Gaussian Comparison Lemmas and Convex-Optimization

Babak Hassibi

joint work with Samet Oymak, Christos Thrampoulidis and Ehsan Abbasi

California Institute of Technology

2016 London Workshop on Sparse Signal Processing Imperial College, London, September 16, 2016

Outline

Introduction

- structured signal recovery
- non-smooth convex optimization
- LASSO and generalized LASSO; BPSK signal recovery

Comparison Lemmas

Slepian, Gordon

Main Result

- squared error of generalized LASSO
- Gaussian widths, statistical dimension
- optimal parameter tuning

Generalizations

- other loss functions (Moreau envelopes)
- other random matrix ensembles, universality
- nonlinear measurements (one-bit compressed sensing)

• Summary and Conclusion

• We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*

< /₽ > < ∃ >

- We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*
 - machine learning, image processing, wireless comunications, signal processing, statistics, etc.

- We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*
 - machine learning, image processing, wireless comunications, signal processing, statistics, etc.
 - sensor networks, social networks, massive MIMO, DNA microarrays, etc.

- We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*
 - machine learning, image processing, wireless comunications, signal processing, statistics, etc.
 - sensor networks, social networks, massive MIMO, DNA microarrays, etc.
- On the face of it, this could lead to the curse of dimensionality

- We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*
 - machine learning, image processing, wireless comunications, signal processing, statistics, etc.
 - sensor networks, social networks, massive MIMO, DNA microarrays, etc.
- On the face of it, this could lead to the curse of dimensionality
- Fortunately, in many applications, the signal of interest lives in a manifold of *much lower dimension* than that of the original ambient space

- We are increasingly confronted with very large data sets where we need to extract some *signal-of-interest*
 - machine learning, image processing, wireless comunications, signal processing, statistics, etc.
 - sensor networks, social networks, massive MIMO, DNA microarrays, etc.
- On the face of it, this could lead to the curse of dimensionality
- Fortunately, in many applications, the signal of interest lives in a manifold of *much lower dimension* than that of the original ambient space
- In this setting, it is important to have signal recovery algorithms that are computationally efficient and that need not access the entire data directly (hence compressed recovery)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• Non-smooth convex optimization has emerged as a tractable method to deal with structured signal recovery methods

< ∃ ► < ∃ ►

- Non-smooth convex optimization has emerged as a tractable method to deal with structured signal recovery methods
- Given the observations, $y \in \mathcal{R}^m$, we want to obtain some structured signal, $x \in \mathcal{R}^n$
 - a convex loss function $\mathcal{L}(x, y)$ (could be a log-likelihood function, e.g.)
 - a (non-smooth) convex structure-inducing regularizer f(x)

イロト 不得 トイヨト イヨト 二日

- Non-smooth convex optimization has emerged as a tractable method to deal with structured signal recovery methods
- Given the observations, $y \in \mathcal{R}^m$, we want to obtain some structured signal, $x \in \mathcal{R}^n$
 - a convex loss function $\mathcal{L}(x, y)$ (could be a log-likelihood function, e.g.)
 - a (non-smooth) convex structure-inducing regularizer f(x)
- The generic problem is

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \leq c_1} f(X) \quad \text{or} \quad \min_{f(x) \leq c_2} \mathcal{L}(x, y)$$

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

• Algorithmic issues:

- scalable
- distributed
- etc.

- B

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

• Algorithmic issues:

- scalable
- distributed
- etc.

Analysis issues:

can the true signal be recovered? (if so, when?)

- 3

- ∢ ⊒ →

- ∢ ≣ ▶

< 台

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

• Algorithmic issues:

- scalable
- distributed
- etc.

Analysis issues:

- can the true signal be recovered? (if so, when?)
- if not, what is the quality of the recovered signal? (e.g., mean-square-error? probability of error?)

• • = • • = •

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

• Algorithmic issues:

- scalable
- distributed
- etc.

Analysis issues:

- can the true signal be recovered? (if so, when?)
- if not, what is the quality of the recovered signal? (e.g., mean-square-error? probability of error?)
- how does the convex approach compare to one with no computational constraints?

$$\min_{x} \mathcal{L}(x, y) + \lambda f(x) \quad \text{or} \quad \min_{\mathcal{L}(x, y) \le c_1} f(X) \quad \text{or} \quad \min_{f(x) \le c_2} \mathcal{L}(x, y)$$

• Algorithmic issues:

- scalable
- distributed
- etc.

Analysis issues:

- can the true signal be recovered? (if so, when?)
- if not, what is the quality of the recovered signal? (e.g., mean-square-error? probability of error?)
- how does the convex approach compare to one with no computational constraints?
- ▶ how to choose the regularizer $\lambda \ge 0$? (or the constraint bounds c_1 and c_2 ?)

Babak Hassibi (Caltech)

Consider a "desired" signal $x \in \mathbb{R}^n$, which is *k*-sparse, i.e., has only k < n (often $k \ll n$) non-zero entries. Suppose we make *m* noisy measurements of *x* using the $m \times n$ measurement matrix *A* to obtain

$$y = Ax + z$$
.

Consider a "desired" signal $x \in \mathbb{R}^n$, which is *k*-sparse, i.e., has only k < n (often $k \ll n$) non-zero entries. Suppose we make *m* noisy measurements of *x* using the $m \times n$ measurement matrix *A* to obtain

$$y = Ax + z$$
.

How many measurements m do we need to find a good estimate of x?

Consider a "desired" signal $x \in \mathbb{R}^n$, which is *k*-sparse, i.e., has only k < n (often $k \ll n$) non-zero entries. Suppose we make *m* noisy measurements of *x* using the $m \times n$ measurement matrix *A* to obtain

$$y = Ax + z$$
.

How many measurements m do we need to find a good estimate of x?.

Suppose each set of *m* columns of *A* are linearly independent. Then, if *m* > *k*, we can always find the *best k-sparse* solution to

$$\min_{x} \|y - Ax\|_2^2,$$

via exhaustive search of
$$\begin{pmatrix} n \\ k \end{pmatrix}$$
 such least-squares problems

Babak Hassibi (Caltech)

September 16, 2016 6 / 70

Thus, the *information-theoretic* problem is perhaps not so challenging/interesting.

Thus, the *information-theoretic* problem is perhaps not so challenging/interesting. The *computational problem*, however, is:

イロト イポト イラト イラト

Thus, the *information-theoretic* problem is perhaps not so challenging/interesting. The *computational problem*, however, is:

• Can we do this more efficiently? And for what values of m?

Thus, the *information-theoretic* problem is perhaps not so challenging/interesting. The *computational problem*, however, is:

- Can we do this more efficiently? And for what values of m?
- What about problems (such as low rank matrix recovery) where it is not possible to enumerate all structured signals?

The LASSO algorithm was introduced by Tibshirani in 1996:

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1},$$

where $\lambda \ge 0$ is a regularization parameter.

- 3

<ロ> <同> <同> < 同> < 同>

The LASSO algorithm was introduced by Tibshirani in 1996:

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1},$$

where $\lambda \ge 0$ is a regularization parameter.

Questions:

- B

<ロ> <同> <同> < 同> < 同>

The LASSO algorithm was introduced by Tibshirani in 1996:

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1},$$

where $\lambda \ge 0$ is a regularization parameter.

Questions:

• How to choose λ ?

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The LASSO algorithm was introduced by Tibshirani in 1996:

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1},$$

where $\lambda \geq 0$ is a regularization parameter.

Questions:

- How to choose λ ?
- What is the performance of the algorithm?

- 3

(*) *) *) *)

The LASSO algorithm was introduced by Tibshirani in 1996:

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1},$$

where $\lambda \ge 0$ is a regularization parameter.

Questions:

- How to choose λ ?
- What is the performance of the algorithm? For example, what is $E||x \hat{x}||^2$?

- 3

< 日 > < 同 > < 三 > < 三 >

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

< 日 > < 同 > < 三 > < 三 >

- 3

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

• $f(\cdot) = \|\cdot\|_1$ encourages sparsity

イロト イポト イヨト ・ヨ

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

f(·) = || · ||₁ encourages sparsity
f(·) = || · ||_{*} encourages low rankness:

$$\hat{X} = \arg\min_{X} \frac{1}{2} \|y - A \cdot \operatorname{vec}(X)\|^2 + \lambda \|X\|_{\star}$$

くロ とくぼ とくほ とくほ とうしょう

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

$$\hat{X} = \arg\min_{X} \frac{1}{2} \|y - A \cdot \operatorname{vec}(X)\|^2 + \lambda \|X\|_{\star}$$

• $f(\cdot) = \|\cdot\|_{1,2}$ (the mixed ℓ_1/ℓ_2 norm) encourages block-sparsity $\|x\|_{1,2} = \sum_b \|x_b\|_2.$

Babak Hassibi (Caltech)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

$$\hat{X} = \arg\min_{X} \frac{1}{2} \|y - A \cdot \operatorname{vec}(X)\|^2 + \lambda \|X\|_{\star}$$

• $f(\cdot) = \|\cdot\|_{1,2}$ (the mixed ℓ_1/ℓ_2 norm) encourages block-sparsity $\|x\|_{1,2} = \sum_b \|x_b\|_2.$

• $f(\cdot) = \|\cdot\|_{\infty}$ encourages constant-amplitude signals (BPSK, e.g.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The generalized LASSO algorithm can be used to enforce other types of structures

$$\hat{x} = \arg\min_{x} \frac{1}{2} \left\| y - Ax \right\|_{2}^{2} + \lambda f(x),$$

where $f(\cdot)$ is a *convex* regularizer.

$$\hat{X} = \arg\min_{X} \frac{1}{2} \|y - A \cdot \operatorname{vec}(X)\|^2 + \lambda \|X\|_{\star}$$

• $f(\cdot) = \|\cdot\|_{1,2}$ (the mixed ℓ_1/ℓ_2 norm) encourages block-sparsity $\|x\|_{1,2} = \sum_b \|x_b\|_2.$

f(·) = || · ||∞ encourages constant-amplitude signals (BPSK, e.g.)
etc.

More General (Machine Learning) Problems

 $\min_{x} \mathcal{L}(x) + \lambda f(x),$

where $\mathcal{L}(\cdot)$ is the so-called *loss function* and $f(\cdot)$ is the *regularizer*.

イロト 不得 トイヨト イヨト 二日

More General (Machine Learning) Problems

 $\min_{x} \mathcal{L}(x) + \lambda f(x),$

where $\mathcal{L}(\cdot)$ is the so-called *loss function* and $f(\cdot)$ is the *regularizer*. For example,

• If the noise is Gaussian:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x),$$

イロト 不得 トイヨト イヨト 二日

More General (Machine Learning) Problems

 $\min_{x} \mathcal{L}(x) + \lambda f(x),$

where $\mathcal{L}(\cdot)$ is the so-called *loss function* and $f(\cdot)$ is the *regularizer*. For example,

• If the noise is Gaussian:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x),$$

• If the noise is sparse:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_1 + \lambda f(x),$$

More General (Machine Learning) Problems

 $\min_{x} \mathcal{L}(x) + \lambda f(x),$

where $\mathcal{L}(\cdot)$ is the so-called *loss function* and $f(\cdot)$ is the *regularizer*. For example,

• If the noise is Gaussian:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x),$$

• If the noise is sparse:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_1 + \lambda f(x),$$

• If the noise is bounded:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_{\infty} + \lambda f(x),$$

Babak Hassibi (Caltech)

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

• The LASSO algorithm has been extensively studied

▲ A²

3

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

- The LASSO algorithm has been extensively studied
- However, most performance bounds are rather loose

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

- The LASSO algorithm has been extensively studied
- However, most performance bounds are rather loose
- Can we compute $E||x \hat{x}||^2$?

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

- The LASSO algorithm has been extensively studied
- However, most performance bounds are rather loose
- Can we compute $E||x \hat{x}||^2$? Can we determine the optimal λ ?

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

- The LASSO algorithm has been extensively studied
- However, most performance bounds are rather loose
- Can we compute $E||x \hat{x}||^2$? Can we determine the optimal λ ?

Turns out we can.....

Example

 $\mathbf{X}_0 \in \mathbb{R}^{n imes n}$ is rank r. Observe, $\mathbf{y} = A \cdot \operatorname{vec}(\mathbf{X}_0) + \mathbf{z}$, solve the Matrix LASSO,

$$\min_{\mathbf{X}} \{ \|\mathbf{y} - A \cdot \operatorname{vec}(\mathbf{X})\|_2 + \lambda \|\mathbf{X}\|_* \}$$

12 / 70

Consider

$$y = As + v$$
,

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} , \quad s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} , \quad A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} , \quad v = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider

$$y = As + v$$
,

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} , \quad s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} , \quad A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} , \quad v = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

Asume BPSK signalling, i.e., $s_i \in \{\pm 1\}$.

- B

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider

$$y = As + v$$
,

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} , s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} , A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} , v = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

Asume BPSK signalling, i.e., $s_i \in \{\pm 1\}$. Furthermore, assume that A has iid N(0, 1) entries and that v has iid $N(0, \sigma^2)$ entries.

Consider

$$y = As + v$$
,

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} , \quad s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} , \quad A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} , \quad v = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

Asume BPSK signalling, i.e., $s_i \in \{\pm 1\}$. Furthermore, assume that A has iid N(0,1) entries and that v has iid $N(0,\sigma^2)$ entries. For a given SNR, $\sigma^2 = \frac{n}{SNR}$.

Consider

$$y = As + v$$
,

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} , \quad s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} , \quad A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} , \quad v = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

Asume BPSK signalling, i.e., $s_i \in \{\pm 1\}$. Furthermore, assume that A has iid N(0, 1) entries and that v has iid $N(0, \sigma^2)$ entries. For a given SNR, $\sigma^2 = \frac{n}{\text{SNR}}$. The ML decoder is:

$$\hat{s} = \arg\min_{s_i \in \{\pm 1\}} \|y - As\|_2.$$

A natural convex relaxation is:

$$\hat{s} = \arg\min_{s_i \in [-1,1]} \|y - As\|_2.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A natural convex relaxation is:

$$\hat{s} = rg\min_{s_i \in [-1,1]} \|y - As\|_2.$$

One can follow this by hard decision thresholding.

3

∃ ► < ∃ ►</p>

< □ > < 同 >

A natural convex relaxation is:

$$\hat{s} = \arg\min_{s_i \in [-1,1]} \|y - As\|_2.$$

One can follow this by hard decision thresholding.

This method is quite popular and referred to as *box relaxation*. But what is the BER?

BER

Figure: n = 512, m = 358, 512: Probability-of-error as a function of SNR

Babak Hassibi (Caltech)

September 16, 2016 15 / 70

æ

< ロ > < 同 > < 回 > < 回 >

Where did this all come from....?

- 2

イロン イロン イヨン イヨン

< 一型

3

Let X_i and Y_i be two Gaussian processes with the same mean μ_i and variance σ_i^2 , such that $\forall i, i'$

•
$$E(X_i - \mu_i)(X_{i'} - \mu_{i'}) \ge E(Y_i - \mu_i)(Y_{i'} - \mu_{i'})$$

Then

Let X_i and Y_i be two Gaussian processes with the same mean μ_i and variance σ_i^2 , such that $\forall i, i'$

•
$$E(X_i - \mu_i)(X_{i'} - \mu_{i'}) \ge E(Y_i - \mu_i)(Y_{i'} - \mu_{i'})$$

Then

$$\operatorname{Prob}\left(\max_{i} X_{i} \geq c\right) \stackrel{?}{\gtrless} \operatorname{Prob}\left(\max_{i} Y_{i} \geq c\right)$$

Babak Hassibi (Caltech)

Let X_i and Y_i be two Gaussian processes with the same mean μ_i and variance σ_i^2 , such that $\forall i, i'$

•
$$E(X_i - \mu_i)(X_{i'} - \mu_{i'}) \ge E(Y_i - \mu_i)(Y_{i'} - \mu_{i'})$$

Then

$$\operatorname{Prob}\left(\max_{i} X_{i} \geq c\right) \leq \operatorname{Prob}\left(\max_{i} Y_{i} \geq c\right)$$

Babak Hassibi (Caltech)

- proof not too difficult, but not trivial, either
- lemma not generally true for non-Gaussian processes

What is this good for?

- 4 市

3

What is this good for?

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with iid N(0, 1) entries and consider its maximum singular value:

$$\sigma_{\max}(A) = \|A\| = \max_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

What is this good for?

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with iid N(0, 1) entries and consider its maximum singular value:

$$\sigma_{\max}(A) = \|A\| = \max_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

Define the two Gaussian processes

$$X_{uv} = u^T A v + \gamma$$
 and $Y_{uv} = u^T g + v^T h$,

where $\gamma \in \mathcal{R}$, $g \in \mathcal{R}^m$ and $h \in \mathcal{R}^n$ have iid N(0,1) entries.

What is this good for?

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with iid N(0, 1) entries and consider its maximum singular value:

$$\sigma_{\max}(A) = \|A\| = \max_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

Define the two Gaussian processes

$$X_{uv} = u^T A v + \gamma$$
 and $Y_{uv} = u^T g + v^T h$,

where $\gamma \in \mathcal{R}$, $g \in \mathcal{R}^m$ and $h \in \mathcal{R}^n$ have iid N(0,1) entries. Then it is not hard to see that both processes have zero mean and variance 2.

$$X_{uv} = u^T A v + \gamma$$
 and $Y_{uv} = u^T g + v^T h$,

Now,

 $EX_{uv}X_{u'v'} - EY_{uv}Y_{u'v'} = u^{T}u'v^{T}v' + 1 - u^{T}u' - v^{T}v' = (1 - u^{T}u')(1 - v^{T}v') \ge 0.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

$$X_{uv} = u^T A v + \gamma$$
 and $Y_{uv} = u^T g + v^T h$,

Now,

 $EX_{uv}X_{u'v'} - EY_{uv}Y_{u'v'} = u^T u'v^T v' + 1 - u^T u' - v^T v' = (1 - u^T u')(1 - v^T v') \ge 0.$

Therefore from Slepian's lemma:

$$\underbrace{\operatorname{Prob}\left(\max_{\|u\|=1}\max_{\|v\|=1}u^{T}Av+\gamma\geq c\right)}_{=\operatorname{Prob}(\|A\|+\gamma\geq c)\geq\frac{1}{2}\operatorname{Prob}(\|A\|\geq c)}\leq\underbrace{\operatorname{Prob}\left(\max_{\|u\|=1}\max_{\|v\|=1}u^{T}g+v^{T}h\geq c\right)}_{\operatorname{Prob}(\|g\|+\|h\|\geq c)}.$$

< □ > < 同 >

$$X_{uv} = u^T A v + \gamma$$
 and $Y_{uv} = u^T g + v^T h$,

Now,

 $EX_{uv}X_{u'v'} - EY_{uv}Y_{u'v'} = u^{T}u'v^{T}v' + 1 - u^{T}u' - v^{T}v' = (1 - u^{T}u')(1 - v^{T}v') \ge 0.$

Therefore from Slepian's lemma:

$$\underbrace{\operatorname{Prob}\left(\max_{\|u\|=1}\max_{\|v\|=1}u^{T}Av+\gamma\geq c\right)}_{=\operatorname{Prob}(\|A\|+\gamma\geq c)\geq\frac{1}{2}\operatorname{Prob}(\|A\|\geq c)}\leq\underbrace{\operatorname{Prob}\left(\max_{\|u\|=1}\max_{\|v\|=1}u^{T}g+v^{T}h\geq c\right)}_{\operatorname{Prob}(\|g\|+\|h\|\geq c)}$$

Since ||g|| + ||h|| concentrates around $\sqrt{m} + \sqrt{n}$, this implies that the probability that ||A|| (significantly) exceeds $\sqrt{m} + \sqrt{n}$ is very small.

Let $A \in \mathcal{R}^{m \times n}$ $(m \le n)$ be a matrix with iid N(0, 1) entries and consider its minimum singular value:

$$\sigma_{\min}(A) = \min_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

イロト 不得 とくほ とくほ とうほう

Let $A \in \mathcal{R}^{m \times n}$ $(m \le n)$ be a matrix with iid N(0, 1) entries and consider its minimum singular value:

$$\sigma_{\min}(A) = \min_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

Slepian's lemma does not apply.

Let $A \in \mathcal{R}^{m \times n}$ $(m \le n)$ be a matrix with iid N(0, 1) entries and consider its minimum singular value:

$$\sigma_{\min}(A) = \min_{\|u\|=1} \max_{\|v\|=1} u^T A v.$$

Slepian's lemma does not apply.

It took 24 years for there to be progress...

Gordon's Comparison Lemma (1988)

Let X_{ij} and Y_{ij} be two Gaussian processes with the same mean μ_{ij} and variance σ_{ii}^2 , such that $\forall i, j, i', j'$

Then

$$\operatorname{Prob}\left(\min_{i}\max_{j}X_{ij}\leq c
ight)\stackrel{?}{\gtrless}\operatorname{Prob}\left(\min_{i}\max_{j}Y_{ij}\leq c
ight)$$

Babak Hassibi (Caltech)

Gordon's Comparison Lemma (1988)

Let X_{ij} and Y_{ij} be two Gaussian processes with the same mean μ_{ij} and variance σ_{ii}^2 , such that $\forall i, j, i', j'$

Then

$$\operatorname{Prob}\left(\min_{i}\max_{j}X_{ij}\leq c
ight)\leq\operatorname{Prob}\left(\min_{i}\max_{j}Y_{ij}\leq c
ight)$$

Babak Hassibi (Caltech)

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0,1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0,1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function. Define:

$$\Phi(G,\gamma) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \gamma \|x\| \cdot \|y\| + \psi(x,y),$$

and

$$\phi(g,h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x,y).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~)

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0, 1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function. Define:

$$\Phi(G,\gamma) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \gamma \|x\| \cdot \|y\| + \psi(x,y),$$

and

$$\phi(g,h) = \min_{x \in S_x} \max_{y \in S_y} \|x\|g^T y + \|y\|h^T x + \psi(x,y).$$

Then it holds that:

$$\mathsf{Prob}(\Phi(G,\gamma) \leq c) \leq \mathsf{Prob}(\phi(g,h) \leq c).$$

イロト 不得 とくほ とくほ とうほう

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0, 1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function. Define:

$$\Phi(G,\gamma) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \gamma \|x\| \cdot \|y\| + \psi(x,y),$$

and

$$\phi(g,h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x,y).$$

Then it holds that:

$$\mathsf{Prob}(\Phi(G,\gamma) \leq c) \leq \mathsf{Prob}(\phi(g,h) \leq c).$$

• If c is a high probability lower bound on $\phi(\cdot, \cdot)$, same is true of $\Phi(\cdot, \cdot)$

Babak Hassibi (Caltech)

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0, 1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function. Define:

$$\Phi(G,\gamma) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \gamma \|x\| \cdot \|y\| + \psi(x,y),$$

and

$$\phi(g,h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x,y).$$

Then it holds that:

$$\mathsf{Prob}(\Phi(G,\gamma) \leq c) \leq \mathsf{Prob}(\phi(g,h) \leq c).$$

• If c is a high probability lower bound on $\phi(\cdot, \cdot)$, same is true of $\Phi(\cdot, \cdot)$

Basis for "escape through mesh" and "Gaussian width"

Babak Hassibi (Caltech)

Let $G \in \mathbb{R}^{m \times n}$, $\gamma \in \mathbb{R}$, $g \in \mathbb{R}^m$ and $h \in \mathbb{R}^n$ have iid N(0,1) entries, let S_x and S_y by compact sets, and $\psi(x, y)$ a continuous function. Define:

$$\Phi(G,\gamma) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \gamma \|x\| \cdot \|y\| + \psi(x,y),$$

and

$$\phi(g,h) = \min_{x \in S_x} \max_{y \in S_y} \|x\|g^T y + \|y\|h^T x + \psi(x,y).$$

Then it holds that:

$$\mathsf{Prob}(\Phi(G,\gamma) \leq c) \leq \mathsf{Prob}(\phi(g,h) \leq c).$$

- If c is a high probability lower bound on $\phi(\cdot, \cdot)$, same is true of $\Phi(\cdot, \cdot)$
- Basis for "escape through mesh" and "Gaussian width"
- Can be used to show that $\sigma_{\min}(A)$ behaves as $\sqrt{n} \sqrt{m}$

Babak Hassibi (Caltech)

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (AO)$$

< 日 > < 同 > < 三 > < 三 >

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (PO)$$

Theorem

• Prob $(\Phi(G) \leq c) \leq 2Prob(\phi(g,h) \leq c)$.

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (AO)$$

Theorem

- $Prob(\Phi(G) \leq c) \leq 2Prob(\phi(g, h) \leq c).$
- If S_x and S_y are convex sets, at least one of which is compact, and ψ(x, y) is a convex-concave function, then

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (AO)$$

Theorem

- $Prob(\Phi(G) \leq c) \leq 2Prob(\phi(g,h) \leq c).$
- If S_x and S_y are convex sets, at least one of which is compact, and ψ(x, y) is a convex-concave function, then

$$Prob(|\Phi(G) - c| \ge \epsilon) \le 2Prob(|\phi(g, h) - c| \ge \epsilon).$$

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (PO)$$

Theorem

- $Prob(\Phi(G) \leq c) \leq 2Prob(\phi(g,h) \leq c).$
- If S_x and S_y are convex sets, at least one of which is compact, and ψ(x, y) is a convex-concave function, then

$$Prob(|\Phi(G) - c| \ge \epsilon) \le 2Prob(|\phi(g, h) - c| \ge \epsilon).$$

If, in addition, the optimization over x in (PO) is strongly convex,

$$Prob(\hat{x}_{\Phi} \in S) \leq 4Prob(\hat{x}_{\phi} \in S), \quad \forall S.$$

$$\begin{cases} \Phi(G) = \min_{x \in S_x} \max_{y \in S_y} y^T G x + \psi(x, y) \\ \phi(g, h) = \min_{x \in S_x} \max_{y \in S_y} \|x\| g^T y + \|y\| h^T x + \psi(x, y) \end{cases} (AO)$$

Theorem

- $Prob(\Phi(G) \leq c) \leq 2Prob(\phi(g,h) \leq c).$
- If S_x and S_y are convex sets, at least one of which is compact, and ψ(x, y) is a convex-concave function, then

 $Prob(|\Phi(G) - c| \ge \epsilon) \le 2Prob(|\phi(g, h) - c| \ge \epsilon).$

If, in addition, the optimization over x in (PO) is strongly convex,

$$Prob(\hat{x}_{\Phi} \in S) \leq 4Prob(\hat{x}_{\phi} \in S), \quad \forall S.$$

Output of the above assumptions, x̂_Φ and x̂_φ asymptotically have the same empirical distribution.

Babak Hassibi (Caltech)

Remarks

In 3 take

$$S = \{x, ||x|| - c| \ge \epsilon\}.$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

In 3 take

$$S = \{x, ||x|| - c| \ge \epsilon\}.$$

Then 3 shows that if $\|\hat{x}_{\phi}\|$ concentrates to c, $\|\hat{x}_{\Phi}\|$ concentrates to the same value.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

In 3 take

$$S = \{x, |||x|| - c| \ge \epsilon\}.$$

Then 3 shows that if $\|\hat{x}_{\phi}\|$ concentrates to c, $\|\hat{x}_{\Phi}\|$ concentrates to the same value.

• 4 can be used to evaluate the probability-of-error of the PO by analyzing the AO.

Wlog, assume that the all -1 vector was transmitted:

$$y = -A1 + v.$$

Wlog, assume that the all -1 vector was transmitted:

$$y = -A1 + v.$$

Therefore

$$\min_{s_i \in [-1,1]} \|y - As\|_2 = \min_{s_i \in [-1,1]} \|v - A(\underbrace{s+1}_t)\|_2 = \min_{t_i \in [0,2]} \|v - At\|_2.$$

Wlog, assume that the all -1 vector was transmitted:

$$y = -A1 + v.$$

Therefore

$$\min_{s_i \in [-1,1]} \|y - As\|_2 = \min_{s_i \in [-1,1]} \|v - A(\underbrace{s+1}_t)\|_2 = \min_{t_i \in [0,2]} \|v - At\|_2.$$

Note that $BER = Prob(t_i \ge 1)$.

Wlog, assume that the all -1 vector was transmitted:

$$y = -A1 + v.$$

Therefore

$$\min_{s_i \in [-1,1]} \|y - As\|_2 = \min_{s_i \in [-1,1]} \|v - A(\underbrace{s+1}_t)\|_2 = \min_{t_i \in [0,2]} \|v - At\|_2.$$

Note that $BER = Prob(t_i \ge 1)$. Writing this as a PO:

$$\min_{t_i \in [0,2]} \max_{\|u\|_2 \leq 1} u^T (v - At) = \min_{t_i \in [0,2]} \max_{\|u\|_2 \leq 1} u^T \left[-A \quad \frac{v}{\sigma} \right] \left[\begin{array}{c} t \\ \sigma \end{array} \right],$$

Wlog, assume that the all -1 vector was transmitted:

$$y = -A1 + v.$$

Therefore

$$\min_{s_i \in [-1,1]} \|y - As\|_2 = \min_{s_i \in [-1,1]} \|v - A(\underbrace{s+1}_t)\|_2 = \min_{t_i \in [0,2]} \|v - At\|_2.$$

Note that $BER = Prob(t_i \ge 1)$. Writing this as a PO:

$$\min_{t_i \in [0,2]} \max_{\|u\|_2 \leq 1} u^T (v - At) = \min_{t_i \in [0,2]} \max_{\|u\|_2 \leq 1} u^T \left[\begin{array}{c} -A & \frac{v}{\sigma} \end{array} \right] \left[\begin{array}{c} t \\ \sigma \end{array} \right],$$

the AO is

$$\min_{t_i \in [0,2]} \max_{\|u\|_2 \le 1} \sqrt{\|t\|^2 + \sigma^2} u^T g + \|u\| (t^T h + \sigma \gamma).$$

Babak Hassibi (Caltech)

- 3

 $\min_{t_i\in[0,2]}\max_{\|u\|_2\leq 1}\sqrt{\|t\|^2+\sigma^2}u^Tg+\|u\|(t^Th+\sigma\gamma).$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

$$\min_{t_i \in [0,2]} \max_{\|u\|_2 \le 1} \sqrt{\|t\|^2 + \sigma^2} u^T g + \|u\| (t^T h + \sigma \gamma).$$

Optimizing over u is straightforward

$$\min_{t_i\in[0,2]}\sqrt{\|t\|^2+\sigma^2}\underbrace{\|g\|}_{\approx\sqrt{m}}+t^Th.$$

イロト 不得 とうせい かほとう ほ

$$\min_{t_i \in [0,2]} \max_{\|u\|_2 \le 1} \sqrt{\|t\|^2 + \sigma^2} u^T g + \|u\| (t^T h + \sigma \gamma).$$

Optimizing over u is straightforward

$$\min_{t_i\in[0,2]}\sqrt{\|t\|^2+\sigma^2}\underbrace{\|g\|}_{\approx\sqrt{m}}+t^Th.$$

Using $\sqrt{x} = \min_{\beta>0} \frac{\beta x}{2} + \frac{1}{2\beta}$, we obtain

$$\min_{t_i \in [0,2],\beta>0} \frac{\beta}{2} (\|t\|^2 + \sigma^2)m + \frac{1}{2\beta} + t^T h.$$

$$= \min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^{n} \min_{t_i \in [0,2]} \left(\frac{\beta mt_i^2}{2} + h_i t_i \right).$$

Babak Hassibi (Caltech)

$$\min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^{n} \min_{t_i \in [0,2]} \left(\frac{\beta mt_i^2}{2} + h_i t_i \right).$$

$$\min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^n \min_{t_i \in [0,2]} \left(\frac{\beta mt_i^2}{2} + h_i t_i \right).$$

The optimization over t is now separable and straightforward:

$$\min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^{n} \begin{cases} 0 & \text{if } h_i \ge 0 & (\hat{t}_i = 0) \\ -\frac{h_i^2}{2\beta m} & \text{if } -2\beta m \le h_i \le 0 & (\hat{t}_i = -\frac{h_i}{\beta m}) \\ 2\beta m + 2h_i & \text{if } h_i \le -2\beta m & (\hat{t}_i = -2) \end{cases}$$

∃ >

< A >

э

$$\min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^n \min_{t_i \in [0,2]} \left(\frac{\beta mt_i^2}{2} + h_i t_i \right).$$

The optimization over t is now separable and straightforward:

$$\min_{\beta>0} \quad \frac{\beta mn}{2\mathsf{SNR}} + \frac{1}{2\beta} + \sum_{i=1}^{n} \begin{cases} 0 & \text{if } h_i \ge 0 & (\hat{t}_i = 0) \\ -\frac{h_i^2}{2\beta m} & \text{if } -2\beta m \le h_i \le 0 & (\hat{t}_i = -\frac{h_i}{\beta m}) \\ 2\beta m + 2h_i & \text{if } h_i \le -2\beta m & (\hat{t}_i = -2) \end{cases}$$

The summation concentrates to:

$$\min_{\beta>0} \frac{\beta mn}{2\text{SNR}} + \frac{1}{2\beta} + n\left(-\int_{-2\beta m}^{0} \frac{h^2}{2\beta m}p(h)dh + \int_{-\infty}^{-2\beta m} (2\beta m + 2h)p(h)dh\right)$$

Babak Hassibi (Caltech)

Redefining βm to β , after some algebra, we get

$$\hat{\beta} = \arg\min_{\beta>0} \quad \frac{\beta}{2\mathsf{SNR}} + \frac{1}{2\beta} \left(1 - \frac{n}{2m}\right) + \frac{n}{2\beta m} \int_{2\beta}^{\infty} (h - 2\beta)^2 p(h) dh.$$

< 日 > < 同 > < 三 > < 三 >

- 3

Redefining βm to β , after some algebra, we get

$$\hat{\beta} = \arg\min_{\beta>0} \quad \frac{\beta}{2\mathsf{SNR}} + \frac{1}{2\beta} \left(1 - \frac{n}{2m}\right) + \frac{n}{2\beta m} \int_{2\beta}^{\infty} (h - 2\beta)^2 p(h) dh.$$

Recall

$$BER = \operatorname{Prob}(\hat{t}_i \ge 1) = \operatorname{Prob}(-rac{h_i}{\hat{eta}} \ge 1) = \operatorname{Prob}(-h_i \ge \hat{eta}).$$

So that

$$\mathsf{BER} = \int_{\hat{eta}}^\infty rac{e^{-h^2/2}}{\sqrt{2\pi}} dh = Q(\hat{eta}).$$

Babak Hassibi (Caltech)

-September 16, 2016 31 / 70

BER

Figure: n = 512, m = 358: Probability-of-error as a function of SNR

Babak Hassibi	(Caltech)	
---------------	-----------	--

September 16, 2016 32 / 70

æ

< ロ > < 同 > < 回 > < 回 >

At high SNR, the value of $\hat{\beta}$ in the argument of the Q-function is large and therefore the intergral term in

$$\hat{\beta} = \arg\min_{\beta>0} \quad \frac{\beta}{2\mathsf{SNR}} + \frac{1}{2\beta} \left(1 - \frac{n}{2m}\right) + \frac{n}{2\beta m} \int_{2\beta}^{\infty} (h - 2\beta)^2 p(h) dh.$$

can be ignored to obtain:

$$\hat{\beta} = \arg\min_{\beta>0} \quad \frac{\beta}{2\mathsf{SNR}} + \frac{1}{2\beta} \left(1 - \frac{n}{2m}\right).$$

At high SNR, the value of $\hat{\beta}$ in the argument of the Q-function is large and therefore the intergral term in

$$\hat{\beta} = \arg\min_{\beta>0} \quad \frac{\beta}{2\mathsf{SNR}} + \frac{1}{2\beta} \left(1 - \frac{n}{2m}\right) + \frac{n}{2\beta m} \int_{2\beta}^{\infty} (h - 2\beta)^2 p(h) dh.$$

can be ignored to obtain:

$$\hat{eta} = rg\min_{eta>0} \;\; rac{eta}{2{\sf SNR}} + rac{1}{2eta}\left(1-rac{n}{2m}
ight).$$

This is a quadratic equation for $\hat{\beta}$ that can be straightforwardly solved to obtain:

$$\mathsf{BER} = Q\left(\sqrt{\left(rac{m}{n} - rac{1}{2}
ight)\mathsf{SNR}}
ight).$$

The matched filter bound (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol.

イロト 不得 とうせい かほとう ほ

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

イロト 不得 とうせい かほとう ほ

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

Thus, the box relaxation comes within log $\frac{\frac{m}{n}}{\frac{m}{n}-\frac{1}{2}}$ db of the MFB.

イロト イポト イヨト イヨト 二日

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

Thus, the box relaxation comes within $\log \frac{\frac{m}{n}}{\frac{m}{n}-\frac{1}{2}}$ db of the MFB. For square systems (m = n) this is 3 db.

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

Thus, the box relaxation comes within $\log \frac{\frac{m}{n}}{\frac{m}{n}-\frac{1}{2}}$ db of the MFB. For square systems (m = n) this is 3 db.

• In the AO, the events of making errors in each of the symbols were *independent*

イロト イポト イヨト ・ヨ

Some Remarks

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

Thus, the box relaxation comes within $\log \frac{\frac{m}{n}}{\frac{m}{n}-\frac{1}{2}}$ db of the MFB. For square systems (m = n) this is 3 db.

- In the AO, the events of making errors in each of the symbols were *independent*
- Therefor in the PO, for any fixed k symbols, the error events are also independent

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Some Remarks

The *matched filter bound* (MFB) assumes that all symbols 2, ..., n have been correctly decoded and looks at the probability of error of the first symbol. It can be straightforwardly computed as

$$MFB = Q\left(\sqrt{\frac{m}{n}}SNR\right).$$

Thus, the box relaxation comes within $\log \frac{\frac{m}{n}}{\frac{m}{n}-\frac{1}{2}}$ db of the MFB. For square systems (m = n) this is 3 db.

- In the AO, the events of making errors in each of the symbols were *independent*
- Therefor in the PO, for any fixed k symbols, the error events are also independent
- This fact has far-reaching consequences for algorithms that can be applied to the output of the box relaxation

Babak Hassibi (Caltech)

London 2016

BER

Figure: n = 512, m = 358: Probability-of-error as a function of SNR

Babak Hassibi	(Caltech)
---------------	-----------

September 16, 2016 35 / 70

э

- 4 同 ト 4 目 ト 4 目 ト

Suppose we are confronted with the *noisy* measurements:

$$y = Ax + z$$
,

where $A \in \mathcal{R}^{m \times n}$ is the measurement matrix with iid N(0,1) entries, $y \in \mathcal{R}^m$ is the measurement vector, $x_0 \in \mathcal{R}^n$ is the unknown desired signal, and $z \in \mathcal{R}^n$ is the unknown noise vector with iid $N(0, \sigma^2)$ entries.

Suppose we are confronted with the *noisy* measurements:

$$y = Ax + z$$
,

where $A \in \mathcal{R}^{m \times n}$ is the measurement matrix with iid N(0,1) entries, $y \in \mathcal{R}^m$ is the measurement vector, $x_0 \in \mathcal{R}^n$ is the unknown desired signal, and $z \in \mathcal{R}^n$ is the unknown noise vector with iid $N(0, \sigma^2)$ entries. In the general case, to be meaningful, we require that

$$m \geq n$$
.

Suppose we are confronted with the *noisy* measurements:

$$y = Ax + z$$
,

where $A \in \mathcal{R}^{m \times n}$ is the measurement matrix with iid N(0,1) entries, $y \in \mathcal{R}^m$ is the measurement vector, $x_0 \in \mathcal{R}^n$ is the unknown desired signal, and $z \in \mathcal{R}^n$ is the unknown noise vector with iid $N(0, \sigma^2)$ entries. In the general case, to be meaningful, we require that

$$m \ge n$$
.

A popular method for recovering x, is the least-squares criterion

$$\min_{x} \|y - Ax\|_2.$$

Babak Hassibi (Caltech)

Suppose we are confronted with the *noisy* measurements:

$$y = Ax + z$$
,

where $A \in \mathcal{R}^{m \times n}$ is the measurement matrix with iid N(0,1) entries, $y \in \mathcal{R}^m$ is the measurement vector, $x_0 \in \mathcal{R}^n$ is the unknown desired signal, and $z \in \mathcal{R}^n$ is the unknown noise vector with iid $N(0, \sigma^2)$ entries. In the general case, to be meaningful, we require that

$$m \ge n$$
.

A popular method for recovering x, is the least-squares criterion

$$\min_{x} \|y - Ax\|_2.$$

Let us analyze this using the stronger version of Gordon's lemma.

Babak Hassibi	(Caltech)
---------------	-----------

To this end, define the estimation error $w = x_0 - x$, so that y - Ax = Aw + z.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

To this end, define the estimation error $w = x_0 - x$, so that y - Ax = Aw + z. Thus,

$$\min_{x} \|y - Ax\|_{2} = \min_{w} \|Aw + z\|_{2}$$
$$= \min_{w} \max_{\|u\| \le 1} u^{T} (Aw + z) = \min_{w} \max_{\|u\| \le 1} u^{T} \left[A \quad \frac{1}{\sigma} z \right] \left[\begin{array}{c} w \\ \sigma \end{array} \right]$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

To this end, define the estimation error $w = x_0 - x$, so that y - Ax = Aw + z. Thus,

$$\begin{split} \min_{x} \|y - Ax\|_{2} &= \min_{w} \|Aw + z\|_{2} \\ &= \min_{w} \max_{\|u\| \leq 1} u^{T} (Aw + z) = \min_{w} \max_{\|u\| \leq 1} u^{T} \left[A \quad \frac{1}{\sigma} z \right] \left[\begin{array}{c} w \\ \sigma \end{array} \right] \end{split}$$

This satisfies all the conditions of the lemma.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

To this end, define the estimation error $w = x_0 - x$, so that y - Ax = Aw + z. Thus,

$$\begin{split} \min_{x} \|y - Ax\|_{2} &= \min_{w} \|Aw + z\|_{2} \\ &= \min_{w} \max_{\|u\| \leq 1} u^{T} (Aw + z) = \min_{w} \max_{\|u\| \leq 1} u^{T} \left[A \quad \frac{1}{\sigma} z \right] \left[\begin{array}{c} w \\ \sigma \end{array} \right] \end{split}$$

This satisfies all the conditions of the lemma. The simpler optimization is therefore:

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^{\mathsf{T}} u + \|u\| \begin{bmatrix} h_w^{\mathsf{T}} & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix},$$

where $g = R^m$, $h_w = R^n$ and $h_\sigma \in R$ have iid N(0,1) entries.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^T u + \|u\| \begin{bmatrix} h_w^T & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix},$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^T u + \|u\| \begin{bmatrix} h_w^T & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix},$$

The maximization over u is straightforward:

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma.$$

< 日 > < 同 > < 三 > < 三 >

3

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^T u + \|u\| \begin{bmatrix} h_w^T & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix},$$

The maximization over u is straightforward:

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma.$$

Fixing the norm of $||w|| = \alpha$, minimizing over the direction of w is straightforward:

$$\min_{\alpha\geq 0} = \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \|h_w\| + h_\sigma \sigma.$$

イロト 不得 トイヨト イヨト 二日

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^T u + \|u\| \begin{bmatrix} h_w^T & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix},$$

The maximization over u is straightforward:

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma.$$

Fixing the norm of $||w|| = \alpha$, minimizing over the direction of w is straightforward:

$$\min_{\alpha\geq 0} = \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \|h_w\| + h_\sigma \sigma.$$

Differentiating over α gives the solution:

$$\frac{\alpha^2}{\sigma^2} = \frac{\|h_w\|^2}{\|g\|^2 - \|h_w\|^2} \to \frac{n}{m-n}$$

Babak Hassibi (Caltech)

イロト 不得 トイヨト イヨト 二日

Thus, in summary:

$$\frac{E\|\hat{x}-x_0\|^2}{\sigma^2} \to \frac{n}{m-n}.$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thus, in summary:

$$\frac{E\|\hat{x}-x_0\|^2}{\sigma^2}\to \frac{n}{m-n}.$$

Of course, in the least-squares case, we need not use all this machinery since the solutions are famously given by:

$$\hat{x} = \left(A^{\mathsf{T}}A\right)^{-1}A^{\mathsf{T}}y$$
 and $E\|x_0 - \hat{x}\|_2^2 = \sigma^2 \operatorname{trace}\left(A^{\mathsf{T}}A\right)^{-1}$

Thus, in summary:

$$\frac{\mathbb{E}\|\hat{x}-x_0\|^2}{\sigma^2} \to \frac{n}{m-n}.$$

Of course, in the least-squares case, we need not use all this machinery since the solutions are famously given by:

$$\hat{x} = \left(A^{\mathsf{T}}A\right)^{-1}A^{\mathsf{T}}y$$
 and $E\|x_0 - \hat{x}\|_2^2 = \sigma^2 \operatorname{trace}\left(A^{\mathsf{T}}A\right)^{-1}$

When A has iid N(0,1) entries, $A^T A$ is a Wishart matrix whose asymptotic eigendistribution is well known, from which we obtain

$$\frac{E\|x-\hat{x}\|_2^2}{\sigma^2} \to \frac{n}{m-n}.$$

Babak Hassibi (Caltech)

However, for generalized LASSO, we do not have closed form solutions and the machinery becomes very useful:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

However, for generalized LASSO, we do not have closed form solutions and the machinery becomes very useful:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

Using the same argument as before, we obtain the (AO):

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^{\mathsf{T}} u + \|u\| \begin{bmatrix} h_w^{\mathsf{T}} & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix} + \lambda f(x_0 - w).$$

However, for generalized LASSO, we do not have closed form solutions and the machinery becomes very useful:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_2 + \lambda f(x)$$

Using the same argument as before, we obtain the (AO):

$$\min_{w} \max_{\|u\| \leq 1} \sqrt{\|w\|^2 + \sigma^2} g^T u + \|u\| \begin{bmatrix} h_w^T & h_\sigma \end{bmatrix} \begin{bmatrix} w \\ \sigma \end{bmatrix} + \lambda f(x_0 - w).$$

Or:

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma + \lambda f(x_0 - w).$$

Babak Hassibi (Caltech)

September 16, 2016 40 / 70

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2 \|g\|} + h_w^T w + h_\sigma \sigma + \lambda f(x_0 - w).$$

While this can be analyzed in full generality, it is instructive to focus on the low noise, $\sigma \rightarrow 0$, case.

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma + \lambda f(x_0 - w).$$

While this can be analyzed in full generality, it is instructive to focus on the low noise, $\sigma \to 0$, case. Here ||w|| will be small and we may therefore write

$$f(x_0-w)\gtrsim f(x_0)+\sup_{s\in\partial f(\mathbf{x}_0)}s^{\mathsf{T}}(-w),$$

where $\partial f(\mathbf{x}_0)$ is the subgradient of $f(\cdot)$ evaluated at x_0 , and defined as

The subgradient of a *convex function* is a *convex set*.

< 17 ▶

3

•
$$f(x) = ||x||_1$$
 and $x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$:

•
$$f(x) = ||x||_1 \text{ and } x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$
:
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} \operatorname{sign}(\xi) \\ s \end{bmatrix}, ||s||_{\infty} \le 1 \right\}.$

•
$$f(x) = ||x||_1 \text{ and } x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$
:
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} \operatorname{sign}(\xi) \\ s \end{bmatrix}, ||s||_{\infty} \le 1 \right\}.$
• $f(X) = ||X||_* \text{ and } X_0 = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^*$:

•
$$f(x) = ||x||_1 \text{ and } x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$
:
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} \operatorname{sign}(\xi) \\ s \end{bmatrix}, ||s||_{\infty} \le 1 \right\}.$
• $f(X) = ||X||_{\star} \text{ and } X_0 = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^*$:
 $\partial f(\mathbf{x}_0) = \left\{ U \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix} V^*, |d_i| \le 1 \right\}.$

•
$$f(x) = ||x||_1 \text{ and } x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$
:
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} \operatorname{sign}(\xi) \\ s \end{bmatrix}, ||s||_{\infty} \le 1 \right\}.$
• $f(X) = ||X||_{\star} \text{ and } X_0 = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^*$:
 $\partial f(\mathbf{x}_0) = \left\{ U \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix} V^*, |d_i| \le 1 \right\}.$
• $f(x) = ||x||_{\infty} \text{ and } x_0 = \begin{bmatrix} \mathbf{1} \\ -\mathbf{1} \end{bmatrix}$:

The subgradient of a *convex function* is a *convex set*. In most cases of interest subgradients are easy to compute. Here are some examples:

•
$$f(x) = ||x||_1 \text{ and } x_0 = \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$
:
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} \operatorname{sign}(\xi) \\ s \end{bmatrix}, ||s||_{\infty} \le 1 \right\}.$
• $f(X) = ||X||_{\star} \text{ and } X_0 = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^*:$
 $\partial f(\mathbf{x}_0) = \left\{ U \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix} V^*, |d_i| \le 1 \right\}.$
• $f(x) = ||x||_{\infty} \text{ and } x_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}:$
 $\partial f(\mathbf{x}_0) = \left\{ \begin{bmatrix} s \\ -t \end{bmatrix}, s \ge 0, t \ge 0, ||s||_1 + ||t||_1 \le 1 \right\}.$

Babak Hassibi (Caltech)

Returning back to the (AO):

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2 \|g\|} + h_w^T w + h_\sigma \sigma + \lambda \sup_{s \in \partial f(\mathbf{x}_0)} s^T(-w),$$

<ロト < 同ト < 三ト

- 3

Returning back to the (AO):

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma + \lambda \sup_{s \in \partial f(\mathbf{x}_0)} s^T(-w),$$

or

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + \sup_{s \in \lambda \partial f(\mathbf{x}_0)} (h_w - s)^T w.$$

イロト 不得 トイヨト イヨト 二日

Returning back to the (AO):

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma + \lambda \sup_{s \in \partial f(\mathbf{x}_0)} s^T(-w),$$

or

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + \sup_{s \in \lambda \partial f(\mathsf{x}_0)} (h_w - s)^T w.$$

As before, fixing the norm $||w|| = \alpha$, optimization over the direction of w is straightforward:

$$\min_{\alpha \ge 0} \sqrt{\alpha^2 + \sigma^2} \|g\| + \sup_{s \in \lambda \partial f(\mathbf{x}_0)} -\alpha \|h_w - s\|.$$

Returning back to the (AO):

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + h_w^T w + h_\sigma \sigma + \lambda \sup_{s \in \partial f(\mathbf{x}_0)} s^T(-w),$$

or

$$\min_{w} \sqrt{\|w\|^2 + \sigma^2} \|g\| + \sup_{s \in \lambda \partial f(\mathsf{x}_0)} (h_w - s)^T w.$$

As before, fixing the norm $||w|| = \alpha$, optimization over the direction of w is straightforward:

$$\min_{\alpha\geq 0}\sqrt{\alpha^2+\sigma^2}\|g\|+\sup_{s\in\lambda\partial f(\mathbf{x}_0)}-\alpha\|h_w-s\|.$$

Or:

$$\min_{\alpha \ge 0} \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \underbrace{\inf_{s \in \lambda \partial f(\mathbf{x}_0)} \|h_w - s\|}_{\operatorname{dist}(h_w, \lambda \partial f(\mathbf{x}_0))}.$$

$$\min_{\alpha \geq 0} \sqrt{\alpha^2 + \sigma^2} \| \boldsymbol{g} \| - \alpha \mathsf{dist}(h_w, \lambda \partial f(\mathbf{x}_0)).$$

イロト 不得 とうせい かほとう ほ

Squared Error of Generalized LASSO $\sigma \rightarrow \mathbf{0}$

$$\min_{\alpha \geq 0} \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \mathsf{dist}(h_w, \lambda \partial f(\mathbf{x}_0)).$$

This looks exactly like what we had for least-squares: $\min_{\alpha \ge 0} \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \|h_w\|.$

イロト 不得 とうせい かほとう ほ

Squared Error of Generalized LASSO $\sigma \rightarrow \mathbf{0}$

$$\min_{\alpha \geq 0} \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \mathsf{dist}(h_w, \lambda \partial f(\mathbf{x}_0)).$$

This looks exactly like what we had for least-squares: $\min_{\alpha \ge 0} \sqrt{\alpha^2 + \sigma^2} \|g\| - \alpha \|h_w\|$. Differentiating over α yields:

$$\lim_{\sigma\to 0}\frac{\alpha^2}{\sigma^2}=\frac{\operatorname{dist}^2(h_w,\lambda\partial f(\mathbf{x}_0))}{m-\operatorname{dist}^2(h_w,\lambda\partial f(\mathbf{x}_0))}.$$

Babak Hassibi (Caltech)

イロト 不得 トイヨト イヨト 二日

Main Result: The Squared Error of Generalized LASSO

Generate an *n*-dimensional vector *h* with iid N(0,1) entries and define: $D_f(x_0, \lambda) = E \operatorname{dist}^2(h, \lambda \partial f(x_0)).$

Main Result: The Squared Error of Generalized LASSO

Generate an *n*-dimensional vector *h* with iid N(0,1) entries and define: $D_f(x_0, \lambda) = E \operatorname{dist}^2(h, \lambda \partial f(x_0)).$

It turns out that dist²(h_w , $\lambda \partial f(\mathbf{x}_0)$) concentrates to $D_f(x_0, \lambda)$, and that:

$$\lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\sigma^2} \to \frac{D_f(x_0, \lambda)}{m - D_f(x_0, \lambda)}.$$

Babak Hassibi (Caltech)

London 2016

September 16, 2016 45 / 70

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\sigma^2}\to \frac{D_f(x_0,\lambda)}{m-D_f(x_0,\lambda)}.$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\sigma^2}\to \frac{D_f(x_0,\lambda)}{m-D_f(x_0,\lambda)}.$$

• Note that, compared to the normalized mean-square error of standard least-squares, $\frac{n}{m-n}$, the ambient dimension *n* has been replaced by $D_f(x_0, \lambda)$.

イロト 不得 トイヨト イヨト 二日

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\sigma^2}\to \frac{D_f(x_0,\lambda)}{m-D_f(x_0,\lambda)}.$$

- Note that, compared to the normalized mean-square error of standard least-squares, $\frac{n}{m-n}$, the ambient dimension *n* has been replaced by $D_f(x_0, \lambda)$.
- The value of λ that minimizes the mean-square error is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda).$$

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\sigma^2}\to \frac{D_f(x_0,\lambda)}{m-D_f(x_0,\lambda)}.$$

- Note that, compared to the normalized mean-square error of standard least-squares, $\frac{n}{m-n}$, the ambient dimension *n* has been replaced by $D_f(x_0, \lambda)$.
- The value of λ that minimizes the mean-square error is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda).$$

It is easy to see that

$$D_f(x_0, \lambda^*) = E \operatorname{dist}^2(h, \operatorname{cone}(\partial f(x_0))) \stackrel{\Delta}{=} \omega^2.$$

Babak Hassibi (Caltech)

۲

$$\omega^2 = E \operatorname{dist}^2(h, \operatorname{cone}(\partial f(x_0)))$$

The quantity ω^2 is the squared *Gaussian width* of the cone of the subgradient and has been referred to as the *statistical dimension* by Tropp et al.

٩

$$\omega^2 = E \operatorname{dist}^2(h, \operatorname{cone}(\partial f(x_0)))$$

The quantity ω^2 is the squared *Gaussian width* of the cone of the subgradient and has been referred to as the *statistical dimension* by Tropp et al.

• Thus, for the optimum choice of λ :

$$\lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{\omega^2}{m - \omega^2}$$

۲

$$\omega^2 = E \operatorname{dist}^2(h, \operatorname{cone}(\partial f(x_0)))$$

The quantity ω^2 is the squared *Gaussian width* of the cone of the subgradient and has been referred to as the *statistical dimension* by Tropp et al.

• Thus, for the optimum choice of λ :

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\|z\|^2}\to \frac{\omega^2}{m-\omega^2}.$$

 The quantity ω² determines the minimum number of measurements required to recover a k-sparse signal using (appropriate) convex optimization. (The so-called *recovery thresholds*.)

Babak Hassibi (Caltech)

• The quantity $D_f(x_0,\lambda)$ is easy to numerically compute and ω^2 can often be computed in closed form.

< 1 →

- 3

- The quantity D_f(x₀, λ) is easy to numerically compute and ω² can often be computed in closed form.
- For *n*-dimensional *k*-sparse signals and $f(x) = ||x||_1$:

$$\omega^{2} = 2k \log \frac{2n}{k} \quad , \quad \lim_{\sigma \to 0} \frac{\|x_{0} - \hat{x}\|^{2}}{\|z\|^{2}} \to \frac{2k \log \frac{2n}{k}}{m - 2k \log \frac{2n}{k}}$$

- The quantity D_f(x₀, λ) is easy to numerically compute and ω² can often be computed in closed form.
- For *n*-dimensional *k*-sparse signals and $f(x) = ||x||_1$:

$$\omega^2 = 2k \log \frac{2n}{k} \quad , \quad \lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{2k \log \frac{2n}{k}}{m - 2k \log \frac{2n}{k}}$$

• For $n \times n$ rank r matrices and $f(X) = ||X||_{\star}$:

$$\omega^2 = 3r(2n-r)$$
 , $\lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{3r(2n-r)}{m-3r(2n-r)}$

- The quantity D_f(x₀, λ) is easy to numerically compute and ω² can often be computed in closed form.
- For *n*-dimensional *k*-sparse signals and $f(x) = ||x||_1$:

$$\omega^2 = 2k \log \frac{2n}{k} \quad , \quad \lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{2k \log \frac{2n}{k}}{m - 2k \log \frac{2n}{k}}$$

• For $n \times n$ rank r matrices and $f(X) = ||X||_{\star}$:

$$\omega^2 = 3r(2n-r)$$
 , $\lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{3r(2n-r)}{m-3r(2n-r)}$

• For BPSK signals and $f(x) = ||x||_{\infty}$:

$$\omega^{2} = \frac{n}{2} \quad , \quad \lim_{\sigma \to 0} \frac{\|x_{0} - \hat{x}\|^{2}}{\|z\|^{2}} \to \frac{n/2}{m - n/2} = \frac{n}{2m - n}$$

Babak Hassibi (Caltech)

September 16, 2016 48 / 70

Example

 $\mathbf{X}_0 \in \mathbb{R}^{n imes n}$ is rank r. Observe, $\mathbf{y} = A \cdot \operatorname{vec}(X_0) + \mathbf{z}$, solve the Matrix LASSO,

$$\min_{\mathbf{X}} \{ \|\mathbf{y} - A \cdot \operatorname{vec}(X)\|_2 + \lambda \|\mathbf{X}\|_* \}$$

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.
- Extended to robustness and weighted ℓ_1 by Xu-H in 2007 (even more cumbersome)

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.
- Extended to robustness and weighted ℓ_1 by Xu-H in 2007 (even more cumbersome)
- Donoho-Tanner approach hard to extend (Recht-Xu-H (2008) attempted this for nuclear norm—only obtained bounds since subgradient cone is non-polyhedral)

イロト 不得 トイヨト イヨト 二日

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.
- Extended to robustness and weighted ℓ_1 by Xu-H in 2007 (even more cumbersome)
- Donoho-Tanner approach hard to extend (Recht-Xu-H (2008) attempted this for nuclear norm—only obtained bounds since subgradient cone is non-polyhedral)
- New framework developed by Rudelson and Vershynin (2006) and, especially, Stojnic in 2009 (using escape-through-mesh and Gaussian widths)

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.
- Extended to robustness and weighted ℓ_1 by Xu-H in 2007 (even more cumbersome)
- Donoho-Tanner approach hard to extend (Recht-Xu-H (2008) attempted this for nuclear norm—only obtained bounds since subgradient cone is non-polyhedral)
- New framework developed by Rudelson and Vershynin (2006) and, especially, Stojnic in 2009 (using escape-through-mesh and Gaussian widths)
 - rederived results for sparse vectors; new results for block-sparse vectors

イロト 不得 とうせい かほとう ほ

- In the l₁ case the subgradient cone is polyhedral and Donoho and Tanner (2005) computed the Grassman angle to obtain the minimum number of measurements required to recover a k-sparse signal
 - very cumbersome calculations, required considering exponentially many inner and outer angles, etc.
- Extended to robustness and weighted ℓ_1 by Xu-H in 2007 (even more cumbersome)
- Donoho-Tanner approach hard to extend (Recht-Xu-H (2008) attempted this for nuclear norm—only obtained bounds since subgradient cone is non-polyhedral)
- New framework developed by Rudelson and Vershynin (2006) and, especially, Stojnic in 2009 (using escape-through-mesh and Gaussian widths)
 - rederived results for sparse vectors; new results for block-sparse vectors
 - much simpler derivation

Babak Hassibi (Caltech)

イロト 不得 とうせい かほとう ほ

Stojnic's new approach:

- Allowed the development of a general framework (Chandrasekaran-Parrilo-Willsky, 2010)
 - exact calculation for nuclear norm (Oymak-H, 2010)

Stojnic's new approach:

- Allowed the development of a general framework (Chandrasekaran-Parrilo-Willsky, 2010)
 - exact calculation for nuclear norm (Oymak-H, 2010)
- Deconvolution (McCoy-Tropp, 2012)

Stojnic's new approach:

- Allowed the development of a general framework (Chandrasekaran-Parrilo-Willsky, 2010)
 - exact calculation for nuclear norm (Oymak-H, 2010)
- Deconvolution (McCoy-Tropp, 2012)
- Tightness of Gaussian widths Stojnic, 2013 (for l₁), Amelunxen-Lotz-McCoy-Tropp, 2013 (for the general case)

Stojnic's new approach:

- Allowed the development of a general framework (Chandrasekaran-Parrilo-Willsky, 2010)
 - exact calculation for nuclear norm (Oymak-H, 2010)
- Deconvolution (McCoy-Tropp, 2012)
- Tightness of Gaussian widths Stojnic, 2013 (for l₁), Amelunxen-Lotz-McCoy-Tropp, 2013 (for the general case)

Replica-based analysis:

 Guo, Baron and Shamai (2009), Kabashima, Wadayama, Tanaka (2009), Rangan, Fletecher, Goyal (2012), Vehkapera, Kabashima, Chatterjee (2013), Wen, Zhang, Wong, Chen (2014)

Babak Hassibi (Caltech)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

What About the Noisy Case?

• Noisy case for *I*₁ LASSO first studied by Bayati, Montanari and Donoho (2012) using approximate message passing

What About the Noisy Case?

- Noisy case for l₁ LASSO first studied by Bayati, Montanari and Donoho (2012) using approximate message passing
- A new approach developed by Stojnic (2013)

- Noisy case for l₁ LASSO first studied by Bayati, Montanari and Donoho (2012) using approximate message passing
- A new approach developed by Stojnic (2013)
- Our approach is inspired by Stojnic (2013)

.

- Noisy case for l₁ LASSO first studied by Bayati, Montanari and Donoho (2012) using approximate message passing
- A new approach developed by Stojnic (2013)
- Our approach is inspired by Stojnic (2013)
 - subsumes all earlier (noiseless and noisy results)
 - allows for much, much more (as we have seen and shall further see)
 - is the most natural way to study the problem

- 4 同 6 4 日 6 4 日 6 - 日

The optimal value of λ is given by

$$\lambda^* = rg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say.

< A ▶

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

Answer: Here is one possibility that uses the fact that

 $\phi(g,h) \approx \sigma \sqrt{m - D_f(x_0,\lambda)}$:

イロト 不得 トイヨト イヨト 二日

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

Answer: Here is one possibility that uses the fact that

$$\phi(\mathbf{g},\mathbf{h}) \approx \sigma \sqrt{\mathbf{m} - D_f(\mathbf{x}_0,\lambda)}$$
:

() Choose a λ and solve the l_1 LASSO.

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

Answer: Here is one possibility that uses the fact that

$$\phi(g,h) \approx \sigma \sqrt{m - D_f(x_0,\lambda)}$$
:

① Choose a λ and solve the l_1 LASSO.

2 Find the numerical value of the optimal cost, C, say.

Tuning the Regularizer λ

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

Answer: Here is one possibility that uses the fact that

$$\phi(g,h) \approx \sigma \sqrt{m} - D_f(x_0,\lambda)$$
:

- **①** Choose a λ and solve the l_1 LASSO.
- **2** Find the numerical value of the optimal cost, C, say.
- Find the sparsity k such that

$$|C - \sigma \sqrt{m - D_f(x_0, \lambda)}|,$$

is minimized.

Babak Hassibi (Caltech)

Tuning the Regularizer λ

The optimal value of λ is given by

$$\lambda^* = \arg\min_{\lambda \ge 0} D_f(x_0, \lambda),$$

which requires knowledge of the sparsity of x_0 , say. This is usually not available.

Question: How to tune λ ?

Answer: Here is one possibility that uses the fact that $\frac{1}{2}$

$$\phi(g,h) \approx \sigma \sqrt{m} - D_f(x_0,\lambda)$$
:

- Choose a λ and solve the l_1 LASSO.
- ② Find the numerical value of the optimal cost, C, say.
- **③** Find the sparsity k such that

$$|C - \sigma \sqrt{m - D_f(x_0, \lambda)}|,$$

is minimized.

• For this value of k find the optimal λ^* .

Estimating the Sparsity: n = 520, m = 280

Babak Hassibi (Caltech)

September 16, 2016 54 / 70

Tuning λ : n = 520, m = 280

Babak Hassibi (Caltech)

September 16, 2016 55 / 70

æ

Improvement in NSE: n = 520, m = 280

Babak Hassibi (Caltech)

September 16, 2016 56 / 70

Generalizations

Babak Hassibi	(Caltech))
---------------	-----------	---

Finite σ and General Loss Functions

In the general case, the problem to study is:

$$\hat{x} = \arg\min_{x} \mathcal{L}(y - Ax) + \lambda f(x).$$

3

< 口 > < 同

Finite σ and General Loss Functions

In the general case, the problem to study is:

$$\hat{x} = \arg\min_{x} \mathcal{L}(y - Ax) + \lambda f(x).$$

To turn this into a PO it is useful to rewrite $\mathcal{L}(\cdot)$ and $f(\cdot)$ in terms of their *Fenchel duals*

$$\mathcal{L}(y - Ax) = \max_{u} u^{T}(y - Ax) - \mathcal{L}^{*}(u) \text{ and } f(x) = \max_{v} v^{T}x - f^{*}(v),$$

to obtain

$$\min_{x} \max_{u,v} u^{T}(y - Ax) - \mathcal{L}^{*}(u) + \lambda v^{T}x - \lambda f^{*}(v).$$

Babak Hassibi (Caltech)

September 16, 2016 58 / 70

Finite σ and General Loss Functions

In the general case, the problem to study is:

$$\hat{x} = \arg\min_{x} \mathcal{L}(y - Ax) + \lambda f(x).$$

To turn this into a PO it is useful to rewrite $\mathcal{L}(\cdot)$ and $f(\cdot)$ in terms of their *Fenchel duals*

$$\mathcal{L}(y - Ax) = \max_{u} u^{T}(y - Ax) - \mathcal{L}^{*}(u) \quad \text{and} \quad f(x) = \max_{v} v^{T}x - f^{*}(v),$$

to obtain

$$\min_{x} \max_{u,v} u^{T}(y - Ax) - \mathcal{L}^{*}(u) + \lambda v^{T}x - \lambda f^{*}(v).$$

It turns out that the geometric quantities that show up in the analysis of the AO are the *expected Moreau envelopes*.

Babak Hassibi (Caltech)

September 16, 2016 58 / 70

NSE for Finite σ : n = 500, m = 150, k = 20

Babak Hassibi (Caltech)

London 2016

September 16, 2016 59 / 70

Another Example: Least-Absolute Deviations (LAD)

We can do other loss functions.

< □ > < 同 >

We can do other loss functions. For example,

$$\hat{x} = \arg\min_{x} \|y - Ax\|_1 + \lambda \|x\|_1,$$

which attempts to find a sparse signal in sparse noise and which is called *least absolute deviations* (LAD).

Squared Error vs Number of Measurements

Babak Hassibi (Caltech)

London 2016

61 / 70

• Our results assumed an iid Gaussian A.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Our results assumed an iid Gaussian A.
- Is this necessary?

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Our results assumed an iid Gaussian A.
- Is this necessary?
- Simulations suggest that any iid distribution with the same second order statistics works.

- Our results assumed an iid Gaussian A.
- Is this necessary?
- Simulations suggest that any iid distribution with the same second order statistics works.
- We have been able to prove this for quadratic loss functions (OTTH 2015).

- Our results assumed an iid Gaussian A.
- Is this necessary?
- Simulations suggest that any iid distribution with the same second order statistics works.
- We have been able to prove this for quadratic loss functions (OTTH 2015). The value

$$\min_{x} \|y - Ax\|_2 + \lambda f(x),$$

concentrates for any A with iid zero-mean unit variance entries.

- Our results assumed an iid Gaussian A.
- Is this necessary?
- Simulations suggest that any iid distribution with the same second order statistics works.
- We have been able to prove this for quadratic loss functions (OTTH 2015). The value

$$\min_{x} \|y - Ax\|_2 + \lambda f(x),$$

concentrates for any A with iid zero-mean unit variance entries.

 Have yet to prove this for other loss functions and for the general (PO)

NSE for iid Bernouli $(\frac{1}{2})$: n = 500, m = 150, k = 20

Babak Hassibi (Caltech)

London 2016

September 16, 2016 63 / 70

• Can we give results for non iid random matrix ensembles?

3

< 日 > < 同 > < 三 > < 三 >

- Can we give results for non iid random matrix ensembles?
- An important class of random matrices are *isotropically random unitary matrices*,

- Can we give results for non iid random matrix ensembles?
- An important class of random matrices are *isotropically random* unitary matrices, i.e., matrices $Q \in R^{m \times n}$ (m < n), such that

$$QQ^T = I_m, \qquad P(\Theta Q\Omega) = P(Q),$$

for all orthogonall Θ and Ω .

- Can we give results for non iid random matrix ensembles?
- An important class of random matrices are *isotropically random* unitary matrices, i.e., matrices $Q \in R^{m \times n}$ (m < n), such that

$$QQ^T = I_m, \qquad P(\Theta Q\Omega) = P(Q),$$

for all orthogonall Θ and Ω .

- For such random matrices, we have shown that the two optimization problems:
- $\Phi(Q, z) = \min_{w} \|\sigma z Qw\| + \lambda f(w)$ (PO) $\phi(g, h) = \min_{w, l} \max_{\beta \ge 0} \|\sigma v - w - l\| + \beta(\|l\| \cdot \|g\| - h^T l) + \lambda f(w)$ (AO)

where z, v, h and g have iid N(0, 1) entries, have the same optimal costs and statistically the same optimal minimizer.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Isotropically Random Unitary Matrices

• Using the above result, we have been able to show that

$$\lim_{\sigma\to 0}\frac{\|x_0-\hat{x}\|^2}{\|z\|^2}\to \frac{D_f(x_0,\lambda)}{m-D_f(x_0,\lambda)}\cdot \frac{n-D_f(x_0,\lambda)}{n}.$$

э

Isotropically Random Unitary Matrices

Using the above result, we have been able to show that

$$\lim_{\sigma \to 0} \frac{\|x_0 - \hat{x}\|^2}{\|z\|^2} \to \frac{D_f(x_0, \lambda)}{m - D_f(x_0, \lambda)} \cdot \frac{n - D_f(x_0, \lambda)}{n}$$

• Since $\frac{n-D_f(x_0,\lambda)}{n} < 1$, this is strictly better than the Gaussian case.

NSE for Isotropically Unitary Matrix: n = 520, k = 20

Babak Hassibi (Caltech)

London 2016

-September 16, 2016 66 / 70

э

< 17 ▶

Suppose we make nonlinear observations of the form

$$y=g(Ax_0+v),$$

for some nonlinear function $g(\cdot)$.

Image: A image: A

Suppose we make nonlinear observations of the form

$$y=g(Ax_0+v),$$

for some nonlinear function $g(\cdot)$. For example, one-bit quantization corresponds to:

$$y=\operatorname{sign}(Ax_0+v).$$

イロト 不得 とうせい かほとう ほ

Suppose we make nonlinear observations of the form

$$y=g(Ax_0+v),$$

for some nonlinear function $g(\cdot)$. For example, one-bit quantization corresponds to:

$$y=\operatorname{sign}(Ax_0+v).$$

What happens if we apply generalized LASSO to such nonlinear measurements:

$$\min_{x} \|y - Ax\|_2 + \lambda f(x)?$$

Suppose we make nonlinear observations of the form

$$y=g(Ax_0+v),$$

for some nonlinear function $g(\cdot)$. For example, one-bit quantization corresponds to:

$$y=\operatorname{sign}(Ax_0+v).$$

What happens if we apply generalized LASSO to such nonlinear measurements:

$$\min_{x} \|y - Ax\|_2 + \lambda f(x)?$$

This seems like a very naive thing to do.

Suppose we make nonlinear observations of the form

$$y=g(Ax_0+v),$$

for some nonlinear function $g(\cdot)$. For example, one-bit quantization corresponds to:

$$y = \operatorname{sign}(Ax_0 + v).$$

What happens if we apply generalized LASSO to such nonlinear measurements:

$$\min_{x} \|y - Ax\|_2 + \lambda f(x)?$$

This seems like a very naive thing to do. However, it was suggested by Brillinger for standard least-squares in the 1980's and very recently by Plan and Vershynin.

イロト 不得 とうせい かほとう ほ

Theorem (TAH 2015): The MSE of generalized LASSO for nonlinear measurements of the form $y = g(Ax_0 + v)$ is asymptotically the same as the MSE of generalized LASSO for measurements of the form $y = \mu Ax_0 + \sigma v$, where:

$$\mu = \mathsf{E}\gamma \mathsf{g}(\gamma) \quad \textit{ and } \quad \sigma^2 = \mathsf{E} \mathsf{g}^2(\gamma) - \mu^2 \quad \textit{ for } \gamma \sim \mathsf{N}(0,1).$$

Theorem (TAH 2015): The MSE of generalized LASSO for nonlinear measurements of the form $y = g(Ax_0 + v)$ is asymptotically the same as the MSE of generalized LASSO for measurements of the form $y = \mu Ax_0 + \sigma v$, where:

$$\mu = \mathsf{E}\gamma \mathsf{g}(\gamma) \quad \textit{ and } \quad \sigma^2 = \mathsf{E} \mathsf{g}^2(\gamma) - \mu^2 \quad \textit{ for } \gamma \sim \mathsf{N}(0,1).$$

• Therefore all the analysis we have done for generalized LASSO with linear measurements applies also to the nonlinear case.

Theorem (TAH 2015): The MSE of generalized LASSO for nonlinear measurements of the form $y = g(Ax_0 + v)$ is asymptotically the same as the MSE of generalized LASSO for measurements of the form $y = \mu Ax_0 + \sigma v$, where:

$$\mu = \mathsf{E}\gamma \mathsf{g}(\gamma) \quad ext{ and } \quad \sigma^2 = \mathsf{E} \mathsf{g}^2(\gamma) - \mu^2 \quad ext{ for } \gamma \sim \mathsf{N}(0,1).$$

- Therefore all the analysis we have done for generalized LASSO with linear measurements applies also to the nonlinear case.
- For 1-bit quantization we have:

$$\mu = \sqrt{rac{2}{\pi}}$$
 and $\sigma^2 = 1 - rac{2}{\pi}$

Babak Hassibi (Caltech)

Theorem (TAH 2015): The MSE of generalized LASSO for nonlinear measurements of the form $y = g(Ax_0 + v)$ is asymptotically the same as the MSE of generalized LASSO for measurements of the form $y = \mu Ax_0 + \sigma v$, where:

$$\mu = {\sf E} \gamma {\sf g}(\gamma) \hspace{0.5cm} ext{and} \hspace{0.5cm} \sigma^2 = {\sf E} {\sf g}^2(\gamma) - \mu^2 \hspace{0.5cm} ext{for} \ \gamma \sim {\sf N}(0,1).$$

- Therefore all the analysis we have done for generalized LASSO with linear measurements applies also to the nonlinear case.
- For 1-bit quantization we have:

$$\mu = \sqrt{rac{2}{\pi}}$$
 and $\sigma^2 = 1 - rac{2}{\pi}$

• We can show that, for *q*-bit quantization, the optimal quantizer is the celebrated LLoyd-Max quantizer.

Babak Hassibi (Caltech)

London 2016

September 16, 2016 68 / 70

One-Bit Quantization

Figure: n = 768, k = 115, m = 920 > n and m = 576 < n. The measurements were $y = \text{sign}(Ax_0 + .3v)$ with the v_i iid N(0, 1).

3

• Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices

B 1 4 B 1

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)

· < E > < E > _ E

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)

· < E > < E > _ E

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters
- Can consider various loss functions and regularizers

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters
- Can consider various loss functions and regularizers
- Results appear to be universal (proven for quadratic losses and general regularizers)

イロト 不得 トイヨト イヨト 二日

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters
- Can consider various loss functions and regularizers
- Results appear to be universal (proven for quadratic losses and general regularizers)
- Theory generalized to isotropically random unitary matrices

イロト 不得 トイヨト イヨト 二日

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters
- Can consider various loss functions and regularizers
- Results appear to be universal (proven for quadratic losses and general regularizers)
- Theory generalized to isotropically random unitary matrices
- Extends to nonlinear measurements

イロト 不得 トイヨト イヨト 二日

- Developed a general theory for the analysis of convex-based structured signal recovery problems for iid Gaussian measurement matrices
 - subsumes all known results (phase transitions, thresholds, etc.) and generates many new ones
- Theory builds on a strengthening of a lemma of Gordon (whose origin is one of Slepian)
 - study an (AO) rather than the (PO)
- Allows for optimal tuning of regularizer parameters
- Can consider various loss functions and regularizers
- Results appear to be universal (proven for quadratic losses and general regularizers)
- Theory generalized to isotropically random unitary matrices
- Extends to nonlinear measurements
- Generalization to quadratic Gaussian measurements would be very useful (for phase retrieval, graphical LASSO, etc.)

Babak Hassibi (Caltech)

London 2016