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Abstract—The accelerated, on-demand deployment of sensor
networks raises the challenge of selecting the providers supplying
the most “relevant” sensory information to a user’s needs. This
paper considers the spatial relevancy of information provided
that accounts for the spatial gradations in the quality of the
information desired and, specifically, considers: (a) selecting the
minimum number of providers that cumulatively maximizes the
information relevancy; and (b) considering a cost per provider,
selecting the subset of providers that cumulatively maximizes the
overall information relevancy subject to a budgetary constraint.
The performance and robustness of the proposed solutions are
studied both analytically and by simulation for a number of
provider topologies.

I. INTRODUCTION

Consider the case where, say, a city agency needs to monitor
air-quality throughout the area of its authority. The agency is
willing to utilize air-quality information of different quality
levels, e.g., higher granularity in densely populated regions,
and lower granularity at other regions. To collect the needed
information, the agency will use a combination of its own
sensors and third-party fixed and mobile sensory information
providers with whom it would create persistent or transient
relations as necessary. The third-party providers could be other
city agencies, private operators that, for example, monitor
air-quality in public areas (parks, arenas, etc.), fleet operators
whose fleet vehicles are equipped (for various reasons) with
the necessary sensory devices, and even individuals whose
smart-phones are capable of sensing air-quality conditions.

This hypothetical (albeit not improbable) scenario
exemplifies a trend where increased deployment and use of
sensor networks is ushering a new era of information-rich,
fast-paced, pervasive solutions. The emergence of the Internet
of Things (IoT) [1] and participatory sensing [2] will further
hasten the rate and ease with which information from tethered,
untethered sensors, the Web, etc., will coalesce on demand
to support our information needs.
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There are undoubtedly several challenges in realizing the
“city agency” scenario, and not all are technological! In this
paper we study one of the technological challenges that of
dealing with selecting information providers that supply the
most relevant information for our (i.e., the user’s) needs. To
this end, we build upon the relevancy metrics in [3] where, as-
suming compatible types for the sought and provided informa-
tion, relevancy was measured by “how spatiotemporally close”
a piece of information provided is to the information desired.
Specifically, we defined and measured spatial relevancy by the
degree of overlap between the regions describing the coverage
of sensory information from the providers and the region de-
scribing the coverage of sensor information desired by a user;
we, similarly, defined and measured temporal relevancy. The
spatiotemporal properties of information are part of the phys-
ical context metadata for the quality of information (QoI) [4].

As the number and variety of potential sources of infor-
mation as well as the number of applications that depend
on and search for them increases, the process of selecting
the most relevant ones becomes more and more challenging.
Furthermore, the fluidity of untethered sources (humans in
participatory sensing, sensor-equipped vehicles, etc.) adds to
the challenge as an application interested in information from
a particular region may need to seek for and bind repeatedly
to new(er) relevant sources.

Extending our earlier work, we consider the aforementioned
multitude of operational challenges as sensory sources and
applications that depend on them increases. Researching this
topic we have introduced QoI functions for describing the
quality of information of the desired (or provided) information
and defined an extended relevancy metric based on the QoI
functions. Furthermore, we have looked into the problem
of metadata expansion that results from the aggregation of
spatiotemporal metadata from different providers and devised
finite, expansion-proof metadata descriptors for the QoI func-
tions, using approximation techniques, such as spline surfaces.
Due to space limitations, the details of this part of our research
can be found in [5]. Nonetheless, we will highlight these as
necessary in the next section since they lend support to the
following specific contributions in this paper: (a) the formula-
tion of optimization problems for selecting relevant providers
with our without constraints; and (b) the solution algorithms
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Fig. 1. Spatial properties of desired and provided sensor-originated
information–regions are shown as ellipses for illustrative purposes only.

and performance study of these optimization problems.
The organization of the paper is as follows: Section II

highlights the aforementioned additional work in [5]. Section
III presents the multi-provider selection problem and solution
techniques. Section IV provides the numerical evaluation of
our solutions. Finally, Section V summarizes the paper and
provides concluding remarks along with related work.

II. HIGHLIGHTED WORK

A. Spatial Relevancy Metrics

In [3], we introduced spatial relevancy1 to represent the
degree of spatial overlap that there is between the region
for which we seek information for and the coverage of
the information we are provided with, assuming compatible
types of information, e.g., air-quality, between sought and
provided information. With respect to Fig. 1, Rd is the spatial
coverage of the desired information and Rp is that of the
provided information, then the spatial relevancy rs(Rd, Rp)
was represented in [3] by the area of the overlap normalized
by the area of the desired region, area[Rd ∩Rp]/area[Rd].

The relevancy rs in [3] treated the entire region of overlap
uniformly, independently of any QoI expectations desired
by the user, or provided by the provider. To accommodate
gradation in QoI, we introduced in [5] the desired QoI function
qd(·) describing the quality of the desired information for
each point related to point ω = (x, y) in Rd, for example,
at point at ω, the desired probability of (an) event detection
should be above 95%, or, the air-quality measurement to be
within 5% of the actual air-quality level, etc. By convention,
we set qd(ω) = 0 for all points ω /∈ Rd. In a similar way, we
also introduced the provided (or provider) QoI function qp(·)
defined on the provider coverage set Rp.

Finally, considering the value function v
(
qp(·); qd

)
that

represents the value the sensor-enabled application gains in
executing its task when it uses information of quality qp(ω) at
point ω, while qd was desired, the relevancy metric becomes:

rvs (qd, qp) =

∫
Rd∩Rp

v
(
qp(ω); qd

)
dω∫

Rd
v
(
qd(ω); qd

)
dω

. (1)

1For ease of presentation, and without lack of generality, we focus only on
spatial relevancy over two-dimensional regions. Extensions to 3-D (or 4-D)
spatiotemporal volumes are possible, albeit at increased levels of notational
(and computational) complexity.

B. Spline-based QoI Function Description
To control the potential metadata explosion that may result

from the aggregation of providers and their spatial metadata,
we introduced in [5] the use of B-spline surfaces defined by
M parameters for approximating the QoI functions q (either
desired or provided) over the respective regions R. With
respect to Fig. 2, B-splines are used to generate M parameters
describing the desired and provided QoI functions q and the
corresponding regions R. For each region, three additional
points {(xi, yi); i = 1, 2, 3} may also be used to describe the
minimum rectangle containing them. With regard to our “city
agency” scenario, the number M of the parameters is assumed
to be known to all providers that do business with the city.

Rd

Rp2

Rp1

Rp3
M parameters

(x1, y1)
(x2, y2)

(x3, y3)

Fig. 2. Example of multiple desired/provided regions R and container
rectangles.

While increasing M gives more accurate description of a
QoI function, simulation results show the efficiency of the
method even for low order approximations; some of these
results are shown in Section IV-A. Alternatives to B-splines
were also considered such as sampling the R regions or
quantizing the range of the QoI functions q. Space limitations
do not allow us to discuss these other cases any further, but,
nonetheless, we have found the spline approximations quite
general and effective.

III. MULTI-PROVIDER SELECTION

While it is possible that a single provider may suffice in
satisfying an application’s needs, it is quite likely that it will
not. In this case, it would be desirable to be able to judiciously
select a number of providers that cumulatively provide the
most relevant information.

For this case, we assume there is an application with qd and
Rd representing its desired QoI function and corresponding
region. There is also a set P of providers of size |P| = N with
qip and Ri

p, i ∈ {1, . . . , N}, the corresponding provider QoI
functions and coverage regions. In the following subsections,
we consider two cases: (a) the no-cost case, where we seek to
find the minimum number of providers that satisfy the applica-
tion needs without any budgetary constraints; (b) the cost case,
where engaging providers comes at a cost and applications
(for example, the aforementioned city agency) have budgetary
constraints. In both cases, we will first formulate a model for
the problem and then consider a solution for it.
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A. Maximum Relevancy with Minimum Providers and No-cost

We start with the case of selecting the minimum number
of providers that can cover as much of the desired region
as possible while attaining as high quality as possible. To
this end, let I = [I(1), . . . , I(N)] be the provider selection
indicator vector, with I(i) = 1 if provider i is selected, and
= 0 otherwise. Additionally, let the aggregate provider region
RI

p be the union of all the selected provider coverage regions,

i.e., RI
p =

⋃N
i=1 I(i) ·Ri

p, and let Rp
def
= R

{I=1}
p =

⋃N
i=1 R

i
p.

The selection of the appropriate set of providers to maxi-
mize the coverage of the desired region with no cost can be
modeled by the following optimization problem Πnc:

Problem Πnc: For I(i) ∈ {0, 1}, i ∈ {1, . . . , N},

minimize
N∑
i=1

I(i), such that, ∀ω ∈ Rd ∩Rp :

(1)
∑

i:ω∈Rd∩Ri
p

I(i) ≥ 1; and (2)

(2) max
i:ω∈Rd∩Ri

p

{
I(i) · qip(ω)

}
= max

i:ω∈Rd∩Ri
p

{
qip(ω)

}
.

Constraint (1) is a coverage constraint that states that for each
point ω ∈ Rd covered by one or more providers, at least one of
them will be selected. Constraint (2) is a preference constraint
that states that the provider with the highest QoI at a point
ω shall be chosen. Note that this model allows the selection
of providers that overlap at some points, however, it assures
that the best provider at each point is among the selected
ones. Therefore, the formulation is implicitly maximizing the
aggregated spatial relevancy.

Problem Πnc is a generalization of the set covering problem
[6] on three dimensions (each 2-D point ω is also associated
with quality value qd(ω)) and for unity costs, which is one
of Karp’s 21 NP-complete problems [7]. Therefore, the Πnc

problem is NP-complete as well and, hence, there is no
polynomial-time algorithm that solves it. The most efficient
algorithm solving (approximately) the set covering problem
is a greedy algorithm. Based on this, we propose a solution
to problem Πnc described by Algorithm 1 which, at each
iteration, selects the most appropriate subset of providers
that maximize the total relevancy with respect to the desired
information having QoI function qd. Thus, the provider that
results in the largest increase in the aggregate relevancy is
chosen at each iteration and the algorithm terminates when
none of the remaining providers can increase the aggregate
relevancy further.

More specifically, at each iteration t, the aggregate coverage
region S from the set F of providers already selected, i.e.,
S = ∪k∈FRk

p , is merged with the new candidate region Ri
p.

Then, the relevancy of the aggregated QoI function qi,Fp (ω)
(see shortly) is calculated for each of the candidate providers
i together with those in the set F . Consequently, the provider
leading to the highest aggregate relevancy, V t, is selected
until there is no further increase in the total relevancy.

Algorithm 1 – Aggregate Relevancy
1: Initialize: F = ∅, S = ∅, P = {1, . . . , N}, t = 1 and

V 0 = 0;
2: Set: F t

i = F ∪ {i}, Sti = S ∪Ri
p for all providers i ∈ P;

3: Calculate spatial relevancy, rts(i)
def
= rts

(
qd(ω), qi,Fp (ω)

)
,

for all regions Sti using equation (1);
4: Set k ← arg maxi

{
rts(i)

}
and V t ← rts(k);

5: if V t = V t−1 then
6: STOP;
7: else
8: Set: F ← F t

k, S ← Stk; P ← P \ {k};
9: Go to step 2 with t← t + 1;

10: end if

In step 3 of Algorithm 1, we use the aggregated QoI
function qi,Fp (ω) which represents the collective behavior of
the providers already selected, i.e., in the set F , and the
new candidate provider i at the point ω ∈ S. Specifically,
given two providers i and j with qkp and Rk

p , k ∈ {i, j},
their respective QoI functions and provider regions, their
combined QoI function qi,jp is defined on Ri

p ∪ Rj
p where

qi,jp (ω) = h
(
qip(ω), qjp(ω)

)
; recall that qp is set to 0 outside

its region Rp. The transformation h produces another QoI
function from the constituent QoI functions which reflects how
the quality of fused information is assessed. For example, if
the accuracy of a measurement from provider i at a point ω
is 3% and from provider j is 5%, the aggregated quality from
the two providers could be the better accuracy of the two,
i.e., 3%, i.e., “h ≡ max.” We use the latter example h in our
numerical results later on, thus for ω ∈ Ri

p ∪Rj
p, we will use:

qi,jp (ω)
def
= h

(
qip(ω), qjp(ω)

)
= max

{
qip(ω), qjp(ω)

}
. (3)

Algorithm 1 can be implemented in polynomial time. At
each iteration, the algorithm determines the optimal provider
to select, but, similarly to how the greedy algorithm behaves
for the original set covering problem, this may not always lead
to the overall optimal solution.

The scenario described in this sub-section did not take into
account a possible cost for using the sensory information
of a particular provider. Problem formulation Πnc and its
solution in Algorithm 1 identify the best subset of providers
that maximize the aggregate spatial relevancy of information
independently of the cost. Next we consider an additional
model formulation that takes this cost into account when
choosing the optimal provider set.

B. Maximum Relevancy with Budget Constraints

Since nothing comes for free, sooner or later, the city agency
will have to face the realities of budgetary constraints. In
this case, suppose the city agency’s budget is B and the
cost of engaging provider i is ci, i = 1, . . . , N . Thus, we
are now interested in finding the optimal set of providers
that will maximize the spatial relevancy of the provided
information subject to the budget constraint B. Again, this
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case can be modeled by a combinatorial optimization problem.
Specifically, let again I(i) be the 0-1 indicator variables for
selecting provider i and I the corresponding vector. Thus, the
formulation of the optimization problem in this case will be:

Problem Πbg: For I(i) ∈ {0, 1}, i ∈ {1, . . . , N},

maximize rs
(
qd, q

I
p

)
, such that

N∑
i=1

I(i) · ci ≤ B, (4)

where rs
(
qd, q

I
p

)
is the relevancy of a “super-provider” with

a QoI function aggregated from the providers indicated by
selection vector I (see discussion following Algorithm 1) and
defined on the coverage region RI

p. We note that in Πbg the
increase of the relevancy when adding a specific provider i
does not only depend on i alone but on the already selected
providers as well. In the case that the providers already
selected are offering good enough quality on all points ω in
Ri

p, adding provider i may not increase the relevancy attained.
Problem Πbg is a generalization of the 0-1 knapsack

problem [8] where the value of each item is a function of
the items already selected to be included in the knapsack.
For example, adding a lighter in the knapsack may reduce
(even to zero) the subsequent value of a box of matches. This
is captured with the use of qIp as a function of the vector
I. The 0-1 knapsack problem is an NP-hard optimization
problem which means that there is no algorithm that finds the
optimal solution in polynomial time. The greedy algorithm
would need to check all 2N different combinations between
the N providers, prune those that do not satisfy the available
budget and then choose the combination that maximizes
the aggregate relevancy. Instead, we consider the dynamic
programming type Algorithm 2 that solves the problem in
pseudo-polynomial time splitting the problem into smaller
subproblems, storing their solutions into memory, and, then,
using them to calculate the solution of the main problem.

Algorithm 2 iteratively constructs the N × B matrix
Values, whose entry Values[i, b] is the maximum aggregate
spatial relevancy of the first i providers for a budget b; the cor-
responding provider selections reside in the indicator vector Ibi .
The matrix entry Values[N,B] stores the maximum aggregate
spatial relevancy of all providers for budget B, which is the
optimal solution for Πbg , and the optimal provider selection
will reside in the vector IBN . As mentioned earlier, Πbg is
an extended 0-1 knapsack problem with variable item value.
Therefore, lines 6-10 of Algorithm 2 calculate the spatial
relevancy of the providers (i.e., the item values) in the specific
selection vector I. The relevancy of providers in vectors I that
have already been calculated at earlier iterations are evoked
from memory. This has a significant impact in accelerating
the algorithm. Moreover, lines 11-18 of the algorithm deter-
mine whether selecting a new provider will result in higher
aggregate spatial relevancy and, if yes, select the provider.

The dynamic programming algorithm for the 0-1 knapsack
problem has complexity of O(nB), where n is the number
of items and B the available budget. In the worst case,
Algorithm 2 will calculate the spatial relevancy rs

(
qd, q

I
p

)

Algorithm 2 – Budget Constrained Aggregate Relevancy
1: for i = 1 to N do
2: for b = 0 to B do
3: if ci ≤ b then
4: I = Ib−cii−1 ; where: Ib−ci0

def
= 0 and I0i−1

def
= 0;

5: I(i) = 1;
6: if rs

(
qd, q

I
p

)
not calculated then

7: Calculate rs
(
qd, q

I
p

)
using (1);

8: else
9: Get rs

(
qd, q

I
p

)
from memory;

10: end if
11: if rs

(
qd, q

I
p

)
> Values[i− 1, b] then

12: Values[i, b] = rs
(
qd, q

I
p

)
; Ibi = I;

13: else
14: Values[i, b] = Values[i− 1, b]; Ibi = Ibi−1;
15: end if
16: else
17: Values[i, b] = Values[i− 1, b]; Ibi = Ibi−1;
18: end if
19: end for
20: end for

at each iteration, which needs O(N) time. Therefore, the
absolutely worst case time complexity of Algorithm 2 is
O(N2B), where N is the total number of providers. Regarding
the memory requirements, in the worst case, it is necessary
to store the matrix Values of size N × B, the relevancy
values rs(qd, qIp) for each selection vector I, which are in total
min {2N , N ×B}, and the optimal selection vector Ibi of size
N for the N ×B iterations of the algorithm.

The implementation of the algorithm can be accelerated
both in time and memory requirements significantly in two
ways. First, instead of examining all N providers the algorithm
can be run only for those intersecting with the desired QoI
function. The intersection operation will be run only once,
at the beginning of the process, and can be implemented in
linear time. Then, instead of iterating for all values in the range
[0, B], we can calculate the greatest common divisor gcd of
ci, i = 1, · · · , N , and B and then run the algorithm in the
range [0, B/gcd] with costs ci/gcd, i = 1, · · · , N .

IV. NUMERICAL RESULTS

The numerical results in this section were derived using
a combination of MATLAB-based computations and simu-
lations. We first highlight the effectiveness of the B-spline
approximation of QoI functions in calculating the spatial
relevancy of a single provider and, then, consider the multi-
provider case and the performance of the two algorithms
presented in Section III. With regard to the value function
v(·, ·) in (1), we assume that an end-user application gains no
benefits if it receives information of higher quality than what
it asked for, thus, we set v(qp; qd) = min{qp, qd}, and, hence:

rs(qd, qp) =

∫
Rd∩Rp

min
{
qp(ω), qd(ω)

}
dω∫

Rd
qd(ω) dω

. (5)
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A. Single-provider Spatial Relevancy

The objective of the single-provider study is assessing the
robustness of the spline-based, finite-size approximation of
QoI functions in ordering providers according to their rele-
vancy to a desired QoI function. We show here the results for
an urban scenario where the desired and the various provider
regions R line-up along city streets (the “Manhattan street”
topology), see Fig. 3; see [5] for a rural scenario.

Rd Rp3

Rp1 Rp2

Fig. 3. The urban (Manhattan street) topology case.

We applied the single-provider relevancy method using
different values for the number of B-spline parameters M .
Then, the spatial relevancy metric was calculated through the
B-spline approximation and was compared against the actual
spatial relevancy of the providers using their original QoI
functions. We studied: (a) the estimation error as a function
of M ; and (b) the effect of this error on ordering providers
according to their spatial relevancy. Note that, the goodness
of the approximation is judged not in absolute terms (which
is a comparison over a continuum of values) but rather over
an ordering outcome (which is a comparison over a finite set
of alternatives).

The analysis results in Fig. 4 illustrate the robustness of the
method with regard to this objective. As the top plot shows,
the estimation error for the spatial relevancy of each provider
is relatively low even when using around M = 100 parameters
for the QoI function approximation. More importantly, there
are no misordering effects even when the spatial relevancy of
some providers is almost identical, as in the case of providers
1 and 2. This is indicated in the bottom plot in Fig. 4 by the
fact that the red and blue lines do not intersect; an intersection
would have meant a change in the relative order of provider
relevancy.

Building upon the procedure of calculating spatial relevancy
for single providers, in the next subsection we will present
the simulation results of the two algorithms proposed for the
multi-provider selection problem.

B. Multi-provider Spatial Relevancy

In the case of the multi-provider selection problem with or
without the budget constraint, the QoI functions used were
mixtures of varying number of Gaussian density functions,
randomly scaled and placed on the two-dimensional plane.
Fig. 5 shows an example case, where the desired QoI function
is colored in blue, and 9 providers are colored in red, cyan
and green.

The proposed algorithms are based on pseudopolynomial
heuristics to solve NP-Hard problems. These algorithms were
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Fig. 4. Spatial relevancy for the urban topology as a function of M .

Fig. 5. QoI example functions for the multi-provider case.

adjusted to accommodate our objectives regarding the spatial
relevancy of providers. Hence, the objective of our simulation
study was the assessment of the algorithm effectiveness in
selecting the right providers that satisfy problems Πnc and
Πbg in Section III. The assessment is performed by comparing
the solutions and execution time of the proposed algorithms
against those from the exhaustive search algorithms. For the
no-cost case, the latter calculates the spatial relevancy of all
(2N −1) different combinations between the N providers and
the selection of the best one according to (2). For the budget
constraint case, the exhaustive search algorithm includes the
comparison of all feasible combinations, i.e., those with a total
cost less than or equal to the budget B, and the selection of
the optimal one among them according to (4).

Fig. 6 shows the comparison of the execution time between
the proposed algorithms and the exhaustive method in each
case. For all cases studied, the solutions that the proposed al-
gorithms arrived at were the same as the ones given by the ex-
haustive search methods, which of course are the optimal ones.
As expected, the execution time of the exhaustive algorithms
increases exponentially as the number of providers increases,
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Fig. 6. Execution times comparison between Algorithms 1, 2 and exhaustive
search using a 2.4GHz dual core Windows PC with 4GB of RAM.

while it increases almost linearly for algorithms 1 and 2. The
execution of the proposed algorithms has also been accelerated
by a mechanism of pruning providers not intersecting with
the desired QoI function. In such cases, these providers are
removed from the rest of the process which results in further
reducing the number of combinations examined.

V. RELATED WORK AND CONCLUDING REMARKS

In this paper, we introduced a novel problem area for
sensor networks that of identifying and selecting providers
providing relevant sensory-information based on their sensing
capabilities regarding their coverage and QoI and how they
compare to those desired. The focus in this paper has been
in the spatial domain for ease of presentation, but temporal
extensions are also possible. This problem will become more
and more prominent as the number of providers increases
and their sensing capabilities change in the spatiotemporal
domain, such as when using wireless and mobile sensor
networks operating over a multi-administrative domains, e.g.,
vehicle-mounted sensors, participatory sensors, etc. Within
this area we highlighted relevancy metrics based on QoI
functions and a finite, expansion-proof technique for metadata
based on B-spines. Based on these, we have formulated related
optimization problems and proposed efficient algorithms for
selecting the best collection of providers that are most relevant
to our needs given various constraint objectives.

To the best of our knowledge this is the first endeavor
in the area of QoI and information relevancy in sensor
networks, and we are aware of no prior work that directly
relates to our research in this paper. There is, however,
prior literature that inspired and influenced our research.
Specifically, supplementing our own cited work on QoI, [9]
discusses quality metadata describing geospatial information.

Ref. [10] provides an extensive review of the models for
spatio-temporal information databases and related queries.
Ref. [11] considers summarizing 2-D shapes via a bounded
number of parameters. These shapes could correspond to our
regions R and, thus, the proposed approach in [11] could serve
as an alternative to our B-spline approach. We do not discount
the latter approach and could have been used in our paper as
well. However, given that we ultimately pursue a comparison
and selection of relevant providers using QoI criteria as well,
we found the use of the B-spline approach more flexible. Ref.
[12] provides a survey of coverage in sensor networks, but it
identifies no study regarding coverage comparisons between
sought and provided information or associating coverage with
QoI gradations. Finally, our inspiration in using splines comes
from [13] which considers the increase in the number of the
time-decaying security metadata of documents produced by
the combination of constituent documents.

Future work in this novel area, may include the study
of the various architectural aspects related to QoI function
advertisements (what, when and how to advertise), as well
as the consideration of time-varying QoI functions that could
result by system impediments, such as loss of sensors, and
fluidity of sources, such as when considering mobile sensors
and participatory sensing.
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