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Estimation of Low-rank PSD Matrices

• Consider estimation of a low-rank positive-semidefinite (PSD)
matrix X ∈ Rn×n from symmetric rank-one measurements:

yi = 〈aiaTi ,X〉 = aTi Xai, i = 1, . . . ,m.

• The measurements are nonnegative since X � 0.

• If rank(X) = r, decompose X as X = UUT , where U ∈ Rn×r,
then the measurements are quadratic in U :

yi = a
T
i UU

Tai = ‖UTai‖22.

The rank r may be unknown.

• Goal: recover X or U from as a small number of measurements.

• Related to low-rank matrix recovery but more structured/restricted.
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Application - phase retrieval

Quadratic measurements arise in optical applications such as phase
retrieval∗, namely, recover x ∈ Rn/Cn from

yi = |〈ai,x〉|2 = a∗i (xx
∗)ai, i = 1, . . . ,m.

Figure 1: A typical setup for structured illuminations in diffraction imaging using a phase mask.

Figure 2: A typical setup for structured illuminations in diffraction imaging using oblique illumina-
tions. The left image shows direct (on-axis) illumination and the right image corresponds to oblique
(off-axis) illumination.
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∗E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski, “Phase retrieval via
matrix completion,” SIAM J. on Imaging Sciences.
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Application - projection retrieval

Quadratic measurements arise in the problem of projection (or subspace)
retrieval via energy measurements†, namely, recover a subspace
U ∈ Rn×r from

yi = ‖UTai‖22 = aTi (UU
T )ai, i = 1, . . . ,m.

U

ai

kUT aikkUT ajk

aj

Useful in SAR imaging.

†M. Fickus and D. Mixon, “Projection Retrieval: Theory and Algorithms”,
SAMPTA 2015.
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Application - covariance sketching

Question: how to sketch a high-dimensional data stream in order to
recover its covariance matrix?‡

• Consider a data stream possible distributively observed at m sensors:

• Quadratic Sketching: For each sketching vector ai ∈ Rn with i.i.d.
sub-Gaussian entries, i = 1, . . . ,m: Sketch a substream indexed by
{`it}Tt=1 with |〈ai,x`it〉|

2 and compute the average:

yi,T =
1

T

T∑
t=1

∣∣∣〈ai,x`it〉∣∣∣2 = aTi

(
1

T

T∑
t=1

x`itx
T
`it

)
ai

T→∞−−−−→ aTi Xai,

where X = E[xxT ] is approximately low-rank.

‡Y. Chen, Y. Chi, and A. J. Goldsmith. “Exact and stable covariance estimation
from quadratic sampling via convex programming.” IEEE Trans. on IT, 2015.
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Near-optimal recovery via convex programming

When ai’s are composed of i.i.d. Gaussian entries§, we aim to recover X
using the following trace minimization algorithm:

X̂ = argmin
M�0

Tr(M) subject to yi = a
T
i Mai, i = 1, . . . ,m.

Theorem (Chen, Chi and Goldsmith, 2013)

With probability exceeding 1− c1 exp(−c2m), the solution X̂ exactly
recovers all rank-r matrices X, provided that m > c0nr, where c0, c1, c2
are universal constants.

• Exact recovery with m = O(nr);

• Robust against approximate low-rankness
and bounded noise.

§similar guarantees also hold for the sub-Gaussian case
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What about outliers?

• Outliers happen with
• sensor failures,
• malicious attacks, and
• missing data;
• For covariance sketching, insufficiently aggregated sketches can be

regarded as an outlier;

• In this talk, we’re interested when the measurements are corrupted
by both sparse outliers and bounded noise:

yi = a
T
i Xai + ηi + wi, i = 1, . . . ,m,

or equivalently
y = A (X) + η +w,

where η is a sparse vector with ‖η‖0 ≤ sm and w is a dense
bounded noise.
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Pursuit of outlier-robust algorithms

Previous approaches are sensitive to outliers.

Goal: algorithms that are oblivious to outliers, i.e. perform equally well
with or without outliers, and without any special treatments of outliers.
And also statistically and computationally efficient.

• small sample size: hopefully m is linear in n;

• large fraction of outliers: hopefully s is a small constant;

• low computational complexity and easy to implement.

We will outline two approaches, based on convex and non-convex
optimization respectively.
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Outlier-robust recovery by convex programming

• To motivate, ideally one would like to look for low-rank matrices
that maintain outlier sparsity:

X̂ = argmin
M�0

‖y −A(M)‖0 , s.t. rank(M) = r

• By relaxing the objective function to the `1-norm minimization, and
dropping the rank constraint,

X̂ = argmin
M�0

‖y −A(M)‖1

We call this algorithm `1-regularized Phaselift, or Phaselift-`1.
• Parameter-free formulation without trace minimization or tuning

parameters;
• No prior information is required for the matrix rank, corruption level

or bounded noise level.
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Performance guarantee of Phaselift-`1

Theorem (Li, Sun and Chi, 2016)

Suppose that ‖w‖1 ≤ ε. Assume the support of η is selected uniformly
at random with the signs of η are generated from a symmetric Bernoulli
distribution. Then for a fixed rank-r PSD matrix X ∈ Rn×n, there exist
some absolute constants C1 > 0 and 0 < s0 < 1 such that as long as
m > C1nr

2, s ≤ s0/r, the solution to the proposed algorithm satisfies∥∥∥X̂ −X∥∥∥
F
≤ C2

rε

m
,

with probability exceeding 1− e−γm/r2 for some constants C2 and γ.

• Proof by dual certificate construction.

• Exact recovery when w = 0 as long as m & nr2 and s . 1/r.

• When r = 1 we obtain near-optimal guarantee, which recovers the
result by Hand for the phase retrieval case¶;

¶P. Hand, “Phaselift is robust to a constant fraction of arbitrary errors”.
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Numerical Performance: Outlier robustness
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Figure: Phase transitions of PSD matrix recovery with respect to (a) the
number of measurements and the rank, with 5% of measurements corrupted by
arbitrary standard Gaussian variables; (b) the percent of outliers and the rank,
when the number of measurements is m = 400, where n = 40.
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Robust recovery of Toeplitz PSD Matrices

If X is additionally Toeplitz, this can be incorporated:

X̂ = argmin
M�0, Toeplitz

‖y −A(M)‖1.
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Figure: Phase transitions of low-rank Toeplitz PSD matrix recovery w.r.t. the
number of measurements and the rank with 5% of measurements corrupted by
standard Gaussian variables, when n = 64.
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Non-convex approach based on factored model

Can we reduce the computational complexity?

• If rank(X) is known a priori as r, using the Cholesky factorization

X = UUT where U ∈ Rn×r, one can directly recover U :

Û = argmin
U∈Rn×r

`(U) := argmin
U∈Rn×r

1

m

m∑
i=1

`(yi;U)

for some loss function `(yi,U):

• quadratic loss of power: `(U ; yi) =
(
yi −

∥∥UTai

∥∥2
2

)2
• quadratic loss of amplitude: `(U ; yi) =

(√
yi −

∥∥UTai

∥∥
2

)2
• Poisson loss: `(U ; yi) = ‖UTai‖22 − yi log ‖UTai‖22

• What are the challenges?
• `(U) can be non-convex and non-smooth.
• With outliers, we want the loss to sum over only clean samples.
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Non-convex phase retrieval

Rank-1 case (phase retrieval):

yi = |〈ai,x〉|2 + ηi + wi, i = 1, . . . ,m

where ‖η‖0 = s ·m is the outliers, w is the additive noise.

Exciting developments (without outliers) – all following the same recipe:

• Initialize z(0) via the (truncated) spectral method to land in the
neighborhood of the ground truth;

• Iterative update using (truncated) gradient descent;

Provable near-optimal performance for Gaussian measurement model:

• Statistically: m = O(n) near-optimal sample complexity

• Computationally: geometric convergence with near-linear run time

Examples: Wirtinger Flow (WF) (Candès et.al. 2014), Truncated Wirtinger

Flow (TWF) (Chen and Candès 2015), Reshaped Wirtinger Flow (Zhang and

Liang 2016), Truncated Amplitude Flow (Wang, Giannakis and Eldar, 2016)
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Non-convex phase retrieval with outliers

In the presence of arbitrary outliers, existing approaches fail:

• Spectral initialization would fail: the eigenvector of Y can be
arbitrarily perturbed

Y =
1

m

m∑
i=1

yiaia
T
i︸ ︷︷ ︸

WF

or Y =
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤αy·mean({yi})}︸ ︷︷ ︸

TWF

.

• Gradient descent would fail: the search direction can be arbitrarily
perturbed

z(t+1) = z(t) − µ

‖z(0)‖2
∑
i∈Tt

∇`(z(t); yi)

where Tt = {1, . . . ,m} for WF and

Tt =
{
i : |yi − |aTi z(t)|2| ≤ αh ·mean({|yi − |aTi z(t)|2|})

}
‖

for TWF.

‖with some details hiding
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Robust phase retrieval via median-truncation
Need better strategy to eliminate outliers!

Key approach: “median-truncation”

• well-known in robust statistics to be outlier-resilient;

• little appearance in high-dimensional estimation;

Median is more stable than mean and top-k truncation (which truncates
a fixed amount of samples) for various levels of outliers.
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Median-Truncated Wirtinger Flow (median-TWF)

We adopt the Poisson loss function (other loss functions work too) and
the Gaussian measurement model.

• Median-truncated spectral initialization: Set z(0) := λ0z̃ where
• Direction estimation: z̃ is the leading eigenvector of

Y =
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤9/0.455·median({yi})}.

• Norm estimation: λ0 =
√

median({yi})/0.455

yi = |aT
i x|2 ∼ χ2

1 and E[median(χ2
1)] = 0.455

• As long as m = O(n log n) and s = O(1), the initialization is
provably close to the ground truth:

dist(z(0),x) ≤ 1

10
‖x‖,

where dist(z(0),x) = min{‖z(0) + x‖, ‖z(0) − x‖}.
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Median-Truncated Wirtinger Flow (median-TWF)

• Median-truncated gradient descent:

z(t+1) = z(t) − 2µ

m

∑
i∈E1∩E2

|aTi z(t)|2 − yi
aTi z

(t)
ai︸ ︷︷ ︸

∇`tr(z)

,

where

E1 =

{
i : 0.3 ≤ |a

T
i z

(t)|
‖z(t)‖

≤ 5

}
, E2 =

{
i : r

(t)
i ≤ 12

|aT
i z

(t)|
‖z(t)‖

·median({r(t)i })
}
,

with r
(t)
i = |yi − (aTi z

(t))2|.
• As long as m = O(n log n) and s = O(1), ∇`tr(z) satisfies the

Regularity Condition RC(µ, λ) for all z, h = z − x:

−
〈

1

m
∇`tr(z),h

〉
≥ µ

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2 + λ‖h‖2, ‖h‖ ≤ 1

10
‖z‖.

which guarantees dist(z(t+1),x) ≤ (1− µλ)dist(z(t),x).
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Performance guarantee of median-TWF

Theorem (Zhang, Chi and Liang, 2016)

Consider the model yi = |〈ai,x〉|2 + wi + ηi, where ‖w‖∞ ≤ c1‖x‖2
and ‖η‖0 ≤ sm. If m ≥ c0n log n and s < s0, then with prob.
1− c1 exp(−c2m), median-TWF yields

dist(z(t),x) .
‖w‖∞
‖x‖ + (1− ρ)t‖x‖, ∀t ∈ N

simultaneously for all x ∈ Rn\{0} and some constants c0, c1, c2 > 0 and
0 < ρ < 1.

• Exact recovery when ‖w‖ = 0 with slight more samples
(m = O(n log n)) but a constant fraction of outliers s = O(1).

• Stable recovery with additional bounded noise;

• Resist outliers obliviously: no prior knowledge of outliers.

• First non-asymptotic robust recovery guarantee using median: much
more involved due to the nonlinearity of median.

19



Proof sketch

Definition (Generalized quantile function)

Let 0 < p < 1. If F is a CDF, the generalized quantile function is

F−1(p) = inf{x ∈ R : F (x) ≥ p}.

Denote θp(F ) := F−1(p) and θp({Xi}) := θp(F̂ ), where F̂ is the
empirical distribution of the samples {Xi}mi=1 .

• Concentration of sample quantile: Assume {Xi}mi=1 are i.i.d. drawn
from some distribution F . Under some minor assumptions, w.h.p.

|θp({Xi}mi=1)− θp(F )| < ε

• Bound median by quantiles of clean samples: Consider clean samples
{X̃i}mi=1 and contaminated samples {Xi}mi=1. Then

θ 1
2−s

({X̃i}) ≤ θ 1
2
({Xi}) ≤ θ 1

2+s
({X̃i}).
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Proof sketch

Lemma (Concentration of median)

If m > c0n log n, then with probability at least 1− c1 exp(−c2m), there
exist constants β and β′ such that

β‖z‖‖h‖ ≤ median(
{∣∣|aTi x|2 − |aTi z|2∣∣}mi=1

) ≤ β′‖z‖‖h‖,

holds for all z,h := z − x satisfying ‖h‖ < 1/11‖z‖.

• A similar property is established for the mean when m = O(n);

• here we lose a factor of log n due to working with the median.
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Numerical experiments with median-TWF
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(a) ‖η‖∞ = 0.1‖x‖2
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(b) ‖η‖∞ = ‖x‖2
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(c) ‖η‖∞ = 10‖x‖2
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(d) ‖η‖∞ = 100‖x‖2

Figure: Success rate of exact recovery with outliers for median-TWF,
trimean-TWF, and TWF at different levels of outlier magnitudes.
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Numerical experiments with median-TWF
Recovery with both dense noise and sparse outliers:
• With outliers, median-TWF achieve better accuracy than TWF.
• Moreover, median-TWF with outliers achieves almost the same

accuracy of TWF without outliers.
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Figure: Relative error of median-TWF vs. TWF w.r.t. iteration when s = 0.1,
‖w‖∞ = 0.01‖x‖2, and ‖η‖∞ = ‖w‖.
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Conclusion

We have discussed two approaches for combating outliers:

• Convex optimization based on PhaseLift-`1:

X̂ = argmin
X�0

‖y −A(X)‖1

• Non-convex optimization based on median-TWF:

z(t+1) = z(t) − µ

m

m∑
i=1

∇`(yi, z(t))1Ei

• No prior knowledge of outliers are required: we can run these
algorithms as if outliers do not exist;

• Exact recovery guarantees for Gaussian measurement model are
obtained, even with a constant proportion of arbitrary outliers;

• Stability against additional bounded noise.

Work in progress: extending median-TWF to the low-rank setting.
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