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Shannon-Nyquist theorem: 
Bandlimited signal with bandwidth 2𝐵𝐵
Minimal sampling rate: 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 = 2𝐵𝐵

Landau rate:
Multiband signal with known support of measure Λ
Minimal sampling rate: Λ

Extension to arbitrary subspaces:
Signal in a subspace with dimension 𝐷𝐷 requires sampling at rate 𝐷𝐷
Shift-invariant subspaces ∑𝑛𝑛∈ℤ 𝑎𝑎 𝑛𝑛 ℎ(𝑡𝑡 − 𝑛𝑛𝑛𝑛) require sampling at 
rate 1/𝑛𝑛

Traditional Sampling
Sampling rate required in order to recover 𝑥𝑥(𝑡𝑡) from its samples
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Exploit analog structure to reduce sampling rate
Multiband signal with unknown support
of measure Λ
Minimal sampling rate: 2Λ (Mishali and Eldar ‘09)

Stream of k pulses (finite rate of innovation) 
Minimal sampling rate: 2k (Vetterli, Dragotti et. al ‘02)

Union of subspaces (Lu and Do ‘08, Mishali and Eldar ‘09)

Sparse vectors
(Candes, Romberg, Tau ‘06, Donoho ‘06)

Sampling of Structured Signals

Sampling rate below Nyquist for recovery of 
𝑥𝑥 𝑡𝑡 by exploiting structure
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Many examples in which we can reduce
sampling rate by exploiting structure
Xampling: practical sub-Nyquist methods
which allow low-rate sampling and low-
rate processing in diverse applications

Sub-Nyquist Sampling

Cognitive radioRadar

UltrasoundPulsesDOA Estimation
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Xampling Hardware

sums of exponentials

The filter H(f) shapes the tones and reduces bandwidth 

The channels can be collapsed to a single channel

x(t) Acquisition
Compressed 
sensing and 
processing

recovery

Analog preprocessing Low rate (bandwidth)
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Achieves the Cramer-Rao bound for analog recovery given a sub-
Nyquist sampling rate (Ben-Haim, Michaeli, and Eldar 12)
Minimizes the worst-case capacity loss for a wide class of signal 
models (Chen, Eldar and Goldsmith 13)
Capacity provides further justification for the use of random tones

Optimality of Xampling Hardware

)(th ][ny

( )n t
)(tx

EncoderMessage

signal structure
captured by channel

capacity-achieving 
sub-Nyquist sampler

binary entropy function

α:  undersampling factor

β:  sparsity ratio
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Nonlinear prior
Careful design of measurement scheme
Typically non-linear recovery methods
Often nonlinear processing needs to be accounted for 
(such as beamforming, quantization etc.)

Extensions:
Is structure necessary for sub-Nyquist sampling?
Can careful measurement design and optimization-based 
recovery methods help in other nonlinear problems?

Sampling of Structured Signals
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Goal: Recovery of some function of the signal
Signal statistics: Power spectrum estimation with Geert Leus and Deborah Cohen

Quantized version of the signal with Andrea Goldsmith and Alon Kipnis

Sampling of a set of signals that are used for beamforming where the 
beamformed signal has structure with Tanya Chernyakova

Sub-Nyquist Without Structure

Can we reduce sampling rates when the signals 
do not have structure?
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Goal: Recover signals from their Fourier magnitude
Known to be impossible for 1D problems

No known stable methods for 2D problems

Recent methods rely on random measurements rather than Fourier

Proper design of deterministic Fourier measurements together with 
optimization methods allows for recovery even in 1D problems!

Measurement Design for Phase 
Retrieval 

Can we design measurement schemes to enable 
phase retrieval from Fourier measurements?

Fourier + 
Absolute value
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Power spectrum estimation from sub-Nyquist samples

Rate-distortion theory of sampled signals

Unify sampling theory and rate distortion theory

Optimal distortion at sub-Nyquist rates

Sub-Nyquist beamforming in ultrasound

Beamforming at sub-Nyquist rates

Wireless ultrasound

Phase retrieval from Fourier measurements

Talk Outline
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Part 1:
Xampling Without 

Structure
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Sometimes reconstructing the covariance rather than 
the signal itself is enough:

Support detection
Statistical analysis
Parameter estimation (e.g. DOA)

Assumption: Wide-sense stationary ergodic signal
If all we want to estimate is the covariance then we can 
substantially reduce the sampling rate even without 
structure!

Power Spectrum Reconstruction

What is the minimal sampling rate to estimate the signal 
covariance?

Cognitive Radios Financial time
Series analysis
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Let 𝑥𝑥 𝑡𝑡 be a wide-sense stationary ergodic signal
We sample 𝑥𝑥 𝑡𝑡 with a stable sampling set at times �𝑅𝑅 = {𝑡𝑡𝑖𝑖}𝑖𝑖∈ℤ
We want to estimate 𝑟𝑟𝑥𝑥 𝜏𝜏 = 𝔼𝔼[𝑥𝑥(𝑡𝑡)x(𝑡𝑡 − 𝜏𝜏)]

Covariance Estimation

What is the minimal sampling rate to recover 𝑟𝑟𝑥𝑥 𝜏𝜏 ?
Sub-Nyquist sampling is possible!

Intuition: 
The covariance 𝑟𝑟𝑥𝑥 𝜏𝜏 is a function of the time lags 𝜏𝜏 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗
To recover 𝑟𝑟𝑥𝑥 𝜏𝜏 , we are interested in
the difference set R:

Sampling set
�𝑅𝑅 = {𝑡𝑡𝑖𝑖}𝑖𝑖∈ℤ

Difference set
𝑅𝑅 = {𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗}𝑖𝑖,𝑗𝑗∈ℤ

𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑗𝑗

𝑡𝑡1
𝑡𝑡2

𝑡𝑡3
𝑡𝑡4

𝑡𝑡5

𝑡𝑡2 − 𝑡𝑡1

𝑡𝑡4 − 𝑡𝑡1
𝑡𝑡4 − 𝑡𝑡2𝑡𝑡3 − 𝑡𝑡2

𝑡𝑡5 − 𝑡𝑡4

𝑡𝑡4 − 𝑡𝑡3
𝑡𝑡5 − 𝑡𝑡2

𝑡𝑡3 − 𝑡𝑡1

𝑡𝑡5 − 𝑡𝑡3

Cohen, Eldar and Leus 15
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It is possible to create sampling sets with Beurling density 0  
for which the difference set has Beurling density ∞!

There should be enough distinct differences so that the size of the 
difference set goes like the square of the size of the sampling set
The density of the set should go to 0 slower than the square root

the density of the square (difference set) goes to ∞

Difference Set Density

Theorem
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Under the previous conditions on the sampling set, we can 
reconstruct 𝑟𝑟𝑥𝑥(𝜏𝜏) from {𝑥𝑥 𝑡𝑡𝑖𝑖 }𝑖𝑖∈ℤ

Universal Minimal Sampling Rate

We can reconstruct the covariance from signal samples with 
density 0!

Theorem
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Cantor ternary set: repeatedly delete the open
middle third of a set of line segments, starting
with the interval [0,1]

Sampling set: 𝐷𝐷− �𝑅𝑅𝐶𝐶 ⟶ 0
Difference set: 𝐷𝐷− 𝑅𝑅𝐶𝐶 ⟶ ∞ (both conditions hold)

Uniform sampling: let �𝑅𝑅𝑈𝑈 = {𝑘𝑘𝑛𝑛}𝑘𝑘∈ℤ be a uniform sampling 
set spaced by T. It holds that 𝑅𝑅𝑈𝑈 = �𝑅𝑅𝑈𝑈. If 𝑛𝑛 ⟶ ∞, then

Sampling set: 𝐷𝐷− �𝑅𝑅𝑈𝑈 ⟶ 0

Difference set: 𝐷𝐷− 𝑅𝑅𝑈𝑈 ⟶ 0 (not enough distinct differences)

Sampling Sets Examples

Can we analyze practical sampling sets with positive Beurling 
density?
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Practical sampling set with finite rate
Divide the Nyquist grid into blocks of 𝑛𝑛 consecutive samples 
(cosets)
Keep 𝑚𝑚 samples from each block
Sampling set: 𝐷𝐷− �𝑅𝑅 = 𝑚𝑚

𝑛𝑛𝑛𝑛

Multicoset Sampling

What is the minimal sampling rate for perfect covariance 
recovery from multicoset samples with 𝑛𝑛 cosets?

𝑛𝑛
𝑡𝑡 = 𝑘𝑘𝑛𝑛𝑛𝑛

𝑥𝑥(𝑡𝑡)

𝑐𝑐1𝑛𝑛

𝑐𝑐𝑚𝑚𝑛𝑛

𝑡𝑡 = 𝑘𝑘𝑛𝑛𝑛𝑛

𝑥𝑥𝑐𝑐1[𝑘𝑘]

𝑥𝑥𝑐𝑐𝑚𝑚[𝑘𝑘]

Time shifts
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Achieved when the differences between two distinct cosets are 
unique, namely 𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗 ≠ 𝑐𝑐𝑘𝑘 − 𝑐𝑐𝑙𝑙 ,∀𝑖𝑖 ≠ 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙
Known as the Golomb ruler
Sparse ruler special case when sampling on the Nyquist grid

Multicoset – Bandlimited Signal

Signal recovery: 𝑚𝑚 ≥ 𝑛𝑛
Covariance recovery: 𝑚𝑚 ≿ 𝑛𝑛

Theorem
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Let 𝑥𝑥(𝑡𝑡) be sparse with unknown support with occupancy 𝜀𝜀 < ⁄1 2

Minimal sampling rate for signal recovery: ⁄2𝜀𝜀
𝑛𝑛 (Mishali and Eldar ‘09)

Multicoset – Sparse Signal

Signal recovery: 𝑚𝑚 ≥ 2𝜀𝜀𝑛𝑛
Covariance recovery: 𝑚𝑚 ≿ 2𝜀𝜀𝑛𝑛

Theorem
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The Modulated Wideband Converter

~ ~~~

Time Frequency

Mishali and Eldar, 11

B

B
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Single Channel Realization

~ ~

Mishali and Eldar, 11

2𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝
𝑛𝑛
𝑛𝑛𝑝𝑝

𝑥𝑥(𝑡𝑡)

𝑝𝑝(𝑡𝑡)

1
2𝑛𝑛𝑝𝑝

2
2𝑛𝑛𝑝𝑝

Bandwidth
NB

~~

𝐻𝐻(𝑓𝑓)

𝑦𝑦 𝑛𝑛

𝐻𝐻(𝑓𝑓)

The MWC does not require multiple channels
Does not need accurate delays
Does not suffer from analog bandwidth issues
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Application:
Cognitive Radio

“In theory, theory and practice are the same.
In practice, they are not.”

Albert Einstein
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Cognitive Radio
Cognitive radio mobiles utilize unused spectrum ``holes’’
Need to identify the signal support at low rates

Federal Communications Commission (FCC)
frequency allocation

Licensed spectrum highly underused: E.g. TV white space,  guard bands and more

Shared Spectrum Company (SSC) – 16-18 Nov 2005
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Nyquist rate: 6 GHz
Xampling rate: 360 MHz 
(6% of Nyquist rate)

Wideband receiver mode: 49 dB dynamic range, SNDR > 30 dB 
ADC mode: 1.2v peak-to-peak full-scale, 42 dB SNDR = 6.7 ENOB

Parameters:

Performance:

Nyquist: 6 GHz
Sampling Rate: 360MHz

MWC analog front-end

Mishali, Eldar, Dounaevsky, and Shoshan, 2010
Cohen et. al. 20146% of Nyquist rate!
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Until now we ignored quantization
Quantization introduces inevitable distortion to the signal
Since the recovered signal will be distorted due to quantization 
do we still need to sample at the Nyquist rate?

Reducing Rate with Quantization

01001001001
010010…

quantizer

Source Coding [Shannon]Sampling Theory

ˆ[ ]y n[ ]y n
2log (#levels)

bit/sec
sR f=

Goal: Unify sampling and rate distortion theory

( )x t

Kipnis, Goldsmith and Eldar 15
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Standard source coding: 
For a given discrete-time process y[n] and a given bit rate R 
what is the minimal achievable distortion 

Our question:
For a given continuous-time process x(t) and a given bit rate R 
what is the minimal distortion

What sampling rate is needed to achieve the optimal distortion?

Unification of Rate-Distortion 
and Sampling Theory

)(th( )x t
[ ]y n

( )n t

ENC DEC
R

f s

ˆ( )x t

2ˆ( ) inf [ ] [ ]D R y n y n= −

2ˆinf ( , ) inf ( ) ( )
sf sD f R x t x t= −

[ ]y n ENC DEC
R ˆ[ ]y n
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Quantizing the Samples:
Source Coding Perspective

Preserve signal components above “noise floor” q , dictated by R
Distortion corresponds to mmse error + signal components below noise floor

Theorem (Kipnis, Goldsmith, Eldar, Weissman 2014)

2

2

1( , ) log ( ) /
2

fs

fss X YR f S f dfθ θ+

−
 =  ∫ 

2

2

( , ) ( ) min{ ( ), }
fs

fss sX Y X YD f mmse f S f dfθ θ
−

= + ∫ 
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Can we achieve D(R) by sampling below fNyq?

Yes! For any non-flat PSD of the input

Optimal Sampling Rate

( , ) ( ) for 
        ( )!

s

s DR

D R f D R
f f R

=
≥

Shannon [1948]:
“we are not interested in exact transmission when we have a continuous 
source, but only in transmission to within a given tolerance”

No optimality loss when sampling at sub-Nyquist (without input structure)!
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Ultrasound
Relatively simple, radiation free imaging

Tx pulse

Ultrasonic probe

Rx signal Unknowns

Echoes result from scattering in the tissue
The image is formed by identifying the 
scatterers

Cardiac sonography Obstetric sonography 
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To increase SNR and resolution an antenna array is used
SNR and resolution are improved through beamforming by 
introducing appropriate time shifts to the received signals

Requires high sampling rates and large data processing rates
One image trace requires 128 samplers @ 20M, beamforming to 
150 points,  a total of 6.3x106 sums/frame

Processing Rates

Scan Plane

Xdcr

Focusing the received
beam by applying nonlinear     
delays

( )2 2

1

1 1( ; ) 4( ) sin 4( )
2

M

m m m
m

t t t t c t c
M

θ ϕ δ θ δ
=

 Φ = − − − + 
 

∑

128-256 
elements
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Can we reduce analog sampling rates?
Can we perform nonlinear beamforming on the sub-Nyquist
samples without interpolating back to the high Nyquist-rate
grid digitally?

Challenges

Compressed Beamforming

Goal: reduce ultrasound machine size at same resolution
Enable 3D imaging
Increase frame rate

Enable remote wireless ultrasound

Re
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Streams of Pulses

L pulses can be entirely recovered from only 2L Fourier coefficients –
finite-rate-of-innovation framework by Vetterli, Marziliano, Blu, Dragotti
Efficient hardware:

Gedalyahu, Tur, Eldar 10, Tur, Freidman, Eldar 10

Theorem (Tur, Eldar and Friedman 11)

Sum-of-Sincs filter with compact support

𝑥𝑥 𝑡𝑡 𝑠𝑠∗ −𝑡𝑡 𝐹𝐹𝐹𝐹𝑛𝑛 𝑐𝑐 𝑘𝑘



34

Conventional Beamforming

Performed digitally after sampling at sufficiently high rate

Beamformed Signal 

Individual traces 

High rate ADC 
(~20-50MHz / 

element)
Beamforming

 Focusing along a certain axis – reflections originating from off-axis are 
attenuated (destructive interference pattern)

 SNR is improved

Non-linear scaling of the received signals

- distance from     ’th element to origin, normalized by    .
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Difficulty in Low Rate Sampling
Each individual trace is buried in noise and has no structure
Structure exists only after beamforming which improves resolution/SNR
How can we perform beamforming on low rate data? How can we obtain 
small time shifts without interpolation?

 Compressed beamforming: Enables beamforming from low rate samples
 Key idea: Perform beamforming in frequency

, ;
1

1 [ ] [ ]
M

k m k m
m n

c n Q k n
M θϕ

=

= −∑∑

2 2

, [ / , ( ; )] 2
( / ) cos( ; ) ( ) 1

( ( / )sin )

2 / sinexp /
( / )sin

mmk m c
m

m
m

T
m

m

cq t I t
t c

c ti k c
T t c

τδ θ
δ θθ
δ θ

δ θπ δ
δ θ

 
= + × − 

 −
 − 

Fourier coefficient
of BMF signal

Fourier coefficient of 
signal at element m

Logic:
1. BMF signal is a stream of pulses => can be 

recovered from a small number of 𝑐𝑐𝑘𝑘
2. Small number of 𝑐𝑐𝑘𝑘 requires only a small number 

of 𝜑𝜑𝑚𝑚 𝑛𝑛

Low rate sampling of 𝜑𝜑𝑚𝑚(𝑡𝑡)!
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Volumetric Ultrasound Imaging
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m n
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Fourier coefficient
of BMF signal

Fourier coefficient of 
signal detected at 

element (m,n)
20 elements of 𝑄𝑄𝑘𝑘,𝑚𝑚,𝑛𝑛;𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦[𝑙𝑙]

contain more than 95% of the energy

Signal model still holds, allowing the same 
reconstruction technique to be used
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Ultrasound Results
Standard Imaging

We obtain a 32-fold reduction in sample rate and 1/16-fold 
reduction in processing rate
All digital processing is low rate as well
Almost same quality as full rate image

Xampled beamforming

3328 real-valued samples, per sensor 
per image line

360 complex-valued samples, per sensor per 
image line

-80 -60 -40 -20 0 20 40 60 80

0

20

40

60

80

100

120

140

160

 

-80 -60 -40 -20 0 20 40 60 80

0

20

40

60

80

100

120

140

160
-80 -60 -40 -20 0 20 40 60 80

0

20

40

60

80

100

120

140

160

100 complex-valued samples, per sensor per 
image line

Xampled beamforming

~1/10 of the Nyquist rate ~1/32 of the Nyquist rate
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Wireless Ultrasound Imaging

A wireless probe performs Xampling
and transmits the low rate data to a
server for processing
Frequency Domain Beamforming and
image reconstruction is performed by
the server
The image is sent for display on a
monitor

Xampler
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Same beamforming idea can be used in radar in order to 
obtain high resolution radar from low rate samples
Our radar prototype is robust to noise and clutter
Doppler Focusing (beamforming in frequency):

Pulse-Doppler Radar

Optimal SNR scaling
CS size does not increase with number of pulses
No restrictions on the transmitter
Clutter rejection and the ability to handle large dynamic range 

Bar-Ilan and Eldar,  13
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Part 2:
Measurement design 
for phase retrieval

Enabling phase retrieval from Fourier measurements
using practical devices!
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Phase Retrieval: 
Recover a signal from its Fourier magnitude

Fourier + 
Absolute value

Arises in many fields: crystallography (Patterson 35),                         
astronomy (Fienup 82),  optical imaging (Millane 90), and more
Given an optical image illuminated by coherent light, in the far field we 
obtain the image’s Fourier transform
Optical devices measure the photon flux,
which is proportional to the magnitude
Phase retrieval can allow direct recovery
of the image
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Theory of Phase Retrieval

Difficult to analyze theoretically when recovery is possible

No uniqueness in 1D problems (Hofstetter 64)

Uniqueness in 2D if oversampled by factor 2 (Hayes 82)

No guarantee on stability

No known algorithms to achieve unique solution

Recovery from Fourier Magnitude Measurements is Difficult!
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Progress on Phase Retrieval
Assume random measurements to develop theory (Candes et. al, Rauhut et. 
al, Gross et. al, Li et. al,  Eldar et. al, Netrapalli et. al, Fannjiang et. al …)

Introduce prior to stabilize solution
Support restriction (Fienup 82)

Sparsity (Moravec et. al 07, Eldar et. al 11, Vetterli et. al 11, Shechtman et. al 11)

GESPAR: Greedy sparse phase retrieval (Shechtman, Beck and Eldar 14)

Add redundancy to Fourier measurements
Impulse addition and least-squares recovery (Huang et. al  15)

Short-time Fourier transform (Nawab et. al 83, Eldar et. al 15, 
Jaganathan et. al  15)

Masks (Candes et. al 13, Bandeira et. al 13, Jaganathan et. al  15)
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Analysis of Random Measurements:
𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑖𝑖 , 𝑥𝑥 2 + 𝑤𝑤𝑖𝑖 noise 𝑥𝑥 ∈ 𝑅𝑅𝑁𝑁

4𝑛𝑛 − 2 measurements needed for uniqueness 
(Balan, Casazza, Edidin o6, Bandira et. al 13)

Analysis of Phase Retrieval

random vector

Stable Phase Retrieval (Eldar and Mendelson 14):

𝑂𝑂(𝑛𝑛) measurements needed for stability
𝑂𝑂(𝑘𝑘log(𝑛𝑛/𝑘𝑘)) measurements needed for stability with sparse input
Solving provides stable solution 

How to solve objective function?



46

𝑎𝑎𝑘𝑘 , 𝑥𝑥 2 = Tr 𝐴𝐴𝑘𝑘𝑋𝑋 with 𝐴𝐴𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘𝑛𝑛, 𝑋𝑋 = 𝑥𝑥𝑥𝑥𝑛𝑛

Phase retrieval can be written as
minimize rank (X)
subject to A(X) = b,  X ≥ 0

SDP relaxation: replace rank 𝑋𝑋 by Tr 𝑋𝑋 or by logdet(𝑋𝑋 + 𝜀𝜀𝜀𝜀) and apply 
reweighting
PhaseCut: semidefinite relaxation based on MAXCUT (Waldspurger et. al 12)

Advantages / Disadvantages
Yields the true vector whp for Gaussian meas. (Candes et al. 12)

Recovers sparse vectors whp for Gaussian meas. (Candes et al. 12)

Computationally demanding
Difficult to generalize to other nonlinear problems

Candes, Eldar, Strohmer ,Voroninski 12

Recovery via Semidefinite Relaxation
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Provable Efficient Algorithms for 
Phase Retrieval

Wirtinger flow: Gradient descent on  𝑎𝑎𝑖𝑖 , 𝑥𝑥 2 (Candes et. al 14,15)

Amplitude flow:  Gradient descent on  𝑎𝑎𝑖𝑖 , 𝑥𝑥 (Wang, Giannakis and Eldar 16)

All recovery results for random measurements (or random masks)

Moving to practice: Provable recovery from Fourier measurements?

Recent overview:

Y. Shechtman, Y. C. Eldar, O. Cohen, 
H. N. Chapman, J. Miao, and M. Segev,
“Phase retrieval with application to optical imaging,”
SP magazine 2015
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Design Measurements + 
Optimization Methods

Lessons learned from sub-Nyquist sampling:
Measurement design is crucial! 
Combine with modern optimization tools for recovery

Fourier measurements with a twist:
Impulse addition and least-squares recovery
Short-time Fourier transform
Small number of fixed masks
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We have seen that SDP relaxation can recover the true signal for 
sufficiently many random Gaussian measurements
We can show that in fact SDP relaxation for Fourier phase retrieval
is tight!

Create the correlation sequence
Any choice of x such that                                                 is optimal 

Least-Squares Phase Retrieval
Huang, Eldar and Sidiropoulos 15

Theorem (Huang, Eldar and Sidiropoulos 15)
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Spectral Factorization

Minimum phase solution can always be found in polynomial time

Theorem

Minimum phase solution:
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By solving two SDPs we can always solve the LS phase retrieval problem 
from Fourier measurements
The solution can be found by implementing:

The minimum phase solution is optimal namely minimizes the LS error
However, solution may not be equal to the true x since there are no 
uniqueness guarantees in 1D phase retrieval 

Summary: LS Phase Retrieval
Huang, Eldar and Sidiropoulos 15

Convert any signal into a minimum phase signal and then 
measure it!
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Any signal can be made minimum phase by adding an impulse at zero

Add an impulse at zero
Take Fourier magnitude measurements
Recover the minimum phase signal
Subtract the impulse

Impulse Addition
Huang, Eldar and Sidiropoulos 15

Theorem (Huang, Eldar and Sidiropoulos 15)

Robust recovery of any 1D complex signal from Fourier 
measurements using SDP!
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Simulation: Exact Recovery
Compare with Fourier measurements with recovery using PhaseLift
initialized by Fienup
Both produced zero fitting error but only our approach led to 
recovery of the true signal
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Recovery From the STFT Magnitude

Easy to implement in optical settings
FROG – measurements of short pulses  (Trebino and Kane 91)

Ptychography – measurement of optical images (Hoppe 69)

Also encountered in speech/audio processing (Griffin and Lim 84, Nawab et. al 83)

Almost all signals can be recovered as long as there is overlap between 
the segments
Almost all signals can be recovered using semidefinite relaxation
Simple least-squares recovery for many choices of windows

L – step size
N – signal length
W – window length
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Method for measuring ultrashort laser pulses
The pulse gates itself in a nonlinear medium and is then spectrally 
resolved

In XFROG a reference pulse is used for gating leading to STFT-magnitude 
measurements:

Frequency-Resolved Optical 
Gating (FROG)

Trebino and Kane 91
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L – step size
N – signal length
W – window length
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Ptychography
Hoppe 69

Plane wave
Scanning

For all positions 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑗𝑗) record 

diffraction 
pattern 𝜀𝜀𝑘𝑘 𝜀𝜀3𝜀𝜀2𝜀𝜀1

𝜀𝜀𝐾𝐾

Method for optical imaging with X-rays
Records multiple diffraction patterns as a function of sample positions
Mathematically this is equivalent to recording the STFT
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Theoretical Guarantees
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Theorem (Eldar, Sidorenko, Mixon et. al  15)
The STFT magnitude with L=1 uniquely determines any x[n] that is everywhere 
nonzero (up to a global phase factor) if:
1. The length-N DTFT of              is nonzero
2.
3. N and W-1 are coprime

Theorem (Jaganathan, Eldar and Hassibi  15)
The STFT magnitude uniquely determines almost any x[n] that is everywhere 
nonzero (up to a global phase factor) if:
1. The window g[n] is nonzero
2.

Uniqueness condition for L=1 and all signals:

Uniqueness condition for general overlap and almost all signals:

Strong uniqueness for 1D signals and Fourier measurements
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Recovery From STFT via SDP
Theorem (Jaganathan, Eldar and Hassibi  15)

SDP relaxation uniquely recovers any x[n] that is everywhere nonzero from the 
STFT magnitude with L=1 (up to a global phase factor) if

In practice SDP relaxation seems to works as 
long as                      (at least 50% overlap)      
Proof in progress …
Strong phase transition at L=W/2

Probability of Success for N=32 for different
L and W

Can prove the result assuming the first W/2 values of x[n] are known

L=W/2

L

W
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Nonconvex Recovery From STFT 
Magnitude

We consider the data in a transformed domain  (1D DFT with respect to 
the frequency variable)

where           is the (non-Hermitian) measurement matrix 
We suggest using gradient descent to minimize the non-convex loss

Initialization by the principle eigenvector of a matrix, constructed as the 
solution of a least-squares problem 
Under appropriate conditions, initialization is close to the true solution

Bendory and Eldar 16
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Nonconvex Recovery From STFT 
Magnitude

Simple example (N=23, W=7, L=1, SNR=20db)

Initialization                                                              Recovery
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Compressed sampling and processing of many analog signals even 
without structure
Wideband sub-Nyquist samplers in hardware
Many new applications like wireless ultrasound
Merging information theory and sampling theory
Importance of measurement design in phase retrieval

Exploiting processing task and careful design of 
measurements can lead to new sampling and 

processing techniques

Conclusions
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Xampling Website
webee.technion.ac.il/people/YoninaEldar/xampling_top.html

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", 
Cambridge University Press, 2012

Y. C. Eldar, “Sampling Theory: Beyond Bandlimited Systems", Cambridge 
University Press, 2015

http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
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SAMPL Lab Website

www.sampl.technion.ac.il

http://www.sampl.technion.ac.il/
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Thank you
If you found this interesting …

Looking for a post-doc!
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