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OUTLINE

■ Linear inverse problems and regularization
■ Tikhonov regularization
■ The sparsity (r)evolution
■ Compressed sensing and l1 minimization

■ Part I: Discrete-domain regularization (l2 vs. l1)
■ Part II: Continuous-domain regularization (L2 vs. gTV)
■ Classical L2 regularization: theory of RKHS
■ Splines and operators
■ Minimization of gTV: the optimality of splines
■ Enabling components for the proof
■ Special case TV in 1D



Inverse problem is well posed if 9c0 > 0 s.t., for all s 2 X , c0ksk  kHsk

Inverse problems in bio-imaging

3

noise

n

Linear forward model

s
Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

Backprojection (poor man’s solution): s ⇡ HTy

Basic limitations
  1) Inherent noise amplification  2) Difficulty to invert H (too large or non-square)  3) All interesting inverse problems are ill-posed

The easy scenario

) s ⇡ H�1y

Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Linear inverse problems (20th century theory)

4

Equivalent variational problem

s? = argmin ky �Hsk22| {z }
data consistency

+ �kLsk22| {z }
regularization

Interpretation: “filtered” backprojection

R(s) = kLsk22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ky �Hsk22  �2

Dealing with ill-posed problems: Tikhonov regularization



Linear inverse problems: The sparsity (r)evolution
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(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)

(Candes-Romberg-Tao; Donoho, 2006)Compressed sensing/sampling

srec = argmin
s

�
ky �Hsk22 + �R(s)

�

Wavelet-domain regularization

v = W�1s: wavelet expansion of s (typically, sparse)

R(s) = kvk`1

Total variation

R(s) = kLsk`1 with L: gradient

(20th Century) p = 2 �! 1 (21st Century)

Non-quadratic regularization regularization

R(s) = kLsk2`2 �! kLskp`p �! kLsk`1

6

y A x

Sparse representation of signal: s = Wx with kxk0 = K ⌧ N
x

Equivalent N
y

⇥N
x

sensing matrix : A = HW

+    “noise”

Compressive sensing (CS) and l1 minimization 
[Donoho et al., 2005

     Candès-Tao, 2006, ...]

Constrained (synthesis) formulation of recovery problem

min
x

kxk1 subject to ky �Axk22  �2



CS: Three fundamental ingredients

7

1. Existence of sparsifying transform (W or L)
- Wavelet basis
- Dictionary
- Differential operator (Gradient) 

2. Incoherence of sensing matrix A
- Restricted isometry; few linearly dependent columns (spark)
- Quasi-random and delocalized structure:
   Gaussian matrix with i.i.d. entries,
   random sampling in Fourier domain

3. Non-linear signal recovery (l1 minimization)

(Donoho, IEEE T. Inf. Theo. 2006)
     

(Candès-Romberg, Inv. Prob. 2007)

CS: Examples of applications in imaging

8

- Magnetic resonance imaging (MRI) 

- Radio Interferometry

(Lustig, Mag. Res. Im. 2007)

- Teraherz Imaging

(Wiaux, Notic. R. Astro. 2007)

(Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)

- Spectral-domain OCT (Liu, Opt. Express 2010) 

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014) 

- Localization microscopy (Zhu, Nat. Meth. 2012) 

- Ultrafast photography (Gao, Nature 2014) 



Part I: Discrete-domain regularization

9

Classical regularized least-squares estimator

10

Linear measurement model:

ym = hhm,xi+ n[m], m = 1, . . . ,M

System matrix of size M ⇥N : H = [h1 · · ·hM ]T

= HTa =
MX

m=1

amhm where a = (HHT + �IM )�1y

Lemma

(HTH+ �IN )�1HT = HT (HHT + �IM )�1

xLS = arg min
x2RN

ky �Hxk22 + �kxk22

) xLS = (HTH+ �IN )�1HTy

Interpretation: xLS 2 span{hm}Mm=1



Generalization: constrained l2  minimization
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Example: Cy = {z 2 RM : ky � zk22  �2}

Discrete signal to reconstruct: x = (x[n])n2Z

Sensing operator H : `2(Z) ! RM

x 7! z = H{x} = (hx, h1i, . . . , hx, hM i) with hm 2 `2(Z)

Closed convex set in measurement space: C ⇢ RM

Representer theorem for constrained `2 minimization

(P2) min
x2`2(Z)

kxk2
`2

s.t. H{x} 2 C

The problem (P2) has a unique solution of the form

xLS =
MX

m=1

a

m

h

m

= H⇤{a}

with expansion coefficients a = (a1, · · · , aM ) 2 RM

.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Constrained l1 minimization

12

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Representer theorem for constrained `1 minimization

(P1) V = arg min
x2`1(Z)

kxk
`1 s.t. H{x} 2 C

is convex, weak*-compact with extreme points of the form

xsparse[·] =
KX

k=1

a

k

�[·� n

k

] with K = kxsparsek0  M .

V

If CS condition is satisfied,
then solution is unique

⇒  sparsifying effect
Discrete signal to reconstruct: x = (x[n])n2Z

Sensing operator H : `1(Z) ! RM

x 7! z = H{x} = (hx, h1i, . . . , hx, hM i) with hm 2 `1(Z)

Closed convex set in measurement space: C ⇢ RM



Controlling sparsity
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Measurement model: ym = hhm, xi+ n[m], m = 1, . . . ,M
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a): Sparse model

Conv.
DCT
CS

xsparse = arg min
x2`1(Z)

 
MX

m=1

��
y

m

� hh
m

, xi
��2 + �kxk

`1

!

Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C
y1 = h

T
1 x

y

2�



Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C y1 = h

T
1 x

sparse extreme points

Configuration for non-unique `1 solution

Part II: Continuous-domain regularization

16
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Part II: Continuous-domain 
regularization

Continuous-domain regularization (L2 scenario)

18

(Schoenberg 1964, Kimeldorf-Wahba 1971)

(Aronszajn 1950)

(Schölkopf-Smola 2001)

Theory of reproducing kernel Hilbert spaces

Regularization functional: kLfk2L2
=

Z

Rd

|Lf(x)|2dx

(Duchon 1977) 

L: suitable differential operator

hf, giH = hLf,Lgi

Interpolation and approximation theory

Smoothing splines

Thin-plate splines, radial basis functions

(Poggio-Girosi 1990)

Machine learning

Radial basis functions, kernel methods

Representer theorem(s)



Representer theorem for L2 regularization
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(Schölkopf-Smola 2001)

h : Rd ⇥ Rd ! R is the (unique) reproducing kernel for the Hilbert space H(Rd) if

(i) h(x0, ·) 2 H for all x0 2 Rd

(ii) f(x0) = hh(x0, ·), fiH for all f 2 H and x0 2 Rd

(P2’) argmin
f2H

�
F (y,f) + �kfk2H

�

Representer theorem for L2-regularization

The generic parametric form of the solution of (P2 ) is

f(x) =
MX

m=1

amh(x,xm)

’

Sample values: f =
�
f(x1), . . . , f(xM )

�

Supports the theory of SVM, kernel methods, etc.

Convex loss function: F : RM ⇥ RM ! R

(P2) argmin
f2H

 
MX

m=1

|ym � f(xm)|2 + �kfk2H

!

Sparsity and continuous-domain modeling

20

Compressed sensing (CS)

Generalized sampling and infinite-dimensional CS

Xampling: CS of analog signals

Statistical modeling

Sparse stochastic processes

Splines and approximation theory

L1 splines

Locally-adaptive regression splines

Generalized TV

(Mammen-van de Geer, 1997)

(Adcock-Hansen, 2011)

(Eldar, 2011)

(Fisher-Jerome, 1975)

(Steidl et al. 2005; Bredies et al. 2010)

(Unser et al. 2011-2014)



Geometry of l2  vs. l1  minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

C
y1 = h

T
1 x

y

2�

Prototypical inverse problem

min
s

�
ky �H{s}k2`2 + � kL{s}k2L2

 
, min

s
kL{s}k2L2

subject to ky �H{s}k2`2  �2

“Geometry” of L2  vs. TV minimization

22

x2

x1

C

y

2�

L⇤L-splines with M fixed knots

L-splines with few adaptive knots

(H: pure sampling operator)

(H: can be arbitrary)

min
s

�
ky �H{s}k2`2 + � kL{s}kTV

 
, min

s
kL{s}kTV subject to ky �H{s}k2`2  �2

y1 = hh1, si
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Splines are analog and intrinsically sparse

Spline theory: (Schultz-Varga, 1967)

(Vetterli et al., 2002)

L =
d
dx

:   spline’s innovation

L{·}: admissible differential operator

�(·� x0): Dirac impulse shifted by x0 2 Rd

Definition

The function s : Rd ! R is a (non-uniform) L-spline with knots (xk)Kk=1 if

L{s} =
KX

k=1

ak�(·� xk) = w�

ak

xk xk+1

FRI signal processing: Innovation variables (2K)

Location of singularities (knots) : {xk}Kk=1

Strength of singularities (linear weights): {ak}Kk=1

Spline synthesis: example

24

L = D =
d

dx

x

x1

w�(x) =
X

k

ak�(x� xk)

a1

x

s(x) = b1p1(x) +
X

k

ak +(x� xk)

b1

Null space: ND = span{p1}, p1(x) = 1

⇢D(x) = D�1{�}(x) = +(x): Heaviside function



Spline synthesis: generalization

25

Requires specification of boundary conditions

L: spline admissible operator (LSI)

) s(x) =
X

k

ak⇢L(x� xk) +
N0X

n=1

bnpn(x)

Spline’s innovation: w�(x) =
X

k

ak�(x� xk)

a1

x

⇢L(x) = L�1{�}: Green’s function of L

Finite-dimensional null space: NL = span{pn}N0
n=1

Principled operator-based approach

26

(see Theorem 1)

Operator-based spline synthesis

Boundary conditions: hs,�ni = bn, n = 1, · · · , N0

Spline’s innovation: L{s} = w� =
X

k

ak�(·� xk)

s(x) = L�1
� {w�}(x) +

N0X

n=1

bnpn(x)

Biorthogonal basis of NL = span{pn}N0
n=1

� = (�1, · · · ,�N0) such that h�m, pni = �m,n

Projection operator: p =
N0X

n=1

h�n, pipn for all p 2 NL

Existence of L�1
� as a stable right-inverse of L ?

LL�1
� w = w

�(L�1
� w) = 0
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Beyond splines: 
function spaces for gTV

From Dirac impulses to Borel measures

28

S(Rd): Schwartz’s space of smooth and rapidly decaying test functions on Rd

S 0(Rd): Schwartz’s space of tempered distributions

Space of real-valued, countably additive Borel measures on Rd

M(Rd) =
�
C0(Rd)

�0
=
�
w 2 S 0(Rd) : kwkM = sup

'2S(Rd):k'k1=1
hw,'i < 1

 
,

where w : ' 7! hw,'i =
R
Rd '(r)w(r)dr

Equivalent definition of “total variation” norm

kwkM = sup
'2C0(Rd):k'k1=1

hw,'i

Basic inclusions

�(·� x0) 2 M(Rd) with k�(·� x0)kM = 1 for any x0 2 Rd

kfkM = kfkL1(Rd) for all f 2 L1(Rd) ) L1(Rd) ✓ M(Rd)



Optimality result for Dirac measures
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Jerome-Fisher, 1975: Compact domain & scalar intervals

 (U.-Fageot-Ward, ArXiv 2016)

F: linear continuous map M(Rd) ! RM

C: convex compact subset of RM

Generic constrained TV minimization problem

V = arg min
w2M(Rd) : F(w)2C

kwkM

Generalized Fisher-Jerome theorem

The solution set V is a convex, weak⇤-compact subset of M(Rd) with

extremal points of the form

w� =
KX

k=1

ak�(·� xk)

with K  M and xk 2 Rd
.

General convex problems with gTV regularization

30

C: convex compact subset of RM

 (U.-Fageot-Ward, ArXiv 2016)

V

H{q1} = H{q2} , q1 = q2 for all q1, q2 2 NLAdmissibility of regularization:

Finite-dimensional null space NL = {q 2 ML(Rd) : L{q} = 0} with basis {pn}N0
n=1

Linear measurement operator ML(Rd) ! RM : f 7! z = H{f}

ML(Rd) =
�
s : gTV(s) = kL{s}kM = sup

k'k11
hL{s},'i < 1

 

Representer theorem for gTV regularization

The extremal points of the constrained minimization problem

V = arg min
f2ML(Rd)

kL{f}kM s.t. H{f} 2 C

are necessarily of the form f(x) =
KX

k=1

ak⇢L(x � xk) +

N0X

n=1

bnpn(x) with K 

M �N0; that is, non-uniform L-splines with knots at the xk and kL{f}kM =
P

k=1 |ak|. The full solution set is the convex hull of those extremal points.



Enabling components for proof of the theorem
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Existence of stable right-inverse operator

32

 (U.-Fageot-Ward, ArXiv 2016)

L1,n0(Rd) = {f : Rd ! R : sup
x2Rd

�
|f(x)|(1 + kxk)�n0

�
< +1}

Theorem 1

Let L be a spline-admissible operator with a N0-dimensional null space NL ✓ L1,n0(Rd)

such that p =
PN0

n=1hp,�nipn for all p 2 NL. Then, there exists a unique and sta-

ble operator L�1
� : M(Rd) ! L1,n0(Rd) such that, for all w 2 M(Rd),

• Right-inverse property: LL�1
� w = w,

• Boundary conditions: �(L�1
� w) = 0 with � = (�1, · · · ,�N0).

Its generalized impulse response g�(x,y) = L�1
� {�(·� y)}(x) is given by

g�(x,y) = ⇢L(x� y)�
N0X

n=1

pn(x)qn(y)

with ⇢L such that L{⇢L} = � and qn(y) = h�n, ⇢L(·� y)i.



Characterization of generalized Beppo-Levi spaces
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 (U.-Fageot-Ward, ArXiv 2016)

Regularization operator L : ML(Rd) ! M(Rd)

f 2 ML(Rd) , gTV(f) = kL{f}kM < 1

Generalized Beppo-Levi space: ML(Rd) = ML,�(Rd)�NL

ML,�(Rd) =
�
f 2 ML(Rd) : �(f) = 0

 

NL =
�
p 2 ML(Rd) : L{p} = 0

 

Theorem 2

Let L be a spline-admissible operator that admits a stable right-inverse L�1
� of the

form specified by Theorem 1. Then, any f 2 ML(Rd) has a unique representation

as

f = L�1
� w + p,

where w = L{f} 2 M(Rd) and p =
PN0

n=1h�n, fipn 2 NL with �n 2
�
ML(Rd)

�0
.

Moreover, ML(Rd) is a Banach space equipped with the norm

kfkL,� = kLfkM + k�(f)k2.

Example: Convex problem with TV regularization 

34

a1

b1

L = D =
d

dx
ND = span{p1}, p1(x) = 1

⇢D(x) = +(x): Heaviside function

s(x) = b1 +
KX

k=1

ak +(x� xk)

with K < M and free parameters b1 and (ak, xk)Kk=1

no penalty

Generic form of the solution (by Theorem 4)

General linear-inverse problem with TV regularization

min
s2MD(R)

kD{s}kM s.t. H{s} = (hh1, si, · · · , hhM , si) 2 C(y)
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SUMMARY: Sparsity in infinite dimensions
■ Discrete-domain formulation
■ Contrasting behavior of l1  vs. l2  regularization
■ Minimization of l1 favors sparse solutions (independently of sensing matrix)

■ Deterministic optimality result
■ gTV regularization: favors “sparse” innovations
■ Non-uniform L-splines: universal solutions of linear inverse problems

■ Continuous-domain formulation
■ Linear measurement model
■ Linear signal model: PDE

■ L-splines = signals with “sparsest” innovation

) s = L�1wLs = w

s 2 X
s 7! z = H{s}

gTV(s) = kLskM
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“Total variation of function” 6= “total variation of a measure”

Du✓f = hu✓,rfi: directional derivative of f along u✓ = (cos ✓, sin ✓)

Problem: r = (@
x

, @
y

) is not a scalar operator

➟ angular averaging
     (rotation invariance)

➟ perfect equivalence
     (with L=D)

Usual total variation in 2D: TV(f) = supk'k11hrf,'i

Total variation in 1D: TV(f) = supk'k11hDf,'i = kDfkM

L1 version of the 2D total variation:

TV(f) =

Z

R2

|rf(x, y)|dxdy,= 1

4

Z 2⇡

0
kDu✓fkM d✓

Present theory explains the regularisation effect of kDu✓fkM


