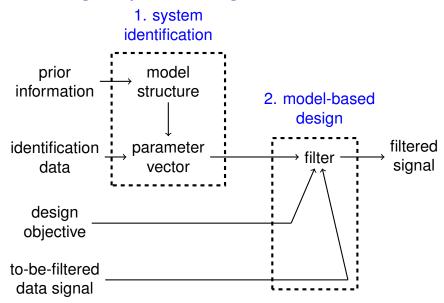
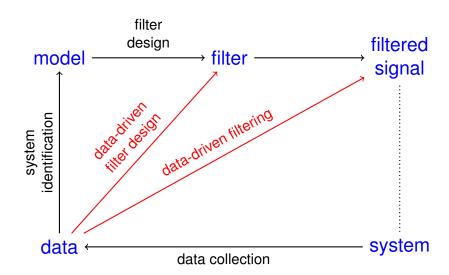
Data-driven signal processing

Ivan Markovsky

Modern signal processing is model-based



Data-driven methods avoid modeling



Combined modeling+design has benefits

identification ignores the design objective

the two-step approach is suboptimal

we define and solve a direct problem

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

Dynamical system \mathscr{B} is set of signals w

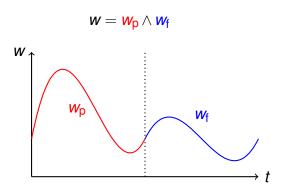
$$W \in \mathscr{B} \iff$$

- the signal w is trajectory of the system \mathscr{B}

we consider linear time-invariant (LTI) systems

 \mathscr{L} — LTI model class

Initial conditions ↔ past of the signal



Estimation in terms of trajectories

observer: given model $\mathscr B$ and exact trajectory w_f find w_p , such that $w_p \wedge w_f \in \mathscr B$

smoother: given model \mathscr{B} and noisy trajectory w_{f}

minimize $\|\mathbf{w_f} - \widehat{\mathbf{w}_f}\|$ subject to $\mathbf{\widehat{w}_p} \wedge \widehat{\mathbf{w}_f} \in \mathscr{B}$ (MBS)

When does trajectory $w_d \in \mathcal{B}$ specify \mathcal{B} ?

identifiability conditions

- 1. w_d is persistently exciting of "sufficiently high order"
- 2. B is controllable

how to obtain \mathcal{B} back from w_d ?

 $w_d \mapsto \mathscr{B}$ by choosing the simplest exact model for w_d

The most powerful unfalsified model of w_d , $\mathcal{B}_{mpum}(w_d)$ is the data generating system

complexity \leftrightarrow # inputs m and # states n

$$C(\mathcal{B}) = (m, n)$$

the most powerful unfalsified model

$$\mathscr{B}_{\mathsf{mpum}}(w_{\mathsf{d}}) := \underset{\widehat{\mathscr{B}} \in \mathscr{L}}{\mathsf{min}} \ \mathsf{c}(\widehat{\mathscr{B}}) \quad \mathsf{subject to} \quad \underbrace{w_{\mathsf{d}} \in \widehat{\mathscr{B}}}_{\mathsf{unfalsified model}}$$

 $\mathscr{L}_{m,n}$ — set of models with complexity bounded by (m,n)

Data-driven state estimation replaces the model \mathscr{B} by trajectory $w_d \in \mathscr{B}$

observer: given trajectories
$$w_d$$
 and w_f of \mathscr{B} find w_p , such that $w_p \wedge w_f \in \mathscr{B}_{mpum}(w_d)$ smoother: given noisy traj. w_d and w_f of \mathscr{B} and (m,ℓ) minimize
$$\frac{\|w_f - \widehat{w}_f\|_2^2}{\text{estimation error}} + \frac{\|w_d - \widehat{w}_d\|_2^2}{\text{identification error}}$$
 (DDS) subject to
$$\widehat{w}_p \wedge \widehat{w}_f \in \mathscr{B}_{mpum}(\widehat{w}_d) \in \mathscr{L}_{m,\ell}$$

Classical approach: divide and conquer

1. identification: given w_d and (m, ℓ) minimize $\|\mathbf{w}_{d} - \widehat{\mathbf{w}}_{d}\|$ subject to $\mathscr{B}_{moum}(\widehat{\mathbf{w}}_{d}) \in \mathscr{L}_{m,\ell}$

2. model-based filtering: given w_f and $\widehat{\mathscr{B}} := \mathscr{B}_{moum}(\widehat{w}_d)$ minimize $\|\mathbf{w}_{\mathbf{f}} - \widehat{\mathbf{w}}_{\mathbf{f}}\|$ subject to $\widehat{\mathbf{w}}_{\mathbf{0}} \wedge \widehat{\mathbf{w}}_{\mathbf{f}} \in \widehat{\mathcal{B}}$

Numerical example with Kalman smoothing

simulation setup

- ▶ $\overline{\mathscr{B}} \in \mathscr{L}_{1,2}$ 2nd order LTI system
- $w_f = \overline{w}_f + \text{noise}, \quad \overline{w}_f \in \mathscr{B} \text{step response}$
- $w_d = \overline{w}_d + \text{noise}, \quad \overline{w}_d \in \mathscr{B}$

smoothing with known model

- state space solution
- solution of (MBS)

smoothing with unknown model

- identification + model-based design
- solution of (DDS)

Smoothing with known model

state space solution

representation free solution

(MBS) is a generalized least squares

approximation error
$$e := (\|\overline{w}_{\mathrm{f}} - \widehat{w}_{\mathrm{f}}\|)/\|\overline{w}_{\mathrm{f}}\|$$

$$\frac{\text{method} \quad (\text{MBS}) \quad (\text{SSS})}{\text{error } e \quad 0.083653} \quad 0.083653$$

Smoothing with unknown model

classical approach

identification + (SSS)

data-driven approach

solution of (DDS) with local optimization

simulation result

method	(MBS)	(DDS)	classical
error e	0.083653	0.087705	0.091948

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

We aim to find missing part of trajectory

missing data — interpolated from $w \in \mathcal{B}$

exact data— kept fixed

inexact / "noisy" data — approximated by min ||error||2

Other examples fit in the same setting

? — missing, E — exact, N — noisy
$$w = \prod \begin{bmatrix} u \\ y \end{bmatrix}$$
, u — input, y — output

example		U_{f}	y_{f}
state estimation	?	Е	Е
EIV Kalman smoothing	?	N	N
classical Kalman smoothing	?	Ε	N
simulation	Е	Е	?
partial realization	Е	Ε	E/?
noisy realization	Е	Ε	N/?
output tracking	Е	?	N

classical Kalman filter

minimize
$$\|y - \widehat{y}\|$$

subject to $w_p \wedge (u, \widehat{y}) \in \mathscr{B}$

output tracking control

minimize
$$\underbrace{\| y_{\text{ref}} - \widehat{y} \|}_{\text{tracking error}}$$
subject to
$$w_{\text{p}} \wedge (\widehat{u}, \widehat{y}) \in \mathscr{B}$$

	past	future
input	<i>u</i> p	?
output	Уp	<i>y</i> _{ref}

Weighted approximation criterion accounts for exact, missing, and noisy data

error vector: $e := w - \widehat{w}$

$$\|e\|_{V} := \sqrt{\sum_{t} \sum_{i} v_{i}(t) e_{i}^{2}(t)}$$

weight	used for	to	by
$v_i(t) = \infty$	$w_i(t)$ exact	interpolate $w_i(t)$	$e_i(t) = 0$
$v_i(t) \in (0, \infty)$	$w_i(t)$ noisy	approx. $w_i(t)$	$\min \ e_i(t)\ $
$v_i(t) = 0$	$w_i(t)$ missing	fill in $w_i(t)$	$\widehat{\pmb{w}}\in\widehat{\mathscr{B}}$

Data-driven signal processing can be posed as missing data estimation problem

minimize
$$\|w_{d} - \widehat{w}_{d}\|_{2}^{2} + \|w - \widehat{w}\|_{v}^{2}$$

subject to $\widehat{w} \in \mathscr{B}_{mpum}(\widehat{w}_{d}) \in \mathscr{L}_{m,\ell}$ (DD-SP)

the recovered missing values of \hat{w} are the desired result

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

$w \in \mathcal{B} \iff \text{Hankel matrix is low-rank}$

exact trajectory $\mathbf{w} \in \mathcal{B} \in \mathcal{L}_{\mathrm{m},\ell}$

$$\updownarrow
R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0$$

$$\updownarrow$$

rank deficient

$$\mathcal{H}(w) := egin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \ w(2) & w(3) & \cdots & w(T-\ell+1) \ w(3) & w(4) & \cdots & w(T-\ell+2) \ dots & dots & dots \ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}$$

relation at time t=1

$$R_0 w(1) + R_1 w(2) + \cdots + R_\ell w(\ell+1) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(1) \\ w(2) \\ \vdots \\ w(\ell+1) \end{bmatrix} = 0$$

relation at time t=2

$$R_0 w(2) + R_1 w(3) + \cdots + R_\ell w(\ell+2) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(2) \\ w(3) \\ \vdots \\ w(\ell+2) \end{bmatrix} = 0$$

relation at time $t = T - \ell$

$$R_0 w(T-\ell) + R_1 w(T-\ell+1) + \cdots + R_\ell w(T) = 0$$

$$egin{bmatrix} egin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} egin{bmatrix} w(T-\ell) \ w(T-\ell+1) \ w(T-\ell+2) \ dots \ w(T) \end{bmatrix} = 0$$

relation for $t = 1, \dots, T - \ell$

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0$$

$$\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathscr{H}(w)} = 0$$

$$w\in\mathscr{B}\in\mathscr{L}_{\mathrm{m},\ell}$$
 \updownarrow there is $R\in\mathbb{R}^{(q-\mathrm{m}) imes q(\ell+1)}$ full row rank, such that $\mathscr{RH}(w)=0$ \updownarrow $\mathrm{rank}\left(\mathscr{H}(w)\right)\leq q\ell+\mathrm{m}$

q — # of variables

$$\widehat{w} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{w}_{\mathsf{d}}) \leadsto \mathsf{mosaic}$$
-Hankel matrix is rank deficient

$$\widehat{w} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{w}_{\mathsf{d}}) \in \mathscr{L}_{\mathsf{m},\ell}$$
 $\qquad \qquad \qquad \Downarrow$ $\widehat{w}_{\mathsf{d}} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathsf{m},\ell} \quad \mathsf{and} \quad \widehat{w} \in \widehat{\mathscr{B}}$ $\qquad \qquad \qquad \updownarrow$ $\qquad \qquad \uparrow$ $\qquad \qquad \downarrow$ \qquad

$$\begin{aligned} & \text{minimize} & & \| \textit{w}_{\mathsf{d}} - \widehat{\textit{w}}_{\mathsf{d}} \|_2^2 + \| \textit{w} - \widehat{\textit{w}} \|_{\textit{v}}^2 \\ & \text{subject to} & & \widehat{\textit{w}} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{\textit{w}}_{\mathsf{d}}) \in \mathscr{L}_{\mathsf{m},\ell} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

Three main classes of solution methods

local optimization

nuclear norm relaxation

subspace methods

considerations

- generality
- user defined hyper parameters
- availability of efficient algorithms/software

Local optimization using variable projections

kernel representation

$$\min_{R \text{ f.r.r.}} \left(\min_{\widehat{w}} \| w - \widehat{w} \| \text{ subject to } R\mathscr{H}(\widehat{w}) = 0 \right)$$

variable projection (VARPRO): elimination of \widehat{w} leads to minimize f(R) subject to R full row rank

Dealing with the "R full row rank" constraint

1. impose a quadratic equality constraint $RR^{\top} = I$

2. using specialized methods for optimization on a manifold

- 3. R full row rank $\iff R\Pi = \begin{bmatrix} X & I \end{bmatrix}$ with Π permutation
 - In fixed

 → total least-squares
 - Π can be changed during the optimization

Summary of the VARPRO approach

kernel representation \sim parameter opt. problem $\min_{\widehat{w},R \text{ f.r.r.}} \|w - \widehat{w}\| \text{ subject to } R\mathscr{H}(\widehat{w}) = 0$

elimination of
$$\widehat{w} \sim$$
 optimization on a manifold
$$\min_{R \text{ f.r.r.}} f(R)$$

in case of mosaic-Hankel \mathcal{H} , f can be evaluated fast

Conclusion

combined modeling and design problem (DD-SP)

we aim to find is a missing part of $w \in \mathcal{B}$

reformulation as weighted structured low-rank approx.

Future work

statistical analysis

computational efficiency / recursive computation

other methods: subspace, convex relaxation, ...