

To conclude, then, matrix U1
K satisfies the shift-invariance property, and the values uk

are the eigenvalues of an operator that maps U1
K to U1

K . This operator is Z � U1
K
�U1

K .

The fact that the parameters uk can be obtained without inverting the whitening transform

W is a very useful feature of the subspace estimator method. We summarise the main

steps of this routine in Algorithm 4.

3.4 Measuring the performance: The Cramér–Rao lower

bound

In order to analyse the effect of noise on the accuracy with which FRI signals can be

recovered we may use the Cramér–Rao lower bound (CRB). This is a lower bound on the

mean square error (MSE) achievable by any unbiased estimator [74]. As such, it provides

a measure of the difficulty of a given estimation problem, and can indicate whether or

3In [60] the authors prove the shift-invariance property for UP. From this proof, it immediately follows
that only when U satisfies the shift-invariance property and is post-multiplied by an invertible matrix, then
UP satisfies the property too. If, on the other hand, the matrix is pre-multiplied by an invertible matrix,
the property does not hold.
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Algorithm 4 Modified subspace estimator method.

Retrieve the parameters ttk, akuK�1
k�0 of a train of Diracs (2.5) from noisy moments using

TLS and Cadzow’s iterative routine. This algorithm assumes the noise added to the
moments is coloured.

1: Calculate the sequence

s̃m �
N�1̧

n�0

cm,nỹn for m � 0, . . . , P ,

from the N noisy samples ỹn given by (3.1).

2: Then, choose M P rK,P s and build the rectangular Toeplitz S̃ with the sequence s̃m.
Here S̃ � S�B.

2: Estimate RB � EtBHBu and define the new matrix S̃1 � S̃W, where W � R
�:{2
B .

3: Apply the subspace estimator method to S̃1: Obtain the decomposition S̃1 � UΛVH ,
keep the K columns of U corresponding to the K dominant singular values and esti-
mate uk as the eigenvalues of U�

KUK . Here, p�q and p�q are operations to omit the last
and first rows of p�q.

4: Compute the estimated time locations of the Diracs by using t̂k � T
λ lnpûkq.

5: Finally, obtain the estimated amplitudes âk as the least mean square solution of the
N equations

ỹn �
K�1̧

k�0

âkϕ

�
t̂k
T
� n



� 0 n � 0, . . . , N � 1.
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not existing techniques come close to optimal. It can also be used to measure the relative

merit of different types of estimation algorithms.

FRI signals are completely characterised by their innovation parameters. For instance,

a stream of K Diracs is completely specified from the locations ttkuK�1
k�0 and amplitudes

takuK�1
k�0 . Consider the vector Θ � pt0, . . . , tK�1, a0, . . . , aK�1qT ; then the goal is to es-

timate Θ from the vector of N noisy samples ỹ � pỹ0, . . . , ỹN�1qT given by (3.1). For

simplicity we assume the sampling period is T � 1. A way to determine the CRB of

this estimation problem was given in [14] assuming εn is a zero-mean Gaussian noise with

covariance matrix R � EteeHu, where e is a vector of length N with values εn. In

the set-up of [14] it was shown that any unbiased estimate of the unknown parameters

Θ̂pỹq � pt̂0, . . . , t̂K�1, â0, . . . , âK�1qT has a covariance matrix that is lower bounded by

covpΘ̂q ¥ pΦT
yR�1Φyq�1, (3.11)

where the matrix Φy is given by4

Φy �

�
�����

a0ϕ
1pt0q . . . aK�1ϕ

1ptK�1q ϕpt0q . . . ϕptK�1q
a0ϕ

1pt0 � 1q . . . aK�1ϕ
1ptK�1 � 1q ϕpt0 � 1q . . . ϕptK�1 � 1q

...
. . .

...
...

. . .
...

a0ϕ
1pt0 � pN � 1qq . . . aK�1ϕ

1ptK�1 � pN � 1qq ϕpt0 � pN � 1qq . . . ϕptK�1 � pN � 1qq

�
����. (3.12)

While this is one possible way to measure the performance of various FRI recovery

techniques [14, 60] given the noisy samples ỹ, we also note that if we use kernels that

reproduce exponentials, we need the sequence of moments s̃ � Cỹ. Then the goal is

to estimate Θ from the vector of P � 1 noisy measurements s̃ � ps̃0, . . . , s̃N�1qT given

by (3.2). It is therefore of interest to find the CRB associated to the measurements s̃

of (3.2), since this will indicate the best performance that can be achieved when working

with s̃. In this context, however, expression (3.11) needs to be generalised [75]:

covpΘ̂q ¥ pΦH
s R�1

b Φsq�1, (3.13)

where Rb � EtbbHu and now we use the Hermitian transpose of matrix Φs. Here, b is

the vector of P � 1 noisy samples bm and now the matrix Φs takes the form:

Φs �

�
�����

a0α0eα0t0 . . . aK�1α0eα0tK�1 eα0t0 . . . eα0tK�1

a0α1eα1t0 . . . aK�1α1eα1tK�1 eα1t0 . . . eα1tK�1

...
. . .

...
...

. . .
...

a0αP eαP t0 . . . aK�1αP eαP tK�1 eαP t0 . . . eαP tK�1

�
����. (3.14)

Note that for general complex values s̃, the covariance matrix Rb may not contain all the

information regarding the real and imaginary parts of b. This can be addressed by using

4The matrix can be obtained calculating the derivative of ỹn with respect to each parameter in Θ.
That is, the columns of Φy to the left of | are Bỹn

Btk
and the columns of Φy to the right of | are Bỹn

Bak
.
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augmented vectors formed by stacking s̃ and its complex conjugate [76, 77]. But this is

not an issue in our case, since we use exponential parameters αm that exist in conjugate

pairs, such that s̃ is formed with values that are complex conjugate of each other.

Furthermore, since we have assumed that the noise εn added to the samples is additive,

white and Gaussian, with variance σ2, the covariance matrix of the filtered noise is Rb �
EtbbHu � σ2CCH . Consequently, there is a direct relation between (3.11) and (3.13), that

can be expressed through the matrix C. In order to see this, note that s̃ � Cpy�eq � s�b

and also that Φs � CΦy. Moreover, we know that

covpΘ̂pỹqq ¥ pΦH
y R�1Φyq�1 � σ2pΦH

y Φyq�1,

since the noise εn is AWGN. Thus, it is true that

covpΘ̂ps̃qq ¥ pΦH
s R�1

b Φsq�1 � σ2pΦH
y CHpCCHq�1CΦyq�1 � σ2pΦH

y C:CΦyq�1,

where C: � CHpCCHq�1 is the left pseudo-inverse of C. When the number of moments

P�1 equals the number of samples N , then both formulations are equivalent. This is easily

seen since in such case C:C � C�1C � IN . Intuitively, this is the optimal configuration

because no linear combination of the samples should improve the estimation based on the

samples themselves. Retrieving the innovation parameters through the moments when

P � 1   N is instead suboptimal.

In Appendix B.1 we provide closed form expressions of the moment-based bound for

the case of a single exponential. We compare the case of having additive white Gaussian

noise with the case of having uncorrelated noise. We compare these since it is easy to

find closed form expressions, but also because they can be obtained from the same set

of parameters αm � j πN p2m � P q for m � 0, . . . , P , the former being characterised by

|cm,0| � 1 for all m (see Appendix C.5).

3.5 Simulations

We now present simulation results for exponential reproducing kernels in the presence of

noise. More specifically, we analyse the performance of E-Splines of various orders for

retrieving a train of Diracs using the subspace estimator method of Section 3.2, compared

to the modified version of Section 3.3 that uses prewhitening. We show that the latter

improves the results of the former for any experiment and, moreover, is optimal according

to the bound predicted by (3.13). Therefore, our goals are to show that our version of the

subspace estimator adapted to sampling with exponential reproducing kernels is the best

we can do to reach the moments based CRB.

We do not present simulations using the TLS-Cadzow routine or its modified version,

since results are equivalent to those given by the subspace estimator.
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Chapter 3. Sampling and recovery of FRI signals in the presence of noise

3.5.1 The experimental setup

We take N � 31 samples following Figure 1.1 by computing yn �
°K�1
k�0 akϕ

�
tk
T � n

�
for

n � 0, . . . , N�1 and k � 0, . . . ,K�1, since the input is a train of K Diracs. The sampling

period is T � 1
N . We corrupt the vector of samples y with additive white Gaussian noise

of fixed variance σ2. This is related to the signal-to-noise ratio for the samples, defined as

SNRpdBq � 10 log }y}2

Nσ2 . We finally calculate the noisy P � 1 moments (3.2) and retrieve

the innovation parameters tak, tkuK�1
k�0 of the input, using the subspace estimator method

of Sections 3.2 and 3.3.

We are mainly interested in obtaining the error in the estimation of the time locations,

since these are the most challenging parameters to retrieve. For each Dirac, we show the

standard deviation of this error:

∆tk �
d°I�1

i�0 pt̂piqk � tkq2
I

k � 0, . . . ,K � 1, (3.15)

where t̂
piq
k are the estimated time locations at experiment i and I is the total number of

realisations. We calculate (3.15) for a range of fixed signal-to-noise ratios and average the

effects using I � 1000 noise realisations for each SNR. We compare the performance (3.15)

with the square root of the variance predicted by the two different Cramér–Rao bounds

(CRB) of Section 3.4: the sample-based CRB (3.11) and the moment-based CRB (3.13).

3.5.2 Results

In Figure 3.2 (a, c, e) we present simulation results when we retrieve K � 1 Diracs using

E-Spline kernels and the subspace estimator method of Section 3.2. Then, in Figure 3.2 (b,

d, f) we present the results obtained when we retrieve the same Dirac using the modified

method of Section 3.3. For any order P � 1 the latter method, which uses prewhitening,

improves the accuracy of the estimated location for every SNR, and reaches the moment-

based CRB predicted by (3.13) (in red, denoted s-CRB in the legend). Note that both

the estimation error and the moment-based CRB get closer to the sample-based CRB (in

black, and denoted y-CRB in the legend) as the value of P � 1 increases. The exponential

parameters are equal to αm � j π
P�1p2m� P q with m � 0, . . . , P .

3.6 Summary

In this chapter we have examined various FRI procedures to estimate the innovation

parameters ptk, akq of a train of K Diracs in the presence of noise. We have limited our

analysis to the scenario of adding white Gaussian noise to the samples yn taken by the

sampling kernel. Due to the fact that we mainly use exponential reproducing kernels,

we have presented modified versions of existing denoising methods that appeared before

in the literature. Specifically, we have adapted the TLS-Cadzow routine of [14] and the
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Figure 3.2: Performance of E-Spline kernels. We show the performance of E-Spline
kernels of parameters αm � j π

P�1 p2m � P q with m � 0, . . . , P for different orders P � 1
when noise is added to the samples. (a, c, e) are the errors in the estimation of the
time location of K � 1 Dirac with the subspace estimator method of Section 3.2. (b,
d, f) are for the modified method of Section 3.3. For any order the latter method
improves the accuracy of the estimated location, and reaches the moment-based CRB
predicted by (3.13).

69



Chapter 3. Sampling and recovery of FRI signals in the presence of noise

subspace estimator method suggested in [60] to working with coloured noise added to the

moments sm.

The way we modify the TLS-Cadzow routine of [14] is new to FRI, but is well known

in the spectral estimation literature [63, 64]. On the other hand, the way we modify the

subspace estimator of [60] is, to the best of our knowledge, a unique contribution of this

thesis to FRI and spectral estimation.

In addition, we have used the CRB to measure the difficulty of estimating the innova-

tion parameters of the input from the samples yn, as suggested in [14]. Moreover, we have

introduced a performance measure that is better suited to our retrieval scenario: the CRB

lower bound associated to the exponentials that compose the power sum series (2.21),

which is a novel contribution to FRI. With such bound, we are able to determine whether

the FRI retrieval procedures presented throughout the chapter come close to optimal, i.e.

if they reach the CRB.

We have validated our proposed algorithms through simulations and found that it is

only the modified versions of the state-of-the-art denoising methods that are able to reach

the CRB.
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Chapter 4

Optimising noisy FRI recovery

In the previous chapter we have studied the noisy FRI scenario and reviewed the main

techniques used in the FRI literature to deal with measurements that are not ideal. We

have also adapted the two main subspace based techniques, i.e. the total least squares

and Cadzow approach and the subspace estimator method, to behave optimally in the

presence of coloured noise. Optimality is in the sense that the modified techniques reach

the moment-based CRB whereas the original methods do not. In this chapter we use a

different perspective to analyse the noisy scenario even further: we optimise the sampling

kernel in order to make the retrieval of the parameters of a train of Diracs most accurate

and stable. We restrict our attention to exponential reproducing kernels, and determine

the best kernels in this family for noisy FRI retrieval.

We begin the chapter in Section 4.1 with an analysis of the various sources of instability

for FRI recovery. We end the section with a practical method to select the best exponen-

tial parameters for our FRI problem, which translates into selecting a proper matrix of

coefficients C. Then, in Section 4.2 we apply the conclusions of the previous section to de-

sign exponential reproducing kernels of maximum order and minimum support (eMOMS)

that are most robust to white Gaussian noise added to the samples. We then derive a

more general family of eMOMS that may be built from other non-optimal matrices C.

We conclude the section by computing the CRB associated to the estimation problem

of retrieving the parameters of a single Dirac from the samples taken by these kernels.

In Section 4.3 we provide simulations that prove these new kernels outperform E-Splines

and are always able to reach the moment-based CRB and then conclude the chapter in

Section 4.4.
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Chapter 4. Optimising noisy FRI recovery

4.1 Sources of instability for FRI reconstruction

The FRI recovery process is in all equivalent to finding the parameters xk and uk of the

power sum series

s̃m �
K�1̧

k�0

xku
m
k � bm, (4.1)

for m � 0 . . . , P and where xk � ake
α0

tk
T and uk � eλ

tk
T with k � 0, . . . ,K � 1. In what

follows we analyse the sensitivity of the problem under noise bm that is not necessarily

white and establish the parameters that lead to most stable reconstruction.

4.1.1 Parametric retrieval from the noisy series

In the previous chapters we have established that in order to obtain the parameters xk

and uk from the above series, we may construct a system of equations S̃1h � 0 and solve

the system using for instance the annihilating filter or the subspace estimator methods.

Here, S̃1 � pS � BqW where S and B are Hankel. Note that S can be decomposed as

follows: S � U �∆ �VH , where U and V are Vandermonde matrices with nodes uk and

∆ is diagonal with elements xk. Complex square Vandermonde matrices are perfectly

conditioned when the generating elements uk are uniformly spread on the unit circle [78].

Rectangular matrices, on the other hand, may be well conditioned provided the nodes are

close to the unit circle, sufficiently separated from each other and when the number of

rows is large enough [79]. In addition, the matrix of coefficients C plays a fundamental

role since the whitening transform W is related to the covariance matrix of B, for instance

W � R
�1{2
B , and this is turn is directly related to C (see Appendix C.5).

The sensitivity of the estimation problem can be derived by inspecting S̃1h � 0. When-

ever any of the matrices that compose S1 are ill-conditioned, then the estimation problem

becomes ill-conditioned as well. The condition numbers of U and V grow exponentially

large with K when the nodes uk � eλ
tk
T are not on the unit circle [51]. This source of

instability is inherent to the exponential parameters αm. When we use parameters that

exist in complex conjugate pairs:

αm � α� j
π

L
p2m� P q, m � 0, . . . , P, (4.2)

for the kernel to be real valued, then α0 � α � j πPL and λ � j 2π
L , that is, λ is purely

imaginary. This implies that the nodes uk always lie on the unit circle. Ideally, the

nodes should be such that they span the unit circle, however their distance in the complex

plane is determined by the time separation of the Diracs, the sampling period T and the

parameter L. As such, this distance is normally fixed for a given sampling setup, the only

free parameter being L. The condition number of ∆ is related to the ratio between the

largest and the smallest coefficients |xk| � |akeα0
tk
T |. This translates into the fact that the

more similar the coefficients, the better the conditioning of ∆. Thus, if α0 is also purely

72



4.1. Sources of instability for FRI reconstruction

imaginary we are guaranteed that the original ratio |amax|
|amin|

is preserved. The condition

of W is not straightforward to determine but we know that it directly depends on the

condition of matrix of coefficients C. Therefore, we now study the form of C in more

detail.

4.1.2 Choice of matrix C

The first step in the FRI reconstruction stage is to transform the vector of samples y into

the vector of moments s � Cy, therefore, our first aim is to get a well conditioned C.

Matrix C is composed of elements cm,n � cm,0eαmn at position pm,nq, where n �
0, . . . , N � 1 and m � 0, . . . , P . Therefore, we may decompose it as follows:

�
�����
c0,0 c0,0eα0 � � � c0,0eα0pN�1q

c1,0 c1,0eα1 � � � c1,0eα1pN�1q

...
...

. . .
...

cP,0 cP,0eαP � � � cP,0eαP pN�1q

�
����

looooooooooooooooooooooomooooooooooooooooooooooon
C

�

�
�����
c0,0 0 � � � 0

0 c1,0 � � � 0
...

...
. . .

...

0 0 � � � cP,0

�
����

loooooooooooooomoooooooooooooon
D

�
�����

1 eα0 � � � eα0pN�1q

1 eα1 � � � eα1pN�1q

...
...

. . .
...

1 eαP � � � eαP pN�1q

�
����

loooooooooooooooomoooooooooooooooon
V

,

where D is diagonal and V Vandermonde. Hence, to have a stable C we want the absolute

values of the diagonal elements of D to be the same, for instance |cm,0| � 1. Moreover, we

want the elements in V to lie on the unit circle, hence we select:

eαmn � ej
π
L
p2m�P qn for m � 0, . . . , P , i.e. α � 0, (4.3)

where L is a free parameter that allows us to control the separation in between consecutive

elements of V.

Purely imaginary αm make the Vandermonde matrix V better conditioned [78]. We

are therefore only left with the problem of finding the best L in (4.3). Since we have

experimentally seen that FRI algorithms are able to reach the moment CRB (3.13) if C is

well conditioned, one way to determine L is to choose the value that minimises (3.13) for

the location of a single Dirac. We observe that the minimum is achieved when L � P�1, as

shown in Figure 4.1 for various choices of P and L, given |cm,0| � 1 for all m. Even though

we have no mathematical proof, we believe this to be a general phenomenon. The reason

is that, when |cm,0| � 1 for all m, the noise added to the moments is approximately white

regardless of L (but more exactly the closer L is to N) and, as we show in Appendix B.1,

the moment-based CRB is then minimised when L � P � 1.

In addition, this choice ensures that the exponentials span the entire unit circle, which

is well known to be the best configuration when recovering the parameters of a power

series [51]. Finally, if we impose P � 1 � N , besides minimising (3.13), we also ensure

that the moment-based CRB in (3.13) matches the sample-based bound in (3.11), leading

to the best possible performance. In this situation, the matrix C is square and unitary.

This is the most stable numerical transformation since its condition number is one.

73



Chapter 4. Optimising noisy FRI recovery

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L/(P+1)

C
R
B
(t

0
)

 

 
P=5
P=10
P=15
P=20

Figure 4.1: CRB vs. L. Here we plot various CRB values (3.13) (σ � 1) for coefficients
satisfying |cm,0| � 1, m � 0, . . . , P when we vary L in equation (4.2), α � 0. For any value
of P the CRB is minimised when L � P � 1 (note that all the lines are monotonically
increasing).

In summary, the best exponential reproducing kernels should reproduce exponentials

with exponents of the form αm � j π
P�1p2m � P q provided |cm,0| � 1 for m � 0, . . . , P .

Finally, whenever possible, the order of the kernel (which equals the number of moments)

should be P � 1 � N . However, there are instances in which the condition P � 1 � N

cannot be imposed. Thus, in the next section we show how to obtain the best kernels but

we require no constraint on P � 1.

4.2 Exponential MOMS

Equipped with the analysis of the previous section we now design optimal exponential

reproducing kernels of maximum-order and minimum-support (eMOMS). As discussed

before, we require |cm,0| � 1 for m � 0, . . . , P and the exponential parameters to be of the

form:

αm � jωm � j
π

P � 1
p2m� P q m � 0, . . . , P. (4.4)

To start, we note that by using (2.7) we have

1 � cm,0
¸
nPZ

eαmpn�tqϕpt� nq

paq� cm,0
¸
kPZ

ϕ̂pαm � j2πkqej2πkt

pbq� cm,0ϕ̂pαmq,

where paq follows from Poisson summation formula (1) and pbq from the application of the

generalised Strang-Fix conditions (2.8). Therefore, we have that for any exponential re-

producing kernel cm,0 � ϕ̂pαmq�1, where ϕ̂pαmq is the Laplace transform of ϕptq evaluated

at αm, and cm,n � cm,0eαmn.
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By taking into account that an exponential reproducing kernel ϕptq can be written

as ϕptq � γptq 
 β~αptq, we design γptq so that |cm,0| � 1 is satisfied for m � 0, . . . , P .

Since we know that cm,0 � ϕ̂pαmq�1, we then realise that imposing |cm,0| � 1 is equivalent

to requiring |ϕ̂pαmq| � 1. Finally, by using ϕ̂pαmq � γ̂pαmqβ̂~αpαmq and evaluating the

Laplace transforms at αm � jωm, we arrive at the following condition on γ̂pωmq:

|ϕ̂pωmq| � |γ̂pωmqβ̂~αpωmq| � 1 Ø |γ̂pωmq| � |β̂~αpωmq|�1, (4.5)

where we now work with the Fourier transform of each function (we have used αm � jωm).

Among all the admissible kernels satisfying (4.5), we are interested in the one with

the shortest support P � 1. We thus consider the kernels given by a linear combination of

various derivatives of the original E-Spline β~αptq, i.e.:

ϕptq �
P̧

`�0

d`β
p`q
~α ptq, (4.6)

where β
p`q
~α ptq is the `th derivative of β~αptq, with β

p0q
~α ptq � β~αptq, and d` is a set of coeffi-

cients. This is like saying that γptq is a linear combination of the Dirac delta function and

its derivatives, up to order P [80]. These kernels are still able to reproduce the exponen-

tials eαmt and are a variation of the maximum-order minimum-support (MOMS) kernels

introduced in [42]. This is why we call them exponential MOMS (or eMOMS). They are

also a specific case of the broader family of generalised E-Splines presented in [41] (and

that we briefly reviewed in Chapter 2). The advantage of this formulation is twofold:

First, the modified kernel ϕptq is of minimum support P � 1, the same as that of β~αptq.
Second, we only need to find the coefficients d` that meet the constraint (4.5), in order to

achieve |cm,0| � 1. Using the Fourier transform of (4.6), which is given by:

ϕ̂pωq � β̂~αpωq
P̧

`�0

d`pjωq`,

we can satisfy (4.5) by choosing d` so that the resulting polynomial γ̂pωq � °
` d`pjωq`

interpolates the set of points (ωm, |β̂~αpωmq|�1q for m � 0, 1, . . . , P .

Once we have designed the kernels such that cm,0 has modulus one for all m, we are left

with a phase ambiguity, since we may write cm,0 � |cm,0|ejωm∆ for m � 0, . . . , P . The form

of the phase comes from the fact that it is equivalent to introducing a time shift ∆ P R for

the E-Spline in (4.6), as we show in the next subsection. The phase gives an additional

degree of freedom and we may obtain its value by imposing, for instance, that the function

be continuous. In order for the exponential MOMS with |cm,0| � 1 and parameters (4.4)

to be continuous-time functions we need that ∆ be an integer greater than or equal to 1

and smaller than or equal to P . In Figure 4.2 we present some of the kernels obtained by

implementing the procedure explained above. Interestingly, as shown in Appendix C.1,

these specific functions always equal one period of the Dirichlet kernel. We also point out

75



Chapter 4. Optimising noisy FRI recovery

that when P � 1 � N the scenario derived using this family of exponential reproducing

kernels converges to the original FRI formulation of [2] when we periodise the input or,

equivalently, the sampling kernel.
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Figure 4.2: Examples of exponential MOMS. These are 6 of the 30 possible kernels
with support P � 1 ¤ N � 31 samples. They coincide with one period of the Dirichlet
kernel of period P � 1 for P even or 2pP � 1q for P odd (see Appendix C.1). All of
them are built selecting the phase of cm,0 such that they are continuous-time functions
centred around ∆ � rP�1

2 s.

To summarise, we have explained how to build exponential reproducing kernels of

maximum order and minimum support characterised by |cm,0| � 1 for m � 0, . . . , P . The

kernels consist of the linear combination (4.6) of the E-Spline β
p`q
~α ptq of parameters (4.4)

and its P derivatives. The coefficients d` are such that the polynomial γ̂pωq � °` d`pjωq`
interpolates the set of points (ωm, |β̂~αpωmq|�1q for m � 0, 1, . . . , P . Note that when P�1 �
N , then C is the inverse discrete Fourier transform (IDFT) matrix of size N�N . In order

to determine the phase of the coefficients, we introduce an additional degree of freedom

∆ and impose continuity of the kernel. We achieve this by using cm,0 � |cm,0|ejωm∆ for

m � 0, . . . , P and an integer shift ∆ P r1, P s.

4.2.1 More general exponential MOMS

The family of eMOMS is, however, not limited to the specific kernels derived so far. For

example, in Appendix C.1 we prove that the SoS family of kernels [15] is a specific instance

of eMOMS, obtained by relaxing condition (4.5) but still using parameters (4.4). Another

example are the E-Spline kernels of Section 2.3.2, which are simply eMOMS generated by

imposing β̂~αpαmq � c�1
m,0 (or equivalently γ̂pαmq � 1) for all m. This means that d0 � 1

and d` � 0 for any other ` in (4.6).

In order to design more general eMOMS, we begin by introducing an additional degree
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4.2. Exponential MOMS

of freedom that removes the phase ambiguity: a time shift ∆ such that (4.6) becomes

φptq � ϕpt�∆q �
P̧

`�0

d`
d`β~αpt�∆q

dt`
. (4.7)

This time domain expression is characterised by the double-sided Laplace transform

φ̂psq �
P̧

`�0

d`s
`β̂~αpsqes∆ � Dpsqβ̂~αpsqes∆,

where the double-sided Laplace transform of an E-Spline is:

β̂~αpsq �
P¹

m�0

1� eαm�s

s� αm
. (4.8)

Assume that we want the exponential MOMS to satisfy the P � 1 conditions (more

general than (4.5)) given by the following system of equations:

φ̂pαmq � Dpαmqβ̂~αpαmqeαm∆ � |c�1
m,0| � ηm, m � 0, . . . , P, (4.9)

where ηm P R and where now αm may have a real part and L � P � 1 as in (4.2). Note

that defining the eMOMS as (4.7) and imposing the conditions (4.9) is equivalent to using

the original eMOMS equation (4.6) and imposing ϕ̂pαmq � c�1
m,0 � |cm,0|�1e�αm∆.

In any case, this is to say that the polynomial Dpsq interpolates the set of points

pαm, ηmβ̂~αpαmq�1e�αm∆q for m � 0, . . . , P . We can find the polynomial via Lagrange

interpolation, by first defining:

`ipsq �
P¹

m�0
m�i

s� αm
αi � αm

with which we can define:

Dpsq �
P̧

i�0

pηiβ̂~αpαiq�1e�αi∆q`ipsq,

since `ipαmq � δm,n. Then, using (4.8) for β̂~αpsq we conclude that

Dpsq �
P̧

i�0

ηie
�αi∆

P¹
m�0
m�i

s� αm
1� eαm�αi

. (4.10)

Finally, we may find ∆ by imposing continuity of the kernel (4.7). The kernel is

continuous when the polynomial (4.10) is of one degree less than the maximum, hence

we may obtain ∆ by making the coefficient for sP be equal to zero. For instance, in the

special case we use exponential parameters αm � jωm � j π
P�1p2m�P q, for m � 0, . . . , P ,
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Chapter 4. Optimising noisy FRI recovery

as in (4.4) and ηi � 1 for all i, then the interpolating polynomial (4.10) becomes:

Dpsq �
P̧

i�0

e�αi∆

P � 1

P¹
m�0
m�i

ps� αmq.

Here we have used the fact that
±P
m�0,m�ip1 � eαm�αiq � P � 1 when the exponential

parameters αm are as in (4.4). We prove this equality in Appendix C.4. Therefore, for

this particular choice of exponential parameters continuity of the kernel implies that

0 �
P̧

m�0

e�jωm∆ � ej
πP∆
P�1

P̧

m�0

e�j
2πm∆
P�1

� ej
πP∆
P�1

1� e�j2π∆

1� e�j
2π∆
P�1

Ø e�j2π∆ � 1

which is equivalent to saying that ∆ is an integer. We thus conclude that for this specific

case, which corresponds to the eMOMS kernels of the previous subsection, ∆ � 1, 2, . . . , P .

4.2.2 Cramér–Rao bound for exponential MOMS

To conclude the section on eMOMS we provide the CRB associated to the problem of

estimating the parameters pt0, a0q of a single Dirac that has been sampled with the kernel

in (4.6). The kernel reproduces exponentials of parameters (4.4), satisfies that c�1
m,0 �

ϕ̂pωmq � ϕ̂m where αm � jωm, and is such that N � P � 11 and P even. This is a

simple case for which it is possible to derive closed form expressions for the deviation of

the location and the amplitude. The proof can be found in Appendix C.2.

The uncertainty in the location satisfies:

∆t0
τ

¥ 1

2π

d
N°

kPK k
2|ϕ̂k|2 PSNR� 1

2 ,

where we have defined the peak signal-to-noise ratio as PSNR � �a0
σ

�2
, and the uncertainty

in the amplitude satisfies:

∆a0

|a0| ¥
d

N°
kPK |ϕ̂k|2

PSNR� 1
2 .

Note that when |ϕ̂k| � 1 for all k, and if we denote K � tk : k � �M, . . . ,Mu, the

1We observe that the condition P � 1 � N can be imposed only for blockwise sampling, e.g. when
sampling periodic signals using N samples. This condition cannot be imposed on infinite length signals
since the number of samples is in this case infinite, and sequential reconstruction algorithms should operate
on blocks with possibly varying number of samples.
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4.3. Simulations

above expressions simplify to:

∆t0
τ

¥ 1

2π

d
3N

MpM � 1qp2M � 1qPSNR� 1
2 , (4.11)

∆a0

|a0| ¥
c

N

2M � 1
PSNR� 1

2 .

We now compare (C.11) with the uncertainty obtained for the CRB associated to

a sum of exponentials in AWGN (B.2), which can be found in Appendix B.1. The two

expressions can be compared by simply multiplying (B.2) by
?
N , which is like saying that

the noise covariance matrix of the noise added to the exponentials is Rb � σ2NI (this

is needed for the scenarios to be equivalent). The equations should match since the FRI

problem described in this section is the same as the problem of estimating the parameters

of the linear combination of the P � 1 exponentials a0eαmt0 for m � 0, . . . , P . By simple

manipulations of both expressions, we conclude that in either case:

∆t0
τ

¥ 1

π

d
3N

P pP � 1qpP � 2qPSNR� 1
2 .

We end by noting that for more general cases, i.e. any (generalised) exponential

reproducing kernel (4.7) of support P �1 ¤ N and exponential parameters (4.2) the above

expressions can be adapted to provide the uncertainties in the location and amplitude of

a single Dirac. We provide a formal derivation of this in Appendix C.3.

4.3 Simulations

We now present the performance of the exponential MOMS kernels compared to the per-

formance of the E-Splines of Chapter 3. We further show the stability of eMOMS kernels

when retrieving a high number of Diracs.

4.3.1 The experimental setup

The setup is the same as that of Chapter 3: We take N samples by computing yn �°K�1
k�0 akϕ

�
tk
T � n

�
for n � 0, . . . , N � 1. The sampling period is T � 1

N unless specified

otherwise. We then either use the noiseless samples or corrupt them with additive white

Gaussian noise of variance σ2, according to the target signal-to-noise ratio SNRpdBq �
10 log }y}2

Nσ2 . We finally calculate the noisy P �1 moments and then retrieve the innovation

parameters tak, tkuK�1
k�0 of the input. We always use the subspace estimator method as

our recovery algorithm, as described in Sections 3.2 and 3.3. eMOMS usually require no

whitening transform, whereas for E-Splines we use W � R
:{2
B .

We present results for single realisations of the sampling and reconstruction process

or for average performance over multiple trials. For the latter, we show the root mean
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square error (RMSE) of the locations:

etk �
d°I�1

i�0 pt̂piqk � tkq2
I

,

where t̂
piq
k is the i-th estimated time location, I is the total number of realisations and etk

the error for each of the K Diracs. We do this for a range of fixed signal-to-noise ratio

(SNR) values and average the effects using I � 1000 noise realisations at each SNR. We

compare the RMSE with the square root of the variance predicted by the sample-based

CRB (3.11) and the moment-based CRB (3.13).

4.3.2 Results

In Figure 4.3 (a-d) we present simulation results when we retrieve K � 2 Diracs from

N � 31 samples using the exponential MOMS kernels of Section 4.2. We specifically show

the deviation in the location of the first Dirac, the deviation of the second Dirac being very

similar. We see that for any order P � 1 eMOMS achieve the moment-based CRB (in red

and denoted s-CRB in the legend), even without the use of a whitening transform. This

bound gets closer to the sample-based CRB (in black and denoted y-CRB in the legend)

as the value of P � 1 increases and as expected matches it when P � 1 � N . To further

illustrate the stability of eMOMS, in Figure 4.3 (e) we show the retrieval of K � 20 Diracs

randomly spaced over τ � NT � 1 and with arbitrary amplitudes. The signal-to-noise

ratio is 15dB, and we use N � 61 samples and P � 1 � N � 61 moments.

In Figure 4.4 (a-b) we present simulation results when we retrieve K � 2 Diracs from

N � 31 samples using a standard E-Spline and the exponential MOMS kernels of Sec-

tion 4.2. The former is characterised by purely imaginary exponents αm � j π
2pP�1qp2m�P q

for m � 0, . . . , P , since this set guarantees a stable and accurate recovery for all orders

P � 1 we use. We can see that eMOMS outperform E-splines for any order we consider,

which is as expected since they are optimal for the proposed setup used for the simu-

lations. We end by highlighting that, contrary to E-Splines, the sample-based CRB for

eMOMS remains unchanged when the order P � 1 increases. The effect we see is that the

moment-based CRB and the performance improve constantly until P � 1 equals N , when

they both match the sample-based CRB. This is in contrast with E-Splines for which the

moment-based CRB and the performance improve but at the same time the sample-based

CRB worsens. Therefore, when P � 1 � N they all coincide, but the bound may not be

as low as the one for lower E-Spline orders.

4.4 Summary

In this chapter we have further analysed the noisy scenario introduced in Chapter 3 by

studying the main sources of instability for FRI recovery. Specifically, we have shown

that the retrieval from the power sum (4.1) can be quite unstable, in particular when
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(e) Retrieval of K � 20 Diracs

Figure 4.3: Performance of exponential MOMS kernels. (a-d) show the performance
of exponential MOMS kernels of different orders P � 1 when white Gaussian noise is
added to the N � 31 samples. We show the recovery of the first of K � 2 Diracs.
eMOMS always reach the moment-based CRB (s-CRB), even though pre-whitening
is not utilised. This bound gets closer to the sample-based CRB (y-CRB) as the
value of P � 1 increases and as expected matches it when P � 1 � N . Finally, (e)
shows the retrieval of K � 20 Diracs randomly spaced over τ � NT � 1 when doing
τ-periodic sampling. The signal-to-noise ratio is 15dB, and we use N � 61 samples
and P � 1 � N � 61 moments.
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Figure 4.4: Performance of exponential MOMS vs. E-Spline kernels. We compare
the performance of E-Splines vs. exponential MOMS kernels of different orders P � 1
when noise is added to N � 31 samples. We show the recovery of the first of K � 2
Diracs. We note that eMOMS always outperform E-splines even though both achieve
the moment-based CRB (s-CRB). Prewhitening is only needed for E-Splines.
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the nodes uk are not on the unit circle or when the amplitudes xk span several orders of

magnitude. We have also established that through a carefully chosen matrix C we can

make the retrieval problem tractable.

In addition, we have determined the optimal parameters that characterise exponen-

tial reproducing kernels so they are most stable and have the best possible performance.

Equipped with such analysis, we have designed optimal exponential reproducing kernels

of maximum order and minimum support (eMOMS). We have shown that these kernels

are superior to carefully chosen E-Splines throughout the simulations.

Moreover, we have extended optimal eMOMS to an even broader family that is also a

particularisation of the general E-Splines of [41]. Interestingly, we have derived a closed

form expression for the CRB associated to the retrieval of the innovation parameters of

K � 1 Dirac from the samples taken by the optimal eMOMS. We have seen that, under

certain circumstances, it equals the CRB associated to the retrieval of the parameters

from the noisy power sum series as developed in Appendix B.1.
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Chapter 5

Universal sampling of signals with

finite rate of innovation

In the previous chapter we have shown how to design optimal exponential reproducing

kernels for FRI sampling, when the input is a train of Diracs and we contaminate the

samples with AWGN. In many practical circumstances, however, the freedom to choose

the sampling kernel ϕptq is a luxury that we may not have.

Essential in the FRI setting is the ability of ϕptq to reproduce exponential functions,

because this allows us to map the signal reconstruction problem to Prony’s method in

line-spectral estimation theory. In this chapter we relax this condition and consider any

function ϕptq for which the exponential reproduction property (2.7) does not necessarily

hold. For these functions it is still possible to find coefficients cm,n such that the reproduc-

tion of exponentials is approximate rather than exact. We propose to use this approximate

reproduction and the corresponding coefficients cm,n to retrieve FRI signals from the sam-

ples obtained using these kernels. This new approach has several advantages: First, it is

universal in that it can be used with any kernel ϕptq. In fact, as we shall show in the

following sections, this new formulation does not even require an exact knowledge of the

kernel. Second, while reconstruction of FRI signals with this new method is not going to

be exact, we show that in many cases a proper iterative algorithm can make the recon-

struction error arbitrary small. Finally, this new approach can be used to increase the

resiliency to noise of some unstable kernels proposed in the FRI literature. For example,

kernels like polynomial splines or the Gaussian function lead to very ill-conditioned recon-

struction procedures. We show that by replacing the original C with the one formed from

properly chosen coefficients cm,n, based on approximate reproduction of exponentials, we

achieve a much more stable reconstruction with the same kernels.

The chapter is organised as follows: In Section (5.1) we formalise the notion of ap-

proximation of exponentials. Specifically, we explain how to choose the coefficients cm,n

according to the type of approximation we want to achieve. Then, in Section 5.2 we use

the property of approximation of exponentials to recover a train of K Diracs from the

samples taken by the kernel ϕptq in the absence of noise. We also propose an iterative
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method to refine the reconstruction and make its error arbitrarily small. Finally, we sim-

ulate the approximate FRI technique in Section 5.3 and show the results obtained when

retrieving trains of Diracs in the presence of white Gaussian noise added to the samples.

We then conclude the chapter in Section 5.4.

5.1 Approximate reproduction of exponentials

Assume we want to use a function ϕptq and its integer shifts to approximate the exponential

eαt. Specifically, we want to find the coefficients cn such that:

¸
nPZ

cnϕpt� nq u eαt. (5.1)

This approximation becomes exact only when ϕptq satisfies the generalized Strang-Fix

conditions (2.8). For any other function it is of particular interest to find the coefficients

cn that best fit (5.1). In order to do so, we directly use1 cn � c0eαn and introduce the

1-periodic function

gαptq � c0

¸
nPZ

e�αpt�nqϕpt� nq. (5.2)

We then find that approximating the exponential eαt with integer shifts of ϕptq can be

transformed into approximating gαptq by the constant value 1. The reason is that we can

rewrite (5.1) in the form of the right-hand side of (5.2) by substituting cn � c0eαn and

moving eαt to the left-hand side.

As a consequence of Poisson summation formula (1), we have that the Fourier series

expansion of gαptq is given by

gαptq �
¸
lPZ

gle
j2πlt �

¸
lPZ

c0ϕ̂pα� j2πlqej2πlt.

More specifically we have used:

¸
nPZ

e�αpt�nqϕpt� nq �
¸
lPZ

ϕ̂ pα� j2πlq ej2πlt,

where in order to calculate the Fourier transform of φptq � e�αxϕpxq we can evaluate

its Laplace transform φ̂psq � ϕ̂ps � αq at s � jω. As a consequence, our approximation

problem reduces to:

gαptq �
¸
lPZ

c0ϕ̂pα� j2πlqej2πlt u 1. (5.3)

This shows more deeply the relation between the generalised Strang-Fix conditions (2.8)

and the approximation of exponentials. If ϕptq satisfies the generalised Strang-Fix con-

ditions (2.8) then ϕ̂pα � j2πlq � 0 for l P Zzt0u and (5.3) holds exactly for c0ϕ̂pαq � 1.

1The exact exponential reproducing coefficients always satisfy cn � c0eαn. We now anticipate that
different sets of approximation coefficients we derive throughout the section also have the same form.
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Otherwise, the terms ϕ̂pα � j2πlq for l P Zzt0u do not vanish, and we can only find the

coefficient c0 so that gαptq u 1. However, the closer the values ϕ̂pα � j2πlq are to zero,

the better the approximation in (5.1) is.

In general ϕptq can be any function and we can find different sets of coefficients cn

in order for the approximation (5.1) to hold. Regardless of the coefficients we use, we

can determine the accuracy of our approximation by using the Fourier series expansion of

gαptq. In fact, the error of approximating fptq � eαt by the function sptq � °nPZ cnϕpt�nq
with coefficients cn � c0eαn is equal to:

εptq � fptq � sptq � eαt r1� gptqs (5.4)

� eαt

�
1� c0

¸
lPZ

ϕ̂pα� j2πlqej2πlt
�
.

Note that, if the Laplace transform of ϕptq decays sufficiently quickly, very few terms of

the Fourier series expansion are needed to have an accurate bound for the error.

A natural choice of the coefficients cn � c0eαn is the one given by the least-squares

approximation. Despite the fact that fptq is not square-integrable, we can still obtain the

coefficients by computing the orthogonal projection of fptq onto the subspace spanned by

ϕpt� nq [81]. In Appendix D.1 we show that these coefficients take the form

cn � ϕ̂p�αq
âϕpeαqe

αn,

where âϕpeαq �
°
lPZ aϕrlse�αl is the z-transform of aϕrls � 〈ϕpt� lq, ϕptq〉, evaluated at

z � eα.

The least-squares approximation has the disadvantage that it requires the exact knowl-

edge of ϕptq. However, as we stated before, if the Laplace transform of ϕptq decays suffi-

ciently quickly, we can assume the terms ϕ̂pα � j2πlq are close to zero for l P Zzt0u. In

this case we have that the error in (5.4) is easily minimised by choosing c0 � ϕ̂pαq�1. We

denote this second type of approximation constant least-squares. Besides its simplicity,

a second advantage of choosing cn � ϕ̂pαq�1eαn is that it requires only the knowledge

of the Laplace transform of ϕptq at α. If we put ourselves in the FRI setting where we

require the approximate reproduction of the exponentials eαmt with m � 0, . . . , P , then

this simplified formulation needs only the knowledge of the Laplace transform of ϕptq at

αm, m � 0, . . . , P .

Finally, a third interesting choice of coefficients is the one that ensures that sptq inter-

polates fptq exactly at t � ` P Z [1, 8]. These coefficients, as we prove in Appendix D.1,

are as follows:

cn � 1°
lPZ e�αlϕplqe

αn.

Note that in order to use the interpolation coefficients we only need information on ϕptq
at integer instants of time. We summarise the previous results in Table 5.1.
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Table 5.1: Coefficients for the approximate reproduction (5.1)

Type Coefficients

Least-squares approximation cn � ϕ̂p�αq
âϕpeαqe

αn

Constant least-squares cn � ϕ̂pαq�1eαn

Interpolation cn � 1°
lPZ e�αlϕplqe

αn

According to our experience, the least-square coefficients provide a smaller error (5.4)

when the exponential eαt to approximate has an exponent α that is not purely imaginary.

Otherwise, the constant least-squares coefficients are just as good. Interpolation coeffi-

cients are very easy to compute given the values of the kernel at integer points in time.

However, they always provide a worse approximation quality.

We show an example of the above analysis when the sampling kernel is a linear spline

and we want to use the linear combinations of its shifted versions to reproduce exponen-

tials. The linear spline reproduces polynomials of orders 0 and 1 exactly, as illustrated in

Figure 5.1 (a-b). Now, with the same function, we address the problem of approximately

reproducing the 4 complex exponentials eαm � ej
π
16
p2m�7qt for m � 0, . . . , 3. The interval

of approximation depends on the support of the spline M � 1 and the number of samples.

If, for instance, we define an approximation interval r0, τq, with τ P Z, then we should

employ indices �M ¤ n ¤ τ � 1. We show the approximation of the real part of the

exponentials obtained by using the constant least-squares coefficients

cm,n � ϕ̂ pαmq�1 eαmn, m � 0, . . . , 3

where αm � j π16p2m� 7q, in Figure 5.1 (c, d, e, i). In addition, we show the interpolation

of the real part of the exponentials obtained by using the coefficients

cm,n � 1°M�1
`�0 eαm`ϕp`qe

αmn, m � 0, . . . , 3

in Figure 5.1 (f, g, h, j). Some exponentials are better reproduced than others, in this

example the ones with lower frequency. We have seen in practice that higher order splines

tend to improve the approximation quality of the reproduction, however, we have chosen

a linear spline for illustration purposes because it makes clear that the constant least-

squares approximations are superior to those obtained using the interpolation coefficients.

Also note that the number of exponentials that can be approximated is arbitrary, and is

independent of the order of the spline.
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Figure 5.1: B-Spline kernel reproduction and approximation capabilities. Figures (a-
b) show the exact reconstruction of polynomials of orders 0 and 1. Figures (c-j) show
the constant least-squares approximation and the interpolation of the real parts of 4
complex exponentials: ej

π
16 p2m�7qt for m � 0, . . . , 3. We plot the weighted and shifted

versions of the splines with dashed blue lines, the reconstructed polynomials and
exponentials with red solid lines, and the exact functions to be reproduced with solid
black lines.
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Chapter 5. Universal sampling of signals with finite rate of innovation

5.1.1 Further remarks

We end the above analysis by noting that there are two main ways of introducing the

sampling period T in FRI sampling schemes that translate into different types of shifts

for the kernel ϕptq to reproduce exponentials. In the first case, compact support kernels

usually obtain samples yn �
〈
xptq, ϕ � tT � n

�〉
, which means that the linear combination

of integer shifts of the time-scaled version of the kernel ϕp tT q needs to satisfy:

eα
t
T �

¸
nPZ

cnϕ

�
t

T
� n



.

The coefficients cn for the integer shifts of ϕptq and ϕp tT q to reproduce eαt and eα
t
T

respectively are identical. Therefore Table 5.1 can be used straight away.

In the second case, other types of kernels hptq such as the sinc and the Gaussian

functions take samples yn � 〈xptq, hpnT � tq〉, so that the linear combination of integer

shifts of the kernel hptq satisfy:

eαt �
¸
nPZ

cnhpt� nT q. (5.5)

We may derive the equivalent coefficients for this scenario by just rewriting (5.5) as follows:

eα
1 t
T �

¸
nPZ

cnϕ

�
t

T
� n



,

where α1 � αT and ϕptq � hpTtq. As a consequence, we can directly use the coefficients

of Table 5.1 with α1 instead of α. Then, after some simple manipulations and since

ϕ̂psq � T ĥp sT q we get Table 5.2.

Table 5.2: Coefficients for the approximate reproduction (5.5)

Type Coefficients

Least-squares approximation cn � T ĥp�αq
âhpeαT q eαnT

Constant least-squares cn � T ĥpαq�1eαnT

Interpolation cn � 1°
lPZ e�αlThp�lT qe

αnT

In Appendix D.2 we show how to obtain the different types of coefficients for B-Splines

and for Gaussian kernels. We also illustrate the approximation capabilities of Gaussian

kernels with an example similar to that of Figure 5.1.
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5.2. Approximate FRI recovery

5.2 Approximate FRI recovery

Consider again the stream of Diracs xptq � °K�1
k�0 akδpt� tkq and the samples

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�

K�1̧

k�0

akϕ

�
tk
T
� n



. (5.6)

We want to retrieve the locations and amplitudes of the Diracs from (5.6), but now we

make no assumption on the sampling kernel. We instead find proper coefficients for ϕptq
to approximate the exponentials eαmt, where m � 0, . . . , P , αm � α0 �mλ and α0, λ P C.

From the previous section we know that a good quality of the reproduction is achieved if

we choose the constant least-squares coefficients

cm,n � cm,0eαmn, with cm,0 � ϕ̂pαmq�1.

We thus only need to know the Laplace transform of ϕptq at αm, m � 0, . . . , P . Also,

note that P no longer needs to be related to the support of ϕptq, but we can use any value

subject to P ¥ 2K � 1.

In order to retrieve the innovation parameters ptk, akq, we proceed in the same way as

in the case of exact reproduction of exponentials, but now we have that the moments are

sm �
N�1̧

n�0

cm,nyn �
〈
xptq,

N�1̧

n�0

cm,nϕ

�
t

T
� n


〉
(5.7)

�
K�1̧

k�0

xku
m
k �

K�1̧

k�0

akεm

�
tk
T



loooooooomoooooooon

ζm

where xk � ake
α0

tk
T and uk � eλ

tk
T . There is a model mismatch due to the approximation

error εmptq of (5.4), equal to ζm. We treat it as noise, and retrieve the parameters of the

signal using the methods of Chapter 3. The model mismatch depends on the quality of

the approximation, dictated by the coefficients cm,n, the values αm and P , and the kernel

ϕptq. If ζm is negligible when compared to other forms of noise then the procedure is

sufficiently good. In close-to-noiseless settings, however, the estimation of the Diracs can

be refined using the iterative method of Algorithm 5. The basic idea of the algorithm is

that, given an estimate of the locations of the Diracs, we can compute an approximation

of ζm and use it to refine the computation of the moments sm.

We conclude by highlighting that when K � 1 Diracs we can analyse the convergence

by writing the solution in a fixed-point iteration form, as we show in Appendix D.3. In

this way, we may establish sufficient conditions for Algorithm 5 to converge in the simple

case of recovering K � 1 Diracs.
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Chapter 5. Universal sampling of signals with finite rate of innovation

Algorithm 5 Recovery of a train of K Diracs using approximation of exponentials

1: Compute the moments s0
m � °n cm,nyn, from the original data and set sim � s1

m � s0
m.

2: Build the system of equations (2.24) using sim and retrieve the annihilating filter
coefficients hm, for m � 0, . . . ,M , where M ¥ K.

3: Calculate the values uik from the roots of hm, and determine the locations tik, for the
ith iteration.

4: Find the amplitudes aik from xik, obtained by solving the first K consecutive equations
in (2.21).

5: Recalculate the moments for the next iteration i�1 by removing the model mismatch
from the moments calculated from the original data using

si�1
m � s0

m �
K�1̧

k�0

aikεmptikq,

for m � 0, . . . , P and where εmptq is the error of the approximation (5.4).

6: Repeat steps 2 to 5 until convergence of the values paik, tikq.

5.2.1 How to select the exponents αm

In Chapter 4 we have determined that, if we have full control on the design of the sampling

kernel, we should use as many moments as samples, P � 1 � N , the exponents should be

purely imaginary and of the form:

αm � jωm � j
π

L
p2m� P q m � 0, . . . , P, (5.8)

where L � P �1, and the coefficients cm,n should be such that |cm,0| � 1 for m � 0, . . . , P .

This type of construction led to optimal kernels.

However, in the approximated FRI scenario, the sampling kernel is fixed and we can

only choose the number of moments P �1 and the values αm � jωm but we cannot impose

|cm,0| � 1. If we follow the rules used for eMOMS, on the one hand we want that eαm

span the unit circle and, on the other hand, we want |cm,0| to be as close as possible to

1. These requirements lead to a tradeoff in the choice of αm since the former means that

L � P � 1, whereas the latter occurs when all ωm are very close to each other 2, which

means that L should be as large as possible. On way for solving the tradeoff is to use

exponents of the form (5.8) and then use an optimisation criterion to determine the only

remaining free parameters P and L that optimise the above tradeoff. The criterion we

2For example, for coefficients such that cm,0 � ϕ̂pωmq
�1, and a filter that is approximately lowpass,

then when all ωm are close to zero then the absolute values of the coefficients are approximately constant.
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5.3. Simulations

follow is to choose the values of P and L that minimise the CRB (3.13) when retrieving

the location of a single Dirac. We show examples of this procedure in the simulations.

We conclude the section by showing an example of how the roots eαm change in the unit

circle compared to the values cm,0 � ϕ̂pωmq�1 in order to better understand the tradeoff.

In Figure 5.2 (a, b) we plot how with L � P � 1 we span the unit circle but make the

values |cm,0|�1 too different from each other, worsening the condition of C. In Figure 5.2

(c, d) we show that when L is quite large |cm,0|�1 become similar to each other but at the

expense of concentrating the roots eαm on the unit circle, which also worsens the condition

of C. In all cases the kernel is a B-Spline of order M � 1 � 6 and the exponents are of

the form (5.8) with P � 1 � 11.
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(c) eαm for L � 5pP � 1q
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Figure 5.2: Tradeoff for the choice of L. In (a,b) we plot how L � P �1 spans the unit
circle but widens the values |cm,0|

�1. In (c,d) we show that a large L makes |cm,0|
�1

similar to each other but concentrates the roots eαm . The kernel is a B-Spline with
M � 1 � 6 and the exponents (5.8) with P � 1 � 11.

5.3 Simulations

In Section 5.2 we have presented a method to recover a train of K Diracs from the sam-

ples (5.6) taken uniformly by any kernel ϕptq that can approximately reproduce the set

of exponentials eαmt, m � 0, . . . , P . We have assumed no other sources of error than the
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Chapter 5. Universal sampling of signals with finite rate of innovation

model mismatch due to the approximation. Now we consider the scenario of adding white

Gaussian noise to the samples (5.6), and we show that it is still possible to reconstruct

the train of K Diracs using the techniques of Chapter 3. We concentrate on case studies

for B-Splines and Gaussian kernels.

We compare the state-of-the-art algebraic techniques developed in [10] for B-Splines

and in [60] for the Gaussian kernels with our universal reconstruction. Note that for ex-

isting methods the former is aided by a preconditioning step explained in Appendix D.4

and further stabilised with prewhitening (Chapter 3), and the latter is aided by the pre-

conditioning step explained in [60].

5.3.1 The experimental setup

The setup is the same as that of Chapters 3 and 4: We take N samples by computing yn �°K�1
k�0 akϕ

�
tk
T � n

�
for n � 0, . . . , N � 1. The sampling period is T � 1

N unless specified

otherwise. We then either use the noiseless samples or corrupt them with additive white

Gaussian noise of variance σ2, according to the target signal-to-noise ratio SNRpdBq �
10 log }y}2

Nσ2 . We finally calculate the noisy P �1 moments and then retrieve the innovation

parameters tak, tkuK�1
k�0 of the input. We always use the subspace estimator method as our

recovery algorithm, as described in Section 3.3 with W � R
:{2
B for whitening the data.

We present results for single experiments or for average performance over multiple

trials. For the latter, we show the root mean square error (RMSE) of the locations:

∆tk �
d°I�1

i�0 pt̂piqk � tkq2
I

,

where t̂
piq
k is the i-th estimated time location, I is the total number of realisations and etk

the error for each of the K Diracs. We do this for a range of fixed signal-to-noise ratio

(SNR) values and average the effects using I � 1000 noise realisations at each SNR. We

compare the RMSE with the square root of the variance predicted by the sample-based

CRB (3.11) and the moment-based CRB (3.13). In order to anticipate the behaviour of

our algorithm, we must take into account that the CRB associated to the samples depends

directly on the sampling kernel, whereas the CRB associated to the moments depends on

the exponential functions we approximate.

5.3.2 Case study 1: Universal FRI reconstruction with B-Spline kernels

First of all, in Appendix D.4 we provide a summary of the exact recovery scheme for poly-

nomial reproducing kernels, as described in [10]. We compare this algebraic method aided

by preconditioning (see Appendix D.4) and prewhitening to our universal reconstruction.

For the recovery based on approximation of exponentials we have to choose the expo-

nential parameters αm given the B-Spline kernel of order M�1 and the number of moments

P � 1 we want to generate. In order to do this, we use parameters of the form (5.8) and
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5.3. Simulations

then determine P and L that minimise the CRB (3.13) when retrieving the location of a

single Dirac. Among the various types of coefficients summarised in Table 5.1 we concen-

trate on constant-least squares since they provide very good reproduction of exponential

functions with parameters (5.8). These are cm,n � ϕ̂ pαmq�1 eαmn for m � 0, . . . , P .

We have seen experimentally that P � 1 can be chosen arbitrarily but is generally

greater or equal than the support of the kernel M�1. Once P�1 is selected, experimental

evidence also suggests that the best L is normally in the range P�1 ¤ L ¤ 4pP�1q 3. For

the rest of this setup we work with a B-Spline of either order M�1 � 6 or order M�1 � 16

and decide the value of P � 1 depending on the simulation. We show an example of the

choice of L in Figure 5.3 when the kernel is a B-Spline of order M � 1 � 16. Here, for

N � 31 we fix P � 1, vary L, calculate αm and cm,n, to then plot the CRB (3.13) (with

σ � 1) for a single Dirac. The minima in this example are always around L � 1.5pP � 1q.
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Figure 5.3: CRB vs. L. Here we plot moment-based CRB values (3.13) (σ � 1) for
exponential parameters (5.8) for different values of P when we vary L. We use the
constant least-squares coefficients and a B-Spline of order M � 1 � 16. Note that the
minima are always obtained around L � 1.5pP � 1q.

We now show two different sets of simulations. The first compares the retrieval methods

based on exact reproduction of polynomials and approximate reconstruction of exponen-

tials in Figure 5.4. The second, is an example of how the retrieval based on approximate

FRI can be finely tuned to reach the sample-based CRB in Figure 5.5.

In Figure 5.4 (a-b) we show the deviation in the location for K � 1 Dirac that has

been sampled using a B-Spline kernel of order M � 1 � 16. We compare the performance

(a) when we use the retrieval technique based on reproduction of polynomials with (b) the

retrieval method when we use approximation of exponentials. Here, αm � j π
2pP�1qp2m�P q

with m � 0, . . . , P . Both recovery methods are applied to N � 31 noisy samples, generate

M � 1 � P � 1 � 16 moments and are aided by pre-whitening. As shown in the figure it

is only in the latter case that the kernel is able to reach the sample-based CRB.

In Figure 5.4 (c-d) we show a single realisation of the recovery of K � 6 Diracs that

3We notice that L � P � 1 can in practice only be used for the eMOMS kernels of Chapter 4. Also
note that the higher the value of L, the worse conditioned C becomes, reason why the experimental upper
bound L � 4pP � 1q makes sense.
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have been sampled with a B-Spline of order M � 1 � 16. The Diracs are located at

random over τ � NT � 1 and have arbitrary amplitudes. We compare the results of (c)

when we use the recovery scheme based on reproduction of polynomials and M � 1 � 16

moments, with (d) when we apply the retrieval based on approximation of exponentials,

with P � 1 � 24 moments and αm � j π
2pP�1qp2m�P q. The number of samples is N � 31

and the signal-to-noise ratio is 20dB in both cases. Once more only the latter method is

able to recover all the Diracs and with much better accuracy than the former method.

To end the comparison, in Figure 5.4 (e-f) we show the retrieval of K � 4 Diracs from

N � 31 noiseless samples taken by a B-Spline of order M � 1 � 6. The order is not

sufficient to apply the exact retrieval since M � 1   2K. Thus, in (e) only 3 Diracs are

retrieved with this method, being their locations and amplitudes “averages” of the real

ones. On the contrary, in (f) the approximate FRI method can retrieve all the Diracs

correctly by using P � 1 ¥ 2K moments. The locations and amplitudes are estimated

with an error, due to the approximation of exponentials, that can be removed by using

the iterative procedure of Algorithm 5. The reason for the approximate FRI method to

recover all the Diracs is that N ¡ 2K.

We end the simulations results for B-Splines in Figure 5.5 showing how the accuracy

of the retrieval can improve by generating more moments P � 1 from a fixed set of N

samples taken by a sampling kernel of fixed order M � 1. we use the approximate method

to retrieve K � 2 Diracs from N � 31 noisy samples taken by a B-Spline kernel of order

M � 1 � 6. We use exponential parameters αm � j πLp2m � P q with m � 0, . . . , P and

L � 1.5pP � 1q. In Figure 5.5 (a-d) we show that, even though the order of the kernel is

fixed at M � 1 � 6, we improve the performance by generating more moments, that is,

by choosing P ¡ M . As the number of moments increases, the performance improves to

eventually reach the sample-based CRB as shown in Figure 5.5 (d).

5.3.3 Case study 2: Universal FRI reconstruction with Gaussian kernels

In Appendix D.4 we provide a summary of the exact recovery scheme for Gaussian kernels,

as described in [2]. We compare this algebraic method aided by preconditioning (see [2])

with our universal reconstruction.

For the recovery based on approximation of exponentials, we have to choose the expo-

nential parameters αm given the Gaussian kernel of standard deviation γ and the number

of moments P � 1 we want to generate. In order to do this, we use parameters of the

form (5.8) and then determine P and L that minimise the CRB (3.13) when retrieving the

location of a single Dirac. We concentrate on the constant-least squares coefficients which,

according to Table 5.2 now take the form cm,n � T ĥγpαmq�1eαmnT for m � 0, . . . , P .

To get an idea of the potential of our algorithm, we use an experimental setup similar

to that of Tan and Goyal’s for their Gibbs algorithm [71]. We first show how to choose

L in Figure 5.6 for a Gaussian kernel with standard deviation γ � 1 that we use in the

simulations afterwards. To begin, we fix N � 31 and T � 2
3 . Then, we choose P � 1,
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Figure 5.4: Exact vs. approximated FRI with B-Splines. 1) Deviation in the lo-
cation for K � 1 Dirac that has been sampled using a B-Spline kernel of order
M � 1 � 16. (a) is for the recovery based on polynomial reproduction, enhanced
using pre-whitening. (b) is for the retrieval based on approximate reproduction of
exponentials with αm � π

2pP�1q p2m � P q, m � 0, . . . , P and P � 1 � 16. Only the latter

case reaches the CRB. 2) Reconstruction of K � 6 Diracs sampled with a B-Spline
of order M � 1 � 16 from M � 1 � P � 1 � 16 moments. (c) illustrates the recovery
based on reproduction of polynomials for and (d) shows the reconstruction based on
approximation of exponentials. Only the latter is able to retrieve all the Diracs. The
SNR for is 20dB. 3) Recovery of K � 4 Diracs in the absence of noise, sampled with
a B-Spline of order M � 1 � 6. (e) is for the polynomial based method for which the
number of moments is not sufficient to retrieve the Diracs (M � 1   2K). (f) is for the
approximate FRI method that can generate P � 1 ¥ 2K moments to retrieve all the
Diracs. The number of samples is N � 31 for all the simulations.

97



Chapter 5. Universal sampling of signals with finite rate of innovation

0 5 10 15 20 30
10

−4

10
−3

10
−2

10
−1

SNR

∆
t/
τ

 

 
FRI
y−CRB
s−CRB

(a) P � 1 � 6, L � 1.5pP � 1q
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(b) P � 1 � 11, L � 1.5pP � 1q
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(c) P � 1 � 21, L � 1.5pP � 1q
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(d) P � 1 � 31, L � 1.5pP � 1q

Figure 5.5: Approximated FRI with B-Splines. These figures show the error in the
estimation of the first Dirac out of K � 2 by using the approximated FRI recovery.
The error for the second Dirac is very similar. We show how, even when we fix the
order of the kernel M � 1 � 6, we can reconstruct any number of moments P � 1
and improve the performance. By properly selecting the exponential parameters the
performance improves until it (d) eventually reaches the sample-based CRB.
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vary L and calculate αm and cm,n. Finally, we plot the CRB (3.13) (with σ � 1) for

a single Dirac. The minima for the s-CRB in this example are when L is in the range

1.5 � T pP � 1q ¤ L ¤ 4 � T pP � 1q. We may choose any pair pP � 1q, L such that the

condition number for C is low enough to apply prewhitening successfully. For instance,

when we use P � 1 � 16 and L � 2.0 � T pP � 1q the condition number of C is less than

13. Other good choices are P � 1 � 21 and L � 1.5 � T pP � 1q with a condition number

of less than 91.
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Figure 5.6: CRB vs. L. Here we plot the CRB values (3.13) (σ � 1) for exponential
parameters (5.8) when we vary P and L given N � 31 samples and γ � 1. Note that
the minima are for 1.5 � T pP � 1q ¤ L ¤ 4 � T pP � 1q.

In Figure 5.7 (a-b) we show the deviation in the location for K � 1 Dirac that has been

sampled using a Gaussian kernel of γ � 1. We compare the performance (a) when we use

the retrieval technique of [60] with (b) the retrieval method when we use approximation

of exponentials. Here, αm � j π
2pP�1qp2m � P q with m � 0, . . . , P and P � 1 � 16. Both

recovery methods are applied to N � 31 noisy samples, taken with T � 2
3 , and are aided by

pre-whitening. It is only in the latter case that the kernel is able to reach the sample-based

CRB.

In Figure 5.7 (c-d) we show a single realisation of the recovery of K � 5 Diracs that

have been sampled with the same Gaussian kernel. The Diracs are located at random

over r0, 15s and have arbitrary amplitudes. We compare the results of (c) when we use the

original recovery scheme with (d) when we apply the retrieval based on approximation of

exponentials, with P � 1 � 16 moments and αm � j π
2T pP�1qp2m � P q. The number of

samples is N � 31 and the signal-to-noise ratio is 20dB in both cases. Once more only

the latter method is able to recover all the Diracs and with much better accuracy than

the former method.
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Figure 5.7: Gaussian kernel behaviour. 1) Deviation in the location of a single Dirac
retrieved from N � 31 samples taken with period T � 2

3 by a Gaussian kernel with
γ � 1. (a) reconstruction based on the exact recovery scheme and in (b) results for
the approximated retrieval. 2) Recovery of K � 5 Diracs from N � 31 samples taken
by a Gaussian kernel of standard deviation γ � 1. (e) shows the results of the original
technique and (f) the results of the retrieval based on approximation of exponentials,
both for SNR � 20dB.
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5.3. Simulations

5.3.4 Effect of the approximation error on the accuracy of the recon-

struction

In this example we test the hypothesis that better approximation of exponentials leads

to more accurate reconstruction of Diracs. Suppose we sample K � 1 Diracs with a

linear spline and we want to recover its location using approximation of exponentials. In

Figure 5.1 we have shown that the linear spline can approximate complex exponentials

of lower frequencies better than those with higher frequencies. We now generate four

moments sm using the constant least-squares coefficients that are associated to the same

exponentials eαmt � ej
π
16
p2m�7qt for m � 0, . . . , 3 of Figure 5.1. Finally, we compare the

estimation of the location of the Dirac obtained from the moments associated to the higher

frequencies (HF) s0 and s1 to the estimation obtained from the moments associated to

the lower frequencies (LF) s2 and s3.

In Table 5.3 we summarise the results of the root mean squared error of the estimation

obtained from either pair of moments. The error is averaged over 100 realisations each of

which corresponds to placing the Dirac at a location t0 � 0.15pi � 1q for i � 1, . . . , 100.

As expected the approximation with lower frequency achieves a better performance.

Table 5.3: Accuracy of the reconstruction

HF moments LF moments
s0 s1 s2 s3

Approximation error 0.061 0.028 0.0093 0.00098
Reconstruction error 0.0018 0.00019

5.3.5 Alternative FRI signals

We conclude the simulations by showing that it is possible to adapt the approximate FRI

framework to sample and reconstruct alternative FRI signals. For example, sampling a

piecewise constant function with a kernel ϕptq and calculating the first finite difference of

the samples zn � yn � yn�1 yields the same measurements as sampling the derivative of

the signal with φptq � ϕptq � β0ptq, where β0ptq is a box function [10]. The derivative of

the signal is a train of K Diracs. Consequently, we may recover the signal by calculating

cm,n for the linear combination of shifted versions of φptq to approximate exponentials and

then applying the annihilating filter method to the moments sm � °n cm,nzn.

We illustrate the process in Figure 5.8. Here, we sample a piecewise constant function

with K � 6 discontinuities using a B-Spline kernel of order M � 1 � 6. The sampling

period is T � 1
15 . In Figure 5.8 we (a) contaminate the N � 31 samples with additive white

Gaussian noise and calculate their first order difference. Then, we generate P � 1 � 21

moments using the constant least-squares coefficients from exponential parameters αm �
j πLp2m � P q with m � 0, . . . , P and L � 1.4pP � 1q. The signal-to-noise ratio is 25dB.

Note that the order of the spline is not sufficient to apply the retrieval method based on
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reproduction of polynomials of [10]. On the contrary, we can use the method based on

approximation of exponentials as long as P � 1 ¥ 2K. The original and reconstructed

signal are shown in Figure 5.8 (b).
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Figure 5.8: Piecewise constant functions and B-Splines. These figures show the sam-
pling and retrieval process, based on approximation of exponentials, for a piecewise
constant function with K � 6 discontinuities in the presence of noise of 25dB.

5.4 Summary

In this chapter we have extended the results of FRI reconstruction by allowing for the linear

combination of integer shifts of arbitrary sampling kernels to approximate exponential

functions. This allows us to always map the signal reconstruction problem to Prony’s

method in line-spectral estimation theory, regardless of the sampling kernel. We must

note that the property of reproducing exponential functions is common to many FRI

recovery procedures.

We have shown that for kernels that approximately satisfy the generalised Strang-Fix

conditions it is possible to find coefficients cm,n such that the reproduction of exponentials

is approximate rather than exact. We have used these coefficients cm,n, along with carefully

chosen exponential parameters αm, to retrieve FRI signals from the samples obtained using

these kernels. This new approach is universal since it can be used with any kernel ϕptq. In

addition, we have proposed an iterative algorithm that is able to make the reconstruction

error of FRI signals, due to the model mismatch, arbitrary small in the absence of other

sources of noise. Finally, we have proved that this new approach can be used to increase

the resiliency to noise of some unstable kernels proposed in the FRI literature. Specifically

of polynomial splines and Gaussian kernels, for which the original setups lead to very ill-

conditioned reconstruction.
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Chapter 6

Spike sorting at sub-Nyquist rates

Communication between neurons is carried out by action potentials (spikes) propagating

as electrochemical impulses along the nervous system. Much is to be learnt from the way

neurons are interconnected and how they communicate in response to external stimuli to

the body. Understanding the neuronal code could provide invaluable medical information

on neurological diseases such as epilepsy or Alzheimer’s disease and our knowledge on the

physiological structure of the brain. Spike sorting analyses the brain activity at neuron

resolution and relies on the ability to detect the temporal occurrence of action potentials

and their relation to specific neurons, helping the analysis of brain activity.

Spike sorting has been shown to be successful at monitoring a limited number of neu-

rons, for instance by using a microwire implanted in the brain. However, substantial

information in order to study how communication inside the brain occurs requires the

problem to be scaled up. According to Shannon, since spikes typically contain frequencies

up to 8kHz, sampling rates of at least 16kHz are normally required. This poses fundamen-

tal problems for simultaneous multichannel spike sorting in terms of energy consumption,

computational complexity and hardware demands.

The activity of a neuron can be viewed as a temporal point process of identical spikes.

Furthermore, the firing rate of neurons is by nature very low and action potentials can be

shown to be approximately sparse in the wavelet domain. These conditions make neuronal

information suitable to modern sampling techniques, such as finite rate of innovation or

compressed sensing, advocating for an economic acquisition of information.

In this chapter we propose a novel algorithm capable of sampling and reconstructing

neuronal data at sub-Nyquist rates, preserving enough features of the original signal so

that spike sorting is performed equally reliably. This was joint work with Jose Caballero.

The results obtained during the development of the algorithm led to the paper [82].

The chapter is organised as follows: In Section 6.1 we introduce the concept of spike

sorting and explain the motivation for the development of our algorithm. In Section 6.2

we describe the modules of our proposed algorithm for low-sampling-rate acquisition and

reconstruction of neuronal activity signals. We then show the simulation results in Section

6.3 and conclude in Section 6.5.
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Chapter 6. Spike sorting at sub-Nyquist rates

6.1 Spike sorting

A spike is the electrochemical action potential fired by a neuron for data transmission

through the nervous system and their distinctive signature shapes largely depend on their

morphology and the recording process.

Since all spikes of a given neuron look alike, the form of the action potential appears

not to carry any information regarding the stimulus that caused the spike [83]. Rather,

it is the frequency with which they are fired, and the distribution and number of neurons

that generate them in a given nerve that have a useful meaning [84]. Therefore, spike

sorting algorithms allow to study neuronal populations, because action potential shapes

are believed to be useful to distinguish among neurons and classes of neurons (shapes

look very much the same for the same neuron, similar for the same type of neurons, and

dissimilar among different classes of neurons [85]).

The objective of spike sorting algorithms is to detect action potentials and identify

which neuron generated them. The vast majority follow three basic steps. They begin

with a spike detection stage, mainly achieved by voltage thresholding with respect to an

estimation of the noise amplitude in the signal. Then, a feature extraction step charac-

terises detected spikes, the main property looked for among these features being that they

present a multimodal distribution that ideally allows to separate spikes fired by different

neurons. Principal Component Analysis (PCA) and wavelet decomposition have widely

been used in the literature for feature extraction [86–89]. To end, and based on these

features, a clustering step is necessary to relate each spike to a particular neuron.

Existing algorithms suffer from scalability issues due to high sampling rates. Neural

activity from one neuron has been shown to be compressible [90, 91], and as such it is

suitable for sparse sampling. In fact, it has been empirically shown [90] that about 1/6 of

wavelet transform coefficients of a spike gather around 99% of the signal energy. We show

an example of the wavelet decomposition of a real spike in Figure 6.1.

(a) Action potential (b) Wavelet decomposition

Figure 6.1: Sparsity in the wavelet domain. These figure shows the a recorded real
neuronal action potential and its wavelet decomposition using a quadratic spline. It is
clear that only a few of the wavelets coefficients are representative of the spike shape.
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Reducing the sampling frequency would imply that large simultaneous extracellular

recordings could be obtained and the additional reliability provided by multi-channel

recordings would be exploited in the sorting. Improvement in sampling techniques is

also crucial to scaling up the recording technologies to hundreds or thousands of neurons,

i.e. to the population sizes really necessary to understand brain function and to control

the next generation of neuroprostheses.

Since spike sorting is not the main purpose of the algorithm developed in this chapter,

we do not deal with the subject any further. For a comprehensive review of spike sorting

techniques the reader is referred to the surveys in [92–94].

6.2 Design of the algorithm

In this section we propose the algorithm that we use to sample the neuronal data below

Nyquist rate. A relatively realistic signal modelling allows to split the input data into

simpler units, each of which consists in the convolution of two basic signals. Then, the

problem is transformed into a sequential signal and system estimation problem.

We first propose the signal model, then describe how to separately estimate each of

the two basic signals and finally merge everything together into an iterative algorithm.

6.2.1 Modelling the neuronal signal

There are multiple mathematical models that describe how action potentials in neurons

are initiated and propagated. A well known and comprehensive example is the Hodgkin–

Huxley model, from which many others are derived. Several simplifications have been

proposed over the years, among which the Spike Response Model (SMR) is one of the most

commonly used. Therefore, we consider that a single action potential can be described as

follows [83]:

uptq � urest � appt� t0q (6.1)

where only the spike amplitude a, its shape pptq and the moment when it is triggered

t0 are relevant. Here, uptq refers to the measured voltage signal and urest is the resting

potential of the neuron.

The activity of a neuron can be interpreted as a point process in which roughly the

same spike is fired at different instants of time. Assuming stationary neurons and no

bursting exists, the amplitudes of the spikes are constant for the same neuron. Thus,

the neuronal signal to be sampled from neuron i can be thought of as the result of the

convolution of its spike shape with a train of Diracs, i.e.

xiptq � piptq

K�1̧

k�0

aiδpt� ti,kq,

where piptq is the spike, ai is the constant amplitude and ti,k are the firing instants. If we

consider the contribution of I different neurons, which add up linearly, we can write the
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Chapter 6. Spike sorting at sub-Nyquist rates

complete model for the neuronal signal as

x̃ptq � xptq � nptq �
I�1̧

i�0

xiptq � nptq,

where nptq accounts for any source of noise.

For the sake of clarity we assume that contributions do not overlap. In such a case, we

can sequentially retrieve one pulse after the other and simply write that xptq � pptq
dptq,
where pptq is the pulse shape of the neuron and dptq is one Dirac that represents the

amplitude and location of the spike.

6.2.2 How to extract the information on dptq given pptq

The signal xptq is acquired using an exponential reproducing kernel as discussed in Chap-

ter 2 leading to the N samples yn as in (2.18). The Dirac signal dptq can be retrieved from

prior knowledge on the pulse shape pptq and the samples yn. If pptq is known exactly, then

we can write

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�
〈
pptq
 dptq, ϕ

�
t

T
� n


〉

�
〈
dptq, ϕp

�
t

T
� n


〉
, (6.2)

where now we have an equivalent exponential reproducing kernel ϕpptq � ϕptq
 p�p�tq.
Then the location and amplitude that characterise dptq can be retrieved using the

annihilating filter procedure with the new set of moments spm � °
n c

p
m,nyn, where cpm,n

are the coefficients so that ϕpptq satisfies the exponential reproducing formula (2.7).

6.2.3 How to extract the information on pptq given dptq

In this chapter we make use of the eMOMS kernels proposed in Chapter 4 to sample

the neuronal signals. We choose exponential parameters αm � jωm � j πN p2m � P q,
m � 0, . . . , P and P � 1 odd.

With this information, it is also possible to estimate the pulse shape pptq from the

samples yn, given prior knowledge on dptq. Consider the exponential moments sm, for

which the following holds

sm �
N�1̧

n�0

cm,nyn �
N�1̧

n�0

cm,n

〈
xptq, ϕ

�
t

T
� n


〉

�
〈
xptq, eαm t

T

〉
�
» 8

�8
xptqeαmtdt, m � 0, . . . , P. (6.3)

Thanks to our choice of parameters αm, (6.3) is precisely the Fourier transform (FT)
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of xptq at ω � ω1m � ωm
T . Therefore, the moments sm satisfy

sm � x̂
�
ω1m
� � p̂

�
ω1m
�
d̂
�
ω1m
�
, m � 0, . . . , P, (6.4)

where ω1m � π
τ p2m � P q and τ � NT . If dptq is known, it is straightforward to obtain

the FT of pptq at ω1m from the moments sm. We then retrieve the pulse shape via an `1

minimisation as explained next.

To end the section, in Figure 6.2 we show an example of the DFT of a single spike

xptq and the moments obtained after sampling the pulse and combining the samples yn

with the coefficients cm,n. We see that the amplitude and phase of the DFT of the spike

coincide with the amplitude and phase of the moments for the range m � 0, . . . , P . Here

we have used N � 31 samples, P � 1 � 31 moments and a DFT of 128 points.
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Figure 6.2: DFT of the spike and its exponential moments. These figure shows the
DFT of a single spike and the moments obtained after sampling the pulse and com-
bining the samples yn with the coefficients cm,n.

6.2.4 Spike shape recovery

The aim of this processing block is to reconstruct a finely discretised version p̃ of pptq from

p̂ pωmq, m � 0, . . . , P .

Assume p̃ is the pulse shape discretised to a vector of length L (L " P q and denote

with ˜̂p the approximated discrete Fourier transform (DFT) of p̃ obtained from (6.4). We
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can write:
˜̂p � Fp̃� n (6.5)

where F is the DFT matrix of size pP � 1q � L, p̃ is known and is obtained from (6.4),

and n is additive noise used to account for any model mismatch. We know that neuronal

pulses can be sparsely described in the wavelet domain. We therefore rewrite (6.5) as

˜̂p � FW�1w � n � Aw � n, (6.6)

where W is the L � L matrix representing the wavelet transform and w � Wp̃ is the

wavelet representation of p̃.

The above system is underdetermined but we only need to search for a sparse vector

w that satisfies (6.6). This modelling is reminiscent of the traditional CS framework

where, in our context, the acquisition matrix is a ‘fat’ Fourier matrix rather than a more

conventionally used random matrix. We therefore assume a sufficiently large P and a

sufficiently sparse vector w in order to solve for p̃ using an `1 minimisation technique such

as Basis Pursuit (BP).

6.2.5 Complete algorithm

In the previous sections it has been shown how N samples are enough to recover xptq by

breaking down the problem into estimating dptq and pptq separately. An iterative algorithm

can thus be applied to retrieve xptq without any prior knowledge.

Assume we initialise the algorithm by setting pptq � δptq, meaning that at the first

iteration the kernel ϕpptq coincides with ϕptq. The dptq estimation module will look for

the location and amplitude of the Dirac, although the signal is actually a spike. The

first estimation of dptq will therefore be inaccurate, but it is enough to obtain a good

estimation of pptq using the recovery technique of Sections 6.2.3 and 6.2.4. Once there is

useful information of pptq, it can be used to update ϕpptq and the new set of coefficients

cpm,n to compute spm. Using the updated moments the process can be repeated again, the

convergence criterion being a maximum number of iterations or that a solution within a

predefined tolerance is reached.

6.3 Results

The algorithm has proven to converge experimentally to the sought pulse shape at the

desired location in about 5 iterations for a mean square error (MSE) convergence tolerance

of 10�5. The estimation of pptq is however suboptimal from the point of view of sparsity

in the wavelet domain. The reason for this is probably that the algorithm is able to find a

solution out of various stable regions in the solution space. One example of the estimation

of xptq can be seen in Fig. 6.3.

The order P � 1 of the eMOMS is a relevant design choice that influences the perfor-
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Figure 6.3: Reconstruction of xptq using the proposed sampling algorithm. In this
figure we show (b) an example of the reconstruction of a neuronal spike from the (a)
samples obtained using the FRI sampling scheme.

mance of the algorithm. Low values provide better estimation accuracy but high values are

able to capture high resolution details of the spike shapes. We choose the latter because

fine details are relevant for sorting.

Finally, we have assessed the suitability of the sub-Nyquist sampling algorithm for

spike sorting, working with surrogate data available from the NeuroEngineering Lab at

the University of Leicester. Spikes are simulated using a database of 594 different average

action potentials recorded in the neocortex and basal ganglia. Three distinct spike shapes

are placed at arbitrary times with normalised peak amplitude of 1 and background noise

is generated with a standard deviation relative to 1 from superimposed spikes selected at

random. Difficulties for sorting mainly come from similarities among spike shapes, realistic

background noise and overlapping spikes susceptible of generating errors.

We compare the performance achieved feeding the original data (@24kHz) and an FRI

subsampled version to the spike sorting algorithm “Wave Clus” [89], estimating a total of

1000 action potentials. We use N � 31 FRI samples to represent pulses of length L � 128,

and an E-Spline of order P � 30, to achieve a sampling rate reduction by a factor 4. The

reconstruction of individual spikes assumes that their location is known a priori. The

results are presented in Table 6.1, and they show that our method is able to preserve the

performance achieved by traditional spike sorting algorithms. We have noticed that there

is a decrease in missed spikes and an increase in false positives. We believe this is due

to the detection threshold value, chosen proportional to the median of the absolute value

of the recording [89], which is lowered since the reconstruction process slightly smoothes

spikes out.

6.4 Other applications in Neuroscience

Prior to the development of the theoretical work presented in Chapters 2 to 5 of this thesis

we also applied FRI recovery algorithms to the problems of detection of voltage neuronal

spikes and calcium transients. Accurate time detection of action potentials is a key step

needed for their posterior sorting and classification, since it allows to determine the precise

occurrence of spikes. FRI can be applied to this task by considering that the input to the

sampling process is a train of pulses, with possibly different shapes, contaminated with

noise. Even though preliminary work showed the validity of the FRI setting, there exist
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robust alternative techniques to solve the problem and FRI would only contribute further

if sampling schemes could be implemented at sub-Nyquist rate.

On the other hand, inferring the times of sequences of action potentials from two-

photon imaging of calcium signals is an open problem whose optimal solution remains

unsolved. The detection of action potentials (APs) from calcium transients offers cer-

tain advantages over traditional electrophysiological approaches, since up to thousands of

spatially and immunohistochemically defined neurons can be recorded simultaneously [95].

However, due to noise, dye buffering and the limited sampling rates in common microscopy

congurations, accurate detection of APs from calcium time series has proved to be a dif-

ficult problem. However, in the FRI setting and for calcium transients well fit by a single

exponential, the problem is reduced to reconstructing a stream of decaying exponentials.

In [95] the authors built upon our preliminary work, which showed the validity of the

FRI setting, and introduce a novel approach that provides additional robustness to noise

with double consistency spike search using a sliding window. The final algorithm is fast,

non-iterative and parallelisable, such that spike inference can be performed in real-time.

The algorithm has been reported to outperform several recently proposed methods for

spike train inference from calcium imaging data.

6.5 Summary

One of the most plausible improvements for spike sorting algorithms is in their data

acquisition methods, due to the natural suitability of extracellular recorded data towards

sparse acquisition methods. It is enough to know the spike shape from a given neuron and

the locations of occurrence (with their individual amplitudes at most if non-stationary data

is considered) in order to completely define the activity of a given neuron. If an acquisition

process is designed to look for this information already at the sampling stage instead

of going through a classical Nyquist sampling process, acquisition could be simplified

and made more economic. Moreover, the huge dimensionality reduction of data needed

for feature extraction makes it also intuitive that distinctive features could probably be

extracted already during sampling. That is, sampling could be interpreted as a useful

tool for ad-hoc data analysis instead of only as a means to represent continuous-time

signals as faithfully as possible. Wireless recording electrodes for instance could then

transmit information at much lower rates to a local processing machine, reducing energy

consumption.

In this chapter, we have proposed an iterative reconstruction algorithm that can esti-

mate a neuronal signal from FRI samples that have been obtained using an exponential

MOMS at reduced sampling rates. The design of the algorithm is motivated by the sparse

representation of the neuronal activity signal. Our main contribution is that we show

that state-of-the-art spike sorting performances can be reached with a reduction in the

sampling rate of a factor 4 compared to traditional methods.

111





Chapter 7

Conclusions

7.1 Main contributions

In this thesis we have studied two key aspects of the reconstruction of signals with fi-

nite rate of innovation in the presence of noise: stability and accuracy. The traditional

algebraic approaches provide an exact mathematical framework to sample and perfectly

reconstruct various types of FRI signals. However, noise is generally present in data ac-

quisition, making some of these methods very unstable. For instance, the use of Gaussian

kernels, polynomial reproducing kernels and some exponential reproducing is potentially

ill-conditioned when noise is present.

To address the aforementioned problems, we have first provided improved versions of

the main algebraic methods for FRI reconstruction that take into account how the noise

may become colored when we work with exponential reproducing kernels. The idea is to

apply a whitening transform to the noisy data that is able to decorrelate noise samples

and make them be characterised by a uniform variance. Our formulation is general, hence

the methods we have described can be easily adapted to other types of sampling kernels.

In some circumstances, however, simply applying a whitening transform does not com-

pletely solve the stability problem. We have therefore used a different perspective to anal-

yse the noisy scenario further, which consisted in optimising the exponential reproducing

sampling kernel in order to make the retrieval of the parameters of a train of Diracs most

accurate and stable. Selecting the best exponential parameters for our FRI problem has

translated into selecting a proper matrix of coefficients C, which is key to the stability of

the reconstruction. Based on this analysis, we have proposed a new family of kernels that

is most resilient to additive white Gaussian noise added to the samples. We have termed

this class of kernels eMOMS, because they are part of the family of generalised E-Splines

and they are of maximum order and minimum support.

Moreover, and partly based on the stability analysis, we have proposed a generalisa-

tion of the FRI framework that applies to any sampling kernel by relaxing the exponential

reproducing property. The new approach is more general because it is based on approxi-

mation of exponentials, which may be achieved in several ways by just finding appropriate
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coefficients. The traditional FRI framework can be viewed as a particular case in which

reproduction is exact. The advantage of our formulation is that it may be used with any

fixed sampling kernel, as long as enough information is available of its transfer function

at just a few specific frequencies. Moreover, while reconstruction of FRI signals with this

new method is not going to be exact, we have also presented an iterative algorithm that

can make the error arbitrary small in the absence of noise. Finally, this new approach

can be used to increase the resiliency to noise of some unstable kernels proposed in the

FRI literature, such as polynomial splines or the Gaussian function which lead to very

ill-conditioned reconstruction procedures.

In addition, we have introduced a Cramér–Rao lower bound formulation related to the

exponential moments of the input. This bound is useful because it allows us to determine

whether each of the techniques designed throughout the thesis come close to optimal. Once

more, optimality should be understood in the sense that the various techniques reach the

moment-based CRB. We have successfully compared our recovery method to the current

state-of-the-art techniques developed prior to our work for polynomial reproducing kernel

and Gaussian kernels and we have determined they behave optimally with respect to the

CRB.

To conclude, we have presented an application of the theory of FRI in the field of

Neuroscience. Specifically, we have proposed an algorithm capable of sampling and recon-

structing neuronal data at sub-Nyquist rates, preserving enough representative features of

the original signal so that spike sorting can be performed equally reliably.

7.2 Extensions and applications

Broadening the FRI paradigm to kernels that only need to approximately satisfy the

generalised Strang-Fix conditions has the consequence that FRI theory may be applied in

many other scenarios. For instance, situations in which the strict constraints imposed on

sampling kernels by the original formulation are not satisfied, but for which the input signal

can be modelled as having finite rate of innovation. Thanks to our approach, now only

proper modeling of the input signal in parametric form is needed, along with information

of the sampling kernel that is easy to obtain with simple calibration.

Extensions of the current work include multidimensional FRI, multichannel setups and

non-uniform sampling. If the approximate FRI framework is used for two dimensional

signals, such as images, then a straightforward application is on time-of-flight cameras.

These are aimed at range acquisition by measuring the time difference of arrival between

a transmitted pulse and the scene reflection. The advantage of using the approximate FRI

framework is that there is no need to design cameras that have an FRI based acquisition

system. It is the reconstruction stage that can accommodate the characteristics of existing

cameras and exploit the sparsity of the Laplacian of the depth map of a typical scene.

In the thesis of Lo ic Baboulaz [96] the author used the shape of the acquisition device as

an advantage to obtain superresolved images. He, however, points out that the knowledge
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of the sampling kernel may be seen as a constraint in the design of the device. Therefore,

his work can fully benefit from the theory of approximated FRI, which only needs the

knowledge of the kernel at certain frequencies.

7.3 Future work

In Chapters 4 and 5 we provide a method to select the exponentials that should be repro-

duced for a given setup with the goal of optimising the recovery performance. This is done

in an experimental way by minimising the CRB associated to the estimation of the inno-

vation parameters of the input from its exponential moments. The design of exponential

MOMS and the approximate FRI framework would benefit from an analytical expression

for selecting the exponential parameters, the former since it would prove optimality, the

latter since it would make the algorithm more robust.

In addition, in Chapter 5 we have seen in practice that the better the approximation

of the selected exponentials is the better the retrieval in the absence of noise becomes.

This is an intuitive result for which a mathematical derivation is difficult to obtain. The

relation between the model mismatch and the error of the approximation is not simple,

due to the fact that the model mismatch is calculated as a linear combination of the error

evaluated at the Diracs’ locations. However, we believe that by obtaining such derivation,

other interesting properties of the approximate FRI scenario may be found. One possible

line of research that could be followed to solve the problem is related to studying the

effects of having a constant bias term in the measurements taken as a power sum, and

determine how this bias affects the accuracy of the parametric estimation.

Throughout the thesis we have assumed the number of Diracs K is known before we

recover the input from the given set of samples. The case with K unknown, the model

order selection, is a related but quite different problem which is just as hard to solve as

the parametric estimation given K. Only a few FRI publications consider the case of

K unknown, for instance [97], however the authors do so from a theoretical perspective

and they present their parametric estimation method given the true K. Our experiments

suggest that it is rather easy to overmodel by selecting a value for K that is larger than

the true one, accounting for part of the noise. This introduces spurious spikes not present

in the original signal, which contribute to degrade the parametric estimation. The theory

of FRI would therefore benefit from additional results for the model order selection order

and in particular from robust algorithms that could simultaneously estimate K and then

the input paramters.

Finally, we believe the theory of approximate FRI goes one step forward into under-

standing the connections in between FRI and CS. In [14] the authors already establish

a preliminary connection in between both theories. Nevertheless, they remark that com-

pressed sensing could potentially accommodate arbitrary sampling kernels and not only

the ones that satisfy an annihilation property, whereas FRI could not. This situation

changes due to the approximate FRI framework, which seems to indicate there is an even
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tighter connection in between the two FRI and CS. Sparse signal processing would clearly

benefit from the knowledge of such link and from the combination of both theories.
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Appendix A

Chapter 2

A.1 Generalised Strang-Fix conditions

An exponential reproducing kernel is any function ϕptq that, together with a linear combi-

nation of its shifted versions, can generate exponential polynomials of the form treαmt [1,41]

for m � 0, . . . , P and r � 0, . . . , R. The parameters αm are in general complex valued.

In this Appendix we prove that exponential reproducing kernels satisfy the generalised

Strang-Fix conditions. More specifically, a kernel ϕptq is able to reproduce exponential

polynomials, i.e.:

treαmt �
¸
nPZ

cm,n,rϕpt� nq,

if and only if

ϕ̂prqpαmq � 0 and ϕ̂prqpαm � 2jπlq � 0

for l � 0, r � 0, . . . , R and m � 0, . . . , P . Here, ϕ̂prqpsq represents the rth order derivative

of the double-sided Laplace transform of ϕptq.
The proof is obtained from the Strang-Fix conditions for polynomial reproducing ker-

nels, by considering the function ψptq � e�αmtϕptq that clearly reproduces polynomials of

the form tr for r � 0, . . . , R. The Strang-Fix conditions [10,43] state that a kernel ψptq is

able to reproduce polynomials, i.e.:

tr �
¸
nPZ

cr,nψpt� nq,

if and only if

ψ̂p0q � 0 and ψ̂prqp2πlq � 0

for l � 0 and r � 0, . . . , R. Here, ψ̂pωq is the Fourier transform of ψptq, and ψ̂prqpωq
represents its rth order derivative. Then, by taking into account that the Fourier transform

of ψptq is related to the Laplace transform of ϕptq through ψ̂pωq � ϕ̂pαm� jωq, the above
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equation turns into the generalised Strang-Fix conditions for ϕptq:

ϕ̂pαmq � 0 and ϕ̂prqpαm � j2πlq � 0

for l � 0, r � 0, . . . , R and m � 0, . . . , P . Now, ϕ̂prqpsq represents the rth order derivative

of the double-sided Laplace transform of ϕptq. This proves that a kernel that reproduces

exponential polynomials satisfies the generalised Strang-Fix conditions.

The converse is also true. Consider a kernel ϕptq that satisfies the generalised Strang-

Fix conditions. Then, a kernel ψptq with Fourier transform ψ̂pωq � ϕ̂pαm� jωq is guaran-

teed to satisfy the Strang-Fix conditions and, consequently, reproduces polynomials tr for

r � 0, . . . , R. Finally, due to the relation of the kernels in the Laplace domain it is nec-

essary that ψptq � e�αmtϕptq. This implies that ϕptq reproduces exponential polynomials

treαmt for l � 0, r � 0, . . . , R and m � 0, . . . , P , which completes the proof.

A.2 Annihilating other sequences

The signal sm � mrum is annihilated by a filter with R poles, where r ¤ R � 1 [2].

Consider the filter

ĥpzq � p1� uz�1qR �
Ŗ

`�0

hr`sz�`, (A.1)

and compute the rth derivative evaluated at z � u. We have:

RpR� 1q . . . pR� r� 1qp1� uz�1qR�r|z�u � 0 �
Ŗ

`�0

�p1qr`p`� 1q . . . p`� r� 1qhr`su�`�r,
(A.2)

which is true for r � 0, . . . , R � 1. Therefore, by properly combining weighted versions

of (A.2) we obtain
Ŗ

`�0

hr`spr`su�` � 0, (A.3)

for any polynomial pr`s of degree less than or equal to R� 1. As a consequence, it is easy

to see that the signal sm is annihilated by hm, since the following holds:

ph � sqrms �
Ķ

`�0

hr`ssrm� `s �
Ķ

`�0

hr`spm� `qrum�` � 0. (A.4)

This is because (A.4) is just (A.3) with R � K and pr`s � pm� `qr. Moreover, the filter

ĥpzq �±K�1
k�0 p1�ukz�1qRk can annihilate pαmqrumk � pα0�λmqrumk for r � 0, . . . , Rk�1.

Here, for each k we have that R � Rk and also that pr`s � pα0 � λpm� `qqr in (A.3).
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B.1 CRB derivations for power sum series

B.1.1 CRB when AWGN is added to the moments

Consider the set of measurements (3.2) for K � 1:

s̃m � sm � bm � a0eαmt0 � bm, m � 0, . . . , P, (B.1)

where bm are i.i.d. Gaussian random variables of zero mean and variance σ2. Any unbiased

estimate Θpŝq of the unknown parameters pt0, a0q has a covariance matrix that is lower

bounded by σ2pΦH
s Φsq�1 (see (3.13)), since Rb � σ2I, where Φs is given by

Φs �

�
�����

a0α0eα0t0 eα0t0

a0α1eα1t0 eα1t0

...
...

a0αP eαP t0 eαP t0

�
����.

In order to calculate (3.13) we first derive the simpler case of purely imaginary pa-

rameters that appear in complex conjugate pairs, i.e. αm � jωm � jω0p2m � P q for

m � 0, . . . , P . Then, we have

ΦH
s Φs �

�
�����
|a0|2

P̧

l�0

|αl|2|eαlt0 |2 a�0

P̧

l�0

α�l |eαlt0 |2

a0

P̧

l�0

αl|eαlt0 |2
P̧

l�0

|eαlt0 |2

�
�����

�
��|a0|2

P̧

l�0

|ωl|2 0

0 P � 1

�
�,

because |eαlt0 |2 � |ejωlt0 |2 � 1 and also
°P
l�0 α

�
l �

°P
l�0 αl � 0. The uncertainty in the

location is given by the square root of the first element of σ2pΦH
s Φsq�1:

∆t0
τ

¥ 1

τ

gffeσ2

�
|a0|2

P̧

l�0

|ωl|2
��1

� 1

τ

d
1°P

l�0 |ωl|2
PSNR� 1

2 . (B.2)
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With our assumption that ωl � ω0p2l � P q for l � 0, . . . , P we know that

P̧

l�0

|ωl|2 � |ω0|2P pP � 1qpP � 2q
3

for either P even or odd. (B.3)

We see from (B.2) and (B.3) that the uncertainty in the location decreases linearly with

|ω0| � π
L . We may therefore choose the smallest value of L to have the best uncertainty.

This is achieved when L � P�1 since a smaller value would make exponential reproducing

kernel have a non-valid basis [1, 98].

In the more general case of having parameters with a real part α, that is αm � α�jωm
for m � 0, . . . , P , we need to invert ΦH

s Φs, which now has the form:

pΦH
s Φsq�1 � 1

|ΦH
s Φs|

�
�����

P̧

l�0

|eαlt0 |2 �a�0
P̧

l�0

α�l |eαlt0 |2

�a0

P̧

l�0

αl|eαlt0 |2 |a0|2
P̧

l�0

|αl|2|eαlt0 |2

�
����,

where

|ΦH
s Φs| � |a0|2

P̧

l�0

|αl|2|eαlt0 |2
P̧

l�0

|eαlt0 |2 � a�0

P̧

l�0

α�l |eαlt0 |2a0

P̧

l�0

αl|eαlt0 |2.

Since αm � α � jωm and we choose ωm � ω0p2m � P q with m � 0, . . . , P for the

parameters to exist in complex conjugate pairs, we have that

pΦH
s Φsq�1 � 1

|ΦH
s Φs|

�
��

e2αt0pP � 1q �a�0e2αt0pP � 1qα

�a0e2αt0pP � 1qα |a0|2e2αt0
P̧

l�0

|αl|2

�
�,

and also

|ΦH
s Φs| � |a0|2e4αt0pP � 1q

P̧

l�0

|ωl|2,

where we have used
°
l |αl|2 � pP � 1qα2 �°l |ωl|2. In total, then, the uncertainty in the

location can be calculated as follows:

∆t0
τ

� 1

τ

gffeσ2

�
|a0|2e2αt0

P̧

l�0

|ωl|2
��1

� 1

τ

d
e2αt0°P
l�0 |ωl|2

PSNR� 1
2 . (B.4)

This may suggest that having α � 0 could improve the uncertainty (B.4) compared

to (B.2). But this is not true, since if we assume that the location t0 is uniformly dis-

tributed in an interval, say, r0, τq, then the mean of the squared uncertainty (B.4) is:

EtCe�2αt0u � C

» τ
0

1

τ
e�2αt0dt0 � C

�2ατ
pe�2ατ � 1q,
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where C � 1
τ2

1°P
l�0 |ωl|

2
PSNR�1. This expression is minimised with respect to α for α � 0.

We therefore conclude that in order to minimise the CRB associated to the power sum

series (2.21) when the measurements are contaminated by AWGN, the best exponential

parameters are of the form αm � jωm � j π
P�1p2m� P q for m � 0, . . . , P .

We conclude by noting that the scenario of exponential parameters with a real part

α � 0 is incompatible with that of having AWGN on the moments for FRI setups in which

we add AWGN on the samples (3.1) (see Appendix C.5). We have obtained the proof to

show that, even in the case in which both conditions could be satisfied, the uncertainty in

the location would be minimised for α � 0.

B.1.2 CRB when uncorrelated noise is added to the moments

We now derive a closed form expression for (B.1) when bm are samples of uncorrelated

noise, but with different variance among samples. This is to say that Rb � EtbbHu �
σ2CCH � σ2diagp|cm,0|2q for m � 0, . . . , P . This is a valid FRI scenario when have N

samples (3.1) contaminated by AWGN and we have purely imaginary parameters αm �
jωm � jω0p2m� P q for m � 0, . . . , P with ω0 � π

N (see Appendix C.5).

Any unbiased estimate Θpŝq of the unknown parameters pt0, a0q has a covariance matrix

that is lower bounded by pΦH
s R�1

b Φsq�1 (see (3.13)), where Rb � σ2diagp|cm,0|2q and the

matrix Φs is given by:

ΦH
s R�1

b Φs � σ�2

�
�����
|a0|2

P̧

l�0

|cl,0|�2|αl|2|eαlt0 |2 a�0

P̧

l�0

|cl,0|�2α�l |eαlt0 |2

a0

P̧

l�0

|cl,0|�2αl|eαlt0 |2
P̧

l�0

|cl,0|�2|eαlt0 |2

�
����

� σ�2

�
��|a0|2

P̧

l�0

|cl,0|�2|ωl|2 0

0
°P
l�0 |cl,0|�2

�
�,

because |eαlt0 |2 � |ejωlt0 |2 � 1 and also
°P
l�0 |cl,0|�2α�l �

°P
l�0 |cl,0|�2αl � 0. The latter

is true for exponential parameters that exist in complex conjugate pairs since in such case

it follows that cm,0 � cP�m,0. The uncertainty in the location is given by

∆t0
τ

� 1

τ

gffeσ2

�
|a0|2

P̧

l�0

|cl,0|�2|ωl|2
��1

� 1

τ

d
1°P

l�0 |cl,0|�2|ωl|2
PSNR� 1

2 ¥ 1

τ

d
1°P

l�0 |ωl|2
PSNR� 1

2 . (B.5)

For the last inequality we have assumed that |cl,0|�1 ¤ 1 for the case of exponential

reproducing kernels. This comes from the fact that these kernels satisfy the generalised

Strang-Fix conditions (see Appendix A.1) and, as a consequence, it is true that c�1
l,0 � ϕ̂pαlq
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for any l. Then, for Laplace transforms that are normalised to |ϕ̂p0q| � 1 it follows that

|cl,0|�1 ¤ 1. It is a relevant fact that, according to (B.5), the uncertainty in the location

will be larger (and hence worse) when the measurements are affected by uncorrelated noise

than when they are contaminated by white noise.

Consider the more general case of parameters having a real part αm � α � jωm for

m � 0, . . . , P . Assume also that the noise is uncorrelated, i.e. Rb � EtbbHu � σ2CCH �
σ2diagp|cm,0|2q and that ωm � ω0p2m � P q for m � 0, . . . , P . Then, we have to invert

ΦH
s R�1

b Φs, which now has the form:

pΦH
s R�1

b Φsq�1 � 1

|ΦH
s R�1

b Φs|

�
�����

P̧

l�0

|cl,0|�2|eαlt0 |2 �a�0
P̧

l�0

|cl,0|�2α�l |eαlt0 |2

�a0

P̧

l�0

|cl,0|�2αl|eαlt0 |2 |a0|2
P̧

l�0

|cl,0|�2|αl|2|eαlt0 |2

�
����,

where

|ΦH
s R�1

b Φs| � |a0|2
P̧

l�0

|cl,0|�2|αl|2|eαlt0 |2
P̧

l�0

|cl,0|�2|eαlt0 |2

� a�0

P̧

l�0

|cl,0|�2α�l |eαlt0 |2a0

P̧

l�0

|cl,0|�2αl|eαlt0 |2

Since αm � α � jωm and we choose ωm � ω0p2m � P q with m � 0, . . . , P for the

parameters to exist in complex conjugate pairs, we have that

pΦH
s R�1

b Φsq�1 � 1

|ΦH
s R�1

b Φs|

�
�����

e2αt0
P̧

l�0

|cl,0|�2 �a�0e2αt0
P̧

l�0

|cl,0|�2α

�a0e2αt0
P̧

l�0

|cl,0|�2α |a0|2e2αt0
P̧

l�0

|cl,0|�2|αl|2

�
����,

and also

|ΦH
s R�1

b Φs| � |a0|2e4αt0
P̧

l�0

|cl,0|�2|ωl|2
P̧

l�0

|cl,0|�2,

where we have used |αl|2 � α2 � ω2
l . In total, the uncertainty in the location can be

calculated as follows:

∆t0
τ

� 1

τ

gffeσ2

�
|a0|2e2αt0

P̧

l�0

|cl,0|�2|ωl|2
��1

� 1

τ

d
e2αt0°P

l�0 |cl,0|�2|ωl|2
PSNR� 1

2 .

We end by noting that when αm � α� jωm for m � 0, . . . , P uncorrelated noise is in

fact not possible for FRI setups in which white Gaussian noise is added to the samples (3.1)

(see Appendix C.5).
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C.1 eMOMS include the Dirichlet and SoS kernels

Let us consider the exponential reproducing kernel ϕ0ptq � ϕ
�
t� P�1

2

�
of support P � 1

and centred in zero, with ϕptq � γptq
 β~αptq, where β~αptq is an E-Spline. We restrict our

analysis to P being even and we use exponential parameters

αm � jωm � j
π

P � 1
p2m� P q, (C.1)

where m � 0, . . . , P . We next use the P �1–periodic extension of ϕ0ptq, that is ϕP�1ptq �°
lPZ ϕ0pt� lpP � 1qq, which is equivalent to:

ϕP�1ptq � 1

P � 1

¸
kPZ

ϕ̂0

�
j

2πk

P � 1



ej

2πk
P�1

t, (C.2)

from the application of Poisson summation formula (1). The case of P being odd can be

derived likewise, but by periodising over 2pP � 1q. Also note that the Fourier transform

of the shifted kernel ϕ0ptq is equal to:

ϕ̂0pjωq � γpjωq
P¹

m�0

sinc

�
ω � ωm

2



. (C.3)

The set of equations

ϕ̂0pjωmq � |ϕ̂pjωmq| � |γ̂pjωmqβ̂~αpjωmq| � ηm, (C.4)

lead to design exponential reproducing kernels of maximum order and minimum support

(eMOMs), different from those of Section 4.2, but that still correspond to a specific sub-

family of the generalised exponential reproducing kernels of [41].

In (C.2) the Fourier transform ϕ̂0pjωq is evaluated at jωk � j 2πk
P�1 . Taking into ac-

count (C.4), we know that ϕ̂0pjωkq � ηk for k � �P
2 , . . . ,

P
2 . We also have that ϕ̂0pjωkq � 0

for any other k, because we can find a term in the product (C.3) equal to sincp`πq � 0,
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` P Z. Therefore, (C.2) can be reduced to:

ϕP�1ptq � 1

P � 1

P
2̧

k��P
2

ηke
j 2πk
P�1

t. (C.5)

Note that when the values ηk � 1 for all k, then (C.5) reduces to one period of the

Dirichlet kernel of period P � 1:

ϕP�1ptq � 1

P � 1

P
2̧

k��P
2

ej
2πk
P�1

t � 1

P � 1

sinpπtq
sinp πt

P�1q
.

And this is precisely the P � 1–periodic extension of the eMOMs kernels of Section 4.2.

To end, we now consider one period of (C.5) and denote t � x
T , N � P � 1 and

τ � NT � pP � 1qT . Then we get the time domain definition of the SoS kernel [15]:

gpxq � rect
�x
τ

	
ϕP�1

� x
T

	
� rect

�x
τ

	 1

N

¸
kPK

ηke
j 2πk
τ
x.

Here, the number of samples N needs to be odd, since P is even, and the set of indices

K � t�N�1
2 , . . . , N�1

2 u.

C.2 Analysis of the Cramér–Rao bound for eMOMS

Let us consider eMOMS kernels (4.6) that reproduce exponentials of parameters (4.4),

where N � P � 1 and P even. Moreover, assume the kernel satisfies that c�1
m,0 � ϕ̂pωmq �

ϕ̂m where ωm � π
N p2m�P q. We use the general form of the coefficients cm,0 � |cm,0|eαm∆.

We want to find the Cramér–Rao bound associated to the estimation of the innovation

parameters pt0, a0q of K � 1 Dirac, directly from the N noisy samples

ỹn � a0ψpt0 � nT q � εn, n � 0, . . . , N � 1. (C.6)

Here, ψptq � °`PZ ϕp t�`τT q is the τ -periodic extension of the eMOMS kernel ϕptq, τ � NT

and εn are i.i.d. Gaussian random variables, of zero mean and standard deviation σ. In

order to evaluate the minimum deviations of the amplitude a0 and time location t0 that an

unbiased estimator may achieve in the presence of noise, we need to calculate the covariance

matrix (3.11) for K � 1. As a consequence, we have that CRBpΘq � pΦT
yR�1Φyq�1 with

R � EtεεHu � σ2IN and where matrix Φy is as follows:

Φy �

�
�����

a0ψ
1pt0q ψpt0q

a0ψ
1pt0 � T q ψpt0 � T q

...
...

a0ψ
1pt0 � pN � 1qT q ψpt0 � pN � 1qT q

�
����. (C.7)
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Therefore, the CRB is given by the following square and size 2� 2 matrix:

CRBpΘq � σ2

� °N�1
n�0 pa0ψ

1pt0 � nT qq2 °N�1
n�0 a0ψ

1pt0 � nT qψpt0 � nT q°N�1
n�0 ψpnT � t0qa0ψ

1pt0 � nT q °N�1
n�0 pψpt0 � nT qq2

��1

. (C.8)

To compute the summations, it is convenient to use the Fourier series representations

of ψptq and of its derivative ψ1ptq, because the inner product of the sequences fpnT q and

gpnT q, obtained by sampling functions fptq and gptq at t � nT , satisfies [28,99]:

N�1̧

n�0

fpnT qg�pnT q paq�
N�1̧

n�0

�¸
k

f̂ke
j2πknT

τ

��¸
k1

ĝ�k1e
�j2πk1nT

τ

�
(C.9)

�
¸
k

f̂k
¸
k1

ĝ�k1
1� ej2πpk�k

1qN T
τ

1� e�j2πpk�k
1qT
τ

pbq�
¸
k

f̂k
¸
k1

ĝ�k1Nδk,k1 � N
¸
k

f̂kĝ
�
k ,

where in paq we have assumed fptq and gptq are τ -periodic and we use their Fourier series

expansions, and in pbq we apply τ � NT , hence, the sum is only non-zero when k � k1.

Furthermore, if we call ψ̂k the coefficients for the expansion of ψptq, then ψ̂1k � j2π kτ ψ̂k

are the coefficients for the expansion of its derivative ψ1ptq; and ψ̂
pt0q
k � e�j2πk

t0
τ ψ̂k the

coefficients for the expansion of its shifted version ψpt� t0q. By using these equivalences

and equation (C.9) it is easy to obtain the sums in (C.8). We begin by highlighting that the

function ψptq is characterized by the Fourier series coefficients ψ̂k � 1
τ

³τ
0 ψptqe�j

2πk
τ dt �

1
N ϕ̂

�
2πk
N

� � 1
N ϕ̂k, for k P K � tk : k � 2m�P

2 ,m � 0, . . . , P u1 and ψ̂k � 0 otherwise.

Then the first diagonal element in (C.8) before inverting can be obtained as follows:

σ�2
N�1̧

n�0

�
a0ψ

1pt0 � nT q�2 � σ�2a2
0N

¸
kPK

ψ̂1ke
�j2πk

t0
τ ψ̂1�k ej2πk

t0
τ

rIpΘqs11 � 1

N

�
a0

σ

2π

τ


2 ¸
kPK

k2|ϕ̂k|2

and the second can be derived likewise. In addition, when we compute the elements of the

anti-diagonal we find a factor of the form
°
kPK k|ϕ̂k|2, which is equal to zero as long as

|ϕ̂k| � |ϕ̂�k|. This is true, for instance, if we want to design real filters, since they satisfy

ϕ̂k � ϕ̂��k. Thus, in total, we have that

CRBpΘq �
�
�N

�
σ
a0

	2 �
τ

2π

�2 1°
kPK k

2|ϕ̂k|2
0

0 σ2N 1°
kPK |ϕ̂k|2

�
. (C.10)

We determine the uncertainties in the location and the amplitude from the CRB (C.10).

We know that the diagonal values are lower bounds for the variances of t0 and a0 respec-

1We have assumed P is even, therefore k � �P
2
, . . . , P

2
is a valid set of consecutive integers.
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tively and, since we are interested in unbiased estimators, the variances equal the MSE of

the estimation of each unknown. The uncertainty in the location satisfies that:

∆t0
τ

¥ 1

2π

d
N°

kPK k
2|ϕ̂k|2 PSNR� 1

2 ,

where we have defined the peak signal-to-noise ratio as PSNR � �a0
σ

�2
, and the uncertainty

in the amplitude satisfies:

∆a0

|a0| ¥
d

N°
kPK |ϕ̂k|2

PSNR� 1
2 .

Note that when |ϕ̂k| � 1 for all k, and if we denote K � tk : k � �M, . . . ,Mu, the

above expressions simplify to:

∆t0
τ

¥ 1

2π

d
3N

MpM � 1qp2M � 1qPSNR� 1
2 , (C.11)

∆a0

|a0| ¥
c

N

2M � 1
PSNR� 1

2 .

The above expressions can easily be shown to be equal to the uncertainties derived

in [14] for the periodic sinc.

C.3 Generic CRB for eMOMS

We now show that equation (C.10) is in fact valid for any eMOMS kernel, including E-

Splines, by assuming k is no longer restricted to the set K. Consider a kernel of the

form

ϕptq �
P̧

`�0

d`
d`β~αptq

dt`
,

such that, given the coefficients cm,0 � |cm,0|eαm∆, proper linear combinations of the

kernels can reproduce the exponential functions eαmt, where

αm � α� j
π

L
p2m� P q m � 0, . . . , P.

The key idea to prove that (C.10) holds is to note that the N noiseless samples

yn � a0ϕ

�
t0
T
� n



, n � 0, . . . , N � 1

are identical to

yn � a0ψpt0 � nT q, n � 0, . . . , N � 1

if we use ψptq � °
`PZ ϕp t�`τT q, which is the τ -periodic extension of the eMOMS kernel
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ϕptq, and provided that τ � NT and N ¥ P � 1. For these sets of samples to be equal,

we need the Dirac to be located in a time position where the kernel is able to reproduce

exponentials exactly. For instance, we may have 0 ¤ t0   T and take samples with indices

n � �P, . . . , N � P � 1. Then, the first P � 1 samples in either case are different from

zero and the other N � P � 1 are zeros.

When these conditions are satisfied, we may proceed exactly in the same way as in

Appendix C.2 to conclude that, in general, the following is true:

CRBpΘq � IpΘq�1 �
�
�N

�
σ
a0

	2 �
τ
2π

�2 1°
kPZ k

2|ϕ̂k|2
0

0 σ2N 1°
kPZ |ϕ̂k|

2

�
, (C.12)

where

ϕ̂k � ϕ̂

�
2πk

N



�

P̧

`�0

d`pjωq`
P¹

m�0

1� eαm�jω

jω � αm

�����
ω� 2πk

N

,

is the Fourier transform of ϕptq at ω � 2πk
N . To end, the uncertainty in the location

satisfies:
∆t0
τ

¥ 1

2π

d
N°

kPZ k
2|ϕ̂k|2 PSNR� 1

2 , (C.13)

where the peak signal-to-noise ratio is PSNR � �a0
σ

�2
, and the uncertainty in the amplitude

satisfies:
∆a0

|a0| ¥
d

N°
kPZ |ϕ̂k|2

PSNR� 1
2 . (C.14)

Even though the finite length summations over n in Equation (C.8) are now infinite

length summations over k in (C.12), the latter expressions are independent of t0 and

are easier to compare for different kernels. In practice, due to the absolute value of the

Fourier transform ϕ̂pωq being low-pass and normally fast decaying, just a few terms of k

for either (C.13) or (C.14) provide good estimates of the uncertainties.

C.4 Polynomial with roots spanning the unit circle

Consider the polynomial xP�1�1, with zeros being the P �1 roots of unity xm � ej
2πm
P�1 �

eα
1
m . We define α1m � j 2πm

P�1 � αm � α, where αm � j π
P�1p2m� P q and α � j πP

P�1 .

This polynomial can be written as xP�1 � 1 � ±
mpx � eα

1
mq. If we then use x � es

we have that:

espP�1q � 1 �
¹
m

pes � eα
1
mq � espP�1q

¹
m

p1� eα
1
m�sq

and by multiplying with e�spP�1q on both sides, we obtain:

1� e�spP�1q �
¹
m

p1� eα
1
m�sq �

¹
m

p1� eαm�ps�αqq
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which finally yields
P¹

m�0

p1� eαm�sq � 1� e�pP�1qps�j πP
P�1

q

Then, if we use s � αi in the previous equation, we have an indeterminate form that

we solve using L’Hôpital’s rule:

P¹
m�0
m�i

p1� eαm�αiq � lim
sÑαi

±P
m�0p1� eαm�sq

1� eαi�s

� lim
sÑαi

1� e�pP�1qsp�1qP
1� eαi�s

paq� lim
sÑαi

�pP � 1qe�pP�1qsp�1qP
�eαi�s

� P � 1,

where in paq we differentiate the numerator and denominator, i.e. we apply L’Hôpital’s

rule, converting the indeterminate form 0
0 into a determinate form.

C.5 Types of noise in the moments domain

Consider the noisy samples (3.1) where εn are i.i.d. Gaussian random variables of zero

mean and standard deviation σ. These samples lead to the set of moments (3.2) where

bm are Gaussian random variables of zero mean but not i.i.d. any more.

We begin by calculating the covariance matrix of the noise RB � EtBHBu, as “seen”

by the subspace estimator method, where

B �

�
�����

bM bM�1 � � � b0

bM�1 bM � � � b1
...

...
. . .

...

bP bP�1 � � � bP�M

�
����, (C.15)

with bm � °n cm,nεn and Etεnεn1u � σ2δn�n1 . The resulting elements are

rRBsk,l � σ2
〈
CrM�k:P�k,:s,CrM�l:P�l,:s

〉
,

where k, l � 0, . . . ,M , Cra:b,:s denotes the C-submatrix composed of rows a to b and all

the columns, we use entries from 0 to P and 0 to N � 1 for the rows and columns of C

respectively, and we define the inner product 〈X,Y〉 of two matrices X and Y as2

〈X,Y〉 �
¸
m,n

X�
m,nYm,n � trpXHYq.

2this is sometimes referred as the Frobenius inner product X : Y
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We may equivalently write that

rRBsk,l � σ2
〈
CrM�k:P�k,:s,CrM�l:P�l,:s

〉 � σ2
P�M̧

m�0

N�1̧

n�0

c�m�M�k,ncm�M�l,nloooooooooooooomoooooooooooooon
rC�CT spm�M�k,m�M�lq

,

for k, l � 0, . . . ,M . This derivation is useful to calculate the whitening matrices of Chap-

ter 3. We are now ready to define the various types of noise that can be present in FRI

scenarios when white Gaussian noise is added to the samples yn.

Noise on the moments is limited to a few specific configurations, which are the following:

1. Correlated noise. This is the most general form of noise we may encounter. It

is characterised by a covariance matrix Rb � EtbbHu that is not diagonal. The

random variable b is therefore not proper [77], however the distribution remains

Gaussian. Hence, it can be completely characterised by its mean (which is zero),

and its covariance matrix, which takes the form:

Rb � EtbbHu � σ2CCH , (C.16)

with terms equal to σ2 times

rCCHsa,b �
¸
n

ca,0c
�
b,0ejpωa�ωbqn

for a ¥ b, in case the exponential parameters are of the form αm � jωm (or as

in (4.2) with α � 0), and then CCH � pCCHqH . Note that the diagonal terms

(a � b) are simply rCCHsa,a � N |ca,0|2. The noise in Toeplitz form has covariance

matrix with elements:

rRBsk,l � σ2
P�M̧

m�0

rC�CT spm�M�k,m�M�lq �
P�M̧

m�0

¸
n

ca,0c
�
b,0ejpωa�ωbqn, (C.17)

for k, l � 0, . . . ,M and where a � m�M � l and b � m�M � k.

2. Uncorrelated noise This type of noise happens when Rb � EtbbHu is diagonal.

Since we have restricted our analysis to parameters of the form (4.2), we need that

α � 0 and L � N . The random variable b is now proper [77] and Gaussian, of zero

mean, and covariance matrix:

Rb � EtbbHu � σ2diagp|cm,0|2q m � 0, . . . , P.

The signal in Toeplitz form is affected by noise of covariance matrix with entries:

rRBsk,k � σ2
P�M̧

m�0

|cm�M�k,0|2,
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for k � 0, . . . ,M and zero otherwise (it is also diagonal).

3. Correlated noise of constant diagonal terms. This type of noise takes place when

|cm,0| � 1 and αm � j πLp2m � P q for m � 0, . . . , P when L � N . In this case, b is

characterised by a covariance matrix like (C.16) but with diagonal terms all equal

to N . The noise in Toeplitz form has a covariance matrix (C.17) but with constant

diagonal terms equal to NpP �M � 1q.

4. Circular white Gaussian noise [77] (which implies the random vector b is zero-mean

and proper). This type of noise occurs when |cm,0| � 1 and αm � j πN p2m � P q for

m � 0, . . . , P . In this case, b is characterised by a covariance matrix:

Rb � EtbbHu � σ2NIP�1,

and the signal in Toeplitz form is affected by noise of covariance matrix:

RB � EtBHBu � σ2NpP �M � 1qIM�1.
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Chapter 5

D.1 Coefficients for approximate exponential reproduction

In this appendix we derive the optimal coefficients in the least-squares sense and of exact

interpolation at integer points in time for the approximate reproduction of exponentials

introduced in Section 5.1. Given an arbitrary function fptq, we can determine the coef-

ficients cn for the linear combination sptq � °
nPZ cnϕpt � nq to approximate fptq in the

least-square sense by computing its orthogonal projection onto the subspace spanned by

ϕpt�nq [81]. Therefore, we know that the error fptq � sptq needs to be orthogonal to any

function in the approximation subspace. This means that:

〈fptq � sptq, ϕpt� kq〉 � 0 Ø
〈fptq, ϕpt� kq〉 � 〈sptq, ϕpt� kq〉Ø

dk �
¸
lPZ

cl 〈ϕpt� lq, ϕpt� kq〉Ø

dk � aϕrks � ck

where we have defined the sequence dk � 〈fptq, ϕpt� kq〉. Also aϕrks � 〈ϕpt� lq, ϕpt� kq〉
represents the sampled autocorrelation of ϕptq and the operation (�) denotes the discrete

convolution of two sequences. Therefore, we can calculate the optimal approximation

coefficients in the least-squares sense by simply using a filtering operation:

ck � dk � a�1
ϕ rks (D.1)

where a�1
ϕ rks indicates that the filter should be inverted in the z-transform domain. More-

over, when we consider the approximation of fptq � eαt we can find a closed form expres-

sion for (D.1). We have, from the definition of dk and the function fptq to approximate,

that the following holds:

dk � 〈fptq, ϕpt� kq〉 �
» 8

�8
eαtϕpt� kqdt � eαkϕ̂p�αq
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where, ϕ̂psq indicates the Laplace transform of ϕptq. Now, calling qk � a�1
ϕ rks, we conclude

that the least-squares coefficients are:

ck � dk � qk �
¸
lPZ

dk�lql

� eαkϕ̂p�αq
¸
lPZ

e�αlql � eαkϕ̂p�αqQpeαq

� eαkϕ̂p�αq
âϕpeαq

where we have used the fact that Qpzq � °lPZ qlz
�l, and where âϕpeαq �

°
lPZ aϕrlse�αl.

It is also possible to find the coefficients ck for sptq to interpolate fptq at integer values

of time exactly. The solution is given by ck � fk �qk, where the filter qk is defined through

its z-transform [1,8]:

Qpzq � 1°
kPZ ϕpkqz�k

Consider again that the input signal is an exponential fptq � eαt. In this situation, it

is particularly simple to obtain the coefficients ck so that sptq interpolates fk � fptq|t�k
as follows:

ck �
¸
lPZ

qlfk�l �
¸
lPZ

qle
αpk�lq

� eαk
¸
lPZ

qle
�αl � eαkQpeαlq

� eαk°
lPZ e�αlϕplq

where we have used the fact that Qpzq � °lPZ qlz
�l.

D.2 Approximation of exponentials with other FRI kernels

D.2.1 Case study 1: B-Spline kernels

In this case study we find the various types of coefficients cn for the following relation to

hold: ¸
nPZ

cnβM�1pt� nq � eαt,

where βM�1ptq is the B-Spline of order M � 1. To begin, we define the B-Spline of order

M � 1 as the convolution of M � 1 box functions1 β1ptq [100] characterised by a Fourier

1In fact, most of the literature uses the definition of order M for the convolution of M�1 box functions
β1ptq. However we use order M � 1 to be consistent with the definition given for E-Splines.
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transform β̂1pωq � 1�ejω

jω , that is:

ϕptq � βM�1ptq � pβ1 
 β1 � � �
 β1qloooooooooomoooooooooon
M � 1 times

ptq. (D.2)

The B-Spline functions are of support M �1 since the box function is of support one. The

double-sided Laplace transform of the B-Spline of order M � 1 is:

ϕ̂psq � β̂M�1psq �
M¹
m�0

1� e�s

s
. (D.3)

Hence, the constant least-squares and the interpolation coefficients are straightforward

to compute by evaluating the expressions given in Table 5.1 with the definitions (D.2)

and (D.3). In practice, when we obtain the interpolation coefficients we do not need to

evaluate l P Z, but only l P r0,M � 1s due to the support of the kernel.

On the other hand, the least-squares coefficients involve evaluating the z-transform of

the sampled autocorrelation aϕrls � 〈ϕpt� lq, ϕptq〉 at z � eα. A nice feature of B-Splines

is that the convolution of two B-Splines of orders M1 and M2 is another B-Spline of order

M1�M2 (this follows immediately from the fact that a B-Spline of order M�1 is defined as

the convolution of M � 1 box functions). In other words, we may find the autocorrelation

by noting that:

aϕpxq �
» 8

�8
ϕpt� xqϕpxqdt � ϕpxq
 ϕp�xq (D.4)

� β2pM�1qpx� pM � 1qq,

which is a B-Spline of double order centred in zero. The sampled autocorrelation follows

from evaluating (D.4) at x � l P Z. Then, the least-squares coefficients are obtained from

the expression of Table 5.1 by calculating the z-transform of the sampled autocorrelation

at z � eα.

We have shown an example of the above analysis in Figure 5.1 of Section 5.1. We have

used a linear combinations of shifted versions of a linear spline to reproduce exponentials

using the constant least-squares and the interpolation coefficients.

D.2.2 Case study 2: Approximation with Gaussian kernels

We now turn our attention to the approximation capabilities of Gaussian functions, by

examining how linear combinations of shifted versions of these kernels reproduce expo-

nential functions. That is, we find the various types of coefficients cn for the following

relation to hold: ¸
nPZ

cnhγpt� nq � eαt,
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where hγptq is the Gaussian kernel of variance γ2 centred in zero. We use the time domain

definition of the kernel as given in [2, 60], specifically

ϕptq � hγptq � e
� t2

2γ2 . (D.5)

Gaussian functions are of infinite length, but they can be characterised by an “effective”

support due to their exponential decay. In fact, they are almost negligible beyond 3.5 times

their standard deviation [97] on both sides. The double-sided Laplace transform of the

Gaussian kernel (D.5) is:

ϕ̂psq � ĥγpsq �
?

2π � γ � e γ
2s2

2 . (D.6)

Therefore, the constant least-squares and interpolation coefficients are obtained simply by

evaluating the expressions given in Table 5.2 with the time domain characterisation (D.5)

and the Laplace transform (D.6).

The least-squares coefficients are more difficult to derive, since we need to evaluate

the z-transform of the sampled autocorrelation aϕrls � 〈ϕpt� lq, ϕptq〉 at z � eα. The

convolution of two Gaussian functions is another Gaussian with mean the sum of the

original means and variance the sum of the original variances2. Then it is possible to find

a closed form expression for the autocorrelation:

aϕpxq �
» 8

�8
ϕpt� xqϕpxqdt � hγpxq
 hγp�xq (D.7)

� phγ 
 hγqpxq � e
� x2

4γ2 .

Hence, the autocorrelation is a Gaussian function of variance four times γ2. Finally, the

least-squares coefficients are obtained from the expression of Table 5.2 and calculating the

z-transform of the autocorrelation (D.7) sampled at x � l P Z.

We show an example of the above analysis in Figure D.1. We approximate exponentials

eαm � ej
π
16
p2m�7qt for m � 0, . . . , 3 using linear combinations of a Gaussian function (D.5)

with standard deviation γ � 0.63. The interval of approximation for the Gaussian function

depends on the “effective” support of the kernel (we use 7γ) and the number of samples.

If, for instance, we define an approximation interval r0, τq, with τ P Z, then we should

employ indices �rSs ¤ n ¤ τ � rSs � 1, where S � 3.5γ. We show the approximation of

the real part of the exponentials obtained by using the constant least-squares coefficients

�?
2π � γ � e γ

2α2
m

2


�1

eαmn, m � 0, . . . , 3

where αm � j π16p2m� 7q, in Figure D.1 (c, d, e, i). In addition, we show the interpolation

2This can be easily proved in the frequency domain.
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of the real part of the exponentials obtained by using the coefficients

cm,n �
�

Ş

`��S

eαm`e
� `2

2γ2

��1

eαmn, m � 0, . . . , 3

in Figure D.1 (f, g, h, j). In this example the results obtained by either set of coefficients

appear identical even though the constant-least squares coefficients are again superior. We

notice that the quality of the reproduction is better than that obtained in the example

of Figure 5.1, however the effective support of the Gaussian kernel is much bigger than

the support of the linear spline. Higher order B-Splines provide similar accuracy to the

Gaussian kernel. The number of exponentials that can be approximated is also arbitrary

but the quality of the approximation depends on γ.
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Figure D.1: Gaussian kernel approximation capabilities. Figures (a-h) show the con-
stant least-squares approximation and the interpolation of the real parts of 4 complex
exponentials: ej

π
16 p2m�7qt for m � 0, . . . , 3. We plot the weighted and shifted versions

of the splines with dashed blue lines, the reconstructed polynomials and exponentials
with red solid lines, and the exact functions to be reproduced with solid black lines.
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D.3 Fixed point iteration for the reconstruction of one Dirac

In this section we study whether the iterative method of Algorithm 5 may converge after

sufficient iterations for the simple case of K � 1 and T � 1. Without loss of generality we

further assume a0 � 1. For this situation we can explicitly write the non-linear relation

between the values sm and the unknown t0. The annihilating equation (2.22) for K � 1

is simply

s1h0 � s0h1 � 0,

with the filter

ĥpzq � h0 � h1z
�1 � 1� u0z

�1 � 1� eλt0z�1.

Therefore, the filter coefficients are h0 � 1 and h1 � �eλt0 . Consequently, the annihilating

equation becomes s1 � s0eλt0 � 0, and from this expression it follows that

ti0 �
1

λ
ln
si1
si0

� 1

λ
ln
s0

1 � ε1pti�1
0 q

s0
0 � ε0pti�1

0 q � fpti�1
0 q, (D.8)

which is in the form of a fixed point iteration ti0 � fpti�1
0 q [101]. The value t0 is in fact a

fixed point, since it satisfies that t0 � fpt0q [101]. Note that the error ζm of (5.7) reduces

to a single term εmpt0q in (D.8) when K � 1 and a0 � 1. In addition, εmptq can be

calculated using (5.4), which states:

εmptq � eαmt

�
1� cm,0

¸
lPZ

ϕ̂pαm � j2πlqej2πlt
�
,

that is, the error depends on cm,0, αm and ϕ̂psq.
We now establish a condition for the iteration of equation (D.8) to converge. Consider

an interval rta, tbs such that fprta, tbsq P rta, tbs and also where fptq is continuous. Then, we

are guaranteed there must exist a fixed point t0 � fpt0q in that interval [101]. Moreover,

suppose that f 1ptq is defined over rta, tbs and there exists a constant C   1 such that

|f 1ptq| ¤ C for any t P rta, tbs. Then, the fixed point t0 is unique in the interval rta, tbs
and the sequence tti0u8i�0 defined as ti�1

0 � fpti0q will converge to the fixed point t0 [101].

Even though the aforementioned result is general, evaluating |f 1ptq| with fptq as in (D.8)

has to be done in a case by case basis. That |f 1ptq| ¤ C   1 depends on the kernel ϕptq,
the parameters αm and the coefficients cm,0.

We demonstrate the above analysis with an example. Assume we use (D.8) to refine

the estimation of the location t0 of a Dirac that has been sampled by a B-Spline kernel

of order M � 1 � 4. We use the constant least-squares coefficients cm,n � ϕ̂pαmq�1eαmn

for the B-Spline to approximate exponentials of parameters αm � j π
1.4pP�1qp2m � P q for

m � 0, . . . , P with P �1 � 16. In this scenario, and for a Dirac with amplitude a0 � 1 and

location t0 � 50
1984 the process converges in 20 iterations to a solution exact to numerical

precision (MSE 910�30). Other configurations converge much faster, but this example
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shows the convergence process very clearly, as illustrated in Figure D.2.

In Figure D.2 we show (a) fptq and (b) |f 1ptq| in an interval around the location to

be estimated t0. The derivative is always smaller than 1, which explains convergence.

In addition, the rate of convergence is proportional to |f 1pt0q| [101]. In either figure we

indicate t̂00 for the first estimation and t̂end
0 for the last, which coincides with t0.
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Figure D.2: Representation of the fixed point iteration equation (D.8). We show (a)
fptq and (b) |f 1ptq| in an interval around the location to be estimated t0. The derivative
is always smaller than 1, which explains convergence.

We conclude by saying that whenever the input has more than one Diracs, then there

is no simple fixed-point equation analogous to (D.8) to determine the locations. Only

when we can write (2.23) as an homogeneous system of K equations and K time values

Gpt0, t1, . . . , tK�1q � Gptq � 0 and transform it into an equivalent system of the form

t � Fptq, then we have the fixed-point iteration of several variables

ti � Fpti�1q.

The existence and uniqueness of fixed points of vector-valued functions of several vari-

ables can be described in a similar manner to the single-variable case [102]. The function

F has a fixed point in a domain D P RK if F maps D into D. Furthermore, if there exists

a constant C   1 such that, in some natural matrix norm, }JF}   C for t P D, where JF

is the Jacobian matrix of first partial derivatives of F evaluated at t, then F has a unique

fixed point t in D. In addition the fixed-point iteration is guaranteed to converge to t for

any initial guess in D.

D.4 Exact FRI recovery schemes for other kernels

D.4.1 Polynomial reproducing kernels

We now briefly summarise the exact reconstruction of a train of K Diracs that has been

sampled by a polynomial reproducing kernel ϕptq in the absence of noise. We follow the
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same steps as in [10]. Consider xptq � °K�1
k�0 akδpt� tkq and the samples

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�

K�1̧

k�0

akϕ

�
tk
T
� n



,

taken by a kernel ϕptq that is able to reproduce polynomials of maximum degree M ¥
2K � 1. That is

¸
nPZ

cm,nϕ

�
t

T
� n



�
�
t

T


m
, m � 0, . . . ,M. (D.9)

In order to obtain the locations and amplitudes of the Diracs tak, tkuK�1
k�0 from yn,

we begin by computing the first M � 1 moments of the input (see [10] for the exact

derivations):

τm �
¸
n

cm,nyn �
K�1̧

k�0

ak

�
tk
T


m
, m � 0, . . . ,M. (D.10)

Then we define the filter ĥpzq � °K�1
k�0 hmz

m �±K�1
k�0 p1� tk

T z
�1q that is able to annihilate

the sequence τm. In other words:

hm � τm �
Ķ

i�0

hiτm�i � 0. (D.11)

The zeros of the filter are unique provided the locations tk are different from each other.

Finally, we may write the annihilating identity (D.11) in matrix form which leads to a Yule-

Walker system of equations like (2.24). This system can be solved whenever M ¥ 2K� 1.

The weights ak may be retrieved from the moments expression (D.10) which in matrix

form is a Vandermonde system similar to (2.25).

Just like with exponential reproducing kernels, when M � 1 is strictly larger than the

minimum number of moments 2K we may solve the problem using least-squares. Moreover,

in the presence of white Gaussian noise added to the samples, the sequence of moments

is contaminated by colored noise. Hence, it is possible to enhance the accuracy of the

recovery by employing the denoising methods described in Chapter 3. The recovery may

be further enhanced by improving the conditioning or the problem as suggested in [51].

Whenever T ! 1 then the Yule-Wlaker and Vandermonde systems of equations are badly

conditioned. If, on the other hand, we transform (D.9) into

¸
nPZ

pcm,nTmqloooomoooon
c1m,n

ϕ

�
t

T
� n



� tm, m � 0, . . . ,M,

then (D.10) becomes

τm �
¸
n

c1m,nyn �
K�1̧

k�0

akt
m
k , m � 0, . . . ,M,

140



D.4. Exact FRI recovery schemes for other kernels

yielding much more stable systems of equations. To end, note that the coefficients cm,n

are not straightforward to calculate. In the next subsection we explain a way to dealing

with the problem.

D.4.2 Coefficients for the polynomial reproduction property

This derivation was proposed to our group by Jon Oñativia Bravo. I include it in the

appendices with his consent.

The coefficients for the polynomial reproducing formula:

¸
nPZ

cm,nϕpt� nq � tm, m � 0, . . . , P, (D.12)

to hold may be obtained using the dual of the polynomial reproducing kernel, ϕ̃ptq, as

follows:

cm,n �
» 8

�8
tmϕpt� nqdt �

» 8

�8
pt� nqmϕptqdt � (D.13)

�
m̧

k�0

�
m

k



nm�k

» 8

�8
tkϕptqdt �

m̧

k�0

�
m

k



nm�kck,0.

Then, in order to obtain the values ck,0 for k � 0, . . . , P we substitute (D.13) into (D.12)

to obtain:

tm �
¸
nPZ

m̧

k�0

�
m

k



nm�kck,0ϕpt� nq

� cm,0
¸
nPZ

ϕpt� nq �
m�1̧

k�0

�
m

k



ck,0

¸
nPZ

nm�kϕpt� nq,

equation from which we may obtain the coefficients recursively by using:

cm,0 �
tm �°m�1

k�0

�
m
k

�
ck,0

°
nPZ n

m�kϕpt� nq°
nPZ ϕpt� nq . (D.14)

For instance, the first coefficients are:

c0,0 � 1°
nPZ ϕpt� nq ,

c1,0 � t� c0,0
°
nPZ nϕpt� nq°

nPZ ϕpt� nq ,

c2,0 � t2 � c0,0
°
nPZ n

2ϕpt� nq � 2c1,0
°
nPZ nϕpt� nq°

nPZ ϕpt� nq .
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D.4.3 Gaussian kernels

We now turn our attention to FRI reconstruction based on Gaussian kernels, as described

in [2, 60], for the noiseless scenario. A finite stream of K Diracs xptq � °K�1
k�0 akδpt� tkq

sampled with a Gaussian kernel hγptq � e�t
2{p2γ2q produces samples:

yn � 〈xptq, hγpnT � tq〉 �
K�1̧

k�0

ake
�
ptk�nT q

2

2γ2 , n � 0, . . . , N � 1.

In order to obtain the locations and amplitudes of the Diracs tak, tkuK�1
k�0 from yn, we

only need multiply above expression by wn � epnT q
2{p2γ2q to obtain:

un � ynwn �
K�1̧

k�0

ake
�

t2k
2γ2 e

ntkT

γ2 �
K�1̧

k�0

xkz
n
k , n � 0, . . . , N � 1, (D.15)

where xk � ake
�t2k{p2γ

2q and zk � etkT {γ
2
. Hence, the sequence un is a power sum series

and it is possible to retrieve the parameters xk and zk by using the annihilating filter.

Here, γ needs to be carefully chosen in order for the exact FRI recovery of [2] to be

well conditioned. In [60] the authors show there is an optimum γ related to the minimum

spacing between consecutive Diracs ts. This value is normally just a fraction of ts. When

the number of Diracs K increases, the ratio σ
ts

increases as well. The performance in

turn worsens since the system becomes badly conditioned. In case the average distance

is not known, then γ must be set according to the required resolution [97]. Moreover,

if we fix τ � NT then the time interval for perfect reconstruction is smaller than τ . In

fact, due to the effective support 2S � 7γ of the kernel, the N samples with indices

n � �rSs, . . . , N � 1� rSs cover the time interval 0 ¤ t ¤ pN � 1qT � 2S � τ � T � 2S.

Whenever N is strictly larger than the minimum number of moments 2K then we may

solve the problem using least-squares. Moreover, in the presence of white Gaussian noise

added to the samples, the new sequence un is contaminated by colored noise, the effects

of which may be alleviated by using the pre-conditioning procedure explained in [60].

We conclude by highlighting that the FRI scenario based on the Gaussian kernel is very

unstable, specially for high values of N and small values of the standard deviation γ and

of the sampling period T .
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