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Motivations and Basic Ideas



Parameter Estimation in Inverse Problems I
Signal Model: Superposition of parameterized building-block signals

x(t) =

r∑
k=1

cka(t;θk), t = t0, t1, . . . , tn−1

I Radar/MRI/Microscope/Seismology/Ultrasound imaging

I Parameter estimation in array signal processing

I Matrix and tensor factorization, dictionary learning

I Neural networks



Parameter Estimation in Inverse Problems II

I Signal Model: x =
r∑

k=1

cka(θk).

I DOA and line spectrum estimation:

a(θ) = [ej2πt0θ, ej2πt1θ, . . . , ej2πtn−1θ]T , θ ∈ [0, 1).

I Lidar/Single-molecule imaging/neural spike sorting/communication:

a(τ) = [w(t0 − τ), w(t1 − τ), . . . , w(tn−1 − τ)]T , τ ∈ [τmin, τmax]

I Radar and sonar:

a(θ) = [w(t0−τ)ejωt0 , w(t1−τ)ejωt1 , . . . , w(tn−1−τ)ejωtn−1 ]T ,θ = (τ, ω)

I Tensor decomposition:

a(θ) = u⊗ v ⊗w,θ = (u,v,w) ∈ Sn−1 × Sm−1 × Sp−1



Line Spectral Estimation I
I Find a combination of sinusoids agreeing with data

x(t) =

r∑
k=1

cke
i2πθkt =

∫ 1

0

ei2πθtd(

r∑
k=1

ckδ(θ − θk)), θk ∈ [0, 1), ck ∈ C.

I Classical signal processing problem with a lot of applications
I New interpretation: super-resolution from low-frequency measurements.

Classical Contemporary
Prony, MUSIC, Matrix Pencil, ESPIRIT Sparse recovery

SVD + root finding gridding + L1 minimization

grid free
flexible, robust
model selection

quantitative theory
need to know model order
lack of quantitative theory

not flexible

discretization error
basis mismatch

numerical instability

Can we bridge the gap?

Y. Chi, et al. “Sensitivity to basis mismatch in compressed sensing.”
M. Herman, T. Strohmer. “General deviants: An analysis of perturbations in compressed sensing.”



Exploit simplicity/sparsity of the signal, but work directly with the
continuously parameterized dictionaries!



Inspirations for Atomic Minimization I

I In compressive sensing, a sparse signal is simple – it is a parsimonious
sum of the canonical basis vectors {ek}.

I These basis vectors are building blocks for sparse signals.

I The `1 norm enforces sparsity w.r.t. the canonical basis vectors.

I The unit `1 norm ball is conv{±ek}, the (symmetric) convex hull of the
basis vectors.

I In matrix completion, a low rank matrix has a sparse representation in
terms of unit-norm, rank-one matrices.

I The dictionary D = {uvT : ‖u‖2 = ‖v‖2 = 1} is continuously
parameterized and has an infinite number of building-block signals.

I We enforce low-rankness using the nuclear norm:

‖X‖∗ = min{‖σ‖1 : X =
∑
k

σkukv
T
k }

I The nuclear norm ball is the convex hull of unit-norm, rank-one matrices.



Atomic Norms I

Convex geometry.

I Consider a dictionary or set of atoms A = {a(θ) : θ ∈ Θ} ⊂ Rn or Cn.

I The parameter space Θ can be finite, countably infinite, or continuous.

I The atoms {a(θ)} are building blocks for signal representation.

I Examples: canonical basis vectors, a finite dictionary, rank-one matrices.

I Line spectral atoms:

a(θ) = [1, ej2πθ, . . . , ej2π(n−1)θ]T : θ ∈ [0, 1)

I Tensor atoms: A = {u⊗ v ⊗w ∈ Rm×n×p : ‖u‖ = ‖v‖ = ‖w‖ = 1},
unit-norm, rank-one tensors.



Atomic Norms II
I Prior information: the signal is simple w.r.t. A— it has a parsimonious

decomposition using atoms in A

x =
∑r
k=1 cka(θk)

I The atomic norm of any x is defined as

‖x‖A = inf{‖c‖1 : x =
∑
k cka(θk)} = inf{t > 0 : x ∈ t conv(±A)}

I The unit ball of the atomic norm is the convex hull of the symmetrized
atomic set ±A.

V. Chandrasekaran, B. Recht, P. Parrilo, A Willsky. “The convex geometry of linear inverse problems.”



Atomic Norms III

Dual atomic norm.

I The dual atomic norm is defined as

‖q‖∗A := sup
x:‖x‖A≤1

|〈x,q〉| = sup
a∈A
|〈a,q〉|

I For line spectral atoms, the dual atomic norm is the maximal
magnitude of a complex trigonometric polynomial.

‖q‖∗A = sup
a∈A
|〈a,q〉| = sup

θ∈[0,1]

∣∣∣∣∣
n−1∑
k=0

q∗ke
j2πkθ

∣∣∣∣∣
Atoms Atomic Norm Dual Atomic Norm
canonical basis vectors `1 norm `∞ norm
unit-norm, rank-one matrices nuclear norm spectral norm
unit-norm, rank-one tensors tensor nuclear norm tensor spectral norm
line spectral atoms ‖ · ‖A ‖ · ‖∗A



Atomic Norms IV
Atomic norm minimization (ANM) problems.

I Given linear measurements of a signal x?, possibly with missing data and
corrupted by noise and outliers, we want to recover the signal.

I Suppose we have some prior information that the signal is simple – it
has a sparse representation with respect to an atomic set A.

I We can recover the signal by solving convex optimizations:

Basis Pursuit: minimize ‖x‖A subject to y = Ax

LASSO: minimize
1

2
‖y −Ax‖22 + λ‖x‖A

Demixing: minimize ‖x‖A1 + λ‖z‖A2 subject to y = x + z.



Problems I

I Atomic decomposition: Given a signal, which decompositions achieve
the atomic norm? Put it another way, estimate parameters given full,
noise-free data.

I Sampling complexity: how many linear measurements do we need to
recover a signal that has a sparse representation w.r.t. an atomic set?

I Denoising: how well can we denoise a signal by exploiting its simplicity
structure?

I Support recovery/parameter estimation: how well can we approximately
recover the active parameters from noisy data?

I Demixing: how well can we separate signals with two different
structures?

I Blind atomic decomposition: how to solve the problem when the form of
the atoms are not known precisely?

I Computational methods: how shall we solve atomic norm minimization
problems?



Optimality of ANM in Line Spectral Estimation



Atomic Decomposition I

I Consider a parameterized set of atoms A = {a(θ),θ ∈ Θ} and a signal
x with decomposition

x =

r∑
k=1

c?ka(θ?k),

under what conditions on the parameters {c?k,θ?k}, we have

‖x‖A = ‖c?‖1?

I For A = {ek}, this question is trivial.

I For A = {uvT : ‖u‖2 = ‖v‖2 = 1}, the composing atoms should be
orthogonal (Singular Value Decomposition).

I For A = {dk}, a sufficient condition is that the dictionary matrix D
satisfies restricted isometry property.



Atomic Decomposition II

Line spectral decomposition.

Theorem (Candès & Fernandez-Granda, 2012)

For line spectal atoms a(θ) =
[
1 ej2πθ · · · ej2πnθ

]T
, if the true

paramters {θ?k} are separated by 4
n , the atomic norm ‖x‖A =

∑r
k=1 |c?k|.

I Compare with Prony’s method etc. Foundation for handling noise,
outliers, missing data.

I The critical separation was improved to 2.52
n (Fernandez-Granda, 2015).

I The separation condition is in a flavor similar to the restricted isometry
property for finite dictionaries, and the orthogonality condition for
singular value decomposition.

E. Candès, C. Fernandez-Granda. “Towards a Mathematical Theory of Super-resolution.”
C. Fernandez-Granda. “Super-resolution of point sources via convex programming.”



Atomic Decomposition III

I We can extract the decomposition from the dual optimal solution q.

I The trigonometric polynomial q(θ) = 〈a(θ),q〉 satisfies

‖q(θ)‖L∞ ≤ 1

q(θ?k) = sign(c?k), k ∈ [r]

θ
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I We identify the true parameters by solving |q(θ)| = 1.



Recovery with Missing Data I
I Suppose we observe only a (random) portion of the full signal x?,

y = x?Ω, and would like to complete the rest.
I E.g., matrix completion, recovery from partial Fourier transform
I Optimization formulation:

minimize
x

‖x‖A subject to xΩ = x?Ω.

I Atomic completion for line spectral signal approaches information
theoretic limit:

Theorem (Tang, Bhaskar, Shah & Recht, 2012)

If we observe x? =
∑r
k=1 c

?
ka(θ?k) on a random subset of {0, 1, . . . , n− 1} of

size O(r log(r) log(n)) and the true parameters are separated by 4
n , then

atomic norm minimization successfully completes the signal.

Theorem (Chi and Chen, 2013)

Similar results hold for 2d spectral signals.

G. Tang, B. Bhaskar, P. Shah, B. Recht. “Compressed sensing off the grid.”
Y. Chi, and Y. Chen. “Compressive two-dimensional harmonic retrieval via atomic norm minimization.”



Recovery with Missing Data II



Denoising I
I Observe noisy measurements: y = x? + w with w white Gaussian noise.

I Denoise y to obtain (Choose λ ≈ 2E‖w‖∗A)

x̂ = argmin
x

1

2
‖x− y‖22 + λ‖x‖A.

Theorem (Tang, Bhaskar & Recht, 2013)

1

n
‖x̂− x?‖22 ≤

Cσ2r log(n)

n
if the parameters are separated.

I The rate is minimax optimal:

No algorithm can do better than

E
1

n
‖x̂− x?‖22 ≥

C ′σ2r log(n/r)

n

even if the parameters are
well-separated.

No algorithm can do better than

1

n
‖x̂− x?‖22 ≥

C ′σ2r

n

even if we know a priori the
well-separated parameters.

G. Tang, Gongguo, B. Bhaskar, B. Recht. “Near minimax line spectral estimation.”
B. Bhaskar, G. Tang, B. Recht. “Atomic norm denoising with applications to line spectral estimation.”



Denoising II
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Noisy Support Recovery/Parameter Estimation I
I How well can we localize the frequencies by solving a denoising problem

and extracting parameters from its solution?

x̂ = argmin
x

1

2
‖x− y‖2W + λ‖x‖A.

I Here W is a diagonal weighting matrix of size O(1/n).
I The dual optimal solution q̂ = W (y − x̂)/λ is a scaled version of the

noise estimator.
I The places where |〈q̂,a(θ)〉| = 1 correspond to identified parameters.

Parameter
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V. Duval, G. Peyré. “Exact support recovery for sparse spikes deconvolution.” C. Fernandez-Granda. “Support detection in super-resolution.”
G. Tang, Gongguo, B. Bhaskar, B. Recht. “Near minimax line spectral estimation.”



Noisy Support Recovery/Parameter Estimation II
I Noise is Gaussian with variance σ2.

I Noise level is measured by γ0 := σ
√

logn
n .

Theorem (Li & Tang, 2016)

Suppose

I SNR as measured by |cmin|/γ0 is large.

I The dynamic range of the coefficients is small

I Regularization parameter λ is large compared to γ0.

I The frequencies are well-separated.

Then w.h.p. we can extract exactly r parameters from x̂ or q̂, which satisfy

max |c?k||θ̂k − θ?k| = O(γ0/n) = O(

√
log n

n3/2
σ)

max |ĉk − c?k| = O(λ) = O(

√
log n

n
σ)

Q. Li, G. Tang. “Approximate support recovery of atomic line spectral estimation: A tale of resolution and precision.”



Noisy Support Recovery/Parameter Estimation III

Comparison with CRB, MUSIC, and MLE.

I Only asymptotic bounds available when the number of snapshots T
tends to ∞.

I Our algorithm and analysis work for single snapshot, i.e., T = 1.

I CRB: O(
σ2

T |c|2n3
)

I Atomic: O(
σ2 log n

|c|2n3
)

I MLE: O(
σ2

T |c|2n3
+

σ4

T |c|4n4
)

I MUSIC: O(
σ2

T |c|2n3
+

σ4

T |c|4n4
)

P. Stoica, A. Nehorai. “MUSIC, maximum likelihood, and Cramer-Rao bound.”



Noisy Support Recovery/Parameter Estimation IV

Primal-Dual Witness Construction

I The unique primal optimal solution x̂ =
∑r̂
k=1 ĉka(θ̂k).

I The unique dual optimal solution q̂ satisfies supθ |〈q,a(θ)〉| ≤ 1 and

〈q,a(θ̂k)〉 = sign(ĉk), k ∈ [r̂].

I They certify the optimality of each other and are related by
q̂ = W (y − x̂)/λ.

I To construct x̂ and q̂, fix r̂ = r and find (θ̂k, ĉk) by solving

minimize
θk,ck

1

2
‖y −

r∑
k=1

cka(θk)‖2W + λ

r∑
k=1

|ck|

I Run gradient descent initialized by the true frequencies and argue that
such a local minimum generates a valid primal-dual optimal solution.

I The atomic solution is the same as the `1 regularized least-squares
solution.

M. Wainwright. “Sharp thresholds for high-dimensional and noisy sparsity recovery using constrained quadratic programming (Lasso)”



Noisy Support Recovery/Parameter Estimation V
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Noisy Support Recovery/Parameter Estimation VI

Succress rate
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Setup:

I n = 257

I |c?k| = 1

I Separation ≥ 5/n

Success means:

I maxk |c?k||θ̂k − θ?k| ≤
γ0
2n

I maxk |ĉk − c?k| ≤ 2λ



Demixing/Outlier Detection and Removal I

I Observe corrupted data: y = x? + w? with w? sparse.

I minimizew,x ‖w‖`1 + ‖x‖A subject to y = x + w.

Theorem
If the frequencies are well-separated, the locations of the outliers are
uniformly random, and r + s ≤ n

log2(n)
, then we could recover both the freqs

and the outliers exactly with high prob.

G. Tang, P. Shah, B. Bhaskar, B. Recht, “Robust line spectral estimation.”
C. Fernandez-Granda, G. Tang, X. Wang, L. Zheng, “Demixing sines and spikes: robust spectral super-resolution in the presence of outliers”.



Non-stationary Blind Super-resolution I

I Single molecule microscopy: Localize point sources from their
convolution with point spread functions

I Multi-user communication systems: Estimate the transmitted waveforms

observation model: y(t) =

J∑
j=1

αjgj(t− tj)

Blind Super-resolution: The PSFs or the transmitted waveforms might be
unknown/partially known.



Non-stationary Blind Super-resolution II

I Frequency domain model:

y =

J∑
j=1

cja(τj)� gj ∈ CN .

I Goal: recover {τj}, {cj} and samples of the unknown waveforms
{gj(n)} from the observations y.

I Assumption: all the gj live in the same subspace of dimension K
spanned by the columns of B, i.e., gj = Bhj .

I y becomes linear observations of a structured low-rank matrix
Xo =

∑J
j=1 cjhja(τj)

H : y = B(Xo).



Non-stationary Blind Super-resolution III
I Define the atomic set

A =
{
ha(τ)H : τ ∈ [0, 1), ‖h‖2 = 1,h ∈ CK×1

}
I Solve an atomic norm minimization problem to recovery Xo

minimize ‖X‖A subject to y = B(X). (1)

I Once Xo is recovered, the point sources can be localized by checking
the dual polynomial.

Theorem (Chi, 2015)

Assume isotropic and incoherent bn, separation between τk, and stationary
hj , i.e., hj = h for all j. Guaranteed recovery if N = O(J2K2).

Theorem (Yang, Tang & Wakin, 2016)

Assume isotropic and incoherent bn, separation between τk, and randomness
of hj . Guaranteed recovery if N = O(JK).

Y. Chi. “Guaranteed blind sparse spikes deconvolution via lifting and convex optimization.”
D. Yang, G. Tang, and M. Wakin, “ Super-resolution of complex exponentials from modulations with unknown waveforms.”



Non-stationary Blind Super-resolution IV



A more practical example I
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dual polynomial
locations of spikes

I Components of g are samples of Gaussian waveform

gσ2(t) = 1√
2πσ2

e−
t2

2σ2 with unknown variance σ2 ∈ [0.1, 1]

I B: left singular vectors of the best rank-5 approximation of Dg

Dg =
[
gσ2=0.1 gσ2=0.11 gσ2=0.99 · · · gσ2=1

]



Computational Methods I
I The dual problem involves a dual norm constraint of the form

‖z‖∗A ≤ 1⇔ |〈z,a(θ)〉| ≤ 1 ∀θ ∈ Θ

I Line spectral atoms:

‖z‖∗A ≤ 1⇔ |
n−1∑
k=0

zke
j2πθk| ≤ 1 ∀θ ∈ [0, 1]

I The latter states that the magnitude of a complex trigonometric
polynomial is bounded by 1 everywhere.

I Bounded real lemma (Dumitrescu, 2007):

|
n−1∑
k=0

zke
j2πθk| ≤ 1 ∀θ ∈ [0, 1]

⇔
[
Q z
zH 1

]
� 0,

trace(Q, j) = δ(j = 0), j = 0, . . . , n− 1.



Computational Methods II

I This leads to an exact semidefinite representation of the line spectral
atomic norm (Bhaskar, Tang & Recht, 2012):

‖x‖A = inf

{
1

2
(t+ u0) :

[
Toep(u) x

xH t

]
� 0

}
I Therefore, line spectral atomic norm regularized problems have exact

semidefinite representations, e.g.,

minimize ‖x‖A subject to xΩ = x?Ω

⇔

minimize
1

2
(t+ u0) subject to

[
Toep(u) x

xH t

]
� 0,x = x?Ω

B. Bhaskar, G. Tang, B. Recht. “Atomic norm denoising with applications to line spectral estimation.”



ANM for Tensors



Atomic Tensor Decomposition. I

I For tensor problems, the atomic set

A = {u⊗ v ⊗w : ‖u‖2 = ‖v‖2 = ‖w‖2 = 1}.

I The tensor atomic norm is the tensor nuclear norm.

I When can we extract the rank-one factors of a tensor by observing its
entries?

T =
∑r
k=1 c

?
ku

?
k ⊗ v?k ⊗w?

k

I Equivalently, when

‖T‖∗ = ‖T‖A =

r∑
k=1

|c?k|



Atomic Tensor Decomposition. II

Theorem (Li, Prater, Shen, Tang, 2015)

I Incoherence: maxk 6=l{|〈u?
k,u

?
l 〉|, |〈v?

k,v
?
l 〉|, |〈w?

k,w
?
l 〉|} ≤

polylog(n)√
n

I Bounded spectra: max{‖U?‖, ‖V ?‖, ‖W ?‖} ≤ 1 + c
√

r
n

I Gram isometry: ‖(U?′U?)� (V ?′V ?)− Ir‖ ≤ polylog(n)
√

r
n

and similar
bounds for U?,W ?, and V ?,W ?

I Low-rank (but still overcomplete): r = O(n17/16/ polylog(n))

guarantees atomic tensor decomposition.

Corollary (Li, Prater, Shen, Tang, 2015)

Random {u?k}, {v?k} and {w?
k} satisfy the conditions with high probability.

Li, Prater, Shen, Tang. “Overcomplete tensor decomposition via convex optimization.”



Computational Methods I

SOS relaxations for tensors.

I Symmetric tensor atoms:

‖Z‖∗A ≤ 1⇔
∑
i,j,k

Zijkuiujuk ≤ 1 ∀‖u‖2 = 1

I The latter states that a third order multivariate polynomial is bounded
by 1, or 1−

∑
i,j,k Zijkuiujuk is nonnegative on the unit sphere.

I The general framework of Sum-of-Squares (SOS) for non-negative
polynomials over semi-algebraic sets leads to a hierarchy of increasingly
tight semidefinite relaxations for the symmetric tensor spectral norm.

I Taking the dual yields a hierarchy of increasingly tight semidefinite
approximations of the (symmetric) tensor nuclear norm.



Computational Methods II

Theorem (Tang & Shah, 2015)

For a symmetric tensor T =
∑r
k=1 λkuk ⊗ uk ⊗ uk, if the tensor factors

U = [u1, · · · ,ur] satisfy ‖U ′U − Ir‖ ≤ 0.0016, then the (symmetric) tensor
nuclear norm ‖T‖∗ equals both

∑r
k=1 λk and the optimal value of the

smallest SOS approximation.

G. Tang, P. Shah. “Guaranteed tensor decomposition: A moment approach.”



Concluding Remarks

I ANM provides a universal framework for constructing convex regularizers
that promote certain notion of simplility/parsimony/sparsity.

I ANM is optimal in many senses: approaching information-theoretic limit
in sampling complexity, minimax optimal in denoising, approaching CRB
in parameter estimation, etc.

I When ANM works, the corresponding optimization is usually also
computationally feasible/easy.

I ANM applies naturally to inverse problems in signal processing and
machine learning.
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