Exact Support Recovery for Sparse Spikes Deconvolution

Gabriel Peyré

Joint work with
Vincent Duval \& Quentin Denoyelle

UNIVERSITÉ PARIS

Sparse Deconvolution

Neural spikes (1D)

Sparse Deconvolution

Neural spikes (1D)

$$
\begin{aligned}
& y=\varphi \star m_{0}+w \\
& m_{0} \text { is "sparse" }
\end{aligned}
$$

$+\underset{w}{\text { molting }}$

Sparse Deconvolution

Neural spikes (1D)

$$
\begin{aligned}
& y=\varphi \star m_{0}+w \\
& m_{0} \text { is "sparse" }
\end{aligned}
$$

Seismic imaging (1.5D)

Sparse Deconvolution

Neural spikes (1D)

$$
\begin{aligned}
& y=\varphi \star m_{0}+w \\
& m_{0} \text { is "sparse" }
\end{aligned}
$$

Seismic imaging (1.5D)

Astrophysics (2D)

Presented results extend to n D problems

Overview

- Sparse Spikes Super-resolution
- Robust Support Recovery
- Asymptotic Positive Measure Recovery

Deconvolution of Measures

Radon measure m on $\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d}$.

Deconvolution of Measures

Radon measure m on $\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d}$.
Discrete measure:

$$
m_{a, x}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, a \in \mathbb{R}^{N}, x \in \mathbb{T}^{N}
$$

Deconvolution of Measures

Radon measure m on $\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d}$.
Discrete measure:

$$
m_{a, x}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, a \in \mathbb{R}^{N}, x \in \mathbb{T}^{N}
$$

Linear measurements:

$$
\begin{aligned}
& y=\Phi(m)+w \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T}) \\
& \Phi(m)=\int_{\mathbb{T}} \varphi(x, \cdot) \mathrm{d} m(x)
\end{aligned}
$$

Deconvolution of Measures

Radon measure m on $\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d}$.
Discrete measure:

$$
m_{a, x}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, a \in \mathbb{R}^{N}, x \in \mathbb{T}^{N}
$$

Linear measurements:

$$
\begin{aligned}
& y=\Phi(m)+w \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T}) \\
& \Phi(m)=\int_{\mathbb{T}} \varphi(x, \cdot) \mathrm{d} m(x)
\end{aligned}
$$

Example: 1-D $(d=1)$ convolution

$$
\varphi(x, t)=\varphi(t-x)
$$

Deconvolution of Measures

Radon measure m on $\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d}$.
Discrete measure:

$$
m_{a, x}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, a \in \mathbb{R}^{N}, x \in \mathbb{T}^{N}
$$

Linear measurements:

$$
\begin{aligned}
& y=\Phi(m)+w \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T}) \\
& \Phi(m)=\int_{\mathbb{T}} \varphi(x, \cdot) \mathrm{d} m(x)
\end{aligned}
$$

Example: 1-D $(d=1)$ convolution

$$
\varphi(x, t)=\varphi(t-x)
$$

Minimum separation:

$$
\Delta=\min _{i \neq j}\left|x_{i}-x_{j}\right|
$$

\rightarrow Signal-dependent recovery criteria.

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Basis-pursuit / Lasso: $\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\|y-\bar{\Phi} a\|^{2}+\lambda\|a\|_{1}$

$$
\bar{\Phi}: a \in \mathbb{R}^{K} \mapsto \Phi\left(m_{a, z}\right)=\sum_{k} a_{k} \varphi\left(z_{k}, \cdot\right) \in \operatorname{Im}(\Phi)
$$

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Basis-pursuit / Lasso: $\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\|y-\bar{\Phi} a\|^{2}+\lambda\|a\|_{1}$

$$
\bar{\Phi}: a \in \mathbb{R}^{K} \mapsto \Phi\left(m_{a, z}\right)=\sum_{k} a_{k} \varphi\left(z_{k}, \cdot\right) \in \operatorname{Im}(\Phi)
$$

Why ℓ^{1} ? " ℓ^{0} ball"

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Basis-pursuit / Lasso: $\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\|y-\bar{\Phi} a\|^{2}+\lambda\|a\|_{1}$

$$
\bar{\Phi}: a \in \mathbb{R}^{K} \mapsto \Phi\left(m_{a, z}\right)=\sum_{k} a_{k} \varphi\left(z_{k}, \cdot\right) \in \operatorname{Im}(\Phi)
$$

Why ℓ^{1} ? " ℓ^{0} ball" $\longrightarrow \quad \ell^{q}$ ball $\left\{a \in \mathbb{R}^{K} ; \sum_{k}\left|a_{k}\right|^{q} \leqslant 1\right\}$

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Basis-pursuit / Lasso: $\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\|y-\bar{\Phi} a\|^{2}+\lambda\|a\|_{1}$

$$
\bar{\Phi}: a \in \mathbb{R}^{K} \mapsto \Phi\left(m_{a, z}\right)=\sum_{k} a_{k} \varphi\left(z_{k}, \cdot\right) \in \operatorname{Im}(\Phi)
$$

Why ℓ^{1} ? " ℓ^{0} ball" $\longrightarrow \quad \ell^{q}$ ball $\left\{a \in \mathbb{R}^{K} ; \sum_{k}\left|a_{k}\right|^{q} \leqslant 1\right\}$

sparse

Sparse [¹ Deconvolution

Discrete ℓ^{1} regularization:
Computation grid $z=\left(z_{k}\right)_{k=1}^{K}$.

Basis-pursuit / Lasso: $\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\|y-\bar{\Phi} a\|^{2}+\lambda\|a\|_{1}$

$$
\bar{\Phi}: a \in \mathbb{R}^{K} \mapsto \Phi\left(m_{a, z}\right)=\sum_{k} a_{k} \varphi\left(z_{k}, \cdot\right) \in \operatorname{Im}(\Phi)
$$

Why ℓ^{1} ? $\quad \ell^{0}$ ball" $\longrightarrow \quad \ell^{q}$ ball $\left\{a \in \mathbb{R}^{K} ; \sum_{k}\left|a_{k}\right|^{q} \leqslant 1\right\}$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\xrightarrow[|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}}]{\mathrm{d} m(x)=f(x) \mathrm{d} x}$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\xrightarrow[|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}}]{\mathrm{d} m(x)=f(x) \mathrm{d} x}$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\mathrm{d} m(x)=f(x) \mathrm{d} x$

Sparse recovery:

$$
\min _{m} \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda|m|(\mathbb{T}) \quad\left(\mathcal{P}_{\lambda}(y)\right)
$$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\mathrm{d} m(x)=f(x) \mathrm{d} x$

$$
|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}} \quad\left|m_{a, x,}\right|(\mathbb{T})=\|a\|_{\ell^{1}}
$$

Sparse recovery:

$$
\begin{array}{ll}
y: \\
\lambda \rightarrow 0^{+} \\
\min _{m} \frac{1}{m} \frac{1}{2} \frac{1}{2}\left\{\left|m(m)-y \|^{2}+\lambda\right| m \mid(\mathbb{T}) ; \Phi m=y\right\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\left(\mathcal{P}_{0}(y)\right)
\end{array}
$$

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\mathrm{d} m(x)=f(x) \mathrm{d} x$

$$
|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}}
$$

$$
\left|m_{a, x}\right|(\mathbb{T})=\|a\|_{\ell^{1}}
$$

Sparse recovery:

$$
\begin{array}{ll}
\mathrm{y}: \\
\lambda \rightarrow 0^{+} & \left(\begin{array}{ll}
\min _{m} & \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda|m|(\mathbb{T}) \\
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
0
\end{array}\right)
\end{array}
$$

Proposition: If $\operatorname{dim}(\operatorname{Im}(\Phi))<+\infty, \exists(a, x) \in \mathbb{R}^{N} \times \mathbb{T}^{N}$ with $N \leqslant \operatorname{dim}(\operatorname{Im}(\Phi))$ such that $m_{a, x}$ is a solution to $\mathcal{P}_{\lambda}(y)$.

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

Sparse recovery:

$$
\begin{array}{ll}
\mathrm{y}: \\
\lambda \rightarrow 0^{+} & \min _{m} \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda|m|(\mathbb{T}) \\
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\hline
\end{array}
$$

Proposition: If $\operatorname{dim}(\operatorname{Im}(\Phi))<+\infty, \exists(a, x) \in \mathbb{R}^{N} \times \mathbb{T}^{N}$ with $N \leqslant \operatorname{dim}(\operatorname{Im}(\Phi))$ such that $m_{a, x}$ is a solution to $\mathcal{P}_{\lambda}(y)$.
\longrightarrow Algorithms:
[Bredies, Pikkarainen, 2010] (proximal-based) [Candès, Fernandez-G. 2012] (root finding)

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

Sparse recovery:

$$
\begin{array}{ll}
\mathrm{y}: \\
\lambda \rightarrow 0^{+} & \min _{m} \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda|m|(\mathbb{T}) \\
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\hline
\end{array}
$$

Proposition: If $\operatorname{dim}(\operatorname{Im}(\Phi))<+\infty, \exists(a, x) \in \mathbb{R}^{N} \times \mathbb{T}^{N}$ with $N \leqslant \operatorname{dim}(\operatorname{Im}(\Phi))$ such that $m_{a, x}$ is a solution to $\mathcal{P}_{\lambda}(y)$.
\longrightarrow Algorithms:
[Bredies, Pikkarainen, 2010] (proximal-based) [Candès, Fernandez-G. 2012] (root finding)
Competitors: Prony's methods (MUSIC, ESPRIT, FRI).

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\mathrm{d} m(x)=f(x) \mathrm{d} x$

$$
|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}} \quad\left|m_{a, x}^{\circ}\right|(\mathbb{T})=\|a\|_{\ell^{1}}
$$

Sparse recovery:

$$
\begin{array}{ll}
y: \\
\lambda \rightarrow 0^{+} \\
\min _{m} \min _{m} \frac{1}{2}\left\{\left|\Phi(m)-y \|^{2}+\lambda\right| m \mid(\mathbb{T}) ; \Phi m=y\right\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
& \left(\mathcal{P}_{0}(y)\right)
\end{array}
$$

Proposition: If $\operatorname{dim}(\operatorname{Im}(\Phi))<+\infty, \exists(a, x) \in \mathbb{R}^{N} \times \mathbb{T}^{N}$ with $N \leqslant \operatorname{dim}(\operatorname{Im}(\Phi))$ such that $m_{a, x}$ is a solution to $\mathcal{P}_{\lambda}(y)$.
\longrightarrow Algorithms:
[Bredies, Pikkarainen, 2010] (proximal-based) [Candès, Fernandez-G. 2012] (root finding)
Competitors: Prony's methods (MUSIC, ESPRIT, FRI). " + ": always works when $w=0$, less sensitive to sign.

Grid-free Sparse Recovery

Grid-free regularization: total variation of measures:

$$
|m|(\mathbb{T})=\sup \left\{\int \eta \mathrm{d} m: \eta \in C(\mathbb{T}),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$\mathrm{d} m(x)=f(x) \mathrm{d} x$

$$
|m|(\mathbb{T})=\int|f|=\|f\|_{L^{1}} \quad\left|m_{a, x}^{\circ}\right|(\mathbb{T})=\|a\|_{\ell^{1}}
$$

Sparse recovery:

$$
\begin{array}{ll}
y: 0^{+} \underset{m}{\min _{m}} \frac{1}{2}\left\{\left|m(m)-y \|^{2}+\lambda\right| m \mid(\mathbb{T}) ; \Phi m=y\right\} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\left(\mathcal{P}_{0}(y)\right)
\end{array}
$$

Proposition: If $\operatorname{dim}(\operatorname{Im}(\Phi))<+\infty, \exists(a, x) \in \mathbb{R}^{N} \times \mathbb{T}^{N}$ with $N \leqslant \operatorname{dim}(\operatorname{Im}(\Phi))$ such that $m_{a, x}$ is a solution to $\mathcal{P}_{\lambda}(y)$.
\longrightarrow Algorithms:
[Bredies, Pikkarainen, 2010] (proximal-based) [Candès, Fernandez-G. 2012] (root finding)
Competitors: Prony's methods (MUSIC, ESPRIT, FRI). "+": always works when $w=0$, less sensitive to sign.
"-": only for convolution operator, $\varphi(x, t)=\varphi(x-t)$

Overview

- Sparse Spikes Super-resolution
- Robust Support Recovery
- Asymptotic Positive Measure Recovery

Robustness and Support-stability

$$
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} \quad\left(\mathcal{P}_{0}(y)\right)
$$

Low-pass filter $\operatorname{supp}(\hat{\varphi})=\left[-f_{c}, f_{c}\right]$.
When is m_{0} solution of $\mathcal{P}_{0}\left(\Phi m_{0}\right)$?

Robustness and Support-stability

$$
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} \quad\left(\mathcal{P}_{0}(y)\right)
$$

Low-pass filter $\operatorname{supp}(\hat{\varphi})=\left[-f_{c}, f_{c}\right]$.
When is m_{0} solution of $\mathcal{P}_{0}\left(\Phi m_{0}\right)$?
Theorem: [Candès, Fernandez G.]
$\Delta>\frac{1.26}{f_{c}} \Rightarrow m_{0}$ solves $\mathcal{P}_{0}\left(\Phi m_{0}\right)$.

Robustness and Support-stability

$$
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} \quad\left(\mathcal{P}_{0}(y)\right)
$$

Low-pass filter $\operatorname{supp}(\hat{\varphi})=\left[-f_{c}, f_{c}\right]$.
When is m_{0} solution of $\mathcal{P}_{0}\left(\Phi m_{0}\right)$?
Theorem: [Candès, Fernandez G.]
$\Delta>\frac{1.26}{f_{c}} \Rightarrow m_{0}$ solves $\mathcal{P}_{0}\left(\Phi m_{0}\right)$.
How close to m_{0}
are solutions of $\mathcal{P}_{\lambda}\left(\Phi m_{0}+w\right)$?

Robustness and Support-stability

$$
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} \quad\left(\mathcal{P}_{0}(y)\right)
$$

Low-pass filter $\operatorname{supp}(\hat{\varphi})=\left[-f_{c}, f_{c}\right]$.
When is m_{0} solution of $\mathcal{P}_{0}\left(\Phi m_{0}\right)$?
Theorem: [Candès, Fernandez G.]
$\Delta>\frac{1.26}{f_{c}} \Rightarrow m_{0}$ solves $\mathcal{P}_{0}\left(\Phi m_{0}\right)$.

How close to m_{0}

are solutions of $\mathcal{P}_{\lambda}\left(\Phi m_{0}+w\right)$?
Weighted L^{2} error:
\longrightarrow [Candès, Fernandez-G. 2012]
Support localization:
\longrightarrow [Fernandez-G.][de Castro 2012]

$\Delta=0.1 / f_{c}$

Robustness and Support-stability

$$
\min _{m}\{|m|(\mathbb{T}) ; \Phi m=y\} \quad\left(\mathcal{P}_{0}(y)\right)
$$

Low-pass filter $\operatorname{supp}(\hat{\varphi})=\left[-f_{c}, f_{c}\right]$.
When is m_{0} solution of $\mathcal{P}_{0}\left(\Phi m_{0}\right)$?
Theorem: [Candès, Fernandez G.]
$\Delta>\frac{1.26}{f_{c}} \Rightarrow m_{0}$ solves $\mathcal{P}_{0}\left(\Phi m_{0}\right)$.

How close to m_{0}

are solutions of $\mathcal{P}_{\lambda}\left(\Phi m_{0}+w\right)$?
Weighted L^{2} error:
\longrightarrow [Candès, Fernandez-G. 2012]
Support localization:
\longrightarrow [Fernandez-G.][de Castro 2012]

Open problems: Exact support recovery? General kernels?

From Primal to Dual

$\min _{m}|m|(\mathbb{T})+\frac{1}{2 \lambda}| | \Phi m-y \|^{2}$,

From Primal to Dual

$$
\begin{aligned}
& \left.\min _{m}|m|(\mathbb{T})+\frac{1}{2 \lambda}\|\Phi m-y\|^{2}\right] \\
= & \min _{m}\left[\sup _{\|\eta\|_{\infty} \leqslant 1}-\langle\eta, m\rangle+\frac{1}{2 \lambda}\|\Phi m-y\|^{2}\right]
\end{aligned}
$$

From Primal to Dual

From Primal to Dual

$$
\begin{aligned}
& \min _{m}|m|(\mathbb{T})+\frac{1}{2 \lambda}\|\Phi m-y\|^{2} \\
= & \min _{m}\left[\sup _{\|\eta\|_{\infty} \leqslant 1}-\langle\eta, m\rangle+\frac{1}{2 \lambda}\|\Phi m-y\|^{2}\right] \\
= & \sup _{\|\eta\|_{\infty} \leqslant 1}\left[\min _{m}-\langle\eta, m\rangle+\frac{1}{2 \lambda}\|\Phi m-y\|^{2}\right]
\end{aligned}
$$

From Primal to Dual

Ideal low-pass filter:

From Primal to Dual

Ideal low-pass filter:

From Primal to Dual

$\mid \rightarrow \eta=\Phi^{*} p$ trigonometric polynomial.

From Primal to Dual

Ideal low-pass filter:

From Primal to Dual

Ideal low-pass filter:
$\rightarrow \eta=\Phi^{*} p$ trigonometric polynomial. \rightarrow Interpolates spikes location and sign.

From Primal to Dual

Ideal low-pass filter:
$\rightarrow \eta=\Phi^{*} p$ trigonometric polynomial.
\rightarrow Interpolates spikes location and sign.
$\rightarrow|\eta(t)|^{2}=1$: polynomial equation of $\operatorname{supp}(m)$.

Asymptotic Dual and Certificate

Definition: for any m_{0} solution of $\mathcal{P}_{0}(y)$,

$$
\eta_{0}=\Phi^{*} p_{0}=\underset{\eta=\Phi^{*} p \in \partial\left|m_{0}\right|(\mathbb{T})}{\operatorname{argmin}}\|p\|
$$

Vanishing Derivative Pre-certificate

Input measure: $m_{0}=m_{a, x}$.

Vanishing Derivative Pre-certificate

Input measure: $m_{0}=m_{a, x}$.

$$
\begin{aligned}
& \eta_{0} \stackrel{\text { def. }}{=} \underset{\eta=\Phi^{*} p}{\operatorname{argmin}}\|p\| \text { s.t. }\left\{\begin{array}{l}
\forall i, \eta_{1}\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right), \\
\|\eta\|_{\infty} \leqslant 1 .
\end{array}\right. \\
& \exists \eta_{0} \Longleftrightarrow m_{0} \text { solves } \mathcal{P}_{0}\left(\Phi m_{0}\right)
\end{aligned}
$$

Vanishing Derivative Pre-certificate

Input measure: $m_{0}=m_{a, x}$.

$$
\begin{gathered}
\eta_{0} \stackrel{\text { def. }}{=} \underset{\eta=\Phi^{*} p}{\operatorname{argmin}}\|p\| \text { s.t. }\left\{\begin{array}{l}
\forall i, \eta\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right), \\
\|\eta\|_{\infty} \leqslant 1 .
\end{array}\right. \\
\exists \eta_{0} \Longleftrightarrow m_{0} \text { solves } \mathcal{P}_{0}\left(\Phi m_{0}\right)
\end{gathered}
$$

Proposition: $\eta_{V}=\Phi^{*} A_{x}^{+}(\operatorname{sign}(a) ; 0)$
where $A_{x}(b)=\sum_{i} b_{i}^{1} \varphi\left(x_{i}, \cdot\right)+b_{i}^{2} \varphi^{\prime}\left(x_{i}, \cdot\right)$

Vanishing Derivative Pre-certificate

Input measure: $m_{0}=m_{a, x}$.

Proposition: $\eta_{V}=\Phi^{*} A_{x}^{+}(\operatorname{sign}(a) ; 0)$
where $A_{x}(b)=\sum_{i} b_{i}^{1} \varphi\left(x_{i}, \cdot\right)+b_{i}^{2} \varphi^{\prime}\left(x_{i}, \cdot\right)$

Non-degenerate certificate: $\quad \eta \in \mathrm{ND}\left(m_{a, x}\right)$:
$\Longleftrightarrow \quad \forall t \notin\left\{x_{1}, \ldots, x_{N}\right\},|\eta(t)|<1$ and $\forall i, \eta^{\prime \prime}\left(x_{i}\right) \neq 0$

Vanishing Derivative Pre-certificate

Input measure: $m_{0}=m_{a, x}$.
$\eta_{0} \stackrel{\text { def. }}{=} \operatorname{argmin}\|p\|$ s.t. $\left\{\begin{array}{l}\forall i, \eta\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right), \\ \|\eta\|\end{array}\right.$ $\|\eta\|_{\infty} \leqslant 1$.
$\exists \eta_{0} \Longleftrightarrow m_{0}$ solves $\mathcal{P}_{0}\left(\Phi m_{0}\right)$
$\eta_{V} \stackrel{\text { def. }}{=} \underset{\eta=\Phi^{*} p}{\operatorname{argmin}}\|p\|$ s.t. $\left\{\begin{array}{l}\forall i, \eta\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right), \\ \forall i, \eta^{\prime}\left(x_{i}\right)=0 .\end{array}\right.$
Proposition: $\eta_{V}=\Phi^{*} A_{x}^{+}(\operatorname{sign}(a) ; 0)$
where $A_{x}(b)=\sum_{i} b_{i}^{1} \varphi\left(x_{i}, \cdot\right)+b_{i}^{2} \varphi^{\prime}\left(x_{i}, \cdot\right)$

$$
\eta_{0}=\eta_{V}
$$

Non-degenerate certificate: $\quad \eta \in \mathrm{ND}\left(m_{a, x}\right)$:
$\Longleftrightarrow \quad \forall t \notin\left\{x_{1}, \ldots, x_{N}\right\},|\eta(t)|<1$ and $\forall i, \eta^{\prime \prime}\left(x_{i}\right) \neq 0$
Theorem: $\quad \eta_{V} \in \mathrm{ND}\left(m_{0}\right) \Longrightarrow \eta_{V}=\eta_{0}$

Support Stability Theorem

$$
\begin{aligned}
& \eta_{\lambda}=\Phi^{*} p_{\lambda} \xrightarrow{\lambda \rightarrow 0} \eta_{0}=\Phi^{*} p_{0} \\
& \operatorname{supp}\left(m_{\lambda}\right) \subset\left\{\left|\eta_{\lambda}\right|=1\right\}
\end{aligned}
$$

Support Stability Theorem

$$
\left[\begin{array}{l}
\eta_{\lambda}=\Phi^{*} p_{\lambda} \xrightarrow{\lambda \rightarrow 0} \eta_{0}=\Phi^{*} p_{0} \\
\operatorname{supp}\left(m_{\lambda}\right) \subset\left\{\left|\eta_{\lambda}\right|=1\right\}
\end{array} \rightarrow \text { If } \eta_{0} \in \operatorname{ND}\left(m_{0}\right) \text { then } \operatorname{supp}\left(m_{\lambda}\right) \rightarrow \operatorname{supp}\left(m_{0}\right) \quad x_{\eta_{\lambda}}^{x_{1} x_{1}^{\star}}\right.
$$

Support Stability Theorem

$$
\longrightarrow \left\lvert\, \begin{aligned}
& \eta_{\lambda}=\Phi^{*} p_{\lambda} \xrightarrow{\lambda \rightarrow 0} \eta_{0}=\Phi^{*} p_{0} \\
& \operatorname{supp}\left(m_{\lambda}\right) \subset\left\{\left|\eta_{\lambda}\right|=1\right\}
\end{aligned} \rightarrow\right. \text { If } \eta_{0} \in \operatorname{ND}\left(m_{0}\right) \text { then } \operatorname{supp}\left(m_{\lambda}\right) \rightarrow \operatorname{supp}\left(m_{0}\right) \quad x_{1} x_{1}^{\star}
$$

Theorem: If $\eta_{V} \in \mathrm{ND}\left(m_{0}\right)$ for $m_{0}=m_{a, x}$, then

$$
\text { for }(\|w\| / \lambda, \lambda)=O(1)
$$

the solution of $\mathcal{P}_{\lambda}(y)$ for $y=\Phi\left(m_{0}\right)+w$ is

When is η_{V} Non-degenerate?

When is η_{V} Non-degenerate?

Overview

- Sparse Spikes Super-resolution
- Robust Support Recovery
- Asymptotic Positive Measure Recovery

Recovery of Positive Measures

Input measure: $m_{0}=m_{a, x} \quad$ where $\quad a \in \mathbb{R}_{+}^{N}$.
Theorem: let $\Phi m=\left(\int e^{-2 \mathrm{i} \pi k t} \mathrm{~d} m(t)\right)_{k=-f_{c}}^{f_{c}} \quad$ and

$$
\begin{aligned}
& \quad \eta_{S}(t)=1-\rho \prod_{i=1}^{N} \sin \left(\pi\left(t-x_{i}\right)\right)^{2} \\
& \text { for } N \leqslant f_{c} \text { and } \rho \text { small enough, } \eta_{S} \in \overline{\mathcal{D}}\left(m_{0}\right)
\end{aligned}
$$

$\longrightarrow m_{0}$ is recovered when there is no noise.

Recovery of Positive Measures

Input measure: $m_{0}=m_{a, x} \quad$ where $\quad a \in \mathbb{R}_{+}^{N}$.
Theorem: let $\Phi m=\left(\int e^{-2 \mathrm{i} \pi k t} \mathrm{~d} m(t)\right)_{k=-f_{c}}^{f_{c}} \quad$ and

$$
\begin{gathered}
\eta_{S}(t)=1-\rho \prod_{i=1}^{N} \sin \left(\pi\left(t-x_{i}\right)\right)^{2} \\
\text { for } N \leqslant f_{c} \text { and } \rho \text { small enough, } \eta_{S} \in \overline{\mathcal{D}}\left(m_{0}\right) .
\end{gathered}
$$

$\longrightarrow m_{0}$ is recovered when there is no noise.
\longrightarrow behavior as $\forall i, x_{i} \rightarrow 0$?
[Morgenshtern, Candès, 2015] discrete ℓ^{1} robustness. [Demanet, Nguyen, 2015] discrete ℓ^{0} robustness.

Recovery of Positive Measures

Input measure: $m_{0}=m_{a, x} \quad$ where $\quad a \in \mathbb{R}_{+}^{N}$.

Theorem: let $\Phi m=\left(\int e^{-2 \mathrm{i} \pi k t} \mathrm{~d} m(t)\right)_{k=-f_{c}}^{f_{c}} \quad$ and

$$
\eta_{S}(t)=1-\rho \prod_{i=1}^{N} \sin \left(\pi\left(t-x_{i}\right)\right)^{2}
$$

for $N \leqslant f_{c}$ and ρ small enough, $\eta_{S} \in \overline{\mathcal{D}}\left(m_{0}\right)$.
$\longrightarrow m_{0}$ is recovered when there is no noise.
\longrightarrow behavior as $\forall i, x_{i} \rightarrow 0$?
[Morgenshtern, Candès, 2015] discrete ℓ^{1} robustness.
[Demanet, Nguyen, 2015] discrete ℓ^{0} robustness.
\longrightarrow noise robustness of support recovery ?

Comparison of Certificates

Asymptotic of Vanishing Certificate

$m_{0}=m_{a, \Delta x} \quad$ where $\quad \Delta \rightarrow 0$
Vanishing Derivative pre-certificate:

$$
\begin{aligned}
& \eta_{V} \stackrel{\text { def. }}{=} \underset{\eta=\Phi^{*} p}{\operatorname{argmin}}\|p\| \\
& \text { s.t. } \forall i,\left\{\begin{array}{l}
\eta\left(\Delta x_{i}\right)=1, \\
\eta^{\prime}\left(\Delta x_{i}\right)=0 .
\end{array}\right.
\end{aligned}
$$

Asymptotic of Vanishing Certificate

$$
m_{0}=m_{a, \Delta x} \quad \text { where } \quad \Delta \rightarrow 0
$$

Vanishing Derivative pre-certificate:
$\eta_{V} \stackrel{\text { def. }}{=} \operatorname{argmin}\|p\|$

$$
\eta=\Phi^{*} p . \quad \forall i,\left\{\begin{array}{l}
\eta\left(\Delta x_{i}\right)=1 \\
\eta^{\prime}\left(\Delta x_{i}\right)=0
\end{array}\right.
$$

Asymptotic of Vanishing Certificate

$$
m_{0}=m_{a, \Delta x} \quad \text { where } \quad \Delta \rightarrow 0
$$

Vanishing Derivative pre-certificate:
$\eta_{V} \stackrel{\text { def. }}{=} \operatorname{argmin}\|p\|$

$$
\eta=\Phi^{*} p
$$

$$
\text { s.t. } \quad \forall i,\left\{\begin{array}{l}
\eta\left(\Delta x_{i}\right)=1, \\
\eta^{\prime}\left(\Delta x_{i}\right)=0
\end{array}\right.
$$

$$
\Delta \rightarrow 0
$$

Asymptotic pre-certificate:
$\eta_{W} \stackrel{\text { def. }}{=} \operatorname{argmin}\|p\|$

s.t. $\left\{\begin{array}{l}\eta(0)=1, \\ \eta^{\prime}(0)=\ldots=\eta^{(2 N-1)}(0)=0 .\end{array}\right.$

Asymptotic Certificate

$$
\begin{aligned}
& (2 N-1) \text {-Non degenerate: } \\
& \eta_{W} \in \mathrm{ND}_{N} \\
& \Longleftrightarrow\left\{\begin{array}{l}
\forall t \neq 0,\left|\eta_{W}(t)\right|<1 \\
\eta_{W}(2 N) \\
\hline 0) \neq 0
\end{array}\right.
\end{aligned}
$$

Asymptotic Certificate

($2 N-1$)-Non degenerate:
$\eta_{W} \in \mathrm{ND}_{N}$
$\Longleftrightarrow\left\{\begin{array}{l}\forall t \neq 0,\left|\eta_{W}(t)\right|<1 \\ \eta_{W}{ }^{(2 N)}(0) \neq 0\end{array}\right.$

Lemma:

If $\eta_{W} \in \mathrm{ND}_{N}, \exists \Delta_{0}>0$,
$\forall \Delta<\Delta_{0}, \eta_{V} \in \operatorname{ND}\left(m_{\Delta x, a}\right)$
$\rightarrow \eta_{W}$ govern stability as $\Delta \rightarrow 0$.

Asymptotic Robustness

Theorem: If $\eta_{W} \in \mathrm{ND}_{N}$, letting $m_{0}=m_{a, \Delta x}$, then for $\left(\frac{w}{\lambda}, \frac{w}{\Delta^{2 N-1}}, \frac{\lambda}{\Delta^{2 N-1}}\right)=O(1)$
the solution of $\mathcal{P}_{\lambda}(y)$ for $y=\Phi\left(m_{0}\right)+w$ is

$$
\sum_{i=1}^{N} a_{i}^{\star} \delta_{\Delta x_{i}^{\star}} \text { where }\left\|(x, a)-\left(x^{\star}, a^{\star}\right)\right\|=O\left(\frac{\|w\|+\lambda}{\Delta^{2 N-1}}\right)
$$

Asymptotic Robustness

Theorem: If $\eta_{W} \in \mathrm{ND}_{N}$, letting $m_{0}=m_{a, \Delta x}$, then

$$
\text { for }\left(\frac{w}{\lambda}, \frac{w}{\Delta^{2 N-1}}, \frac{\lambda}{\Delta^{2 N-1}}\right)=O(1)
$$

the solution of $\mathcal{P}_{\lambda}(y)$ for $y=\Phi\left(m_{0}\right)+w$ is

$$
\sum_{i=1}^{N} a_{i}^{\star} \delta_{\Delta x_{i}^{\star}} \text { where }\left\|(x, a)-\left(x^{\star}, a^{\star}\right)\right\|=O\left(\frac{\|w\|+\lambda}{\Delta^{2 N-1}}\right)
$$

When is η_{W} Non-degenerate?

Proposition: one has $\eta_{W}^{(2 N)}(0)<0 . \quad \longrightarrow$ "locally" non-degenerate.

When is η_{W} Non-degenerate?

Proposition: one has $\eta_{W}^{(2 N)}(0)<0 . \quad \longrightarrow$ "locally" non-degenerate.

Gaussian Deconvolution

Gaussian convolution: $\quad \varphi(x, t)=e^{-\frac{|x-t|^{2}}{2 \sigma^{2}}} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x)$ Proposition: $\quad \eta_{W}(x)=e^{-\frac{x^{2}}{4 \sigma^{2}}} \sum_{k=0}^{N-1} \frac{(x / 2 \sigma)^{2 k}}{k!}$

In particular, η_{W} is non-degenerate.

\longrightarrow Gaussian deconvolution is support-stable.

Laplace Transform Inversion

Laplace transform: $\varphi(x, t)=e^{-x t} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x) \quad$ [with E. Soubies]

$$
\varphi(x, \cdot) \quad \begin{aligned}
& x=2 \\
& x=20
\end{aligned}
$$

Laplace Transform Inversion

Laplace transform: $\varphi(x, t)=e^{-x t} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x) \quad$ [with E. Soubies]
$\varphi(x, \cdot)$
$t=20$
$x=20$
t

Laplace Transform Inversion

Laplace transform: $\varphi(x, t)=e^{-x t} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x) \quad$ [with E. Soubies]
$\varphi(x, \cdot)$
t

Total internal reflection fluorescence microscopy (TIRFM) \rightarrow multiple angles $\theta(t)$.

Laplace Transform Inversion

Laplace transform: $\varphi(x, t)=e^{-x t} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x) \quad$ [with E. Soubies]

Total internal reflection fluorescence microscopy (TIRFM) \rightarrow multiple angles $\theta(t)$.

Laplace Transform Inversion

Laplace transform: $\varphi(x, t)=e^{-x t} \quad \Phi(m) \stackrel{\text { def. }}{=} \int \varphi(x, \cdot) \mathrm{d} m(x) \quad$ [with E. Soubies]

$\varphi(x, \cdot)$
$x=20$

Total internal reflection fluorescence microscopy (TIRFM) \rightarrow multiple angles $\theta(t)$.

Non-translation-invariant operator $\rightarrow \eta_{W}$ depends on \bar{x} !

Conclusion

Deconvolution of measures:

$\longrightarrow L^{2}$ errors are not well-suited.
Weak-* convergence.
Optimal transport distance.
Exact support estimation.
-••

Conclusion

Deconvolution of measures:
$\longrightarrow L^{2}$ errors are not well-suited.
Weak-* convergence.
Optimal transport distance. Exact support estimation.
\longrightarrow dictated by η_{0}.
Low-noise behavior: \longrightarrow checkable via η_{V}.
\longrightarrow asymptotic via η_{W}.

Conclusion

Deconvolution of measures:
$\longrightarrow L^{2}$ errors are not well-suited.
Weak-* convergence.
Optimal transport distance. Exact support estimation.
\longrightarrow dictated by η_{0}.
Low-noise behavior: \longrightarrow checkable via η_{V}.
\longrightarrow asymptotic via η_{W}.
Lasso on discrete grids: similar η_{0}-analysis applies. \longrightarrow Relate discrete and continuous recoveries.

Conclusion

Deconvolution of measures:
$\longrightarrow L^{2}$ errors are not well-suited.
Weak-* convergence.
Optimal transport distance. Exact support estimation.
\longrightarrow dictated by η_{0}.
Low-noise behavior: \longrightarrow checkable via η_{V}.
\longrightarrow asymptotic via η_{W}.
Lasso on discrete grids: similar η_{0}-analysis applies. \longrightarrow Relate discrete and continuous recoveries.

Open problem: other regularizations (e.g. piecewise constant) ? see [Chambolle, Duval, Peyré, Poon 2016] for TV denoising.

